xref: /openbmc/linux/fs/ecryptfs/keystore.c (revision 5a244f48)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <crypto/hash.h>
29 #include <crypto/skcipher.h>
30 #include <linux/string.h>
31 #include <linux/pagemap.h>
32 #include <linux/key.h>
33 #include <linux/random.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
37 
38 /**
39  * request_key returned an error instead of a valid key address;
40  * determine the type of error, make appropriate log entries, and
41  * return an error code.
42  */
43 static int process_request_key_err(long err_code)
44 {
45 	int rc = 0;
46 
47 	switch (err_code) {
48 	case -ENOKEY:
49 		ecryptfs_printk(KERN_WARNING, "No key\n");
50 		rc = -ENOENT;
51 		break;
52 	case -EKEYEXPIRED:
53 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
54 		rc = -ETIME;
55 		break;
56 	case -EKEYREVOKED:
57 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58 		rc = -EINVAL;
59 		break;
60 	default:
61 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62 				"[0x%.16lx]\n", err_code);
63 		rc = -EINVAL;
64 	}
65 	return rc;
66 }
67 
68 static int process_find_global_auth_tok_for_sig_err(int err_code)
69 {
70 	int rc = err_code;
71 
72 	switch (err_code) {
73 	case -ENOENT:
74 		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
75 		break;
76 	case -EINVAL:
77 		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
78 		break;
79 	default:
80 		rc = process_request_key_err(err_code);
81 		break;
82 	}
83 	return rc;
84 }
85 
86 /**
87  * ecryptfs_parse_packet_length
88  * @data: Pointer to memory containing length at offset
89  * @size: This function writes the decoded size to this memory
90  *        address; zero on error
91  * @length_size: The number of bytes occupied by the encoded length
92  *
93  * Returns zero on success; non-zero on error
94  */
95 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
96 				 size_t *length_size)
97 {
98 	int rc = 0;
99 
100 	(*length_size) = 0;
101 	(*size) = 0;
102 	if (data[0] < 192) {
103 		/* One-byte length */
104 		(*size) = data[0];
105 		(*length_size) = 1;
106 	} else if (data[0] < 224) {
107 		/* Two-byte length */
108 		(*size) = (data[0] - 192) * 256;
109 		(*size) += data[1] + 192;
110 		(*length_size) = 2;
111 	} else if (data[0] == 255) {
112 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
113 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
114 				"supported\n");
115 		rc = -EINVAL;
116 		goto out;
117 	} else {
118 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
119 		rc = -EINVAL;
120 		goto out;
121 	}
122 out:
123 	return rc;
124 }
125 
126 /**
127  * ecryptfs_write_packet_length
128  * @dest: The byte array target into which to write the length. Must
129  *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
130  * @size: The length to write.
131  * @packet_size_length: The number of bytes used to encode the packet
132  *                      length is written to this address.
133  *
134  * Returns zero on success; non-zero on error.
135  */
136 int ecryptfs_write_packet_length(char *dest, size_t size,
137 				 size_t *packet_size_length)
138 {
139 	int rc = 0;
140 
141 	if (size < 192) {
142 		dest[0] = size;
143 		(*packet_size_length) = 1;
144 	} else if (size < 65536) {
145 		dest[0] = (((size - 192) / 256) + 192);
146 		dest[1] = ((size - 192) % 256);
147 		(*packet_size_length) = 2;
148 	} else {
149 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
150 		rc = -EINVAL;
151 		ecryptfs_printk(KERN_WARNING,
152 				"Unsupported packet size: [%zd]\n", size);
153 	}
154 	return rc;
155 }
156 
157 static int
158 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
159 		    char **packet, size_t *packet_len)
160 {
161 	size_t i = 0;
162 	size_t data_len;
163 	size_t packet_size_len;
164 	char *message;
165 	int rc;
166 
167 	/*
168 	 *              ***** TAG 64 Packet Format *****
169 	 *    | Content Type                       | 1 byte       |
170 	 *    | Key Identifier Size                | 1 or 2 bytes |
171 	 *    | Key Identifier                     | arbitrary    |
172 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
173 	 *    | Encrypted File Encryption Key      | arbitrary    |
174 	 */
175 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
176 		    + session_key->encrypted_key_size);
177 	*packet = kmalloc(data_len, GFP_KERNEL);
178 	message = *packet;
179 	if (!message) {
180 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
181 		rc = -ENOMEM;
182 		goto out;
183 	}
184 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
185 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
186 					  &packet_size_len);
187 	if (rc) {
188 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
189 				"header; cannot generate packet length\n");
190 		goto out;
191 	}
192 	i += packet_size_len;
193 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
194 	i += ECRYPTFS_SIG_SIZE_HEX;
195 	rc = ecryptfs_write_packet_length(&message[i],
196 					  session_key->encrypted_key_size,
197 					  &packet_size_len);
198 	if (rc) {
199 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
200 				"header; cannot generate packet length\n");
201 		goto out;
202 	}
203 	i += packet_size_len;
204 	memcpy(&message[i], session_key->encrypted_key,
205 	       session_key->encrypted_key_size);
206 	i += session_key->encrypted_key_size;
207 	*packet_len = i;
208 out:
209 	return rc;
210 }
211 
212 static int
213 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
214 		    struct ecryptfs_message *msg)
215 {
216 	size_t i = 0;
217 	char *data;
218 	size_t data_len;
219 	size_t m_size;
220 	size_t message_len;
221 	u16 checksum = 0;
222 	u16 expected_checksum = 0;
223 	int rc;
224 
225 	/*
226 	 *              ***** TAG 65 Packet Format *****
227 	 *         | Content Type             | 1 byte       |
228 	 *         | Status Indicator         | 1 byte       |
229 	 *         | File Encryption Key Size | 1 or 2 bytes |
230 	 *         | File Encryption Key      | arbitrary    |
231 	 */
232 	message_len = msg->data_len;
233 	data = msg->data;
234 	if (message_len < 4) {
235 		rc = -EIO;
236 		goto out;
237 	}
238 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
239 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
240 		rc = -EIO;
241 		goto out;
242 	}
243 	if (data[i++]) {
244 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
245 				"[%d]\n", data[i-1]);
246 		rc = -EIO;
247 		goto out;
248 	}
249 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
250 	if (rc) {
251 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
252 				"rc = [%d]\n", rc);
253 		goto out;
254 	}
255 	i += data_len;
256 	if (message_len < (i + m_size)) {
257 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
258 				"is shorter than expected\n");
259 		rc = -EIO;
260 		goto out;
261 	}
262 	if (m_size < 3) {
263 		ecryptfs_printk(KERN_ERR,
264 				"The decrypted key is not long enough to "
265 				"include a cipher code and checksum\n");
266 		rc = -EIO;
267 		goto out;
268 	}
269 	*cipher_code = data[i++];
270 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
271 	session_key->decrypted_key_size = m_size - 3;
272 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
273 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
274 				"the maximum key size [%d]\n",
275 				session_key->decrypted_key_size,
276 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
277 		rc = -EIO;
278 		goto out;
279 	}
280 	memcpy(session_key->decrypted_key, &data[i],
281 	       session_key->decrypted_key_size);
282 	i += session_key->decrypted_key_size;
283 	expected_checksum += (unsigned char)(data[i++]) << 8;
284 	expected_checksum += (unsigned char)(data[i++]);
285 	for (i = 0; i < session_key->decrypted_key_size; i++)
286 		checksum += session_key->decrypted_key[i];
287 	if (expected_checksum != checksum) {
288 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
289 				"encryption  key; expected [%x]; calculated "
290 				"[%x]\n", expected_checksum, checksum);
291 		rc = -EIO;
292 	}
293 out:
294 	return rc;
295 }
296 
297 
298 static int
299 write_tag_66_packet(char *signature, u8 cipher_code,
300 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
301 		    size_t *packet_len)
302 {
303 	size_t i = 0;
304 	size_t j;
305 	size_t data_len;
306 	size_t checksum = 0;
307 	size_t packet_size_len;
308 	char *message;
309 	int rc;
310 
311 	/*
312 	 *              ***** TAG 66 Packet Format *****
313 	 *         | Content Type             | 1 byte       |
314 	 *         | Key Identifier Size      | 1 or 2 bytes |
315 	 *         | Key Identifier           | arbitrary    |
316 	 *         | File Encryption Key Size | 1 or 2 bytes |
317 	 *         | File Encryption Key      | arbitrary    |
318 	 */
319 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
320 	*packet = kmalloc(data_len, GFP_KERNEL);
321 	message = *packet;
322 	if (!message) {
323 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
324 		rc = -ENOMEM;
325 		goto out;
326 	}
327 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
328 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
329 					  &packet_size_len);
330 	if (rc) {
331 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
332 				"header; cannot generate packet length\n");
333 		goto out;
334 	}
335 	i += packet_size_len;
336 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
337 	i += ECRYPTFS_SIG_SIZE_HEX;
338 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
339 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
340 					  &packet_size_len);
341 	if (rc) {
342 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
343 				"header; cannot generate packet length\n");
344 		goto out;
345 	}
346 	i += packet_size_len;
347 	message[i++] = cipher_code;
348 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
349 	i += crypt_stat->key_size;
350 	for (j = 0; j < crypt_stat->key_size; j++)
351 		checksum += crypt_stat->key[j];
352 	message[i++] = (checksum / 256) % 256;
353 	message[i++] = (checksum % 256);
354 	*packet_len = i;
355 out:
356 	return rc;
357 }
358 
359 static int
360 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
361 		    struct ecryptfs_message *msg)
362 {
363 	size_t i = 0;
364 	char *data;
365 	size_t data_len;
366 	size_t message_len;
367 	int rc;
368 
369 	/*
370 	 *              ***** TAG 65 Packet Format *****
371 	 *    | Content Type                       | 1 byte       |
372 	 *    | Status Indicator                   | 1 byte       |
373 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
374 	 *    | Encrypted File Encryption Key      | arbitrary    |
375 	 */
376 	message_len = msg->data_len;
377 	data = msg->data;
378 	/* verify that everything through the encrypted FEK size is present */
379 	if (message_len < 4) {
380 		rc = -EIO;
381 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
382 		       "message length is [%d]\n", __func__, message_len, 4);
383 		goto out;
384 	}
385 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
386 		rc = -EIO;
387 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
388 		       __func__);
389 		goto out;
390 	}
391 	if (data[i++]) {
392 		rc = -EIO;
393 		printk(KERN_ERR "%s: Status indicator has non zero "
394 		       "value [%d]\n", __func__, data[i-1]);
395 
396 		goto out;
397 	}
398 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
399 					  &data_len);
400 	if (rc) {
401 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
402 				"rc = [%d]\n", rc);
403 		goto out;
404 	}
405 	i += data_len;
