xref: /openbmc/linux/fs/ecryptfs/keystore.c (revision 643d1f7f)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36 
37 /**
38  * request_key returned an error instead of a valid key address;
39  * determine the type of error, make appropriate log entries, and
40  * return an error code.
41  */
42 static int process_request_key_err(long err_code)
43 {
44 	int rc = 0;
45 
46 	switch (err_code) {
47 	case ENOKEY:
48 		ecryptfs_printk(KERN_WARNING, "No key\n");
49 		rc = -ENOENT;
50 		break;
51 	case EKEYEXPIRED:
52 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
53 		rc = -ETIME;
54 		break;
55 	case EKEYREVOKED:
56 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
57 		rc = -EINVAL;
58 		break;
59 	default:
60 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
61 				"[0x%.16x]\n", err_code);
62 		rc = -EINVAL;
63 	}
64 	return rc;
65 }
66 
67 /**
68  * parse_packet_length
69  * @data: Pointer to memory containing length at offset
70  * @size: This function writes the decoded size to this memory
71  *        address; zero on error
72  * @length_size: The number of bytes occupied by the encoded length
73  *
74  * Returns zero on success; non-zero on error
75  */
76 static int parse_packet_length(unsigned char *data, size_t *size,
77 			       size_t *length_size)
78 {
79 	int rc = 0;
80 
81 	(*length_size) = 0;
82 	(*size) = 0;
83 	if (data[0] < 192) {
84 		/* One-byte length */
85 		(*size) = (unsigned char)data[0];
86 		(*length_size) = 1;
87 	} else if (data[0] < 224) {
88 		/* Two-byte length */
89 		(*size) = (((unsigned char)(data[0]) - 192) * 256);
90 		(*size) += ((unsigned char)(data[1]) + 192);
91 		(*length_size) = 2;
92 	} else if (data[0] == 255) {
93 		/* Five-byte length; we're not supposed to see this */
94 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
95 				"supported\n");
96 		rc = -EINVAL;
97 		goto out;
98 	} else {
99 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
100 		rc = -EINVAL;
101 		goto out;
102 	}
103 out:
104 	return rc;
105 }
106 
107 /**
108  * write_packet_length
109  * @dest: The byte array target into which to write the length. Must
110  *        have at least 5 bytes allocated.
111  * @size: The length to write.
112  * @packet_size_length: The number of bytes used to encode the packet
113  *                      length is written to this address.
114  *
115  * Returns zero on success; non-zero on error.
116  */
117 static int write_packet_length(char *dest, size_t size,
118 			       size_t *packet_size_length)
119 {
120 	int rc = 0;
121 
122 	if (size < 192) {
123 		dest[0] = size;
124 		(*packet_size_length) = 1;
125 	} else if (size < 65536) {
126 		dest[0] = (((size - 192) / 256) + 192);
127 		dest[1] = ((size - 192) % 256);
128 		(*packet_size_length) = 2;
129 	} else {
130 		rc = -EINVAL;
131 		ecryptfs_printk(KERN_WARNING,
132 				"Unsupported packet size: [%d]\n", size);
133 	}
134 	return rc;
135 }
136 
137 static int
138 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
139 		    char **packet, size_t *packet_len)
140 {
141 	size_t i = 0;
142 	size_t data_len;
143 	size_t packet_size_len;
144 	char *message;
145 	int rc;
146 
147 	/*
148 	 *              ***** TAG 64 Packet Format *****
149 	 *    | Content Type                       | 1 byte       |
150 	 *    | Key Identifier Size                | 1 or 2 bytes |
151 	 *    | Key Identifier                     | arbitrary    |
152 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
153 	 *    | Encrypted File Encryption Key      | arbitrary    |
154 	 */
155 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
156 		    + session_key->encrypted_key_size);
157 	*packet = kmalloc(data_len, GFP_KERNEL);
158 	message = *packet;
159 	if (!message) {
160 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
161 		rc = -ENOMEM;
162 		goto out;
163 	}
164 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
165 	rc = write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
166 				 &packet_size_len);
167 	if (rc) {
168 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
169 				"header; cannot generate packet length\n");
170 		goto out;
171 	}
172 	i += packet_size_len;
173 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
174 	i += ECRYPTFS_SIG_SIZE_HEX;
175 	rc = write_packet_length(&message[i], session_key->encrypted_key_size,
176 				 &packet_size_len);
177 	if (rc) {
178 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
179 				"header; cannot generate packet length\n");
180 		goto out;
181 	}
182 	i += packet_size_len;
183 	memcpy(&message[i], session_key->encrypted_key,
184 	       session_key->encrypted_key_size);
185 	i += session_key->encrypted_key_size;
186 	*packet_len = i;
187 out:
188 	return rc;
189 }
190 
191 static int
192 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u16 *cipher_code,
193 		    struct ecryptfs_message *msg)
194 {
195 	size_t i = 0;
196 	char *data;
197 	size_t data_len;
198 	size_t m_size;
199 	size_t message_len;
200 	u16 checksum = 0;
201 	u16 expected_checksum = 0;
202 	int rc;
203 
204 	/*
205 	 *              ***** TAG 65 Packet Format *****
206 	 *         | Content Type             | 1 byte       |
207 	 *         | Status Indicator         | 1 byte       |
208 	 *         | File Encryption Key Size | 1 or 2 bytes |
209 	 *         | File Encryption Key      | arbitrary    |
210 	 */
211 	message_len = msg->data_len;
212 	data = msg->data;
213 	if (message_len < 4) {
214 		rc = -EIO;
215 		goto out;
216 	}
217 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
218 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
219 		rc = -EIO;
220 		goto out;
221 	}
222 	if (data[i++]) {
223 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
224 				"[%d]\n", data[i-1]);
225 		rc = -EIO;
226 		goto out;
227 	}
228 	rc = parse_packet_length(&data[i], &m_size, &data_len);
229 	if (rc) {
230 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
231 				"rc = [%d]\n", rc);
232 		goto out;
233 	}
234 	i += data_len;
235 	if (message_len < (i + m_size)) {
236 		ecryptfs_printk(KERN_ERR, "The received netlink message is "
237 				"shorter than expected\n");
238 		rc = -EIO;
239 		goto out;
240 	}
241 	if (m_size < 3) {
242 		ecryptfs_printk(KERN_ERR,
243 				"The decrypted key is not long enough to "
244 				"include a cipher code and checksum\n");
245 		rc = -EIO;
246 		goto out;
247 	}
248 	*cipher_code = data[i++];
249 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
250 	session_key->decrypted_key_size = m_size - 3;
251 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
252 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
253 				"the maximum key size [%d]\n",
254 				session_key->decrypted_key_size,
255 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
256 		rc = -EIO;
257 		goto out;
258 	}
259 	memcpy(session_key->decrypted_key, &data[i],
260 	       session_key->decrypted_key_size);
261 	i += session_key->decrypted_key_size;
262 	expected_checksum += (unsigned char)(data[i++]) << 8;
263 	expected_checksum += (unsigned char)(data[i++]);
264 	for (i = 0; i < session_key->decrypted_key_size; i++)
265 		checksum += session_key->decrypted_key[i];
266 	if (expected_checksum != checksum) {
267 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
268 				"encryption  key; expected [%x]; calculated "
269 				"[%x]\n", expected_checksum, checksum);
270 		rc = -EIO;
271 	}
272 out:
273 	return rc;
274 }
275 
276 
277 static int
278 write_tag_66_packet(char *signature, size_t cipher_code,
279 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
280 		    size_t *packet_len)
281 {
282 	size_t i = 0;
283 	size_t j;
284 	size_t data_len;
285 	size_t checksum = 0;
286 	size_t packet_size_len;
287 	char *message;
288 	int rc;
289 
290 	/*
