xref: /openbmc/linux/fs/ecryptfs/keystore.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * eCryptfs: Linux filesystem encryption layer
4  * In-kernel key management code.  Includes functions to parse and
5  * write authentication token-related packets with the underlying
6  * file.
7  *
8  * Copyright (C) 2004-2006 International Business Machines Corp.
9  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
10  *              Michael C. Thompson <mcthomps@us.ibm.com>
11  *              Trevor S. Highland <trevor.highland@gmail.com>
12  */
13 
14 #include <crypto/hash.h>
15 #include <crypto/skcipher.h>
16 #include <linux/string.h>
17 #include <linux/pagemap.h>
18 #include <linux/key.h>
19 #include <linux/random.h>
20 #include <linux/scatterlist.h>
21 #include <linux/slab.h>
22 #include "ecryptfs_kernel.h"
23 
24 /*
25  * request_key returned an error instead of a valid key address;
26  * determine the type of error, make appropriate log entries, and
27  * return an error code.
28  */
29 static int process_request_key_err(long err_code)
30 {
31 	int rc = 0;
32 
33 	switch (err_code) {
34 	case -ENOKEY:
35 		ecryptfs_printk(KERN_WARNING, "No key\n");
36 		rc = -ENOENT;
37 		break;
38 	case -EKEYEXPIRED:
39 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
40 		rc = -ETIME;
41 		break;
42 	case -EKEYREVOKED:
43 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
44 		rc = -EINVAL;
45 		break;
46 	default:
47 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
48 				"[0x%.16lx]\n", err_code);
49 		rc = -EINVAL;
50 	}
51 	return rc;
52 }
53 
54 static int process_find_global_auth_tok_for_sig_err(int err_code)
55 {
56 	int rc = err_code;
57 
58 	switch (err_code) {
59 	case -ENOENT:
60 		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
61 		break;
62 	case -EINVAL:
63 		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
64 		break;
65 	default:
66 		rc = process_request_key_err(err_code);
67 		break;
68 	}
69 	return rc;
70 }
71 
72 /**
73  * ecryptfs_parse_packet_length
74  * @data: Pointer to memory containing length at offset
75  * @size: This function writes the decoded size to this memory
76  *        address; zero on error
77  * @length_size: The number of bytes occupied by the encoded length
78  *
79  * Returns zero on success; non-zero on error
80  */
81 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
82 				 size_t *length_size)
83 {
84 	int rc = 0;
85 
86 	(*length_size) = 0;
87 	(*size) = 0;
88 	if (data[0] < 192) {
89 		/* One-byte length */
90 		(*size) = data[0];
91 		(*length_size) = 1;
92 	} else if (data[0] < 224) {
93 		/* Two-byte length */
94 		(*size) = (data[0] - 192) * 256;
95 		(*size) += data[1] + 192;
96 		(*length_size) = 2;
97 	} else if (data[0] == 255) {
98 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
99 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
100 				"supported\n");
101 		rc = -EINVAL;
102 		goto out;
103 	} else {
104 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
105 		rc = -EINVAL;
106 		goto out;
107 	}
108 out:
109 	return rc;
110 }
111 
112 /**
113  * ecryptfs_write_packet_length
114  * @dest: The byte array target into which to write the length. Must
115  *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
116  * @size: The length to write.
117  * @packet_size_length: The number of bytes used to encode the packet
118  *                      length is written to this address.
119  *
120  * Returns zero on success; non-zero on error.
121  */
122 int ecryptfs_write_packet_length(char *dest, size_t size,
123 				 size_t *packet_size_length)
124 {
125 	int rc = 0;
126 
127 	if (size < 192) {
128 		dest[0] = size;
129 		(*packet_size_length) = 1;
130 	} else if (size < 65536) {
131 		dest[0] = (((size - 192) / 256) + 192);
132 		dest[1] = ((size - 192) % 256);
133 		(*packet_size_length) = 2;
134 	} else {
135 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
136 		rc = -EINVAL;
137 		ecryptfs_printk(KERN_WARNING,
138 				"Unsupported packet size: [%zd]\n", size);
139 	}
140 	return rc;
141 }
142 
143 static int
144 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
145 		    char **packet, size_t *packet_len)
146 {
147 	size_t i = 0;
148 	size_t data_len;
149 	size_t packet_size_len;
150 	char *message;
151 	int rc;
152 
153 	/*
154 	 *              ***** TAG 64 Packet Format *****
155 	 *    | Content Type                       | 1 byte       |
156 	 *    | Key Identifier Size                | 1 or 2 bytes |
157 	 *    | Key Identifier                     | arbitrary    |
158 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
159 	 *    | Encrypted File Encryption Key      | arbitrary    |
160 	 */
161 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
162 		    + session_key->encrypted_key_size);
163 	*packet = kmalloc(data_len, GFP_KERNEL);
164 	message = *packet;
165 	if (!message) {
166 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
167 		rc = -ENOMEM;
168 		goto out;
169 	}
170 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
171 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
172 					  &packet_size_len);
173 	if (rc) {
174 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
175 				"header; cannot generate packet length\n");
176 		goto out;
177 	}
178 	i += packet_size_len;
179 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
180 	i += ECRYPTFS_SIG_SIZE_HEX;
181 	rc = ecryptfs_write_packet_length(&message[i],
182 					  session_key->encrypted_key_size,
183 					  &packet_size_len);
184 	if (rc) {
185 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
186 				"header; cannot generate packet length\n");
187 		goto out;
188 	}
189 	i += packet_size_len;
190 	memcpy(&message[i], session_key->encrypted_key,
191 	       session_key->encrypted_key_size);
192 	i += session_key->encrypted_key_size;
193 	*packet_len = i;
194 out:
195 	return rc;
196 }
197 
198 static int
199 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
200 		    struct ecryptfs_message *msg)
201 {
202 	size_t i = 0;