406 	if (message_len < (i + key_rec->enc_key_size)) {
407 		rc = -EIO;
408 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
409 		       __func__, message_len, (i + key_rec->enc_key_size));
410 		goto out;
411 	}
412 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
413 		rc = -EIO;
414 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
415 		       "the maximum key size [%d]\n", __func__,
416 		       key_rec->enc_key_size,
417 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
418 		goto out;
419 	}
420 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
421 out:
422 	return rc;
423 }
424 
425 /**
426  * ecryptfs_verify_version
427  * @version: The version number to confirm
428  *
429  * Returns zero on good version; non-zero otherwise
430  */
431 static int ecryptfs_verify_version(u16 version)
432 {
433 	int rc = 0;
434 	unsigned char major;
435 	unsigned char minor;
436 
437 	major = ((version >> 8) & 0xFF);
438 	minor = (version & 0xFF);
439 	if (major != ECRYPTFS_VERSION_MAJOR) {
440 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
441 				"Expected [%d]; got [%d]\n",
442 				ECRYPTFS_VERSION_MAJOR, major);
443 		rc = -EINVAL;
444 		goto out;
445 	}
446 	if (minor != ECRYPTFS_VERSION_MINOR) {
447 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
448 				"Expected [%d]; got [%d]\n",
449 				ECRYPTFS_VERSION_MINOR, minor);
450 		rc = -EINVAL;
451 		goto out;
452 	}
453 out:
454 	return rc;
455 }
456 
457 /**
458  * ecryptfs_verify_auth_tok_from_key
459  * @auth_tok_key: key containing the authentication token
460  * @auth_tok: authentication token
461  *
462  * Returns zero on valid auth tok; -EINVAL otherwise
463  */
464 static int
465 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
466 				  struct ecryptfs_auth_tok **auth_tok)
467 {
468 	int rc = 0;
469 
470 	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
471 	if (ecryptfs_verify_version((*auth_tok)->version)) {
472 		printk(KERN_ERR "Data structure version mismatch. Userspace "
473 		       "tools must match eCryptfs kernel module with major "
474 		       "version [%d] and minor version [%d]\n",
475 		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
476 		rc = -EINVAL;
477 		goto out;
478 	}
479 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
480 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
481 		printk(KERN_ERR "Invalid auth_tok structure "
482 		       "returned from key query\n");
483 		rc = -EINVAL;
484 		goto out;
485 	}
486 out:
487 	return rc;
488 }
489 
490 static int
491 ecryptfs_find_global_auth_tok_for_sig(
492 	struct key **auth_tok_key,
493 	struct ecryptfs_auth_tok **auth_tok,
494 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
495 {
496 	struct ecryptfs_global_auth_tok *walker;
497 	int rc = 0;
498 
499 	(*auth_tok_key) = NULL;
500 	(*auth_tok) = NULL;
501 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
502 	list_for_each_entry(walker,
503 			    &mount_crypt_stat->global_auth_tok_list,
504 			    mount_crypt_stat_list) {
505 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
506 			continue;
507 
508 		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
509 			rc = -EINVAL;
510 			goto out;
511 		}
512 
513 		rc = key_validate(walker->global_auth_tok_key);
514 		if (rc) {
515 			if (rc == -EKEYEXPIRED)
516 				goto out;
517 			goto out_invalid_auth_tok;
518 		}
519 
520 		down_write(&(walker->global_auth_tok_key->sem));
521 		rc = ecryptfs_verify_auth_tok_from_key(
522 				walker->global_auth_tok_key, auth_tok);
523 		if (rc)
524 			goto out_invalid_auth_tok_unlock;
525 
526 		(*auth_tok_key) = walker->global_auth_tok_key;
527 		key_get(*auth_tok_key);
528 		goto out;
529 	}
530 	rc = -ENOENT;
531 	goto out;
532 out_invalid_auth_tok_unlock:
533 	up_write(&(walker->global_auth_tok_key->sem));
534 out_invalid_auth_tok:
535 	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
536 	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
537 	key_put(walker->global_auth_tok_key);
538 	walker->global_auth_tok_key = NULL;
539 out:
540 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
541 	return rc;
542 }
543 
544 /**
545  * ecryptfs_find_auth_tok_for_sig
546  * @auth_tok: Set to the matching auth_tok; NULL if not found
547  * @crypt_stat: inode crypt_stat crypto context
548  * @sig: Sig of auth_tok to find
549  *
550  * For now, this function simply looks at the registered auth_tok's
551  * linked off the mount_crypt_stat, so all the auth_toks that can be
552  * used must be registered at mount time. This function could
553  * potentially try a lot harder to find auth_tok's (e.g., by calling
554  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
555  * that static registration of auth_tok's will no longer be necessary.
556  *
557  * Returns zero on no error; non-zero on error
558  */
559 static int
560 ecryptfs_find_auth_tok_for_sig(
561 	struct key **auth_tok_key,
562 	struct ecryptfs_auth_tok **auth_tok,
563 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
564 	char *sig)
565 {
566 	int rc = 0;
567 
568 	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
569 						   mount_crypt_stat, sig);
570 	if (rc == -ENOENT) {
571 		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
572 		 * mount_crypt_stat structure, we prevent to use auth toks that
573 		 * are not inserted through the ecryptfs_add_global_auth_tok
574 		 * function.
575 		 */
576 		if (mount_crypt_stat->flags
577 				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
578 			return -EINVAL;
579 
580 		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
581 						       sig);
582 	}
583 	return rc;
584 }
585 
586 /**
587  * write_tag_70_packet can gobble a lot of stack space. We stuff most
588  * of the function's parameters in a kmalloc'd struct to help reduce
589  * eCryptfs' overall stack usage.
590  */
591 struct ecryptfs_write_tag_70_packet_silly_stack {
592 	u8 cipher_code;
593 	size_t max_packet_size;
594 	size_t packet_size_len;
595 	size_t block_aligned_filename_size;
596 	size_t block_size;
597 	size_t i;
598 	size_t j;
599 	size_t num_rand_bytes;
600 	struct mutex *tfm_mutex;
601 	char *block_aligned_filename;
602 	struct ecryptfs_auth_tok *auth_tok;
603 	struct scatterlist src_sg[2];
604 	struct scatterlist dst_sg[2];
605 	struct crypto_skcipher *skcipher_tfm;
606 	struct skcipher_request *skcipher_req;
607 	char iv[ECRYPTFS_MAX_IV_BYTES];
608 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
609 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
610 	struct crypto_shash *hash_tfm;
611 	struct shash_desc *hash_desc;
612 };
613 
614 /**
615  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
616  * @filename: NULL-terminated filename string
617  *
618  * This is the simplest mechanism for achieving filename encryption in
619  * eCryptfs. It encrypts the given filename with the mount-wide
620  * filename encryption key (FNEK) and stores it in a packet to @dest,
621  * which the callee will encode and write directly into the dentry
622  * name.
623  */
624 int
625 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
626 			     size_t *packet_size,
627 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
628 			     char *filename, size_t filename_size)
629 {
630 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
631 	struct key *auth_tok_key = NULL;
632 	int rc = 0;
633 
634 	s = kzalloc(sizeof(*s), GFP_KERNEL);
635 	if (!s) {
636 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
637 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
638 		return -ENOMEM;
639 	}
640 	(*packet_size) = 0;
641 	rc = ecryptfs_find_auth_tok_for_sig(
642 		&auth_tok_key,
643 		&s->auth_tok, mount_crypt_stat,
644 		mount_crypt_stat->global_default_fnek_sig);
645 	if (rc) {
646 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
647 		       "fnek sig [%s]; rc = [%d]\n", __func__,
648 		       mount_crypt_stat->global_default_fnek_sig, rc);
649 		goto out;
650 	}
651 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
652 		&s->skcipher_tfm,
653 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
654 	if (unlikely(rc)) {
655 		printk(KERN_ERR "Internal error whilst attempting to get "
656 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
657 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
658 		goto out;
659 	}
660 	mutex_lock(s->tfm_mutex);
661 	s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
662 	/* Plus one for the \0 separator between the random prefix
663 	 * and the plaintext filename */
664 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
665 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
666 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
667 		s->num_rand_bytes += (s->block_size
668 				      - (s->block_aligned_filename_size
669 					 % s->block_size));
670 		s->block_aligned_filename_size = (s->num_rand_bytes
671 						  + filename_size);
672 	}
673 	/* Octet 0: Tag 70 identifier
674 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
675 	 *              and block-aligned encrypted filename size)
676 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
677 	 * Octet N2-N3: Cipher identifier (1 octet)
678 	 * Octets N3-N4: Block-aligned encrypted filename
679 	 *  - Consists of a minimum number of random characters, a \0
680 	 *    separator, and then the filename */
681 	s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
682 			      + s->block_aligned_filename_size);
683 	if (dest == NULL) {
684 		(*packet_size) = s->max_packet_size;
685 		goto out_unlock;
686 	}
687 	if (s->max_packet_size > (*remaining_bytes)) {
688 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
689 		       "[%zd] available\n", __func__, s->max_packet_size,
690 		       (*remaining_bytes));
691 		rc = -EINVAL;
692 		goto out_unlock;
693 	}
694 
695 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
696 	if (!s->skcipher_req) {
697 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
698 		       "skcipher_request_alloc for %s\n", __func__,
699 		       crypto_skcipher_driver_name(s->skcipher_tfm));
700 		rc = -ENOMEM;
701 		goto out_unlock;
702 	}
703 
704 	skcipher_request_set_callback(s->skcipher_req,
705 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
706 
707 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
708 					    GFP_KERNEL);
709 	if (!s->block_aligned_filename) {
710 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
711 		       "kzalloc [%zd] bytes\n", __func__,
712 		       s->block_aligned_filename_size);
713 		rc = -ENOMEM;
714 		goto out_unlock;
715 	}
716 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
717 	rc = ecryptfs_write_packet_length(&dest[s->i],
718 					  (ECRYPTFS_SIG_SIZE
719 					   + 1 /* Cipher code */
720 					   + s->block_aligned_filename_size),
721 					  &s->packet_size_len);
722 	if (rc) {
723 		printk(KERN_ERR "%s: Error generating tag 70 packet "
724 		       "header; cannot generate packet length; rc = [%d]\n",
725 		       __func__, rc);
726 		goto out_free_unlock;
727 	}
728 	s->i += s->packet_size_len;
729 	ecryptfs_from_hex(&dest[s->i],
730 			  mount_crypt_stat->global_default_fnek_sig,
731 			  ECRYPTFS_SIG_SIZE);
732 	s->i += ECRYPTFS_SIG_SIZE;
733 	s->cipher_code = ecryptfs_code_for_cipher_string(
734 		mount_crypt_stat->global_default_fn_cipher_name,
735 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
736 	if (s->cipher_code == 0) {
737 		printk(KERN_WARNING "%s: Unable to generate code for "
738 		       "cipher [%s] with key bytes [%zd]\n", __func__,