291 	 *              ***** TAG 66 Packet Format *****
292 	 *         | Content Type             | 1 byte       |
293 	 *         | Key Identifier Size      | 1 or 2 bytes |
294 	 *         | Key Identifier           | arbitrary    |
295 	 *         | File Encryption Key Size | 1 or 2 bytes |
296 	 *         | File Encryption Key      | arbitrary    |
297 	 */
298 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
299 	*packet = kmalloc(data_len, GFP_KERNEL);
300 	message = *packet;
301 	if (!message) {
302 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
303 		rc = -ENOMEM;
304 		goto out;
305 	}
306 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
307 	rc = write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
308 				 &packet_size_len);
309 	if (rc) {
310 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
311 				"header; cannot generate packet length\n");
312 		goto out;
313 	}
314 	i += packet_size_len;
315 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
316 	i += ECRYPTFS_SIG_SIZE_HEX;
317 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
318 	rc = write_packet_length(&message[i], crypt_stat->key_size + 3,
319 				 &packet_size_len);
320 	if (rc) {
321 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
322 				"header; cannot generate packet length\n");
323 		goto out;
324 	}
325 	i += packet_size_len;
326 	message[i++] = cipher_code;
327 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
328 	i += crypt_stat->key_size;
329 	for (j = 0; j < crypt_stat->key_size; j++)
330 		checksum += crypt_stat->key[j];
331 	message[i++] = (checksum / 256) % 256;
332 	message[i++] = (checksum % 256);
333 	*packet_len = i;
334 out:
335 	return rc;
336 }
337 
338 static int
339 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
340 		    struct ecryptfs_message *msg)
341 {
342 	size_t i = 0;
343 	char *data;
344 	size_t data_len;
345 	size_t message_len;
346 	int rc;
347 
348 	/*
349 	 *              ***** TAG 65 Packet Format *****
350 	 *    | Content Type                       | 1 byte       |
351 	 *    | Status Indicator                   | 1 byte       |
352 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
353 	 *    | Encrypted File Encryption Key      | arbitrary    |
354 	 */
355 	message_len = msg->data_len;
356 	data = msg->data;
357 	/* verify that everything through the encrypted FEK size is present */
358 	if (message_len < 4) {
359 		rc = -EIO;
360 		goto out;
361 	}
362 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
363 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_67\n");
364 		rc = -EIO;
365 		goto out;
366 	}
367 	if (data[i++]) {
368 		ecryptfs_printk(KERN_ERR, "Status indicator has non zero value"
369 				" [%d]\n", data[i-1]);
370 		rc = -EIO;
371 		goto out;
372 	}
373 	rc = parse_packet_length(&data[i], &key_rec->enc_key_size, &data_len);
374 	if (rc) {
375 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
376 				"rc = [%d]\n", rc);
377 		goto out;
378 	}
379 	i += data_len;
380 	if (message_len < (i + key_rec->enc_key_size)) {
381 		ecryptfs_printk(KERN_ERR, "message_len [%d]; max len is [%d]\n",
382 				message_len, (i + key_rec->enc_key_size));
383 		rc = -EIO;
384 		goto out;
385 	}
386 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
387 		ecryptfs_printk(KERN_ERR, "Encrypted key_size [%d] larger than "
388 				"the maximum key size [%d]\n",
389 				key_rec->enc_key_size,
390 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
391 		rc = -EIO;
392 		goto out;
393 	}
394 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
395 out:
396 	return rc;
397 }
398 
399 static int
400 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
401 {
402 	int rc = 0;
403 
404 	(*sig) = NULL;
405 	switch (auth_tok->token_type) {
406 	case ECRYPTFS_PASSWORD:
407 		(*sig) = auth_tok->token.password.signature;
408 		break;
409 	case ECRYPTFS_PRIVATE_KEY:
410 		(*sig) = auth_tok->token.private_key.signature;
411 		break;
412 	default:
413 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
414 		       auth_tok->token_type);
415 		rc = -EINVAL;
416 	}
417 	return rc;
418 }
419 
420 /**
421  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
422  * @auth_tok: The key authentication token used to decrypt the session key
423  * @crypt_stat: The cryptographic context
424  *
425  * Returns zero on success; non-zero error otherwise.
426  */
427 static int
428 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
429 				  struct ecryptfs_crypt_stat *crypt_stat)
430 {
431 	u16 cipher_code = 0;
432 	struct ecryptfs_msg_ctx *msg_ctx;
433 	struct ecryptfs_message *msg = NULL;
434 	char *auth_tok_sig;
435 	char *netlink_message;
436 	size_t netlink_message_length;
437 	int rc;
438 
439 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
440 	if (rc) {
441 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
442 		       auth_tok->token_type);
443 		goto out;
444 	}
445 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
446 				 &netlink_message, &netlink_message_length);
447 	if (rc) {
448 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet");
449 		goto out;
450 	}
451 	rc = ecryptfs_send_message(ecryptfs_transport, netlink_message,
452 				   netlink_message_length, &msg_ctx);
453 	if (rc) {
454 		ecryptfs_printk(KERN_ERR, "Error sending netlink message\n");
455 		goto out;
456 	}
457 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
458 	if (rc) {
459 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
460 				"from the user space daemon\n");
461 		rc = -EIO;
462 		goto out;
463 	}
464 	rc = parse_tag_65_packet(&(auth_tok->session_key),
465 				 &cipher_code, msg);
466 	if (rc) {
467 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
468 		       rc);
469 		goto out;
470 	}
471 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
472 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
473 	       auth_tok->session_key.decrypted_key_size);
474 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
475 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
476 	if (rc) {
477 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
478 				cipher_code)
479 		goto out;
480 	}
481 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
482 	if (ecryptfs_verbosity > 0) {
483 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
484 		ecryptfs_dump_hex(crypt_stat->key,
485 				  crypt_stat->key_size);
486 	}
487 out:
488 	if (msg)
489 		kfree(msg);
490 	return rc;
491 }
492 
493 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
494 {
495 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
496 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
497 
498 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
499 				 auth_tok_list_head, list) {
500 		list_del(&auth_tok_list_item->list);
501 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
502 				auth_tok_list_item);
503 	}
504 }
505 
506 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
507 
508 /**
509  * parse_tag_1_packet
510  * @crypt_stat: The cryptographic context to modify based on packet contents
511  * @data: The raw bytes of the packet.
512  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
513  *                 a new authentication token will be placed at the
514  *                 end of this list for this packet.
515  * @new_auth_tok: Pointer to a pointer to memory that this function
516  *                allocates; sets the memory address of the pointer to
517  *                NULL on error. This object is added to the
518  *                auth_tok_list.
519  * @packet_size: This function writes the size of the parsed packet
520  *               into this memory location; zero on error.
521  * @max_packet_size: The maximum allowable packet size
522  *
523  * Returns zero on success; non-zero on error.