203 	char *data;
204 	size_t data_len;
205 	size_t m_size;
206 	size_t message_len;
207 	u16 checksum = 0;
208 	u16 expected_checksum = 0;
209 	int rc;
210 
211 	/*
212 	 *              ***** TAG 65 Packet Format *****
213 	 *         | Content Type             | 1 byte       |
214 	 *         | Status Indicator         | 1 byte       |
215 	 *         | File Encryption Key Size | 1 or 2 bytes |
216 	 *         | File Encryption Key      | arbitrary    |
217 	 */
218 	message_len = msg->data_len;
219 	data = msg->data;
220 	if (message_len < 4) {
221 		rc = -EIO;
222 		goto out;
223 	}
224 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
225 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
226 		rc = -EIO;
227 		goto out;
228 	}
229 	if (data[i++]) {
230 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
231 				"[%d]\n", data[i-1]);
232 		rc = -EIO;
233 		goto out;
234 	}
235 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
236 	if (rc) {
237 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
238 				"rc = [%d]\n", rc);
239 		goto out;
240 	}
241 	i += data_len;
242 	if (message_len < (i + m_size)) {
243 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
244 				"is shorter than expected\n");
245 		rc = -EIO;
246 		goto out;
247 	}
248 	if (m_size < 3) {
249 		ecryptfs_printk(KERN_ERR,
250 				"The decrypted key is not long enough to "
251 				"include a cipher code and checksum\n");
252 		rc = -EIO;
253 		goto out;
254 	}
255 	*cipher_code = data[i++];
256 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
257 	session_key->decrypted_key_size = m_size - 3;
258 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
259 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
260 				"the maximum key size [%d]\n",
261 				session_key->decrypted_key_size,
262 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
263 		rc = -EIO;
264 		goto out;
265 	}
266 	memcpy(session_key->decrypted_key, &data[i],
267 	       session_key->decrypted_key_size);
268 	i += session_key->decrypted_key_size;
269 	expected_checksum += (unsigned char)(data[i++]) << 8;
270 	expected_checksum += (unsigned char)(data[i++]);
271 	for (i = 0; i < session_key->decrypted_key_size; i++)
272 		checksum += session_key->decrypted_key[i];
273 	if (expected_checksum != checksum) {
274 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
275 				"encryption  key; expected [%x]; calculated "
276 				"[%x]\n", expected_checksum, checksum);
277 		rc = -EIO;
278 	}
279 out:
280 	return rc;
281 }
282 
283 
284 static int
285 write_tag_66_packet(char *signature, u8 cipher_code,
286 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
287 		    size_t *packet_len)
288 {
289 	size_t i = 0;
290 	size_t j;
291 	size_t data_len;
292 	size_t checksum = 0;
293 	size_t packet_size_len;
294 	char *message;
295 	int rc;
296 
297 	/*
298 	 *              ***** TAG 66 Packet Format *****
299 	 *         | Content Type             | 1 byte       |
300 	 *         | Key Identifier Size      | 1 or 2 bytes |
301 	 *         | Key Identifier           | arbitrary    |
302 	 *         | File Encryption Key Size | 1 or 2 bytes |
303 	 *         | File Encryption Key      | arbitrary    |
304 	 */
305 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
306 	*packet = kmalloc(data_len, GFP_KERNEL);
307 	message = *packet;
308 	if (!message) {
309 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
310 		rc = -ENOMEM;
311 		goto out;
312 	}
313 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
314 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
315 					  &packet_size_len);
316 	if (rc) {
317 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
318 				"header; cannot generate packet length\n");
319 		goto out;
320 	}
321 	i += packet_size_len;
322 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
323 	i += ECRYPTFS_SIG_SIZE_HEX;
324 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
325 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
326 					  &packet_size_len);
327 	if (rc) {
328 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
329 				"header; cannot generate packet length\n");
330 		goto out;
331 	}
332 	i += packet_size_len;
333 	message[i++] = cipher_code;
334 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
335 	i += crypt_stat->key_size;
336 	for (j = 0; j < crypt_stat->key_size; j++)
337 		checksum += crypt_stat->key[j];
338 	message[i++] = (checksum / 256) % 256;
339 	message[i++] = (checksum % 256);
340 	*packet_len = i;
341 out:
342 	return rc;
343 }
344 
345 static int
346 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
347 		    struct ecryptfs_message *msg)
348 {
349 	size_t i = 0;
350 	char *data;
351 	size_t data_len;
352 	size_t message_len;
353 	int rc;
354 
355 	/*
356 	 *              ***** TAG 65 Packet Format *****
357 	 *    | Content Type                       | 1 byte       |
358 	 *    | Status Indicator                   | 1 byte       |
359 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
360 	 *    | Encrypted File Encryption Key      | arbitrary    |
361 	 */
362 	message_len = msg->data_len;
363 	data = msg->data;
364 	/* verify that everything through the encrypted FEK size is present */
365 	if (message_len < 4) {
366 		rc = -EIO;
367 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
368 		       "message length is [%d]\n", __func__, message_len, 4);
369 		goto out;
370 	}
371 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
372 		rc = -EIO;
373 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
374 		       __func__);
375 		goto out;
376 	}
377 	if (data[i++]) {
378 		rc = -EIO;
379 		printk(KERN_ERR "%s: Status indicator has non zero "
380 		       "value [%d]\n", __func__, data[i-1]);
381 
382 		goto out;
383 	}
384 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
385 					  &data_len);
386 	if (rc) {
387 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
388 				"rc = [%d]\n", rc);
389 		goto out;
390 	}
391 	i += data_len;
392 	if (message_len < (i + key_rec->enc_key_size)) {