739 		       mount_crypt_stat->global_default_fn_cipher_name,
740 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
741 		rc = -EINVAL;
742 		goto out_free_unlock;
743 	}
744 	dest[s->i++] = s->cipher_code;
745 	/* TODO: Support other key modules than passphrase for
746 	 * filename encryption */
747 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
748 		rc = -EOPNOTSUPP;
749 		printk(KERN_INFO "%s: Filename encryption only supports "
750 		       "password tokens\n", __func__);
751 		goto out_free_unlock;
752 	}
753 	s->hash_tfm = crypto_alloc_shash(ECRYPTFS_TAG_70_DIGEST, 0, 0);
754 	if (IS_ERR(s->hash_tfm)) {
755 			rc = PTR_ERR(s->hash_tfm);
756 			printk(KERN_ERR "%s: Error attempting to "
757 			       "allocate hash crypto context; rc = [%d]\n",
758 			       __func__, rc);
759 			goto out_free_unlock;
760 	}
761 
762 	s->hash_desc = kmalloc(sizeof(*s->hash_desc) +
763 			       crypto_shash_descsize(s->hash_tfm), GFP_KERNEL);
764 	if (!s->hash_desc) {
765 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
766 		       "kmalloc [%zd] bytes\n", __func__,
767 		       sizeof(*s->hash_desc) +
768 		       crypto_shash_descsize(s->hash_tfm));
769 		rc = -ENOMEM;
770 		goto out_release_free_unlock;
771 	}
772 
773 	s->hash_desc->tfm = s->hash_tfm;
774 	s->hash_desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
775 
776 	rc = crypto_shash_digest(s->hash_desc,
777 				 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
778 				 s->auth_tok->token.password.session_key_encryption_key_bytes,
779 				 s->hash);
780 	if (rc) {
781 		printk(KERN_ERR
782 		       "%s: Error computing crypto hash; rc = [%d]\n",
783 		       __func__, rc);
784 		goto out_release_free_unlock;
785 	}
786 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
787 		s->block_aligned_filename[s->j] =
788 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
789 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
790 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
791 			rc = crypto_shash_digest(s->hash_desc, (u8 *)s->hash,
792 						ECRYPTFS_TAG_70_DIGEST_SIZE,
793 						s->tmp_hash);
794 			if (rc) {
795 				printk(KERN_ERR
796 				       "%s: Error computing crypto hash; "
797 				       "rc = [%d]\n", __func__, rc);
798 				goto out_release_free_unlock;
799 			}
800 			memcpy(s->hash, s->tmp_hash,
801 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
802 		}
803 		if (s->block_aligned_filename[s->j] == '\0')
804 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
805 	}
806 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
807 	       filename_size);
808 	rc = virt_to_scatterlist(s->block_aligned_filename,
809 				 s->block_aligned_filename_size, s->src_sg, 2);
810 	if (rc < 1) {
811 		printk(KERN_ERR "%s: Internal error whilst attempting to "
812 		       "convert filename memory to scatterlist; rc = [%d]. "
813 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
814 		       s->block_aligned_filename_size);
815 		goto out_release_free_unlock;
816 	}
817 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
818 				 s->dst_sg, 2);
819 	if (rc < 1) {
820 		printk(KERN_ERR "%s: Internal error whilst attempting to "
821 		       "convert encrypted filename memory to scatterlist; "
822 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
823 		       __func__, rc, s->block_aligned_filename_size);
824 		goto out_release_free_unlock;
825 	}
826 	/* The characters in the first block effectively do the job
827 	 * of the IV here, so we just use 0's for the IV. Note the
828 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
829 	 * >= ECRYPTFS_MAX_IV_BYTES. */
830 	rc = crypto_skcipher_setkey(
831 		s->skcipher_tfm,
832 		s->auth_tok->token.password.session_key_encryption_key,
833 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
834 	if (rc < 0) {
835 		printk(KERN_ERR "%s: Error setting key for crypto context; "
836 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
837 		       "encryption_key = [0x%p]; mount_crypt_stat->"
838 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
839 		       rc,
840 		       s->auth_tok->token.password.session_key_encryption_key,
841 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
842 		goto out_release_free_unlock;
843 	}
844 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
845 				   s->block_aligned_filename_size, s->iv);
846 	rc = crypto_skcipher_encrypt(s->skcipher_req);
847 	if (rc) {
848 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
849 		       "rc = [%d]\n", __func__, rc);
850 		goto out_release_free_unlock;
851 	}
852 	s->i += s->block_aligned_filename_size;
853 	(*packet_size) = s->i;
854 	(*remaining_bytes) -= (*packet_size);
855 out_release_free_unlock:
856 	crypto_free_shash(s->hash_tfm);
857 out_free_unlock:
858 	kzfree(s->block_aligned_filename);
859 out_unlock:
860 	mutex_unlock(s->tfm_mutex);
861 out:
862 	if (auth_tok_key) {
863 		up_write(&(auth_tok_key->sem));
864 		key_put(auth_tok_key);
865 	}
866 	skcipher_request_free(s->skcipher_req);
867 	kzfree(s->hash_desc);
868 	kfree(s);
869 	return rc;
870 }
871 
872 struct ecryptfs_parse_tag_70_packet_silly_stack {
873 	u8 cipher_code;
874 	size_t max_packet_size;
875 	size_t packet_size_len;
876 	size_t parsed_tag_70_packet_size;
877 	size_t block_aligned_filename_size;
878 	size_t block_size;
879 	size_t i;
880 	struct mutex *tfm_mutex;
881 	char *decrypted_filename;
882 	struct ecryptfs_auth_tok *auth_tok;
883 	struct scatterlist src_sg[2];
884 	struct scatterlist dst_sg[2];
885 	struct crypto_skcipher *skcipher_tfm;
886 	struct skcipher_request *skcipher_req;
887 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
888 	char iv[ECRYPTFS_MAX_IV_BYTES];
889 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
890 };
891 
892 /**
893  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
894  * @filename: This function kmalloc's the memory for the filename
895  * @filename_size: This function sets this to the amount of memory
896  *                 kmalloc'd for the filename
897  * @packet_size: This function sets this to the the number of octets
898  *               in the packet parsed
899  * @mount_crypt_stat: The mount-wide cryptographic context
900  * @data: The memory location containing the start of the tag 70
901  *        packet
902  * @max_packet_size: The maximum legal size of the packet to be parsed
903  *                   from @data
904  *
905  * Returns zero on success; non-zero otherwise
906  */
907 int
908 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
909 			     size_t *packet_size,
910 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
911 			     char *data, size_t max_packet_size)
912 {
913 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
914 	struct key *auth_tok_key = NULL;
915 	int rc = 0;
916 
917 	(*packet_size) = 0;
918 	(*filename_size) = 0;
919 	(*filename) = NULL;
920 	s = kzalloc(sizeof(*s), GFP_KERNEL);
921 	if (!s) {
922 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
923 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
924 		return -ENOMEM;
925 	}
926 	if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
927 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
928 		       "at least [%d]\n", __func__, max_packet_size,
929 		       ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
930 		rc = -EINVAL;
931 		goto out;
932 	}
933 	/* Octet 0: Tag 70 identifier
934 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
935 	 *              and block-aligned encrypted filename size)
936 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
937 	 * Octet N2-N3: Cipher identifier (1 octet)
938 	 * Octets N3-N4: Block-aligned encrypted filename
939 	 *  - Consists of a minimum number of random numbers, a \0
940 	 *    separator, and then the filename */
941 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
942 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
943 		       "tag [0x%.2x]\n", __func__,
944 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
945 		rc = -EINVAL;
946 		goto out;
947 	}
948 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
949 					  &s->parsed_tag_70_packet_size,
950 					  &s->packet_size_len);
951 	if (rc) {
952 		printk(KERN_WARNING "%s: Error parsing packet length; "
953 		       "rc = [%d]\n", __func__, rc);
954 		goto out;
955 	}
956 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
957 					  - ECRYPTFS_SIG_SIZE - 1);
958 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
959 	    > max_packet_size) {
960 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
961 		       "size is [%zd]\n", __func__, max_packet_size,
962 		       (1 + s->packet_size_len + 1
963 			+ s->block_aligned_filename_size));
964 		rc = -EINVAL;
965 		goto out;
966 	}
967 	(*packet_size) += s->packet_size_len;
968 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
969 			ECRYPTFS_SIG_SIZE);
970 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
971 	(*packet_size) += ECRYPTFS_SIG_SIZE;
972 	s->cipher_code = data[(*packet_size)++];
973 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
974 	if (rc) {
975 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
976 		       __func__, s->cipher_code);
977 		goto out;
978 	}
979 	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
980 					    &s->auth_tok, mount_crypt_stat,
981 					    s->fnek_sig_hex);
982 	if (rc) {
983 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
984 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
985 		       rc);
986 		goto out;
987 	}
988 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
989 							&s->tfm_mutex,
990 							s->cipher_string);
991 	if (unlikely(rc)) {
992 		printk(KERN_ERR "Internal error whilst attempting to get "
993 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
994 		       s->cipher_string, rc);
995 		goto out;
996 	}
997 	mutex_lock(s->tfm_mutex);
998 	rc = virt_to_scatterlist(&data[(*packet_size)],
999 				 s->block_aligned_filename_size, s->src_sg, 2);
1000 	if (rc < 1) {
1001 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1002 		       "convert encrypted filename memory to scatterlist; "
1003 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1004 		       __func__, rc, s->block_aligned_filename_size);
1005 		goto out_unlock;
1006 	}
1007 	(*packet_size) += s->block_aligned_filename_size;
1008 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
1009 					GFP_KERNEL);
1010 	if (!s->decrypted_filename) {
1011 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1012 		       "kmalloc [%zd] bytes\n", __func__,
1013 		       s->block_aligned_filename_size);
1014 		rc = -ENOMEM;
1015 		goto out_unlock;
1016 	}
1017 	rc = virt_to_scatterlist(s->decrypted_filename,
1018 				 s->block_aligned_filename_size, s->dst_sg, 2);
1019 	if (rc < 1) {
1020 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1021 		       "convert decrypted filename memory to scatterlist; "
1022 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1023 		       __func__, rc, s->block_aligned_filename_size);
1024 		goto out_free_unlock;
1025 	}
1026 
1027 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
1028 	if (!s->skcipher_req) {
1029 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1030 		       "skcipher_request_alloc for %s\n", __func__,
1031 		       crypto_skcipher_driver_name(s->skcipher_tfm));
1032 		rc = -ENOMEM;
1033 		goto out_free_unlock;
1034 	}
1035 
1036 	skcipher_request_set_callback(s->skcipher_req,
1037 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
1038 