524  */
525 static int
526 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
527 		   unsigned char *data, struct list_head *auth_tok_list,
528 		   struct ecryptfs_auth_tok **new_auth_tok,
529 		   size_t *packet_size, size_t max_packet_size)
530 {
531 	size_t body_size;
532 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
533 	size_t length_size;
534 	int rc = 0;
535 
536 	(*packet_size) = 0;
537 	(*new_auth_tok) = NULL;
538 	/**
539 	 * This format is inspired by OpenPGP; see RFC 2440
540 	 * packet tag 1
541 	 *
542 	 * Tag 1 identifier (1 byte)
543 	 * Max Tag 1 packet size (max 3 bytes)
544 	 * Version (1 byte)
545 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
546 	 * Cipher identifier (1 byte)
547 	 * Encrypted key size (arbitrary)
548 	 *
549 	 * 12 bytes minimum packet size
550 	 */
551 	if (unlikely(max_packet_size < 12)) {
552 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
553 		rc = -EINVAL;
554 		goto out;
555 	}
556 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
557 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
558 		       ECRYPTFS_TAG_1_PACKET_TYPE);
559 		rc = -EINVAL;
560 		goto out;
561 	}
562 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
563 	 * at end of function upon failure */
564 	auth_tok_list_item =
565 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
566 				  GFP_KERNEL);
567 	if (!auth_tok_list_item) {
568 		printk(KERN_ERR "Unable to allocate memory\n");
569 		rc = -ENOMEM;
570 		goto out;
571 	}
572 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
573 	rc = parse_packet_length(&data[(*packet_size)], &body_size,
574 				 &length_size);
575 	if (rc) {
576 		printk(KERN_WARNING "Error parsing packet length; "
577 		       "rc = [%d]\n", rc);
578 		goto out_free;
579 	}
580 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
581 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
582 		rc = -EINVAL;
583 		goto out_free;
584 	}
585 	(*packet_size) += length_size;
586 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
587 		printk(KERN_WARNING "Packet size exceeds max\n");
588 		rc = -EINVAL;
589 		goto out_free;
590 	}
591 	if (unlikely(data[(*packet_size)++] != 0x03)) {
592 		printk(KERN_WARNING "Unknown version number [%d]\n",
593 		       data[(*packet_size) - 1]);
594 		rc = -EINVAL;
595 		goto out_free;
596 	}
597 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
598 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
599 	*packet_size += ECRYPTFS_SIG_SIZE;
600 	/* This byte is skipped because the kernel does not need to
601 	 * know which public key encryption algorithm was used */
602 	(*packet_size)++;
603 	(*new_auth_tok)->session_key.encrypted_key_size =
604 		body_size - (ECRYPTFS_SIG_SIZE + 2);
605 	if ((*new_auth_tok)->session_key.encrypted_key_size
606 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
607 		printk(KERN_WARNING "Tag 1 packet contains key larger "
608 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
609 		rc = -EINVAL;
610 		goto out;
611 	}
612 	memcpy((*new_auth_tok)->session_key.encrypted_key,
613 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
614 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
615 	(*new_auth_tok)->session_key.flags &=
616 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
617 	(*new_auth_tok)->session_key.flags |=
618 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
619 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
620 	(*new_auth_tok)->flags = 0;
621 	(*new_auth_tok)->session_key.flags &=
622 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
623 	(*new_auth_tok)->session_key.flags &=
624 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
625 	list_add(&auth_tok_list_item->list, auth_tok_list);
626 	goto out;
627 out_free:
628 	(*new_auth_tok) = NULL;
629 	memset(auth_tok_list_item, 0,
630 	       sizeof(struct ecryptfs_auth_tok_list_item));
631 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
632 			auth_tok_list_item);
633 out:
634 	if (rc)
635 		(*packet_size) = 0;
636 	return rc;
637 }
638 
639 /**
640  * parse_tag_3_packet
641  * @crypt_stat: The cryptographic context to modify based on packet
642  *              contents.
643  * @data: The raw bytes of the packet.
644  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
645  *                 a new authentication token will be placed at the end
646  *                 of this list for this packet.
647  * @new_auth_tok: Pointer to a pointer to memory that this function
648  *                allocates; sets the memory address of the pointer to
649  *                NULL on error. This object is added to the
650  *                auth_tok_list.
651  * @packet_size: This function writes the size of the parsed packet
652  *               into this memory location; zero on error.
653  * @max_packet_size: maximum number of bytes to parse
654  *
655  * Returns zero on success; non-zero on error.
656  */
657 static int
658 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
659 		   unsigned char *data, struct list_head *auth_tok_list,
660 		   struct ecryptfs_auth_tok **new_auth_tok,
661 		   size_t *packet_size, size_t max_packet_size)
662 {
663 	size_t body_size;
664 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
665 	size_t length_size;
666 	int rc = 0;
667 
668 	(*packet_size) = 0;
669 	(*new_auth_tok) = NULL;
670 	/**
671 	 *This format is inspired by OpenPGP; see RFC 2440
672 	 * packet tag 3
673 	 *
674 	 * Tag 3 identifier (1 byte)
675 	 * Max Tag 3 packet size (max 3 bytes)
676 	 * Version (1 byte)
677 	 * Cipher code (1 byte)
678 	 * S2K specifier (1 byte)
679 	 * Hash identifier (1 byte)
680 	 * Salt (ECRYPTFS_SALT_SIZE)
681 	 * Hash iterations (1 byte)
682 	 * Encrypted key (arbitrary)
683 	 *
684 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
685 	 */
686 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
687 		printk(KERN_ERR "Max packet size too large\n");
688 		rc = -EINVAL;
689 		goto out;
690 	}
691 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
692 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
693 		       ECRYPTFS_TAG_3_PACKET_TYPE);
694 		rc = -EINVAL;
695 		goto out;
696 	}
697 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
698 	 * at end of function upon failure */
699 	auth_tok_list_item =
700 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
701 	if (!auth_tok_list_item) {
702 		printk(KERN_ERR "Unable to allocate memory\n");
703 		rc = -ENOMEM;
704 		goto out;
705 	}
706 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
707 	rc = parse_packet_length(&data[(*packet_size)], &body_size,
708 				 &length_size);
709 	if (rc) {
710 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
711 		       rc);
712 		goto out_free;
713 	}
714 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
715 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
716 		rc = -EINVAL;
717 		goto out_free;
718 	}
719 	(*packet_size) += length_size;
720 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
721 		printk(KERN_ERR "Packet size exceeds max\n");
722 		rc = -EINVAL;
723 		goto out_free;
724 	}
725 	(*new_auth_tok)->session_key.encrypted_key_size =
726 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
727 	if (unlikely(data[(*packet_size)++] != 0x04)) {
728 		printk(KERN_WARNING "Unknown version number [%d]\n",
729 		       data[(*packet_size) - 1]);
730 		rc = -EINVAL;
731 		goto out_free;
732 	}
733 	ecryptfs_cipher_code_to_string(crypt_stat->cipher,
734 				       (u16)data[(*packet_size)]);
735 	/* A little extra work to differentiate among the AES key
736 	 * sizes; see RFC2440 */
737 	switch(data[(*packet_size)++]) {
738 	case RFC2440_CIPHER_AES_192:
739 		crypt_stat->key_size = 24;
740 		break;
741 	default:
742 		crypt_stat->key_size =
743 			(*new_auth_tok)->session_key.encrypted_key_size;
744 	}
745 	ecryptfs_init_crypt_ctx(crypt_stat);
746 	if (unlikely(data[(*packet_size)++] != 0x03)) {
747 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
748 		rc = -ENOSYS;
749 		goto out_free;
750 	}
751 	/* TODO: finish the hash mapping */
752 	switch (data[(*packet_size)++]) {
753 	case 0x01: /* See RFC2440 for these numbers and their mappings */
754 		/* Choose MD5 */
755 		memcpy((*new_auth_tok)->token.password.salt,
756 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
757 		(*packet_size) += ECRYPTFS_SALT_SIZE;
758 		/* This conversion was taken straight from RFC2440 */
759 		(*new_auth_tok)->token.password.hash_iterations =
760 			((u32) 16 + (data[(*packet_size)] & 15))
761 				<< ((data[(*packet_size)] >> 4) + 6);
762 		(*packet_size)++;
763 		/* Friendly reminder:
764 		 * (*new_auth_tok)->session_key.encrypted_key_size =
765 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
766 		memcpy((*new_auth_tok)->session_key.encrypted_key,
767 		       &data[(*packet_size)],
768 		       (*new_auth_tok)->session_key.encrypted_key_size);
769 		(*packet_size) +=
770 			(*new_auth_tok)->session_key.encrypted_key_size;
771 		(*new_auth_tok)->session_key.flags &=
772 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
773 		(*new_auth_tok)->session_key.flags |=
774 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
775 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
776 		break;
777 	default:
778 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
779 				"[%d]\n", data[(*packet_size) - 1]);
780 		rc = -ENOSYS;
781 		goto out_free;
782 	}
783 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
784 	/* TODO: Parametarize; we might actually want userspace to
785 	 * decrypt the session key. */
786 	(*new_auth_tok)->session_key.flags &=
787 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
788 	(*new_auth_tok)->session_key.flags &=
789 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
790 	list_add(&auth_tok_list_item->list, auth_tok_list);
791 	goto out;
792 out_free:
793 	(*new_auth_tok) = NULL;
794 	memset(auth_tok_list_item, 0,
795 	       sizeof(struct ecryptfs_auth_tok_list_item));
796 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
797 			auth_tok_list_item);
798 out:
799 	if (rc)
800 		(*packet_size) = 0;
801 	return rc;
802 }
803 
804 /**
805  * parse_tag_11_packet
806  * @data: The raw bytes of the packet
807  * @contents: This function writes the data contents of the literal
808  *            packet into this memory location
809  * @max_contents_bytes: The maximum number of bytes that this function
810  *                      is allowed to write into contents
811  * @tag_11_contents_size: This function writes the size of the parsed
812  *                        contents into this memory location; zero on
813  *                        error
814  * @packet_size: This function writes the size of the parsed packet
815  *               into this memory location; zero on error
816  * @max_packet_size: maximum number of bytes to parse
817  *
818  * Returns zero on success; non-zero on error.