393 		rc = -EIO;
394 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
395 		       __func__, message_len, (i + key_rec->enc_key_size));
396 		goto out;
397 	}
398 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
399 		rc = -EIO;
400 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
401 		       "the maximum key size [%d]\n", __func__,
402 		       key_rec->enc_key_size,
403 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
404 		goto out;
405 	}
406 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
407 out:
408 	return rc;
409 }
410 
411 /**
412  * ecryptfs_verify_version
413  * @version: The version number to confirm
414  *
415  * Returns zero on good version; non-zero otherwise
416  */
417 static int ecryptfs_verify_version(u16 version)
418 {
419 	int rc = 0;
420 	unsigned char major;
421 	unsigned char minor;
422 
423 	major = ((version >> 8) & 0xFF);
424 	minor = (version & 0xFF);
425 	if (major != ECRYPTFS_VERSION_MAJOR) {
426 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
427 				"Expected [%d]; got [%d]\n",
428 				ECRYPTFS_VERSION_MAJOR, major);
429 		rc = -EINVAL;
430 		goto out;
431 	}
432 	if (minor != ECRYPTFS_VERSION_MINOR) {
433 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
434 				"Expected [%d]; got [%d]\n",
435 				ECRYPTFS_VERSION_MINOR, minor);
436 		rc = -EINVAL;
437 		goto out;
438 	}
439 out:
440 	return rc;
441 }
442 
443 /**
444  * ecryptfs_verify_auth_tok_from_key
445  * @auth_tok_key: key containing the authentication token
446  * @auth_tok: authentication token
447  *
448  * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
449  * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
450  */
451 static int
452 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
453 				  struct ecryptfs_auth_tok **auth_tok)
454 {
455 	int rc = 0;
456 
457 	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
458 	if (IS_ERR(*auth_tok)) {
459 		rc = PTR_ERR(*auth_tok);
460 		*auth_tok = NULL;
461 		goto out;
462 	}
463 
464 	if (ecryptfs_verify_version((*auth_tok)->version)) {
465 		printk(KERN_ERR "Data structure version mismatch. Userspace "
466 		       "tools must match eCryptfs kernel module with major "
467 		       "version [%d] and minor version [%d]\n",
468 		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
469 		rc = -EINVAL;
470 		goto out;
471 	}
472 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
473 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
474 		printk(KERN_ERR "Invalid auth_tok structure "
475 		       "returned from key query\n");
476 		rc = -EINVAL;
477 		goto out;
478 	}
479 out:
480 	return rc;
481 }
482 
483 static int
484 ecryptfs_find_global_auth_tok_for_sig(
485 	struct key **auth_tok_key,
486 	struct ecryptfs_auth_tok **auth_tok,
487 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
488 {
489 	struct ecryptfs_global_auth_tok *walker;
490 	int rc = 0;
491 
492 	(*auth_tok_key) = NULL;
493 	(*auth_tok) = NULL;
494 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
495 	list_for_each_entry(walker,
496 			    &mount_crypt_stat->global_auth_tok_list,
497 			    mount_crypt_stat_list) {
498 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
499 			continue;
500 
501 		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
502 			rc = -EINVAL;
503 			goto out;
504 		}
505 
506 		rc = key_validate(walker->global_auth_tok_key);
507 		if (rc) {
508 			if (rc == -EKEYEXPIRED)
509 				goto out;
510 			goto out_invalid_auth_tok;
511 		}
512 
513 		down_write(&(walker->global_auth_tok_key->sem));
514 		rc = ecryptfs_verify_auth_tok_from_key(
515 				walker->global_auth_tok_key, auth_tok);
516 		if (rc)
517 			goto out_invalid_auth_tok_unlock;
518 
519 		(*auth_tok_key) = walker->global_auth_tok_key;
520 		key_get(*auth_tok_key);
521 		goto out;
522 	}
523 	rc = -ENOENT;
524 	goto out;
525 out_invalid_auth_tok_unlock:
526 	up_write(&(walker->global_auth_tok_key->sem));
527 out_invalid_auth_tok:
528 	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
529 	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
530 	key_put(walker->global_auth_tok_key);
531 	walker->global_auth_tok_key = NULL;
532 out:
533 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
534 	return rc;
535 }
536 
537 /**
538  * ecryptfs_find_auth_tok_for_sig
539  * @auth_tok_key: key containing the authentication token
540  * @auth_tok: Set to the matching auth_tok; NULL if not found
541  * @mount_crypt_stat: inode crypt_stat crypto context
542  * @sig: Sig of auth_tok to find
543  *
544  * For now, this function simply looks at the registered auth_tok's
545  * linked off the mount_crypt_stat, so all the auth_toks that can be
546  * used must be registered at mount time. This function could
547  * potentially try a lot harder to find auth_tok's (e.g., by calling
548  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
549  * that static registration of auth_tok's will no longer be necessary.
550  *
551  * Returns zero on no error; non-zero on error
552  */
553 static int
554 ecryptfs_find_auth_tok_for_sig(
555 	struct key **auth_tok_key,
556 	struct ecryptfs_auth_tok **auth_tok,
557 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
558 	char *sig)
559 {
560 	int rc = 0;
561 
562 	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
563 						   mount_crypt_stat, sig);
564 	if (rc == -ENOENT) {
565 		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
566 		 * mount_crypt_stat structure, we prevent to use auth toks that
567 		 * are not inserted through the ecryptfs_add_global_auth_tok
568 		 * function.
569 		 */
570 		if (mount_crypt_stat->flags
571 				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
572 			return -EINVAL;
573 
574 		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
575 						       sig);
576 	}
577 	return rc;
578 }
579 
580 /*
581  * write_tag_70_packet can gobble a lot of stack space. We stuff most
582  * of the function's parameters in a kmalloc'd struct to help reduce
583  * eCryptfs' overall stack usage.