1039 	/* The characters in the first block effectively do the job of
1040 	 * the IV here, so we just use 0's for the IV. Note the
1041 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1042 	 * >= ECRYPTFS_MAX_IV_BYTES. */
1043 	/* TODO: Support other key modules than passphrase for
1044 	 * filename encryption */
1045 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1046 		rc = -EOPNOTSUPP;
1047 		printk(KERN_INFO "%s: Filename encryption only supports "
1048 		       "password tokens\n", __func__);
1049 		goto out_free_unlock;
1050 	}
1051 	rc = crypto_skcipher_setkey(
1052 		s->skcipher_tfm,
1053 		s->auth_tok->token.password.session_key_encryption_key,
1054 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1055 	if (rc < 0) {
1056 		printk(KERN_ERR "%s: Error setting key for crypto context; "
1057 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1058 		       "encryption_key = [0x%p]; mount_crypt_stat->"
1059 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1060 		       rc,
1061 		       s->auth_tok->token.password.session_key_encryption_key,
1062 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1063 		goto out_free_unlock;
1064 	}
1065 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1066 				   s->block_aligned_filename_size, s->iv);
1067 	rc = crypto_skcipher_decrypt(s->skcipher_req);
1068 	if (rc) {
1069 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1070 		       "rc = [%d]\n", __func__, rc);
1071 		goto out_free_unlock;
1072 	}
1073 	while (s->decrypted_filename[s->i] != '\0'
1074 	       && s->i < s->block_aligned_filename_size)
1075 		s->i++;
1076 	if (s->i == s->block_aligned_filename_size) {
1077 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1078 		       "find valid separator between random characters and "
1079 		       "the filename\n", __func__);
1080 		rc = -EINVAL;
1081 		goto out_free_unlock;
1082 	}
1083 	s->i++;
1084 	(*filename_size) = (s->block_aligned_filename_size - s->i);
1085 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1086 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1087 		       "invalid\n", __func__, (*filename_size));
1088 		rc = -EINVAL;
1089 		goto out_free_unlock;
1090 	}
1091 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1092 	if (!(*filename)) {
1093 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1094 		       "kmalloc [%zd] bytes\n", __func__,
1095 		       ((*filename_size) + 1));
1096 		rc = -ENOMEM;
1097 		goto out_free_unlock;
1098 	}
1099 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1100 	(*filename)[(*filename_size)] = '\0';
1101 out_free_unlock:
1102 	kfree(s->decrypted_filename);
1103 out_unlock:
1104 	mutex_unlock(s->tfm_mutex);
1105 out:
1106 	if (rc) {
1107 		(*packet_size) = 0;
1108 		(*filename_size) = 0;
1109 		(*filename) = NULL;
1110 	}
1111 	if (auth_tok_key) {
1112 		up_write(&(auth_tok_key->sem));
1113 		key_put(auth_tok_key);
1114 	}
1115 	skcipher_request_free(s->skcipher_req);
1116 	kfree(s);
1117 	return rc;
1118 }
1119 
1120 static int
1121 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1122 {
1123 	int rc = 0;
1124 
1125 	(*sig) = NULL;
1126 	switch (auth_tok->token_type) {
1127 	case ECRYPTFS_PASSWORD:
1128 		(*sig) = auth_tok->token.password.signature;
1129 		break;
1130 	case ECRYPTFS_PRIVATE_KEY:
1131 		(*sig) = auth_tok->token.private_key.signature;
1132 		break;
1133 	default:
1134 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1135 		       auth_tok->token_type);
1136 		rc = -EINVAL;
1137 	}
1138 	return rc;
1139 }
1140 
1141 /**
1142  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1143  * @auth_tok: The key authentication token used to decrypt the session key
1144  * @crypt_stat: The cryptographic context
1145  *
1146  * Returns zero on success; non-zero error otherwise.
1147  */
1148 static int
1149 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1150 				  struct ecryptfs_crypt_stat *crypt_stat)
1151 {
1152 	u8 cipher_code = 0;
1153 	struct ecryptfs_msg_ctx *msg_ctx;
1154 	struct ecryptfs_message *msg = NULL;
1155 	char *auth_tok_sig;
1156 	char *payload = NULL;
1157 	size_t payload_len = 0;
1158 	int rc;
1159 
1160 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1161 	if (rc) {
1162 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1163 		       auth_tok->token_type);
1164 		goto out;
1165 	}
1166 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1167 				 &payload, &payload_len);
1168 	if (rc) {
1169 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1170 		goto out;
1171 	}
1172 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1173 	if (rc) {
1174 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1175 				"ecryptfsd: %d\n", rc);
1176 		goto out;
1177 	}
1178 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1179 	if (rc) {
1180 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1181 				"from the user space daemon\n");
1182 		rc = -EIO;
1183 		goto out;
1184 	}
1185 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1186 				 &cipher_code, msg);
1187 	if (rc) {
1188 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1189 		       rc);
1190 		goto out;
1191 	}
1192 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1193 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1194 	       auth_tok->session_key.decrypted_key_size);
1195 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1196 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1197 	if (rc) {
1198 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1199 				cipher_code)
1200 		goto out;
1201 	}
1202 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1203 	if (ecryptfs_verbosity > 0) {
1204 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1205 		ecryptfs_dump_hex(crypt_stat->key,
1206 				  crypt_stat->key_size);
1207 	}
1208 out:
1209 	kfree(msg);
1210 	kfree(payload);
1211 	return rc;
1212 }
1213 
1214 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1215 {
1216 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1217 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1218 
1219 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1220 				 auth_tok_list_head, list) {
1221 		list_del(&auth_tok_list_item->list);
1222 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1223 				auth_tok_list_item);
1224 	}
1225 }
1226 
1227 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1228 
1229 /**
1230  * parse_tag_1_packet
1231  * @crypt_stat: The cryptographic context to modify based on packet contents
1232  * @data: The raw bytes of the packet.
1233  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1234  *                 a new authentication token will be placed at the
1235  *                 end of this list for this packet.
1236  * @new_auth_tok: Pointer to a pointer to memory that this function
1237  *                allocates; sets the memory address of the pointer to
1238  *                NULL on error. This object is added to the
1239  *                auth_tok_list.
1240  * @packet_size: This function writes the size of the parsed packet
1241  *               into this memory location; zero on error.
1242  * @max_packet_size: The maximum allowable packet size
1243  *
1244  * Returns zero on success; non-zero on error.
1245  */
1246 static int
1247 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1248 		   unsigned char *data, struct list_head *auth_tok_list,
1249 		   struct ecryptfs_auth_tok **new_auth_tok,
1250 		   size_t *packet_size, size_t max_packet_size)
1251 {
1252 	size_t body_size;
1253 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1254 	size_t length_size;
1255 	int rc = 0;
1256 
1257 	(*packet_size) = 0;
1258 	(*new_auth_tok) = NULL;
1259 	/**
1260 	 * This format is inspired by OpenPGP; see RFC 2440
1261 	 * packet tag 1
1262 	 *
1263 	 * Tag 1 identifier (1 byte)
1264 	 * Max Tag 1 packet size (max 3 bytes)
1265 	 * Version (1 byte)
1266 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1267 	 * Cipher identifier (1 byte)
1268 	 * Encrypted key size (arbitrary)
1269 	 *
1270 	 * 12 bytes minimum packet size
1271 	 */
1272 	if (unlikely(max_packet_size < 12)) {
1273 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1274 		rc = -EINVAL;
1275 		goto out;
1276 	}
1277 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1278 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1279 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1280 		rc = -EINVAL;
1281 		goto out;
1282 	}
1283 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1284 	 * at end of function upon failure */
1285 	auth_tok_list_item =
1286 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1287 				  GFP_KERNEL);
1288 	if (!auth_tok_list_item) {
1289 		printk(KERN_ERR "Unable to allocate memory\n");
1290 		rc = -ENOMEM;
1291 		goto out;
1292 	}
1293 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1294 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1295 					  &length_size);
1296 	if (rc) {
1297 		printk(KERN_WARNING "Error parsing packet length; "
1298 		       "rc = [%d]\n", rc);
1299 		goto out_free;
1300 	}
1301 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1302 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1303 		rc = -EINVAL;
1304 		goto out_free;
1305 	}
1306 	(*packet_size) += length_size;
1307 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1308 		printk(KERN_WARNING "Packet size exceeds max\n");
1309 		rc = -EINVAL;
1310 		goto out_free;
1311 	}
1312 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1313 		printk(KERN_WARNING "Unknown version number [%d]\n",
1314 		       data[(*packet_size) - 1]);
1315 		rc = -EINVAL;
1316 		goto out_free;
1317 	}
1318 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1319 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1320 	*packet_size += ECRYPTFS_SIG_SIZE;
1321 	/* This byte is skipped because the kernel does not need to
1322 	 * know which public key encryption algorithm was used */
1323 	(*packet_size)++;
1324 	(*new_auth_tok)->session_key.encrypted_key_size =
1325 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1326 	if ((*new_auth_tok)->session_key.encrypted_key_size
1327 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1328 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1329 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1330 		rc = -EINVAL;
1331 		goto out;
1332 	}
1333 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1334 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1335 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1336 	(*new_auth_tok)->session_key.flags &=
1337 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1338 	(*new_auth_tok)->session_key.flags |=
1339 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1340 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1341 	(*new_auth_tok)->flags = 0;
1342 	(*new_auth_tok)->session_key.flags &=
1343 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1344 	(*new_auth_tok)->session_key.flags &=
1345 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1346 	list_add(&auth_tok_list_item->list, auth_tok_list);
1347 	goto out;
1348 out_free:
1349 	(*new_auth_tok) = NULL;
1350 	memset(auth_tok_list_item, 0,
1351 	       sizeof(struct ecryptfs_auth_tok_list_item));
1352 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1353 			auth_tok_list_item);
1354 out:
1355 	if (rc)
1356 		(*packet_size) = 0;
1357 	return rc;
1358 }
1359 
1360 /**
1361  * parse_tag_3_packet
1362  * @crypt_stat: The cryptographic context to modify based on packet
1363  *              contents.