819  */
820 static int
821 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
822 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
823 		    size_t *packet_size, size_t max_packet_size)
824 {
825 	size_t body_size;
826 	size_t length_size;
827 	int rc = 0;
828 
829 	(*packet_size) = 0;
830 	(*tag_11_contents_size) = 0;
831 	/* This format is inspired by OpenPGP; see RFC 2440
832 	 * packet tag 11
833 	 *
834 	 * Tag 11 identifier (1 byte)
835 	 * Max Tag 11 packet size (max 3 bytes)
836 	 * Binary format specifier (1 byte)
837 	 * Filename length (1 byte)
838 	 * Filename ("_CONSOLE") (8 bytes)
839 	 * Modification date (4 bytes)
840 	 * Literal data (arbitrary)
841 	 *
842 	 * We need at least 16 bytes of data for the packet to even be
843 	 * valid.
844 	 */
845 	if (max_packet_size < 16) {
846 		printk(KERN_ERR "Maximum packet size too small\n");
847 		rc = -EINVAL;
848 		goto out;
849 	}
850 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
851 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
852 		rc = -EINVAL;
853 		goto out;
854 	}
855 	rc = parse_packet_length(&data[(*packet_size)], &body_size,
856 				 &length_size);
857 	if (rc) {
858 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
859 		goto out;
860 	}
861 	if (body_size < 14) {
862 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
863 		rc = -EINVAL;
864 		goto out;
865 	}
866 	(*packet_size) += length_size;
867 	(*tag_11_contents_size) = (body_size - 14);
868 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
869 		printk(KERN_ERR "Packet size exceeds max\n");
870 		rc = -EINVAL;
871 		goto out;
872 	}
873 	if (data[(*packet_size)++] != 0x62) {
874 		printk(KERN_WARNING "Unrecognizable packet\n");
875 		rc = -EINVAL;
876 		goto out;
877 	}
878 	if (data[(*packet_size)++] != 0x08) {
879 		printk(KERN_WARNING "Unrecognizable packet\n");
880 		rc = -EINVAL;
881 		goto out;
882 	}
883 	(*packet_size) += 12; /* Ignore filename and modification date */
884 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
885 	(*packet_size) += (*tag_11_contents_size);
886 out:
887 	if (rc) {
888 		(*packet_size) = 0;
889 		(*tag_11_contents_size) = 0;
890 	}
891 	return rc;
892 }
893 
894 static int
895 ecryptfs_find_global_auth_tok_for_sig(
896 	struct ecryptfs_global_auth_tok **global_auth_tok,
897 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
898 {
899 	struct ecryptfs_global_auth_tok *walker;
900 	int rc = 0;
901 
902 	(*global_auth_tok) = NULL;
903 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
904 	list_for_each_entry(walker,
905 			    &mount_crypt_stat->global_auth_tok_list,
906 			    mount_crypt_stat_list) {
907 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
908 			(*global_auth_tok) = walker;
909 			goto out;
910 		}
911 	}
912 	rc = -EINVAL;
913 out:
914 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
915 	return rc;
916 }
917 
918 /**
919  * ecryptfs_verify_version
920  * @version: The version number to confirm
921  *
922  * Returns zero on good version; non-zero otherwise
923  */
924 static int ecryptfs_verify_version(u16 version)
925 {
926 	int rc = 0;
927 	unsigned char major;
928 	unsigned char minor;
929 
930 	major = ((version >> 8) & 0xFF);
931 	minor = (version & 0xFF);
932 	if (major != ECRYPTFS_VERSION_MAJOR) {
933 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
934 				"Expected [%d]; got [%d]\n",
935 				ECRYPTFS_VERSION_MAJOR, major);
936 		rc = -EINVAL;
937 		goto out;
938 	}
939 	if (minor != ECRYPTFS_VERSION_MINOR) {
940 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
941 				"Expected [%d]; got [%d]\n",
942 				ECRYPTFS_VERSION_MINOR, minor);
943 		rc = -EINVAL;
944 		goto out;
945 	}
946 out:
947 	return rc;
948 }
949 
950 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
951 				      struct ecryptfs_auth_tok **auth_tok,
952 				      char *sig)
953 {
954 	int rc = 0;
955 
956 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
957 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
958 		printk(KERN_ERR "Could not find key with description: [%s]\n",
959 		       sig);
960 		process_request_key_err(PTR_ERR(*auth_tok_key));
961 		rc = -EINVAL;
962 		goto out;
963 	}
964 	(*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
965 	if (ecryptfs_verify_version((*auth_tok)->version)) {
966 		printk(KERN_ERR
967 		       "Data structure version mismatch. "
968 		       "Userspace tools must match eCryptfs "
969 		       "kernel module with major version [%d] "
970 		       "and minor version [%d]\n",
971 		       ECRYPTFS_VERSION_MAJOR,
972 		       ECRYPTFS_VERSION_MINOR);
973 		rc = -EINVAL;
974 		goto out;
975 	}
976 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
977 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
978 		printk(KERN_ERR "Invalid auth_tok structure "
979 		       "returned from key query\n");
980 		rc = -EINVAL;
981 		goto out;
982 	}
983 out:
984 	return rc;
985 }
986 
987 /**
988  * ecryptfs_find_auth_tok_for_sig
989  * @auth_tok: Set to the matching auth_tok; NULL if not found
990  * @crypt_stat: inode crypt_stat crypto context
991  * @sig: Sig of auth_tok to find
992  *
993  * For now, this function simply looks at the registered auth_tok's
994  * linked off the mount_crypt_stat, so all the auth_toks that can be
995  * used must be registered at mount time. This function could
996  * potentially try a lot harder to find auth_tok's (e.g., by calling
997  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
998  * that static registration of auth_tok's will no longer be necessary.