584  */
585 struct ecryptfs_write_tag_70_packet_silly_stack {
586 	u8 cipher_code;
587 	size_t max_packet_size;
588 	size_t packet_size_len;
589 	size_t block_aligned_filename_size;
590 	size_t block_size;
591 	size_t i;
592 	size_t j;
593 	size_t num_rand_bytes;
594 	struct mutex *tfm_mutex;
595 	char *block_aligned_filename;
596 	struct ecryptfs_auth_tok *auth_tok;
597 	struct scatterlist src_sg[2];
598 	struct scatterlist dst_sg[2];
599 	struct crypto_skcipher *skcipher_tfm;
600 	struct skcipher_request *skcipher_req;
601 	char iv[ECRYPTFS_MAX_IV_BYTES];
602 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
603 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
604 	struct crypto_shash *hash_tfm;
605 	struct shash_desc *hash_desc;
606 };
607 
608 /*
609  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
610  * @filename: NULL-terminated filename string
611  *
612  * This is the simplest mechanism for achieving filename encryption in
613  * eCryptfs. It encrypts the given filename with the mount-wide
614  * filename encryption key (FNEK) and stores it in a packet to @dest,
615  * which the callee will encode and write directly into the dentry
616  * name.
617  */
618 int
619 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
620 			     size_t *packet_size,
621 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
622 			     char *filename, size_t filename_size)
623 {
624 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
625 	struct key *auth_tok_key = NULL;
626 	int rc = 0;
627 
628 	s = kzalloc(sizeof(*s), GFP_KERNEL);
629 	if (!s)
630 		return -ENOMEM;
631 
632 	(*packet_size) = 0;
633 	rc = ecryptfs_find_auth_tok_for_sig(
634 		&auth_tok_key,
635 		&s->auth_tok, mount_crypt_stat,
636 		mount_crypt_stat->global_default_fnek_sig);
637 	if (rc) {
638 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
639 		       "fnek sig [%s]; rc = [%d]\n", __func__,
640 		       mount_crypt_stat->global_default_fnek_sig, rc);
641 		goto out;
642 	}
643 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
644 		&s->skcipher_tfm,
645 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
646 	if (unlikely(rc)) {
647 		printk(KERN_ERR "Internal error whilst attempting to get "
648 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
649 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
650 		goto out;
651 	}
652 	mutex_lock(s->tfm_mutex);
653 	s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
654 	/* Plus one for the \0 separator between the random prefix
655 	 * and the plaintext filename */
656 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
657 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
658 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
659 		s->num_rand_bytes += (s->block_size
660 				      - (s->block_aligned_filename_size
661 					 % s->block_size));
662 		s->block_aligned_filename_size = (s->num_rand_bytes
663 						  + filename_size);
664 	}
665 	/* Octet 0: Tag 70 identifier
666 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
667 	 *              and block-aligned encrypted filename size)
668 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
669 	 * Octet N2-N3: Cipher identifier (1 octet)
670 	 * Octets N3-N4: Block-aligned encrypted filename
671 	 *  - Consists of a minimum number of random characters, a \0
672 	 *    separator, and then the filename */
673 	s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
674 			      + s->block_aligned_filename_size);
675 	if (!dest) {
676 		(*packet_size) = s->max_packet_size;
677 		goto out_unlock;
678 	}
679 	if (s->max_packet_size > (*remaining_bytes)) {
680 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
681 		       "[%zd] available\n", __func__, s->max_packet_size,
682 		       (*remaining_bytes));
683 		rc = -EINVAL;
684 		goto out_unlock;
685 	}
686 
687 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
688 	if (!s->skcipher_req) {
689 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
690 		       "skcipher_request_alloc for %s\n", __func__,
691 		       crypto_skcipher_driver_name(s->skcipher_tfm));
692 		rc = -ENOMEM;
693 		goto out_unlock;
694 	}
695 
696 	skcipher_request_set_callback(s->skcipher_req,
697 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
698 
699 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
700 					    GFP_KERNEL);
701 	if (!s->block_aligned_filename) {
702 		rc = -ENOMEM;
703 		goto out_unlock;
704 	}
705 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
706 	rc = ecryptfs_write_packet_length(&dest[s->i],
707 					  (ECRYPTFS_SIG_SIZE
708 					   + 1 /* Cipher code */
709 					   + s->block_aligned_filename_size),
710 					  &s->packet_size_len);
711 	if (rc) {
712 		printk(KERN_ERR "%s: Error generating tag 70 packet "
713 		       "header; cannot generate packet length; rc = [%d]\n",
714 		       __func__, rc);
715 		goto out_free_unlock;
716 	}
717 	s->i += s->packet_size_len;
718 	ecryptfs_from_hex(&dest[s->i],
719 			  mount_crypt_stat->global_default_fnek_sig,
720 			  ECRYPTFS_SIG_SIZE);
721 	s->i += ECRYPTFS_SIG_SIZE;
722 	s->cipher_code = ecryptfs_code_for_cipher_string(
723 		mount_crypt_stat->global_default_fn_cipher_name,
724 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
725 	if (s->cipher_code == 0) {
726 		printk(KERN_WARNING "%s: Unable to generate code for "
727 		       "cipher [%s] with key bytes [%zd]\n", __func__,
728 		       mount_crypt_stat->global_default_fn_cipher_name,
729 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
730 		rc = -EINVAL;
731 		goto out_free_unlock;
732 	}
733 	dest[s->i++] = s->cipher_code;
734 	/* TODO: Support other key modules than passphrase for
735 	 * filename encryption */
736 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
737 		rc = -EOPNOTSUPP;
738 		printk(KERN_INFO "%s: Filename encryption only supports "
739 		       "password tokens\n", __func__);