1364  * @data: The raw bytes of the packet.
1365  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1366  *                 a new authentication token will be placed at the end
1367  *                 of this list for this packet.
1368  * @new_auth_tok: Pointer to a pointer to memory that this function
1369  *                allocates; sets the memory address of the pointer to
1370  *                NULL on error. This object is added to the
1371  *                auth_tok_list.
1372  * @packet_size: This function writes the size of the parsed packet
1373  *               into this memory location; zero on error.
1374  * @max_packet_size: maximum number of bytes to parse
1375  *
1376  * Returns zero on success; non-zero on error.
1377  */
1378 static int
1379 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1380 		   unsigned char *data, struct list_head *auth_tok_list,
1381 		   struct ecryptfs_auth_tok **new_auth_tok,
1382 		   size_t *packet_size, size_t max_packet_size)
1383 {
1384 	size_t body_size;
1385 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1386 	size_t length_size;
1387 	int rc = 0;
1388 
1389 	(*packet_size) = 0;
1390 	(*new_auth_tok) = NULL;
1391 	/**
1392 	 *This format is inspired by OpenPGP; see RFC 2440
1393 	 * packet tag 3
1394 	 *
1395 	 * Tag 3 identifier (1 byte)
1396 	 * Max Tag 3 packet size (max 3 bytes)
1397 	 * Version (1 byte)
1398 	 * Cipher code (1 byte)
1399 	 * S2K specifier (1 byte)
1400 	 * Hash identifier (1 byte)
1401 	 * Salt (ECRYPTFS_SALT_SIZE)
1402 	 * Hash iterations (1 byte)
1403 	 * Encrypted key (arbitrary)
1404 	 *
1405 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1406 	 */
1407 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1408 		printk(KERN_ERR "Max packet size too large\n");
1409 		rc = -EINVAL;
1410 		goto out;
1411 	}
1412 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1413 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1414 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1415 		rc = -EINVAL;
1416 		goto out;
1417 	}
1418 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1419 	 * at end of function upon failure */
1420 	auth_tok_list_item =
1421 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1422 	if (!auth_tok_list_item) {
1423 		printk(KERN_ERR "Unable to allocate memory\n");
1424 		rc = -ENOMEM;
1425 		goto out;
1426 	}
1427 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1428 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1429 					  &length_size);
1430 	if (rc) {
1431 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1432 		       rc);
1433 		goto out_free;
1434 	}
1435 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1436 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1437 		rc = -EINVAL;
1438 		goto out_free;
1439 	}
1440 	(*packet_size) += length_size;
1441 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1442 		printk(KERN_ERR "Packet size exceeds max\n");
1443 		rc = -EINVAL;
1444 		goto out_free;
1445 	}
1446 	(*new_auth_tok)->session_key.encrypted_key_size =
1447 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1448 	if ((*new_auth_tok)->session_key.encrypted_key_size
1449 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1450 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1451 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1452 		rc = -EINVAL;
1453 		goto out_free;
1454 	}
1455 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1456 		printk(KERN_WARNING "Unknown version number [%d]\n",
1457 		       data[(*packet_size) - 1]);
1458 		rc = -EINVAL;
1459 		goto out_free;
1460 	}
1461 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1462 					    (u16)data[(*packet_size)]);
1463 	if (rc)
1464 		goto out_free;
1465 	/* A little extra work to differentiate among the AES key
1466 	 * sizes; see RFC2440 */
1467 	switch(data[(*packet_size)++]) {
1468 	case RFC2440_CIPHER_AES_192:
1469 		crypt_stat->key_size = 24;
1470 		break;
1471 	default:
1472 		crypt_stat->key_size =
1473 			(*new_auth_tok)->session_key.encrypted_key_size;
1474 	}
1475 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1476 	if (rc)
1477 		goto out_free;
1478 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1479 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1480 		rc = -ENOSYS;
1481 		goto out_free;
1482 	}
1483 	/* TODO: finish the hash mapping */
1484 	switch (data[(*packet_size)++]) {
1485 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1486 		/* Choose MD5 */
1487 		memcpy((*new_auth_tok)->token.password.salt,
1488 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1489 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1490 		/* This conversion was taken straight from RFC2440 */
1491 		(*new_auth_tok)->token.password.hash_iterations =
1492 			((u32) 16 + (data[(*packet_size)] & 15))
1493 				<< ((data[(*packet_size)] >> 4) + 6);
1494 		(*packet_size)++;
1495 		/* Friendly reminder:
1496 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1497 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1498 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1499 		       &data[(*packet_size)],
1500 		       (*new_auth_tok)->session_key.encrypted_key_size);
1501 		(*packet_size) +=
1502 			(*new_auth_tok)->session_key.encrypted_key_size;
1503 		(*new_auth_tok)->session_key.flags &=
1504 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1505 		(*new_auth_tok)->session_key.flags |=
1506 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1507 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1508 		break;
1509 	default:
1510 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1511 				"[%d]\n", data[(*packet_size) - 1]);
1512 		rc = -ENOSYS;
1513 		goto out_free;
1514 	}
1515 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1516 	/* TODO: Parametarize; we might actually want userspace to
1517 	 * decrypt the session key. */
1518 	(*new_auth_tok)->session_key.flags &=
1519 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1520 	(*new_auth_tok)->session_key.flags &=
1521 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1522 	list_add(&auth_tok_list_item->list, auth_tok_list);
1523 	goto out;
1524 out_free:
1525 	(*new_auth_tok) = NULL;
1526 	memset(auth_tok_list_item, 0,
1527 	       sizeof(struct ecryptfs_auth_tok_list_item));
1528 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1529 			auth_tok_list_item);
1530 out:
1531 	if (rc)
1532 		(*packet_size) = 0;
1533 	return rc;
1534 }
1535 
1536 /**
1537  * parse_tag_11_packet
1538  * @data: The raw bytes of the packet
1539  * @contents: This function writes the data contents of the literal
1540  *            packet into this memory location
1541  * @max_contents_bytes: The maximum number of bytes that this function
1542  *                      is allowed to write into contents
1543  * @tag_11_contents_size: This function writes the size of the parsed
1544  *                        contents into this memory location; zero on
1545  *                        error
1546  * @packet_size: This function writes the size of the parsed packet
1547  *               into this memory location; zero on error
1548  * @max_packet_size: maximum number of bytes to parse
1549  *
1550  * Returns zero on success; non-zero on error.
1551  */
1552 static int
1553 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1554 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1555 		    size_t *packet_size, size_t max_packet_size)
1556 {
1557 	size_t body_size;
1558 	size_t length_size;
1559 	int rc = 0;
1560 
1561 	(*packet_size) = 0;
1562 	(*tag_11_contents_size) = 0;
1563 	/* This format is inspired by OpenPGP; see RFC 2440
1564 	 * packet tag 11
1565 	 *
1566 	 * Tag 11 identifier (1 byte)
1567 	 * Max Tag 11 packet size (max 3 bytes)
1568 	 * Binary format specifier (1 byte)
1569 	 * Filename length (1 byte)
1570 	 * Filename ("_CONSOLE") (8 bytes)
1571 	 * Modification date (4 bytes)
1572 	 * Literal data (arbitrary)
1573 	 *
1574 	 * We need at least 16 bytes of data for the packet to even be
1575 	 * valid.