999  *
1000  * Returns zero on no error; non-zero on error
1001  */
1002 static int
1003 ecryptfs_find_auth_tok_for_sig(
1004 	struct ecryptfs_auth_tok **auth_tok,
1005 	struct ecryptfs_crypt_stat *crypt_stat, char *sig)
1006 {
1007 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1008 		crypt_stat->mount_crypt_stat;
1009 	struct ecryptfs_global_auth_tok *global_auth_tok;
1010 	int rc = 0;
1011 
1012 	(*auth_tok) = NULL;
1013 	if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
1014 						  mount_crypt_stat, sig)) {
1015 		struct key *auth_tok_key;
1016 
1017 		rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
1018 						       sig);
1019 	} else
1020 		(*auth_tok) = global_auth_tok->global_auth_tok;
1021 	return rc;
1022 }
1023 
1024 /**
1025  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1026  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1027  * @crypt_stat: The cryptographic context
1028  *
1029  * Returns zero on success; non-zero error otherwise
1030  */
1031 static int
1032 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1033 					 struct ecryptfs_crypt_stat *crypt_stat)
1034 {
1035 	struct scatterlist dst_sg;
1036 	struct scatterlist src_sg;
1037 	struct mutex *tfm_mutex;
1038 	struct blkcipher_desc desc = {
1039 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1040 	};
1041 	int rc = 0;
1042 
1043 	sg_init_table(&dst_sg, 1);
1044 	sg_init_table(&src_sg, 1);
1045 
1046 	if (unlikely(ecryptfs_verbosity > 0)) {
1047 		ecryptfs_printk(
1048 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1049 			auth_tok->token.password.session_key_encryption_key_bytes);
1050 		ecryptfs_dump_hex(
1051 			auth_tok->token.password.session_key_encryption_key,
1052 			auth_tok->token.password.session_key_encryption_key_bytes);
1053 	}
1054 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1055 							crypt_stat->cipher);
1056 	if (unlikely(rc)) {
1057 		printk(KERN_ERR "Internal error whilst attempting to get "
1058 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1059 		       crypt_stat->cipher, rc);
1060 		goto out;
1061 	}
1062 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1063 				 auth_tok->session_key.encrypted_key_size,
1064 				 &src_sg, 1);
1065 	if (rc != 1) {
1066 		printk(KERN_ERR "Internal error whilst attempting to convert "
1067 			"auth_tok->session_key.encrypted_key to scatterlist; "
1068 			"expected rc = 1; got rc = [%d]. "
1069 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1070 			auth_tok->session_key.encrypted_key_size);
1071 		goto out;
1072 	}
1073 	auth_tok->session_key.decrypted_key_size =
1074 		auth_tok->session_key.encrypted_key_size;
1075 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1076 				 auth_tok->session_key.decrypted_key_size,
1077 				 &dst_sg, 1);
1078 	if (rc != 1) {
1079 		printk(KERN_ERR "Internal error whilst attempting to convert "
1080 			"auth_tok->session_key.decrypted_key to scatterlist; "
1081 			"expected rc = 1; got rc = [%d]\n", rc);
1082 		goto out;
1083 	}
1084 	mutex_lock(tfm_mutex);
1085 	rc = crypto_blkcipher_setkey(
1086 		desc.tfm, auth_tok->token.password.session_key_encryption_key,
1087 		crypt_stat->key_size);
1088 	if (unlikely(rc < 0)) {
1089 		mutex_unlock(tfm_mutex);
1090 		printk(KERN_ERR "Error setting key for crypto context\n");
1091 		rc = -EINVAL;
1092 		goto out;
1093 	}
1094 	rc = crypto_blkcipher_decrypt(&desc, &dst_sg, &src_sg,
1095 				      auth_tok->session_key.encrypted_key_size);
1096 	mutex_unlock(tfm_mutex);
1097 	if (unlikely(rc)) {
1098 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1099 		goto out;
1100 	}
1101 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1102 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1103 	       auth_tok->session_key.decrypted_key_size);
1104 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1105 	if (unlikely(ecryptfs_verbosity > 0)) {
1106 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1107 				crypt_stat->key_size);
1108 		ecryptfs_dump_hex(crypt_stat->key,
1109 				  crypt_stat->key_size);
1110 	}
1111 out:
1112 	return rc;
1113 }
1114 
1115 /**
1116  * ecryptfs_parse_packet_set
1117  * @crypt_stat: The cryptographic context
1118  * @src: Virtual address of region of memory containing the packets
1119  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1120  *
1121  * Get crypt_stat to have the file's session key if the requisite key
1122  * is available to decrypt the session key.
1123  *
1124  * Returns Zero if a valid authentication token was retrieved and
1125  * processed; negative value for file not encrypted or for error
1126  * conditions.
1127  */
1128 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1129 			      unsigned char *src,
1130 			      struct dentry *ecryptfs_dentry)
1131 {
1132 	size_t i = 0;
1133 	size_t found_auth_tok;
1134 	size_t next_packet_is_auth_tok_packet;
1135 	struct list_head auth_tok_list;
1136 	struct ecryptfs_auth_tok *matching_auth_tok;
1137 	struct ecryptfs_auth_tok *candidate_auth_tok;
1138 	char *candidate_auth_tok_sig;
1139 	size_t packet_size;
1140 	struct ecryptfs_auth_tok *new_auth_tok;
1141 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1142 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1143 	size_t tag_11_contents_size;
1144 	size_t tag_11_packet_size;
1145 	int rc = 0;
1146 
1147 	INIT_LIST_HEAD(&auth_tok_list);
1148 	/* Parse the header to find as many packets as we can; these will be
1149 	 * added the our &auth_tok_list */
1150 	next_packet_is_auth_tok_packet = 1;
1151 	while (next_packet_is_auth_tok_packet) {
1152 		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1153 
1154 		switch (src[i]) {
1155 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1156 			rc = parse_tag_3_packet(crypt_stat,
1157 						(unsigned char *)&src[i],
1158 						&auth_tok_list, &new_auth_tok,
1159 						&packet_size, max_packet_size);
1160 			if (rc) {
1161 				ecryptfs_printk(KERN_ERR, "Error parsing "
1162 						"tag 3 packet\n");
1163 				rc = -EIO;
1164 				goto out_wipe_list;
1165 			}
1166 			i += packet_size;
1167 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1168 						 sig_tmp_space,
1169 						 ECRYPTFS_SIG_SIZE,
1170 						 &tag_11_contents_size,
1171 						 &tag_11_packet_size,
1172 						 max_packet_size);
1173 			if (rc) {
1174 				ecryptfs_printk(KERN_ERR, "No valid "
1175 						"(ecryptfs-specific) literal "
1176 						"packet containing "
1177 						"authentication token "
1178 						"signature found after "
1179 						"tag 3 packet\n");
1180 				rc = -EIO;
1181 				goto out_wipe_list;
1182 			}
1183 			i += tag_11_packet_size;
1184 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1185 				ecryptfs_printk(KERN_ERR, "Expected "
1186 						"signature of size [%d]; "
1187 						"read size [%d]\n",
1188 						ECRYPTFS_SIG_SIZE,
1189 						tag_11_contents_size);
1190 				rc = -EIO;
1191 				goto out_wipe_list;
1192 			}
1193 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1194 					sig_tmp_space, tag_11_contents_size);
1195 			new_auth_tok->token.password.signature[
1196 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1197 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1198 			break;
1199 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1200 			rc = parse_tag_1_packet(crypt_stat,
1201 						(unsigned char *)&src[i],
1202 						&auth_tok_list, &new_auth_tok,
1203 						&packet_size, max_packet_size);
1204 			if (rc) {
1205 				ecryptfs_printk(KERN_ERR, "Error parsing "
1206 						"tag 1 packet\n");
1207 				rc = -EIO;
1208 				goto out_wipe_list;
1209 			}
1210 			i += packet_size;
1211 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1212 			break;
1213 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1214 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1215 					"(Tag 11 not allowed by itself)\n");
1216 			rc = -EIO;
1217 			goto out_wipe_list;
1218 			break;
1219 		default:
1220 			ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1221 					"[%d] of the file header; hex value of "
1222 					"character is [0x%.2x]\n", i, src[i]);
1223 			next_packet_is_auth_tok_packet = 0;
1224 		}
1225 	}
1226 	if (list_empty(&auth_tok_list)) {
1227 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1228 		       "eCryptfs file; this is not supported in this version "
1229 		       "of the eCryptfs kernel module\n");
1230 		rc = -EINVAL;
1231 		goto out;
1232 	}
1233 	/* auth_tok_list contains the set of authentication tokens
1234 	 * parsed from the metadata. We need to find a matching
1235 	 * authentication token that has the secret component(s)