740 		goto out_free_unlock;
741 	}
742 	s->hash_tfm = crypto_alloc_shash(ECRYPTFS_TAG_70_DIGEST, 0, 0);
743 	if (IS_ERR(s->hash_tfm)) {
744 			rc = PTR_ERR(s->hash_tfm);
745 			printk(KERN_ERR "%s: Error attempting to "
746 			       "allocate hash crypto context; rc = [%d]\n",
747 			       __func__, rc);
748 			goto out_free_unlock;
749 	}
750 
751 	s->hash_desc = kmalloc(sizeof(*s->hash_desc) +
752 			       crypto_shash_descsize(s->hash_tfm), GFP_KERNEL);
753 	if (!s->hash_desc) {
754 		rc = -ENOMEM;
755 		goto out_release_free_unlock;
756 	}
757 
758 	s->hash_desc->tfm = s->hash_tfm;
759 
760 	rc = crypto_shash_digest(s->hash_desc,
761 				 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
762 				 s->auth_tok->token.password.session_key_encryption_key_bytes,
763 				 s->hash);
764 	if (rc) {
765 		printk(KERN_ERR
766 		       "%s: Error computing crypto hash; rc = [%d]\n",
767 		       __func__, rc);
768 		goto out_release_free_unlock;
769 	}
770 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
771 		s->block_aligned_filename[s->j] =
772 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
773 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
774 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
775 			rc = crypto_shash_digest(s->hash_desc, (u8 *)s->hash,
776 						ECRYPTFS_TAG_70_DIGEST_SIZE,
777 						s->tmp_hash);
778 			if (rc) {
779 				printk(KERN_ERR
780 				       "%s: Error computing crypto hash; "
781 				       "rc = [%d]\n", __func__, rc);
782 				goto out_release_free_unlock;
783 			}
784 			memcpy(s->hash, s->tmp_hash,
785 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
786 		}
787 		if (s->block_aligned_filename[s->j] == '\0')
788 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
789 	}
790 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
791 	       filename_size);
792 	rc = virt_to_scatterlist(s->block_aligned_filename,
793 				 s->block_aligned_filename_size, s->src_sg, 2);
794 	if (rc < 1) {
795 		printk(KERN_ERR "%s: Internal error whilst attempting to "
796 		       "convert filename memory to scatterlist; rc = [%d]. "
797 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
798 		       s->block_aligned_filename_size);
799 		goto out_release_free_unlock;
800 	}
801 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
802 				 s->dst_sg, 2);
803 	if (rc < 1) {
804 		printk(KERN_ERR "%s: Internal error whilst attempting to "
805 		       "convert encrypted filename memory to scatterlist; "
806 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
807 		       __func__, rc, s->block_aligned_filename_size);
808 		goto out_release_free_unlock;
809 	}
810 	/* The characters in the first block effectively do the job
811 	 * of the IV here, so we just use 0's for the IV. Note the
812 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
813 	 * >= ECRYPTFS_MAX_IV_BYTES. */
814 	rc = crypto_skcipher_setkey(
815 		s->skcipher_tfm,
816 		s->auth_tok->token.password.session_key_encryption_key,
817 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
818 	if (rc < 0) {
819 		printk(KERN_ERR "%s: Error setting key for crypto context; "
820 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
821 		       "encryption_key = [0x%p]; mount_crypt_stat->"
822 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
823 		       rc,
824 		       s->auth_tok->token.password.session_key_encryption_key,
825 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
826 		goto out_release_free_unlock;
827 	}
828 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
829 				   s->block_aligned_filename_size, s->iv);
830 	rc = crypto_skcipher_encrypt(s->skcipher_req);
831 	if (rc) {
832 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
833 		       "rc = [%d]\n", __func__, rc);
834 		goto out_release_free_unlock;
835 	}
836 	s->i += s->block_aligned_filename_size;
837 	(*packet_size) = s->i;
838 	(*remaining_bytes) -= (*packet_size);
839 out_release_free_unlock:
840 	crypto_free_shash(s->hash_tfm);
841 out_free_unlock:
842 	kfree_sensitive(s->block_aligned_filename);
843 out_unlock:
844 	mutex_unlock(s->tfm_mutex);
845 out:
846 	if (auth_tok_key) {
847 		up_write(&(auth_tok_key->sem));
848 		key_put(auth_tok_key);
849 	}
850 	skcipher_request_free(s->skcipher_req);
851 	kfree_sensitive(s->hash_desc);
852 	kfree(s);
853 	return rc;
854 }
855 
856 struct ecryptfs_parse_tag_70_packet_silly_stack {
857 	u8 cipher_code;
858 	size_t max_packet_size;
859 	size_t packet_size_len;
860 	size_t parsed_tag_70_packet_size;
861 	size_t block_aligned_filename_size;
862 	size_t block_size;
863 	size_t i;
864 	struct mutex *tfm_mutex;
865 	char *decrypted_filename;
866 	struct ecryptfs_auth_tok *auth_tok;
867 	struct scatterlist src_sg[2];
868 	struct scatterlist dst_sg[2];
869 	struct crypto_skcipher *skcipher_tfm;
870 	struct skcipher_request *skcipher_req;
871 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
872 	char iv[ECRYPTFS_MAX_IV_BYTES];
873 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
874 };
875 
876 /**
877  * ecryptfs_parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
878  * @filename: This function kmalloc's the memory for the filename
879  * @filename_size: This function sets this to the amount of memory
880  *                 kmalloc'd for the filename
881  * @packet_size: This function sets this to the the number of octets
882  *               in the packet parsed
883  * @mount_crypt_stat: The mount-wide cryptographic context
884  * @data: The memory location containing the start of the tag 70
885  *        packet
886  * @max_packet_size: The maximum legal size of the packet to be parsed
887  *                   from @data
888  *
889  * Returns zero on success; non-zero otherwise
890  */
891 int
892 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
893 			     size_t *packet_size,