1576 	 */
1577 	if (max_packet_size < 16) {
1578 		printk(KERN_ERR "Maximum packet size too small\n");
1579 		rc = -EINVAL;
1580 		goto out;
1581 	}
1582 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1583 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1584 		rc = -EINVAL;
1585 		goto out;
1586 	}
1587 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1588 					  &length_size);
1589 	if (rc) {
1590 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1591 		goto out;
1592 	}
1593 	if (body_size < 14) {
1594 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1595 		rc = -EINVAL;
1596 		goto out;
1597 	}
1598 	(*packet_size) += length_size;
1599 	(*tag_11_contents_size) = (body_size - 14);
1600 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1601 		printk(KERN_ERR "Packet size exceeds max\n");
1602 		rc = -EINVAL;
1603 		goto out;
1604 	}
1605 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1606 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1607 		       "expected size\n");
1608 		rc = -EINVAL;
1609 		goto out;
1610 	}
1611 	if (data[(*packet_size)++] != 0x62) {
1612 		printk(KERN_WARNING "Unrecognizable packet\n");
1613 		rc = -EINVAL;
1614 		goto out;
1615 	}
1616 	if (data[(*packet_size)++] != 0x08) {
1617 		printk(KERN_WARNING "Unrecognizable packet\n");
1618 		rc = -EINVAL;
1619 		goto out;
1620 	}
1621 	(*packet_size) += 12; /* Ignore filename and modification date */
1622 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1623 	(*packet_size) += (*tag_11_contents_size);
1624 out:
1625 	if (rc) {
1626 		(*packet_size) = 0;
1627 		(*tag_11_contents_size) = 0;
1628 	}
1629 	return rc;
1630 }
1631 
1632 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1633 				      struct ecryptfs_auth_tok **auth_tok,
1634 				      char *sig)
1635 {
1636 	int rc = 0;
1637 
1638 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1639 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1640 		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1641 		if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1642 			printk(KERN_ERR "Could not find key with description: [%s]\n",
1643 			      sig);
1644 			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1645 			(*auth_tok_key) = NULL;
1646 			goto out;
1647 		}
1648 	}
1649 	down_write(&(*auth_tok_key)->sem);
1650 	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1651 	if (rc) {
1652 		up_write(&(*auth_tok_key)->sem);
1653 		key_put(*auth_tok_key);
1654 		(*auth_tok_key) = NULL;
1655 		goto out;
1656 	}
1657 out:
1658 	return rc;
1659 }
1660 
1661 /**
1662  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1663  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1664  * @crypt_stat: The cryptographic context
1665  *
1666  * Returns zero on success; non-zero error otherwise
1667  */
1668 static int
1669 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1670 					 struct ecryptfs_crypt_stat *crypt_stat)
1671 {
1672 	struct scatterlist dst_sg[2];
1673 	struct scatterlist src_sg[2];
1674 	struct mutex *tfm_mutex;
1675 	struct crypto_skcipher *tfm;
1676 	struct skcipher_request *req = NULL;
1677 	int rc = 0;
1678 
1679 	if (unlikely(ecryptfs_verbosity > 0)) {
1680 		ecryptfs_printk(
1681 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1682 			auth_tok->token.password.session_key_encryption_key_bytes);
1683 		ecryptfs_dump_hex(
1684 			auth_tok->token.password.session_key_encryption_key,
1685 			auth_tok->token.password.session_key_encryption_key_bytes);
1686 	}
1687 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1688 							crypt_stat->cipher);
1689 	if (unlikely(rc)) {
1690 		printk(KERN_ERR "Internal error whilst attempting to get "
1691 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1692 		       crypt_stat->cipher, rc);
1693 		goto out;
1694 	}
1695 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1696 				 auth_tok->session_key.encrypted_key_size,
1697 				 src_sg, 2);
1698 	if (rc < 1 || rc > 2) {
1699 		printk(KERN_ERR "Internal error whilst attempting to convert "
1700 			"auth_tok->session_key.encrypted_key to scatterlist; "
1701 			"expected rc = 1; got rc = [%d]. "
1702 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1703 			auth_tok->session_key.encrypted_key_size);
1704 		goto out;
1705 	}
1706 	auth_tok->session_key.decrypted_key_size =
1707 		auth_tok->session_key.encrypted_key_size;
1708 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1709 				 auth_tok->session_key.decrypted_key_size,
1710 				 dst_sg, 2);
1711 	if (rc < 1 || rc > 2) {
1712 		printk(KERN_ERR "Internal error whilst attempting to convert "
1713 			"auth_tok->session_key.decrypted_key to scatterlist; "
1714 			"expected rc = 1; got rc = [%d]\n", rc);
1715 		goto out;
1716 	}
1717 	mutex_lock(tfm_mutex);
1718 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
1719 	if (!req) {
1720 		mutex_unlock(tfm_mutex);
1721 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1722 		       "skcipher_request_alloc for %s\n", __func__,
1723 		       crypto_skcipher_driver_name(tfm));
1724 		rc = -ENOMEM;
1725 		goto out;
1726 	}
1727 
1728 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1729 				      NULL, NULL);
1730 	rc = crypto_skcipher_setkey(
1731 		tfm, auth_tok->token.password.session_key_encryption_key,
1732 		crypt_stat->key_size);
1733 	if (unlikely(rc < 0)) {
1734 		mutex_unlock(tfm_mutex);
1735 		printk(KERN_ERR "Error setting key for crypto context\n");
1736 		rc = -EINVAL;
1737 		goto out;
1738 	}
1739 	skcipher_request_set_crypt(req, src_sg, dst_sg,
1740 				   auth_tok->session_key.encrypted_key_size,
1741 				   NULL);
1742 	rc = crypto_skcipher_decrypt(req);
1743 	mutex_unlock(tfm_mutex);
1744 	if (unlikely(rc)) {
1745 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1746 		goto out;
1747 	}
1748 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1749 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1750 	       auth_tok->session_key.decrypted_key_size);
1751 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1752 	if (unlikely(ecryptfs_verbosity > 0)) {
1753 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1754 				crypt_stat->key_size);
1755 		ecryptfs_dump_hex(crypt_stat->key,
1756 				  crypt_stat->key_size);
1757 	}
1758 out:
1759 	skcipher_request_free(req);
1760 	return rc;
1761 }
1762 
1763 /**
1764  * ecryptfs_parse_packet_set
1765  * @crypt_stat: The cryptographic context
1766  * @src: Virtual address of region of memory containing the packets
1767  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1768  *
1769  * Get crypt_stat to have the file's session key if the requisite key
1770  * is available to decrypt the session key.
1771  *
1772  * Returns Zero if a valid authentication token was retrieved and
1773  * processed; negative value for file not encrypted or for error
1774  * conditions.
1775  */
1776 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1777 			      unsigned char *src,
1778 			      struct dentry *ecryptfs_dentry)
1779 {
1780 	size_t i = 0;
1781 	size_t found_auth_tok;
1782 	size_t next_packet_is_auth_tok_packet;
1783 	struct list_head auth_tok_list;
1784 	struct ecryptfs_auth_tok *matching_auth_tok;
1785 	struct ecryptfs_auth_tok *candidate_auth_tok;
1786 	char *candidate_auth_tok_sig;
1787 	size_t packet_size;
1788 	struct ecryptfs_auth_tok *new_auth_tok;
1789 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1790 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1791 	size_t tag_11_contents_size;
1792 	size_t tag_11_packet_size;
1793 	struct key *auth_tok_key = NULL;
1794 	int rc = 0;
1795 
1796 	INIT_LIST_HEAD(&auth_tok_list);
1797 	/* Parse the header to find as many packets as we can; these will be
1798 	 * added the our &auth_tok_list */
1799 	next_packet_is_auth_tok_packet = 1;
1800 	while (next_packet_is_auth_tok_packet) {
1801 		size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1802 
1803 		switch (src[i]) {
1804 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1805 			rc = parse_tag_3_packet(crypt_stat,
1806 						(unsigned char *)&src[i],
1807 						&auth_tok_list, &new_auth_tok,
1808 						&packet_size, max_packet_size);
1809 			if (rc) {
1810 				ecryptfs_printk(KERN_ERR, "Error parsing "
1811 						"tag 3 packet\n");
1812 				rc = -EIO;
1813 				goto out_wipe_list;
1814 			}
1815 			i += packet_size;
1816 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1817 						 sig_tmp_space,
1818 						 ECRYPTFS_SIG_SIZE,
1819 						 &tag_11_contents_size,
1820 						 &tag_11_packet_size,
1821 						 max_packet_size);
1822 			if (rc) {
1823 				ecryptfs_printk(KERN_ERR, "No valid "
1824 						"(ecryptfs-specific) literal "
1825 						"packet containing "
1826 						"authentication token "
1827 						"signature found after "
1828 						"tag 3 packet\n");
1829 				rc = -EIO;
1830 				goto out_wipe_list;
1831 			}
1832 			i += tag_11_packet_size;
1833 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1834 				ecryptfs_printk(KERN_ERR, "Expected "
1835 						"signature of size [%d]; "
1836 						"read size [%zd]\n",
1837 						ECRYPTFS_SIG_SIZE,
1838 						tag_11_contents_size);
1839 				rc = -EIO;
1840 				goto out_wipe_list;
1841 			}
1842 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1843 					sig_tmp_space, tag_11_contents_size);
1844 			new_auth_tok->token.password.signature[
1845 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1846 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1847 			break;
1848 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1849 			rc = parse_tag_1_packet(crypt_stat,
1850 						(unsigned char *)&src[i],
1851 						&auth_tok_list, &new_auth_tok,
1852 						&packet_size, max_packet_size);
1853 			if (rc) {
1854 				ecryptfs_printk(KERN_ERR, "Error parsing "
1855 						"tag 1 packet\n");
1856 				rc = -EIO;
1857 				goto out_wipe_list;
1858 			}
1859 			i += packet_size;
1860 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1861 			break;
1862 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1863 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1864 					"(Tag 11 not allowed by itself)\n");
1865 			rc = -EIO;
1866 			goto out_wipe_list;
1867 		default:
1868 			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1869 					"of the file header; hex value of "
1870 					"character is [0x%.2x]\n", i, src[i]);
1871 			next_packet_is_auth_tok_packet = 0;
1872 		}
1873 	}
1874 	if (list_empty(&auth_tok_list)) {
1875 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1876 		       "eCryptfs file; this is not supported in this version "
1877 		       "of the eCryptfs kernel module\n");
1878 		rc = -EINVAL;
1879 		goto out;
1880 	}
1881 	/* auth_tok_list contains the set of authentication tokens
1882 	 * parsed from the metadata. We need to find a matching
1883 	 * authentication token that has the secret component(s)
1884 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1885 	 * the metadata. There may be several potential matches, but
1886 	 * just one will be sufficient to decrypt to get the FEK. */
1887 find_next_matching_auth_tok:
1888 	found_auth_tok = 0;
1889 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1890 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1891 		if (unlikely(ecryptfs_verbosity > 0)) {
1892 			ecryptfs_printk(KERN_DEBUG,
1893 					"Considering cadidate auth tok:\n");
1894 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1895 		}
1896 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1897 					       candidate_auth_tok);
1898 		if (rc) {
1899 			printk(KERN_ERR
1900 			       "Unrecognized candidate auth tok type: [%d]\n",
1901 			       candidate_auth_tok->token_type);
1902 			rc = -EINVAL;
1903 			goto out_wipe_list;
1904 		}
1905 		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1906 					       &matching_auth_tok,
1907 					       crypt_stat->mount_crypt_stat,
1908 					       candidate_auth_tok_sig);
1909 		if (!rc) {
1910 			found_auth_tok = 1;
1911 			goto found_matching_auth_tok;
1912 		}
1913 	}
1914 	if (!found_auth_tok) {
1915 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1916 				"authentication token\n");
1917 		rc = -EIO;
1918 		goto out_wipe_list;
1919 	}
1920 found_matching_auth_tok:
1921 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1922 		memcpy(&(candidate_auth_tok->token.private_key),
1923 		       &(matching_auth_tok->token.private_key),
1924 		       sizeof(struct ecryptfs_private_key));
1925 		up_write(&(auth_tok_key->sem));
1926 		key_put(auth_tok_key);
1927 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1928 						       crypt_stat);
1929 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1930 		memcpy(&(candidate_auth_tok->token.password),
1931 		       &(matching_auth_tok->token.password),
1932 		       sizeof(struct ecryptfs_password));
1933 		up_write(&(auth_tok_key->sem));
1934 		key_put(auth_tok_key);
1935 		rc = decrypt_passphrase_encrypted_session_key(
1936 			candidate_auth_tok, crypt_stat);
1937 	} else {
1938 		up_write(&(auth_tok_key->sem));
1939 		key_put(auth_tok_key);
1940 		rc = -EINVAL;
1941 	}
1942 	if (rc) {
1943 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1944 
1945 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1946 				"session key for authentication token with sig "
1947 				"[%.*s]; rc = [%d]. Removing auth tok "
1948 				"candidate from the list and searching for "
1949 				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1950 				candidate_auth_tok_sig,	rc);
1951 		list_for_each_entry_safe(auth_tok_list_item,
1952 					 auth_tok_list_item_tmp,
1953 					 &auth_tok_list, list) {
1954 			if (candidate_auth_tok
1955 			    == &auth_tok_list_item->auth_tok) {
1956 				list_del(&auth_tok_list_item->list);
1957 				kmem_cache_free(
1958 					ecryptfs_auth_tok_list_item_cache,
1959 					auth_tok_list_item);
1960 				goto find_next_matching_auth_tok;
1961 			}
1962 		}
1963 		BUG();
1964 	}
1965 	rc = ecryptfs_compute_root_iv(crypt_stat);
1966 	if (rc) {
1967 		ecryptfs_printk(KERN_ERR, "Error computing "
1968 				"the root IV\n");
1969 		goto out_wipe_list;
1970 	}
1971 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1972 	if (rc) {
1973 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1974 				"context for cipher [%s]; rc = [%d]\n",
1975 				crypt_stat->cipher, rc);
1976 	}
1977 out_wipe_list:
1978 	wipe_auth_tok_list(&auth_tok_list);
1979 out:
1980 	return rc;
1981 }
1982 
1983 static int
1984 pki_encrypt_session_key(struct key *auth_tok_key,
1985 			struct ecryptfs_auth_tok *auth_tok,
1986 			struct ecryptfs_crypt_stat *crypt_stat,
1987 			struct ecryptfs_key_record *key_rec)
1988 {
1989 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1990 	char *payload = NULL;
1991 	size_t payload_len = 0;
1992 	struct ecryptfs_message *msg;
1993 	int rc;
1994 
1995 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1996 				 ecryptfs_code_for_cipher_string(
1997 					 crypt_stat->cipher,
1998 					 crypt_stat->key_size),
1999 				 crypt_stat, &payload, &payload_len);
2000 	up_write(&(auth_tok_key->sem));
2001 	key_put(auth_tok_key);
2002 	if (rc) {
2003 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
2004 		goto out;
2005 	}
2006 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
2007 	if (rc) {
2008 		ecryptfs_printk(KERN_ERR, "Error sending message to "
2009 				"ecryptfsd: %d\n", rc);
2010 		goto out;
2011 	}
2012 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
2013 	if (rc) {
2014 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
2015 				"from the user space daemon\n");
2016 		rc = -EIO;
2017 		goto out;
2018 	}
2019 	rc = parse_tag_67_packet(key_rec, msg);
2020 	if (rc)
2021 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2022 	kfree(msg);
2023 out:
2024 	kfree(payload);
2025 	return rc;
2026 }
2027 /**
2028  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2029  * @dest: Buffer into which to write the packet
2030  * @remaining_bytes: Maximum number of bytes that can be writtn
2031  * @auth_tok_key: The authentication token key to unlock and put when done with
2032  *                @auth_tok
2033  * @auth_tok: The authentication token used for generating the tag 1 packet
2034  * @crypt_stat: The cryptographic context
2035  * @key_rec: The key record struct for the tag 1 packet
2036  * @packet_size: This function will write the number of bytes that end
2037  *               up constituting the packet; set to zero on error
2038  *
2039  * Returns zero on success; non-zero on error.