1236 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1237 	 * the metadata. There may be several potential matches, but
1238 	 * just one will be sufficient to decrypt to get the FEK. */
1239 find_next_matching_auth_tok:
1240 	found_auth_tok = 0;
1241 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1242 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1243 		if (unlikely(ecryptfs_verbosity > 0)) {
1244 			ecryptfs_printk(KERN_DEBUG,
1245 					"Considering cadidate auth tok:\n");
1246 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1247 		}
1248 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1249 					       candidate_auth_tok);
1250 		if (rc) {
1251 			printk(KERN_ERR
1252 			       "Unrecognized candidate auth tok type: [%d]\n",
1253 			       candidate_auth_tok->token_type);
1254 			rc = -EINVAL;
1255 			goto out_wipe_list;
1256 		}
1257 		ecryptfs_find_auth_tok_for_sig(&matching_auth_tok, crypt_stat,
1258 					       candidate_auth_tok_sig);
1259 		if (matching_auth_tok) {
1260 			found_auth_tok = 1;
1261 			goto found_matching_auth_tok;
1262 		}
1263 	}
1264 	if (!found_auth_tok) {
1265 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1266 				"authentication token\n");
1267 		rc = -EIO;
1268 		goto out_wipe_list;
1269 	}
1270 found_matching_auth_tok:
1271 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1272 		memcpy(&(candidate_auth_tok->token.private_key),
1273 		       &(matching_auth_tok->token.private_key),
1274 		       sizeof(struct ecryptfs_private_key));
1275 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1276 						       crypt_stat);
1277 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1278 		memcpy(&(candidate_auth_tok->token.password),
1279 		       &(matching_auth_tok->token.password),
1280 		       sizeof(struct ecryptfs_password));
1281 		rc = decrypt_passphrase_encrypted_session_key(
1282 			candidate_auth_tok, crypt_stat);
1283 	}
1284 	if (rc) {
1285 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1286 
1287 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1288 				"session key for authentication token with sig "
1289 				"[%.*s]; rc = [%d]. Removing auth tok "
1290 				"candidate from the list and searching for "
1291 				"the next match.\n", candidate_auth_tok_sig,
1292 				ECRYPTFS_SIG_SIZE_HEX, rc);
1293 		list_for_each_entry_safe(auth_tok_list_item,
1294 					 auth_tok_list_item_tmp,
1295 					 &auth_tok_list, list) {
1296 			if (candidate_auth_tok
1297 			    == &auth_tok_list_item->auth_tok) {
1298 				list_del(&auth_tok_list_item->list);
1299 				kmem_cache_free(
1300 					ecryptfs_auth_tok_list_item_cache,
1301 					auth_tok_list_item);
1302 				goto find_next_matching_auth_tok;
1303 			}
1304 		}
1305 		BUG();
1306 	}
1307 	rc = ecryptfs_compute_root_iv(crypt_stat);
1308 	if (rc) {
1309 		ecryptfs_printk(KERN_ERR, "Error computing "
1310 				"the root IV\n");
1311 		goto out_wipe_list;
1312 	}
1313 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1314 	if (rc) {
1315 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1316 				"context for cipher [%s]; rc = [%d]\n",
1317 				crypt_stat->cipher, rc);
1318 	}
1319 out_wipe_list:
1320 	wipe_auth_tok_list(&auth_tok_list);
1321 out:
1322 	return rc;
1323 }
1324 
1325 static int
1326 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1327 			struct ecryptfs_crypt_stat *crypt_stat,
1328 			struct ecryptfs_key_record *key_rec)
1329 {
1330 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1331 	char *netlink_payload;
1332 	size_t netlink_payload_length;
1333 	struct ecryptfs_message *msg;
1334 	int rc;
1335 
1336 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1337 				 ecryptfs_code_for_cipher_string(crypt_stat),
1338 				 crypt_stat, &netlink_payload,
1339 				 &netlink_payload_length);
1340 	if (rc) {
1341 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1342 		goto out;
1343 	}
1344 	rc = ecryptfs_send_message(ecryptfs_transport, netlink_payload,
1345 				   netlink_payload_length, &msg_ctx);
1346 	if (rc) {
1347 		ecryptfs_printk(KERN_ERR, "Error sending netlink message\n");
1348 		goto out;
1349 	}
1350 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1351 	if (rc) {
1352 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1353 				"from the user space daemon\n");
1354 		rc = -EIO;
1355 		goto out;
1356 	}
1357 	rc = parse_tag_67_packet(key_rec, msg);
1358 	if (rc)
1359 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1360 	kfree(msg);
1361 out:
1362 	if (netlink_payload)
1363 		kfree(netlink_payload);
1364 	return rc;
1365 }
1366 /**
1367  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1368  * @dest: Buffer into which to write the packet
1369  * @remaining_bytes: Maximum number of bytes that can be writtn
1370  * @auth_tok: The authentication token used for generating the tag 1 packet
1371  * @crypt_stat: The cryptographic context
1372  * @key_rec: The key record struct for the tag 1 packet
1373  * @packet_size: This function will write the number of bytes that end
1374  *               up constituting the packet; set to zero on error
1375  *
1376  * Returns zero on success; non-zero on error.
1377  */
1378 static int
1379 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1380 		   struct ecryptfs_auth_tok *auth_tok,
1381 		   struct ecryptfs_crypt_stat *crypt_stat,
1382 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
1383 {
1384 	size_t i;
1385 	size_t encrypted_session_key_valid = 0;
1386 	size_t packet_size_length;
1387 	size_t max_packet_size;
1388 	int rc = 0;
1389 
1390 	(*packet_size) = 0;
1391 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1392 			  ECRYPTFS_SIG_SIZE);
1393 	encrypted_session_key_valid = 0;
1394 	for (i = 0; i < crypt_stat->key_size; i++)
1395 		encrypted_session_key_valid |=
1396 			auth_tok->session_key.encrypted_key[i];
1397 	if (encrypted_session_key_valid) {
1398 		memcpy(key_rec->enc_key,
1399 		       auth_tok->session_key.encrypted_key,
1400 		       auth_tok->session_key.encrypted_key_size);
1401 		goto encrypted_session_key_set;
1402 	}
1403 	if (auth_tok->session_key.encrypted_key_size == 0)
1404 		auth_tok->session_key.encrypted_key_size =
1405 			auth_tok->token.private_key.key_size;
1406 	rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1407 	if (rc) {
1408 		ecryptfs_printk(KERN_ERR, "Failed to encrypt session key "
1409 				"via a pki");
1410 		goto out;
1411 	}
1412 	if (ecryptfs_verbosity > 0) {
1413 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1414 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1415 	}
1416 encrypted_session_key_set:
1417 	/* This format is inspired by OpenPGP; see RFC 2440
1418 	 * packet tag 1 */
1419 	max_packet_size = (1                         /* Tag 1 identifier */
1420 			   + 3                       /* Max Tag 1 packet size */
1421 			   + 1                       /* Version */
1422 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
1423 			   + 1                       /* Cipher identifier */
1424 			   + key_rec->enc_key_size); /* Encrypted key size */
1425 	if (max_packet_size > (*remaining_bytes)) {
1426 		printk(KERN_ERR "Packet length larger than maximum allowable; "
1427 		       "need up to [%td] bytes, but there are only [%td] "
1428 		       "available\n", max_packet_size, (*remaining_bytes));
1429 		rc = -EINVAL;
1430 		goto out;
1431 	}
1432 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1433 	rc = write_packet_length(&dest[(*packet_size)], (max_packet_size - 4),
1434 				 &packet_size_length);
1435 	if (rc) {
1436 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1437 				"header; cannot generate packet length\n");
1438 		goto out;
1439 	}
1440 	(*packet_size) += packet_size_length;
1441 	dest[(*packet_size)++] = 0x03; /* version 3 */
1442 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1443 	(*packet_size) += ECRYPTFS_SIG_SIZE;
1444 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1445 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
1446 	       key_rec->enc_key_size);
1447 	(*packet_size) += key_rec->enc_key_size;
1448 out:
1449 	if (rc)
1450 		(*packet_size) = 0;
1451 	else
1452 		(*remaining_bytes) -= (*packet_size);
1453 	return rc;
1454 }
1455 
1456 /**
1457  * write_tag_11_packet
1458  * @dest: Target into which Tag 11 packet is to be written
1459  * @remaining_bytes: Maximum packet length
1460  * @contents: Byte array of contents to copy in
1461  * @contents_length: Number of bytes in contents
1462  * @packet_length: Length of the Tag 11 packet written; zero on error
1463  *
1464  * Returns zero on success; non-zero on error.