894 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
895 			     char *data, size_t max_packet_size)
896 {
897 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
898 	struct key *auth_tok_key = NULL;
899 	int rc = 0;
900 
901 	(*packet_size) = 0;
902 	(*filename_size) = 0;
903 	(*filename) = NULL;
904 	s = kzalloc(sizeof(*s), GFP_KERNEL);
905 	if (!s)
906 		return -ENOMEM;
907 
908 	if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
909 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
910 		       "at least [%d]\n", __func__, max_packet_size,
911 		       ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
912 		rc = -EINVAL;
913 		goto out;
914 	}
915 	/* Octet 0: Tag 70 identifier
916 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
917 	 *              and block-aligned encrypted filename size)
918 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
919 	 * Octet N2-N3: Cipher identifier (1 octet)
920 	 * Octets N3-N4: Block-aligned encrypted filename
921 	 *  - Consists of a minimum number of random numbers, a \0
922 	 *    separator, and then the filename */
923 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
924 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
925 		       "tag [0x%.2x]\n", __func__,
926 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
927 		rc = -EINVAL;
928 		goto out;
929 	}
930 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
931 					  &s->parsed_tag_70_packet_size,
932 					  &s->packet_size_len);
933 	if (rc) {
934 		printk(KERN_WARNING "%s: Error parsing packet length; "
935 		       "rc = [%d]\n", __func__, rc);
936 		goto out;
937 	}
938 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
939 					  - ECRYPTFS_SIG_SIZE - 1);
940 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
941 	    > max_packet_size) {
942 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
943 		       "size is [%zd]\n", __func__, max_packet_size,
944 		       (1 + s->packet_size_len + 1
945 			+ s->block_aligned_filename_size));
946 		rc = -EINVAL;
947 		goto out;
948 	}
949 	(*packet_size) += s->packet_size_len;
950 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
951 			ECRYPTFS_SIG_SIZE);
952 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
953 	(*packet_size) += ECRYPTFS_SIG_SIZE;
954 	s->cipher_code = data[(*packet_size)++];
955 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
956 	if (rc) {
957 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
958 		       __func__, s->cipher_code);
959 		goto out;
960 	}
961 	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
962 					    &s->auth_tok, mount_crypt_stat,
963 					    s->fnek_sig_hex);
964 	if (rc) {
965 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
966 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
967 		       rc);
968 		goto out;
969 	}
970 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
971 							&s->tfm_mutex,
972 							s->cipher_string);
973 	if (unlikely(rc)) {
974 		printk(KERN_ERR "Internal error whilst attempting to get "
975 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
976 		       s->cipher_string, rc);
977 		goto out;
978 	}
979 	mutex_lock(s->tfm_mutex);
980 	rc = virt_to_scatterlist(&data[(*packet_size)],
981 				 s->block_aligned_filename_size, s->src_sg, 2);
982 	if (rc < 1) {
983 		printk(KERN_ERR "%s: Internal error whilst attempting to "
984 		       "convert encrypted filename memory to scatterlist; "
985 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
986 		       __func__, rc, s->block_aligned_filename_size);
987 		goto out_unlock;
988 	}
989 	(*packet_size) += s->block_aligned_filename_size;
990 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
991 					GFP_KERNEL);
992 	if (!s->decrypted_filename) {
993 		rc = -ENOMEM;
994 		goto out_unlock;
995 	}
996 	rc = virt_to_scatterlist(s->decrypted_filename,
997 				 s->block_aligned_filename_size, s->dst_sg, 2);
998 	if (rc < 1) {
999 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1000 		       "convert decrypted filename memory to scatterlist; "
1001 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1002 		       __func__, rc, s->block_aligned_filename_size);
1003 		goto out_free_unlock;
1004 	}
1005 
1006 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
1007 	if (!s->skcipher_req) {
1008 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1009 		       "skcipher_request_alloc for %s\n", __func__,
1010 		       crypto_skcipher_driver_name(s->skcipher_tfm));
1011 		rc = -ENOMEM;
1012 		goto out_free_unlock;
1013 	}
1014 
1015 	skcipher_request_set_callback(s->skcipher_req,
1016 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
1017 
1018 	/* The characters in the first block effectively do the job of
1019 	 * the IV here, so we just use 0's for the IV. Note the
1020 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1021 	 * >= ECRYPTFS_MAX_IV_BYTES. */
1022 	/* TODO: Support other key modules than passphrase for
1023 	 * filename encryption */
1024 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1025 		rc = -EOPNOTSUPP;
1026 		printk(KERN_INFO "%s: Filename encryption only supports "
1027 		       "password tokens\n", __func__);
1028 		goto out_free_unlock;
1029 	}
1030 	rc = crypto_skcipher_setkey(
1031 		s->skcipher_tfm,
1032 		s->auth_tok->token.password.session_key_encryption_key,
1033 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1034 	if (rc < 0) {
1035 		printk(KERN_ERR "%s: Error setting key for crypto context; "
1036 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1037 		       "encryption_key = [0x%p]; mount_crypt_stat->"
1038 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1039 		       rc,
1040 		       s->auth_tok->token.password.session_key_encryption_key,
1041 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1042 		goto out_free_unlock;
1043 	}