2040  */
2041 static int
2042 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2043 		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2044 		   struct ecryptfs_crypt_stat *crypt_stat,
2045 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2046 {
2047 	size_t i;
2048 	size_t encrypted_session_key_valid = 0;
2049 	size_t packet_size_length;
2050 	size_t max_packet_size;
2051 	int rc = 0;
2052 
2053 	(*packet_size) = 0;
2054 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2055 			  ECRYPTFS_SIG_SIZE);
2056 	encrypted_session_key_valid = 0;
2057 	for (i = 0; i < crypt_stat->key_size; i++)
2058 		encrypted_session_key_valid |=
2059 			auth_tok->session_key.encrypted_key[i];
2060 	if (encrypted_session_key_valid) {
2061 		memcpy(key_rec->enc_key,
2062 		       auth_tok->session_key.encrypted_key,
2063 		       auth_tok->session_key.encrypted_key_size);
2064 		up_write(&(auth_tok_key->sem));
2065 		key_put(auth_tok_key);
2066 		goto encrypted_session_key_set;
2067 	}
2068 	if (auth_tok->session_key.encrypted_key_size == 0)
2069 		auth_tok->session_key.encrypted_key_size =
2070 			auth_tok->token.private_key.key_size;
2071 	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2072 				     key_rec);
2073 	if (rc) {
2074 		printk(KERN_ERR "Failed to encrypt session key via a key "
2075 		       "module; rc = [%d]\n", rc);
2076 		goto out;
2077 	}
2078 	if (ecryptfs_verbosity > 0) {
2079 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2080 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2081 	}
2082 encrypted_session_key_set:
2083 	/* This format is inspired by OpenPGP; see RFC 2440
2084 	 * packet tag 1 */
2085 	max_packet_size = (1                         /* Tag 1 identifier */
2086 			   + 3                       /* Max Tag 1 packet size */
2087 			   + 1                       /* Version */
2088 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2089 			   + 1                       /* Cipher identifier */
2090 			   + key_rec->enc_key_size); /* Encrypted key size */
2091 	if (max_packet_size > (*remaining_bytes)) {
2092 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2093 		       "need up to [%td] bytes, but there are only [%td] "
2094 		       "available\n", max_packet_size, (*remaining_bytes));
2095 		rc = -EINVAL;
2096 		goto out;
2097 	}
2098 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2099 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2100 					  (max_packet_size - 4),
2101 					  &packet_size_length);
2102 	if (rc) {
2103 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2104 				"header; cannot generate packet length\n");
2105 		goto out;
2106 	}
2107 	(*packet_size) += packet_size_length;
2108 	dest[(*packet_size)++] = 0x03; /* version 3 */
2109 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2110 	(*packet_size) += ECRYPTFS_SIG_SIZE;
2111 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2112 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2113 	       key_rec->enc_key_size);
2114 	(*packet_size) += key_rec->enc_key_size;
2115 out:
2116 	if (rc)
2117 		(*packet_size) = 0;
2118 	else
2119 		(*remaining_bytes) -= (*packet_size);
2120 	return rc;
2121 }
2122 
2123 /**
2124  * write_tag_11_packet
2125  * @dest: Target into which Tag 11 packet is to be written
2126  * @remaining_bytes: Maximum packet length
2127  * @contents: Byte array of contents to copy in
2128  * @contents_length: Number of bytes in contents
2129  * @packet_length: Length of the Tag 11 packet written; zero on error
2130  *
2131  * Returns zero on success; non-zero on error.
2132  */
2133 static int
2134 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2135 		    size_t contents_length, size_t *packet_length)
2136 {
2137 	size_t packet_size_length;
2138 	size_t max_packet_size;
2139 	int rc = 0;
2140 
2141 	(*packet_length) = 0;
2142 	/* This format is inspired by OpenPGP; see RFC 2440
2143 	 * packet tag 11 */
2144 	max_packet_size = (1                   /* Tag 11 identifier */
2145 			   + 3                 /* Max Tag 11 packet size */
2146 			   + 1                 /* Binary format specifier */
2147 			   + 1                 /* Filename length */
2148 			   + 8                 /* Filename ("_CONSOLE") */
2149 			   + 4                 /* Modification date */
2150 			   + contents_length); /* Literal data */
2151 	if (max_packet_size > (*remaining_bytes)) {
2152 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2153 		       "need up to [%td] bytes, but there are only [%td] "
2154 		       "available\n", max_packet_size, (*remaining_bytes));
2155 		rc = -EINVAL;
2156 		goto out;
2157 	}
2158 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2159 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2160 					  (max_packet_size - 4),
2161 					  &packet_size_length);
2162 	if (rc) {
2163 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2164 		       "generate packet length. rc = [%d]\n", rc);
2165 		goto out;
2166 	}
2167 	(*packet_length) += packet_size_length;
2168 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2169 	dest[(*packet_length)++] = 8;
2170 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2171 	(*packet_length) += 8;
2172 	memset(&dest[(*packet_length)], 0x00, 4);
2173 	(*packet_length) += 4;
2174 	memcpy(&dest[(*packet_length)], contents, contents_length);
2175 	(*packet_length) += contents_length;
2176  out:
2177 	if (rc)
2178 		(*packet_length) = 0;
2179 	else
2180 		(*remaining_bytes) -= (*packet_length);
2181 	return rc;
2182 }
2183 
2184 /**
2185  * write_tag_3_packet
2186  * @dest: Buffer into which to write the packet
2187  * @remaining_bytes: Maximum number of bytes that can be written
2188  * @auth_tok: Authentication token
2189  * @crypt_stat: The cryptographic context
2190  * @key_rec: encrypted key
2191  * @packet_size: This function will write the number of bytes that end
2192  *               up constituting the packet; set to zero on error
2193  *
2194  * Returns zero on success; non-zero on error.
2195  */
2196 static int
2197 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2198 		   struct ecryptfs_auth_tok *auth_tok,
2199 		   struct ecryptfs_crypt_stat *crypt_stat,
2200 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2201 {
2202 	size_t i;
2203 	size_t encrypted_session_key_valid = 0;
2204 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2205 	struct scatterlist dst_sg[2];
2206 	struct scatterlist src_sg[2];
2207 	struct mutex *tfm_mutex = NULL;
2208 	u8 cipher_code;
2209 	size_t packet_size_length;
2210 	size_t max_packet_size;
2211 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2212 		crypt_stat->mount_crypt_stat;
2213 	struct crypto_skcipher *tfm;
2214 	struct skcipher_request *req;
2215 	int rc = 0;
2216 
2217 	(*packet_size) = 0;
2218 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2219 			  ECRYPTFS_SIG_SIZE);
2220 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2221 							crypt_stat->cipher);
2222 	if (unlikely(rc)) {
2223 		printk(KERN_ERR "Internal error whilst attempting to get "
2224 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2225 		       crypt_stat->cipher, rc);
2226 		goto out;
2227 	}
2228 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2229 		printk(KERN_WARNING "No key size specified at mount; "
2230 		       "defaulting to [%d]\n",
2231 		       crypto_skcipher_default_keysize(tfm));
2232 		mount_crypt_stat->global_default_cipher_key_size =
2233 			crypto_skcipher_default_keysize(tfm);
2234 	}
2235 	if (crypt_stat->key_size == 0)
2236 		crypt_stat->key_size =
2237 			mount_crypt_stat->global_default_cipher_key_size;
2238 	if (auth_tok->session_key.encrypted_key_size == 0)
2239 		auth_tok->session_key.encrypted_key_size =
2240 			crypt_stat->key_size;
2241 	if (crypt_stat->key_size == 24
2242 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2243 		memset((crypt_stat->key + 24), 0, 8);
2244 		auth_tok->session_key.encrypted_key_size = 32;
2245 	} else
2246 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2247 	key_rec->enc_key_size =
2248 		auth_tok->session_key.encrypted_key_size;
2249 	encrypted_session_key_valid = 0;
2250 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2251 		encrypted_session_key_valid |=
2252 			auth_tok->session_key.encrypted_key[i];
2253 	if (encrypted_session_key_valid) {
2254 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2255 				"using auth_tok->session_key.encrypted_key, "
2256 				"where key_rec->enc_key_size = [%zd]\n",
2257 				key_rec->enc_key_size);
2258 		memcpy(key_rec->enc_key,
2259 		       auth_tok->session_key.encrypted_key,
2260 		       key_rec->enc_key_size);
2261 		goto encrypted_session_key_set;
2262 	}
2263 	if (auth_tok->token.password.flags &
2264 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2265 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2266 				"session key encryption key of size [%d]\n",
2267 				auth_tok->token.password.