1465  */
1466 static int
1467 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
1468 		    size_t contents_length, size_t *packet_length)
1469 {
1470 	size_t packet_size_length;
1471 	size_t max_packet_size;
1472 	int rc = 0;
1473 
1474 	(*packet_length) = 0;
1475 	/* This format is inspired by OpenPGP; see RFC 2440
1476 	 * packet tag 11 */
1477 	max_packet_size = (1                   /* Tag 11 identifier */
1478 			   + 3                 /* Max Tag 11 packet size */
1479 			   + 1                 /* Binary format specifier */
1480 			   + 1                 /* Filename length */
1481 			   + 8                 /* Filename ("_CONSOLE") */
1482 			   + 4                 /* Modification date */
1483 			   + contents_length); /* Literal data */
1484 	if (max_packet_size > (*remaining_bytes)) {
1485 		printk(KERN_ERR "Packet length larger than maximum allowable; "
1486 		       "need up to [%td] bytes, but there are only [%td] "
1487 		       "available\n", max_packet_size, (*remaining_bytes));
1488 		rc = -EINVAL;
1489 		goto out;
1490 	}
1491 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
1492 	rc = write_packet_length(&dest[(*packet_length)],
1493 				 (max_packet_size - 4), &packet_size_length);
1494 	if (rc) {
1495 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
1496 		       "generate packet length. rc = [%d]\n", rc);
1497 		goto out;
1498 	}
1499 	(*packet_length) += packet_size_length;
1500 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
1501 	dest[(*packet_length)++] = 8;
1502 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
1503 	(*packet_length) += 8;
1504 	memset(&dest[(*packet_length)], 0x00, 4);
1505 	(*packet_length) += 4;
1506 	memcpy(&dest[(*packet_length)], contents, contents_length);
1507 	(*packet_length) += contents_length;
1508  out:
1509 	if (rc)
1510 		(*packet_length) = 0;
1511 	else
1512 		(*remaining_bytes) -= (*packet_length);
1513 	return rc;
1514 }
1515 
1516 /**
1517  * write_tag_3_packet
1518  * @dest: Buffer into which to write the packet
1519  * @remaining_bytes: Maximum number of bytes that can be written
1520  * @auth_tok: Authentication token
1521  * @crypt_stat: The cryptographic context
1522  * @key_rec: encrypted key
1523  * @packet_size: This function will write the number of bytes that end
1524  *               up constituting the packet; set to zero on error
1525  *
1526  * Returns zero on success; non-zero on error.
1527  */
1528 static int
1529 write_tag_3_packet(char *dest, size_t *remaining_bytes,
1530 		   struct ecryptfs_auth_tok *auth_tok,
1531 		   struct ecryptfs_crypt_stat *crypt_stat,
1532 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
1533 {
1534 	size_t i;
1535 	size_t encrypted_session_key_valid = 0;
1536 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
1537 	struct scatterlist dst_sg;
1538 	struct scatterlist src_sg;
1539 	struct mutex *tfm_mutex = NULL;
1540 	size_t cipher_code;
1541 	size_t packet_size_length;
1542 	size_t max_packet_size;
1543 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1544 		crypt_stat->mount_crypt_stat;
1545 	struct blkcipher_desc desc = {
1546 		.tfm = NULL,
1547 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1548 	};
1549 	int rc = 0;
1550 
1551 	(*packet_size) = 0;
1552 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
1553 			  ECRYPTFS_SIG_SIZE);
1554 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1555 							crypt_stat->cipher);
1556 	if (unlikely(rc)) {
1557 		printk(KERN_ERR "Internal error whilst attempting to get "
1558 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1559 		       crypt_stat->cipher, rc);
1560 		goto out;
1561 	}
1562 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
1563 		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
1564 
1565 		printk(KERN_WARNING "No key size specified at mount; "
1566 		       "defaulting to [%d]\n", alg->max_keysize);
1567 		mount_crypt_stat->global_default_cipher_key_size =
1568 			alg->max_keysize;
1569 	}
1570 	if (crypt_stat->key_size == 0)
1571 		crypt_stat->key_size =
1572 			mount_crypt_stat->global_default_cipher_key_size;
1573 	if (auth_tok->session_key.encrypted_key_size == 0)
1574 		auth_tok->session_key.encrypted_key_size =
1575 			crypt_stat->key_size;
1576 	if (crypt_stat->key_size == 24
1577 	    && strcmp("aes", crypt_stat->cipher) == 0) {
1578 		memset((crypt_stat->key + 24), 0, 8);
1579 		auth_tok->session_key.encrypted_key_size = 32;
1580 	} else
1581 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
1582 	key_rec->enc_key_size =
1583 		auth_tok->session_key.encrypted_key_size;
1584 	encrypted_session_key_valid = 0;
1585 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
1586 		encrypted_session_key_valid |=
1587 			auth_tok->session_key.encrypted_key[i];
1588 	if (encrypted_session_key_valid) {
1589 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
1590 				"using auth_tok->session_key.encrypted_key, "
1591 				"where key_rec->enc_key_size = [%d]\n",
1592 				key_rec->enc_key_size);
1593 		memcpy(key_rec->enc_key,
1594 		       auth_tok->session_key.encrypted_key,
1595 		       key_rec->enc_key_size);
1596 		goto encrypted_session_key_set;
1597 	}
1598 	if (auth_tok->token.password.flags &
1599 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
1600 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
1601 				"session key encryption key of size [%d]\n",
1602 				auth_tok->token.password.