1044 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1045 				   s->block_aligned_filename_size, s->iv);
1046 	rc = crypto_skcipher_decrypt(s->skcipher_req);
1047 	if (rc) {
1048 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1049 		       "rc = [%d]\n", __func__, rc);
1050 		goto out_free_unlock;
1051 	}
1052 
1053 	while (s->i < s->block_aligned_filename_size &&
1054 	       s->decrypted_filename[s->i] != '\0')
1055 		s->i++;
1056 	if (s->i == s->block_aligned_filename_size) {
1057 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1058 		       "find valid separator between random characters and "
1059 		       "the filename\n", __func__);
1060 		rc = -EINVAL;
1061 		goto out_free_unlock;
1062 	}
1063 	s->i++;
1064 	(*filename_size) = (s->block_aligned_filename_size - s->i);
1065 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1066 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1067 		       "invalid\n", __func__, (*filename_size));
1068 		rc = -EINVAL;
1069 		goto out_free_unlock;
1070 	}
1071 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1072 	if (!(*filename)) {
1073 		rc = -ENOMEM;
1074 		goto out_free_unlock;
1075 	}
1076 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1077 	(*filename)[(*filename_size)] = '\0';
1078 out_free_unlock:
1079 	kfree(s->decrypted_filename);
1080 out_unlock:
1081 	mutex_unlock(s->tfm_mutex);
1082 out:
1083 	if (rc) {
1084 		(*packet_size) = 0;
1085 		(*filename_size) = 0;
1086 		(*filename) = NULL;
1087 	}
1088 	if (auth_tok_key) {
1089 		up_write(&(auth_tok_key->sem));
1090 		key_put(auth_tok_key);
1091 	}
1092 	skcipher_request_free(s->skcipher_req);
1093 	kfree(s);
1094 	return rc;
1095 }
1096 
1097 static int
1098 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1099 {
1100 	int rc = 0;
1101 
1102 	(*sig) = NULL;
1103 	switch (auth_tok->token_type) {
1104 	case ECRYPTFS_PASSWORD:
1105 		(*sig) = auth_tok->token.password.signature;
1106 		break;
1107 	case ECRYPTFS_PRIVATE_KEY:
1108 		(*sig) = auth_tok->token.private_key.signature;
1109 		break;
1110 	default:
1111 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1112 		       auth_tok->token_type);
1113 		rc = -EINVAL;
1114 	}
1115 	return rc;
1116 }
1117 
1118 /**
1119  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1120  * @auth_tok: The key authentication token used to decrypt the session key
1121  * @crypt_stat: The cryptographic context
1122  *
1123  * Returns zero on success; non-zero error otherwise.
1124  */
1125 static int
1126 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1127 				  struct ecryptfs_crypt_stat *crypt_stat)
1128 {
1129 	u8 cipher_code = 0;
1130 	struct ecryptfs_msg_ctx *msg_ctx;
1131 	struct ecryptfs_message *msg = NULL;
1132 	char *auth_tok_sig;
1133 	char *payload = NULL;
1134 	size_t payload_len = 0;
1135 	int rc;
1136 
1137 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1138 	if (rc) {
1139 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1140 		       auth_tok->token_type);
1141 		goto out;
1142 	}
1143 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1144 				 &payload, &payload_len);
1145 	if (rc) {
1146 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1147 		goto out;
1148 	}
1149 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1150 	if (rc) {
1151 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1152 				"ecryptfsd: %d\n", rc);
1153 		goto out;
1154 	}
1155 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1156 	if (rc) {
1157 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1158 				"from the user space daemon\n");
1159 		rc = -EIO;
1160 		goto out;
1161 	}
1162 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1163 				 &cipher_code, msg);
1164 	if (rc) {
1165 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1166 		       rc);
1167 		goto out;
1168 	}
1169 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1170 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1171 	       auth_tok->session_key.decrypted_key_size);
1172 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1173 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1174 	if (rc) {
1175 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1176 				cipher_code);
1177 		goto out;
1178 	}
1179 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1180 	if (ecryptfs_verbosity > 0) {
1181 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1182 		ecryptfs_dump_hex(crypt_stat->key,
1183 				  crypt_stat->key_size);
1184 	}
1185 out:
1186 	kfree(msg);
1187 	kfree(payload);
1188 	return rc;
1189 }
1190 
1191 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1192 {
1193 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1194 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1195 
1196 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1197 				 auth_tok_list_head, list) {
1198 		list_del(&auth_tok_list_item->list);
1199 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1200 				auth_tok_list_item);
1201 	}
1202 }
1203 
1204 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1205 
1206 /**
1207  * parse_tag_1_packet
1208  * @crypt_stat: The cryptographic context to modify based on packet contents
1209  * @data: The raw bytes of the packet.
1210  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1211  *                 a new authentication token will be placed at the
1212  *                 end of this list for this packet.
1213  * @new_auth_tok: Pointer to a pointer to memory that this function
1214  *                allocates; sets the memory address of the pointer to
1215  *                NULL on error. This object is added to the
1216  *                auth_tok_list.
1217  * @packet_size: This function writes the size of the parsed packet
1218  *               into this memory location; zero on error.
1219  * @max_packet_size: The maximum allowable packet size
1220  *
1221  * Returns zero on success; non-zero on error.