2268 				session_key_encryption_key_bytes);
2269 		memcpy(session_key_encryption_key,
2270 		       auth_tok->token.password.session_key_encryption_key,
2271 		       crypt_stat->key_size);
2272 		ecryptfs_printk(KERN_DEBUG,
2273 				"Cached session key encryption key:\n");
2274 		if (ecryptfs_verbosity > 0)
2275 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2276 	}
2277 	if (unlikely(ecryptfs_verbosity > 0)) {
2278 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2279 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2280 	}
2281 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2282 				 src_sg, 2);
2283 	if (rc < 1 || rc > 2) {
2284 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2285 				"for crypt_stat session key; expected rc = 1; "
2286 				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2287 				rc, key_rec->enc_key_size);
2288 		rc = -ENOMEM;
2289 		goto out;
2290 	}
2291 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2292 				 dst_sg, 2);
2293 	if (rc < 1 || rc > 2) {
2294 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2295 				"for crypt_stat encrypted session key; "
2296 				"expected rc = 1; got rc = [%d]. "
2297 				"key_rec->enc_key_size = [%zd]\n", rc,
2298 				key_rec->enc_key_size);
2299 		rc = -ENOMEM;
2300 		goto out;
2301 	}
2302 	mutex_lock(tfm_mutex);
2303 	rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2304 				    crypt_stat->key_size);
2305 	if (rc < 0) {
2306 		mutex_unlock(tfm_mutex);
2307 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2308 				"context; rc = [%d]\n", rc);
2309 		goto out;
2310 	}
2311 
2312 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
2313 	if (!req) {
2314 		mutex_unlock(tfm_mutex);
2315 		ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2316 				"attempting to skcipher_request_alloc for "
2317 				"%s\n", crypto_skcipher_driver_name(tfm));
2318 		rc = -ENOMEM;
2319 		goto out;
2320 	}
2321 
2322 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2323 				      NULL, NULL);
2324 
2325 	rc = 0;
2326 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2327 			crypt_stat->key_size);
2328 	skcipher_request_set_crypt(req, src_sg, dst_sg,
2329 				   (*key_rec).enc_key_size, NULL);
2330 	rc = crypto_skcipher_encrypt(req);
2331 	mutex_unlock(tfm_mutex);
2332 	skcipher_request_free(req);
2333 	if (rc) {
2334 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2335 		goto out;
2336 	}
2337 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2338 	if (ecryptfs_verbosity > 0) {
2339 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2340 				key_rec->enc_key_size);
2341 		ecryptfs_dump_hex(key_rec->enc_key,
2342 				  key_rec->enc_key_size);
2343 	}
2344 encrypted_session_key_set:
2345 	/* This format is inspired by OpenPGP; see RFC 2440
2346 	 * packet tag 3 */
2347 	max_packet_size = (1                         /* Tag 3 identifier */
2348 			   + 3                       /* Max Tag 3 packet size */
2349 			   + 1                       /* Version */
2350 			   + 1                       /* Cipher code */
2351 			   + 1                       /* S2K specifier */
2352 			   + 1                       /* Hash identifier */
2353 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2354 			   + 1                       /* Hash iterations */
2355 			   + key_rec->enc_key_size); /* Encrypted key size */
2356 	if (max_packet_size > (*remaining_bytes)) {
2357 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2358 		       "there are only [%td] available\n", max_packet_size,
2359 		       (*remaining_bytes));
2360 		rc = -EINVAL;
2361 		goto out;
2362 	}
2363 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2364 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2365 	 * to get the number of octets in the actual Tag 3 packet */
2366 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2367 					  (max_packet_size - 4),
2368 					  &packet_size_length);
2369 	if (rc) {
2370 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2371 		       "generate packet length. rc = [%d]\n", rc);
2372 		goto out;
2373 	}
2374 	(*packet_size) += packet_size_length;
2375 	dest[(*packet_size)++] = 0x04; /* version 4 */
2376 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2377 	 * specified with strings */
2378 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2379 						      crypt_stat->key_size);
2380 	if (cipher_code == 0) {
2381 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2382 				"cipher [%s]\n", crypt_stat->cipher);
2383 		rc = -EINVAL;
2384 		goto out;
2385 	}
2386 	dest[(*packet_size)++] = cipher_code;
2387 	dest[(*packet_size)++] = 0x03;	/* S2K */
2388 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2389 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2390 	       ECRYPTFS_SALT_SIZE);
2391 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2392 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2393 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2394 	       key_rec->enc_key_size);
2395 	(*packet_size) += key_rec->enc_key_size;
2396 out:
2397 	if (rc)
2398 		(*packet_size) = 0;
2399 	else
2400 		(*remaining_bytes) -= (*packet_size);
2401 	return rc;
2402 }
2403 
2404 struct kmem_cache *ecryptfs_key_record_cache;
2405 
2406 /**
2407  * ecryptfs_generate_key_packet_set
2408  * @dest_base: Virtual address from which to write the key record set
2409  * @crypt_stat: The cryptographic context from which the
2410  *              authentication tokens will be retrieved
2411  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2412  *                   for the global parameters
2413  * @len: The amount written
2414  * @max: The maximum amount of data allowed to be written
2415  *
2416  * Generates a key packet set and writes it to the virtual address
2417  * passed in.
2418  *
2419  * Returns zero on success; non-zero on error.
2420  */
2421 int
2422 ecryptfs_generate_key_packet_set(char *dest_base,
2423 				 struct ecryptfs_crypt_stat *crypt_stat,
2424 				 struct dentry *ecryptfs_dentry, size_t *len,
2425 				 size_t max)
2426 {
2427 	struct ecryptfs_auth_tok *auth_tok;
2428 	struct key *auth_tok_key = NULL;
2429 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2430 		&ecryptfs_superblock_to_private(
2431 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2432 	size_t written;
2433 	struct ecryptfs_key_record *key_rec;
2434 	struct ecryptfs_key_sig *key_sig;
2435 	int rc = 0;
2436 
2437 	(*len) = 0;
2438 	mutex_lock(&crypt_stat->keysig_list_mutex);
2439 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2440 	if (!key_rec) {
2441 		rc = -ENOMEM;
2442 		goto out;
2443 	}
2444 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2445 			    crypt_stat_list) {
2446 		memset(key_rec, 0, sizeof(*key_rec));
2447 		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2448 							   &auth_tok,
2449 							   mount_crypt_stat,
2450 							   key_sig->keysig);
2451 		if (rc) {
2452 			printk(KERN_WARNING "Unable to retrieve auth tok with "
2453 			       "sig = [%s]\n", key_sig->keysig);
2454 			rc = process_find_global_auth_tok_for_sig_err(rc);
2455 			goto out_free;
2456 		}
2457 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2458 			rc = write_tag_3_packet((dest_base + (*len)),
2459 						&max, auth_tok,
2460 						crypt_stat, key_rec,
2461 						&written);
2462 			up_write(&(auth_tok_key->sem));
2463 			key_put(auth_tok_key);
2464 			if (rc) {
2465 				ecryptfs_printk(KERN_WARNING, "Error "
2466 						"writing tag 3 packet\n");
2467 				goto out_free;
2468 			}
2469 			(*len) += written;
2470 			/* Write auth tok signature packet */
2471 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2472 						 key_rec->sig,
2473 						 ECRYPTFS_SIG_SIZE, &written);
2474 			if (rc) {
2475 				ecryptfs_printk(KERN_ERR, "Error writing "
2476 						"auth tok signature packet\n");
2477 				goto out_free;
2478 			}
2479 			(*len) += written;
2480 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2481 			rc = write_tag_1_packet(dest_base + (*len), &max,
2482 						auth_tok_key, auth_tok,
2483 						crypt_stat, key_rec, &written);
2484 			if (rc) {
2485 				ecryptfs_printk(KERN_WARNING, "Error "
2486 						"writing tag 1 packet\n");
2487 				goto out_free;
2488 			}
2489 			(*len) += written;
2490 		} else {
2491 			up_write(&(auth_tok_key->sem));
2492 			key_put(auth_tok_key);
2493 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2494 					"authentication token type\n");
2495 			rc = -EINVAL;
2496 			goto out_free;
2497 		}
2498 	}
2499 	if (likely(max > 0)) {
2500 		dest_base[(*len)] = 0x00;
2501 	} else {
2502 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2503 		rc = -EIO;
2504 	}
2505 out_free:
2506 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2507 out:
2508 	if (rc)
2509 		(*len) = 0;
2510 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2511 	return rc;
2512 }
2513 
2514 struct kmem_cache *ecryptfs_key_sig_cache;
2515 
2516 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2517 {
2518 	struct ecryptfs_key_sig *new_key_sig;
2519 
2520 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2521 	if (!new_key_sig) {
2522 		printk(KERN_ERR
2523 		       "Error allocating from ecryptfs_key_sig_cache\n");
2524 		return -ENOMEM;
2525 	}
2526 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2527 	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2528 	/* Caller must hold keysig_list_mutex */
2529 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2530 
2531 	return 0;
2532 }
2533 
2534 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2535 
2536 int
2537 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2538 			     char *sig, u32 global_auth_tok_flags)
2539 {
2540 	struct ecryptfs_global_auth_tok *new_auth_tok;
2541 	int rc = 0;
2542 
2543 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2544 					GFP_KERNEL);
2545 	if (!new_auth_tok) {
2546 		rc = -ENOMEM;
2547 		printk(KERN_ERR "Error allocating from "
2548 		       "ecryptfs_global_auth_tok_cache\n");
2549 		goto out;
2550 	}
2551 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2552 	new_auth_tok->flags = global_auth_tok_flags;
2553 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2554 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2555 	list_add(&new_auth_tok->mount_crypt_stat_list,
2556 		 &mount_crypt_stat->global_auth_tok_list);
2557 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2558 out:
2559 	return rc;
2560 }
2561 
2562