1603 				session_key_encryption_key_bytes);
1604 		memcpy(session_key_encryption_key,
1605 		       auth_tok->token.password.session_key_encryption_key,
1606 		       crypt_stat->key_size);
1607 		ecryptfs_printk(KERN_DEBUG,
1608 				"Cached session key " "encryption key: \n");
1609 		if (ecryptfs_verbosity > 0)
1610 			ecryptfs_dump_hex(session_key_encryption_key, 16);
1611 	}
1612 	if (unlikely(ecryptfs_verbosity > 0)) {
1613 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
1614 		ecryptfs_dump_hex(session_key_encryption_key, 16);
1615 	}
1616 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
1617 				 &src_sg, 1);
1618 	if (rc != 1) {
1619 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
1620 				"for crypt_stat session key; expected rc = 1; "
1621 				"got rc = [%d]. key_rec->enc_key_size = [%d]\n",
1622 				rc, key_rec->enc_key_size);
1623 		rc = -ENOMEM;
1624 		goto out;
1625 	}
1626 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
1627 				 &dst_sg, 1);
1628 	if (rc != 1) {
1629 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
1630 				"for crypt_stat encrypted session key; "
1631 				"expected rc = 1; got rc = [%d]. "
1632 				"key_rec->enc_key_size = [%d]\n", rc,
1633 				key_rec->enc_key_size);
1634 		rc = -ENOMEM;
1635 		goto out;
1636 	}
1637 	mutex_lock(tfm_mutex);
1638 	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
1639 				     crypt_stat->key_size);
1640 	if (rc < 0) {
1641 		mutex_unlock(tfm_mutex);
1642 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
1643 				"context; rc = [%d]\n", rc);
1644 		goto out;
1645 	}
1646 	rc = 0;
1647 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
1648 			crypt_stat->key_size);
1649 	rc = crypto_blkcipher_encrypt(&desc, &dst_sg, &src_sg,
1650 				      (*key_rec).enc_key_size);
1651 	mutex_unlock(tfm_mutex);
1652 	if (rc) {
1653 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
1654 		goto out;
1655 	}
1656 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
1657 	if (ecryptfs_verbosity > 0) {
1658 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
1659 				key_rec->enc_key_size);
1660 		ecryptfs_dump_hex(key_rec->enc_key,
1661 				  key_rec->enc_key_size);
1662 	}
1663 encrypted_session_key_set:
1664 	/* This format is inspired by OpenPGP; see RFC 2440
1665 	 * packet tag 3 */
1666 	max_packet_size = (1                         /* Tag 3 identifier */
1667 			   + 3                       /* Max Tag 3 packet size */
1668 			   + 1                       /* Version */
1669 			   + 1                       /* Cipher code */
1670 			   + 1                       /* S2K specifier */
1671 			   + 1                       /* Hash identifier */
1672 			   + ECRYPTFS_SALT_SIZE      /* Salt */
1673 			   + 1                       /* Hash iterations */
1674 			   + key_rec->enc_key_size); /* Encrypted key size */
1675 	if (max_packet_size > (*remaining_bytes)) {
1676 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
1677 		       "there are only [%td] available\n", max_packet_size,
1678 		       (*remaining_bytes));
1679 		rc = -EINVAL;
1680 		goto out;
1681 	}
1682 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
1683 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
1684 	 * to get the number of octets in the actual Tag 3 packet */
1685 	rc = write_packet_length(&dest[(*packet_size)], (max_packet_size - 4),
1686 				 &packet_size_length);
1687 	if (rc) {
1688 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
1689 		       "generate packet length. rc = [%d]\n", rc);
1690 		goto out;
1691 	}
1692 	(*packet_size) += packet_size_length;
1693 	dest[(*packet_size)++] = 0x04; /* version 4 */
1694 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
1695 	 * specified with strings */
1696 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat);
1697 	if (cipher_code == 0) {
1698 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
1699 				"cipher [%s]\n", crypt_stat->cipher);
1700 		rc = -EINVAL;
1701 		goto out;
1702 	}
1703 	dest[(*packet_size)++] = cipher_code;
1704 	dest[(*packet_size)++] = 0x03;	/* S2K */
1705 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
1706 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
1707 	       ECRYPTFS_SALT_SIZE);
1708 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
1709 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
1710 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
1711 	       key_rec->enc_key_size);
1712 	(*packet_size) += key_rec->enc_key_size;
1713 out:
1714 	if (rc)
1715 		(*packet_size) = 0;
1716 	else
1717 		(*remaining_bytes) -= (*packet_size);
1718 	return rc;
1719 }
1720 
1721 struct kmem_cache *ecryptfs_key_record_cache;
1722 
1723 /**
1724  * ecryptfs_generate_key_packet_set
1725  * @dest_base: Virtual address from which to write the key record set
1726  * @crypt_stat: The cryptographic context from which the
1727  *              authentication tokens will be retrieved
1728  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
1729  *                   for the global parameters
1730  * @len: The amount written
1731  * @max: The maximum amount of data allowed to be written
1732  *
1733  * Generates a key packet set and writes it to the virtual address
1734  * passed in.
1735  *
1736  * Returns zero on success; non-zero on error.
1737  */
1738 int
1739 ecryptfs_generate_key_packet_set(char *dest_base,
1740 				 struct ecryptfs_crypt_stat *crypt_stat,
1741 				 struct dentry *ecryptfs_dentry, size_t *len,
1742 				 size_t max)
1743 {
1744 	struct ecryptfs_auth_tok *auth_tok;
1745 	struct ecryptfs_global_auth_tok *global_auth_tok;
1746 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1747 		&ecryptfs_superblock_to_private(
1748 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1749 	size_t written;
1750 	struct ecryptfs_key_record *key_rec;
1751 	struct ecryptfs_key_sig *key_sig;
1752 	int rc = 0;
1753 
1754 	(*len) = 0;
1755 	mutex_lock(&crypt_stat->keysig_list_mutex);
1756 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
1757 	if (!key_rec) {
1758 		rc = -ENOMEM;
1759 		goto out;
1760 	}
1761 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
1762 			    crypt_stat_list) {
1763 		memset(key_rec, 0, sizeof(*key_rec));
1764 		rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
1765 							   mount_crypt_stat,
1766 							   key_sig->keysig);
1767 		if (rc) {
1768 			printk(KERN_ERR "Error attempting to get the global "
1769 			       "auth_tok; rc = [%d]\n", rc);
1770 			goto out_free;
1771 		}
1772 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
1773 			printk(KERN_WARNING
1774 			       "Skipping invalid auth tok with sig = [%s]\n",
1775 			       global_auth_tok->sig);
1776 			continue;
1777 		}
1778 		auth_tok = global_auth_tok->global_auth_tok;
1779 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
1780 			rc = write_tag_3_packet((dest_base + (*len)),
1781 						&max, auth_tok,
1782 						crypt_stat, key_rec,
1783 						&written);
1784 			if (rc) {
1785 				ecryptfs_printk(KERN_WARNING, "Error "
1786 						"writing tag 3 packet\n");
1787 				goto out_free;
1788 			}
1789 			(*len) += written;
1790 			/* Write auth tok signature packet */
1791 			rc = write_tag_11_packet((dest_base + (*len)), &max,
1792 						 key_rec->sig,
1793 						 ECRYPTFS_SIG_SIZE, &written);
1794 			if (rc) {
1795 				ecryptfs_printk(KERN_ERR, "Error writing "
1796 						"auth tok signature packet\n");
1797 				goto out_free;
1798 			}
1799 			(*len) += written;
1800 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1801 			rc = write_tag_1_packet(dest_base + (*len),
1802 						&max, auth_tok,
1803 						crypt_stat, key_rec, &written);
1804 			if (rc) {
1805 				ecryptfs_printk(KERN_WARNING, "Error "
1806 						"writing tag 1 packet\n");
1807 				goto out_free;
1808 			}
1809 			(*len) += written;
1810 		} else {
1811 			ecryptfs_printk(KERN_WARNING, "Unsupported "
1812 					"authentication token type\n");
1813 			rc = -EINVAL;
1814 			goto out_free;
1815 		}
1816 	}
1817 	if (likely(max > 0)) {
1818 		dest_base[(*len)] = 0x00;
1819 	} else {
1820 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
1821 		rc = -EIO;
1822 	}
1823 out_free:
1824 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
1825 out:
1826 	if (rc)
1827 		(*len) = 0;
1828 	mutex_unlock(&crypt_stat->keysig_list_mutex);
1829 	return rc;
1830 }
1831 
1832 struct kmem_cache *ecryptfs_key_sig_cache;
1833 
1834 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
1835 {
1836 	struct ecryptfs_key_sig *new_key_sig;
1837 	int rc = 0;
1838 
1839 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
1840 	if (!new_key_sig) {
1841 		rc = -ENOMEM;
1842 		printk(KERN_ERR
1843 		       "Error allocating from ecryptfs_key_sig_cache\n");
1844 		goto out;
1845 	}
1846 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
1847 	mutex_lock(&crypt_stat->keysig_list_mutex);
1848 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
1849 	mutex_unlock(&crypt_stat->keysig_list_mutex);
1850 out:
1851 	return rc;
1852 }
1853 
1854 struct kmem_cache *ecryptfs_global_auth_tok_cache;
1855 
1856 int
1857 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1858 			     char *sig)
1859 {
1860 	struct ecryptfs_global_auth_tok *new_auth_tok;
1861 	int rc = 0;
1862 
1863 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
1864 					GFP_KERNEL);
1865 	if (!new_auth_tok) {
1866 		rc = -ENOMEM;
1867 		printk(KERN_ERR "Error allocating from "
1868 		       "ecryptfs_global_auth_tok_cache\n");
1869 		goto out;
1870 	}
1871 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
1872 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
1873 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
1874 	list_add(&new_auth_tok->mount_crypt_stat_list,
1875 		 &mount_crypt_stat->global_auth_tok_list);
1876 	mount_crypt_stat->num_global_auth_toks++;
1877 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
1878 out:
1879 	return rc;
1880 }
1881 
1882