1222  */
1223 static int
1224 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1225 		   unsigned char *data, struct list_head *auth_tok_list,
1226 		   struct ecryptfs_auth_tok **new_auth_tok,
1227 		   size_t *packet_size, size_t max_packet_size)
1228 {
1229 	size_t body_size;
1230 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1231 	size_t length_size;
1232 	int rc = 0;
1233 
1234 	(*packet_size) = 0;
1235 	(*new_auth_tok) = NULL;
1236 	/**
1237 	 * This format is inspired by OpenPGP; see RFC 2440
1238 	 * packet tag 1
1239 	 *
1240 	 * Tag 1 identifier (1 byte)
1241 	 * Max Tag 1 packet size (max 3 bytes)
1242 	 * Version (1 byte)
1243 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1244 	 * Cipher identifier (1 byte)
1245 	 * Encrypted key size (arbitrary)
1246 	 *
1247 	 * 12 bytes minimum packet size
1248 	 */
1249 	if (unlikely(max_packet_size < 12)) {
1250 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1251 		rc = -EINVAL;
1252 		goto out;
1253 	}
1254 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1255 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1256 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1257 		rc = -EINVAL;
1258 		goto out;
1259 	}
1260 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1261 	 * at end of function upon failure */
1262 	auth_tok_list_item =
1263 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1264 				  GFP_KERNEL);
1265 	if (!auth_tok_list_item) {
1266 		printk(KERN_ERR "Unable to allocate memory\n");
1267 		rc = -ENOMEM;
1268 		goto out;
1269 	}
1270 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1271 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1272 					  &length_size);
1273 	if (rc) {
1274 		printk(KERN_WARNING "Error parsing packet length; "
1275 		       "rc = [%d]\n", rc);
1276 		goto out_free;
1277 	}
1278 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1279 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1280 		rc = -EINVAL;
1281 		goto out_free;
1282 	}
1283 	(*packet_size) += length_size;
1284 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1285 		printk(KERN_WARNING "Packet size exceeds max\n");
1286 		rc = -EINVAL;
1287 		goto out_free;
1288 	}
1289 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1290 		printk(KERN_WARNING "Unknown version number [%d]\n",
1291 		       data[(*packet_size) - 1]);
1292 		rc = -EINVAL;
1293 		goto out_free;
1294 	}
1295 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1296 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1297 	*packet_size += ECRYPTFS_SIG_SIZE;
1298 	/* This byte is skipped because the kernel does not need to
1299 	 * know which public key encryption algorithm was used */
1300 	(*packet_size)++;
1301 	(*new_auth_tok)->session_key.encrypted_key_size =
1302 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1303 	if ((*new_auth_tok)->session_key.encrypted_key_size
1304 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1305 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1306 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1307 		rc = -EINVAL;
1308 		goto out_free;
1309 	}
1310 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1311 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1312 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1313 	(*new_auth_tok)->session_key.flags &=
1314 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1315 	(*new_auth_tok)->session_key.flags |=
1316 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1317 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1318 	(*new_auth_tok)->flags = 0;
1319 	(*new_auth_tok)->session_key.flags &=
1320 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1321 	(*new_auth_tok)->session_key.flags &=
1322 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1323 	list_add(&auth_tok_list_item->list, auth_tok_list);
1324 	goto out;
1325 out_free:
1326 	(*new_auth_tok) = NULL;
1327 	memset(auth_tok_list_item, 0,
1328 	       sizeof(struct ecryptfs_auth_tok_list_item));
1329 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1330 			auth_tok_list_item);
1331 out:
1332 	if (rc)
1333 		(*packet_size) = 0;
1334 	return rc;
1335 }
1336 
1337 /**
1338  * parse_tag_3_packet
1339  * @crypt_stat: The cryptographic context to modify based on packet
1340  *              contents.
1341  * @data: The raw bytes of the packet.
1342  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1343  *                 a new authentication token will be placed at the end
1344  *                 of this list for this packet.
1345  * @new_auth_tok: Pointer to a pointer to memory that this function
1346  *                allocates; sets the memory address of the pointer to
1347  *                NULL on error. This object is added to the
1348  *                auth_tok_list.
1349  * @packet_size: This function writes the size of the parsed packet
1350  *               into this memory location; zero on error.
1351  * @max_packet_size: maximum number of bytes to parse
1352  *
1353  * Returns zero on success; non-zero on error.
1354  */
1355 static int
1356 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1357 		   unsigned char *data, struct list_head *auth_tok_list,
1358 		   struct ecryptfs_auth_tok **new_auth_tok,
1359 		   size_t *packet_size, size_t max_packet_size)
1360 {
1361 	size_t body_size;
1362 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1363 	size_t length_size;
1364 	int rc = 0;
1365 
1366 	(*packet_size) = 0;
1367 	(*new_auth_tok) = NULL;
1368 	/**
1369 	 *This format is inspired by OpenPGP; see RFC 2440
1370 	 * packet tag 3
1371 	 *
1372 	 * Tag 3 identifier (1 byte)
1373 	 * Max Tag 3 packet size (max 3 bytes)
1374 	 * Version (1 byte)
1375 	 * Cipher code (1 byte)
1376 	 * S2K specifier (1 byte)
1377 	 * Hash identifier (1 byte)
1378 	 * Salt (ECRYPTFS_SALT_SIZE)
1379 	 * Hash iterations (1 byte)
1380 	 * Encrypted key (arbitrary)
1381 	 *
1382 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1383 	 */
1384 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1385 		printk(KERN_ERR "Max packet size too large\n");
1386 		rc = -EINVAL;
1387 		goto out;
1388 	}
1389 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1390 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1391 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1392 		rc = -EINVAL;
1393 		goto out;
1394 	}
1395 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1396 	 * at end of function upon failure */
1397 	auth_tok_list_item =
1398 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1399 	if (!auth_tok_list_item) {
1400 		printk(KERN_ERR "Unable to allocate memory\n");
1401 		rc = -ENOMEM;
1402 		goto out;
1403 	}
1404 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1405 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1406 					  &length_size);
1407 	if (rc) {
1408 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1409 		       rc);
1410 		goto out_free;
1411 	}
1412 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1413 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1414 		rc = -EINVAL;
1415 		goto out_free;
1416 	}
1417 	(*packet_size) += length_size;
1418 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1419 		printk(KERN_ERR "Packet size exceeds max\n");
1420 		rc = -EINVAL;
1421 		goto out_free;
1422 	}
1423 	(*new_auth_tok)->session_key.encrypted_key_size =
1424 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1425 	if ((*new_auth_tok)->session_key.encrypted_key_size
1426 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1427 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1428 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1429 		rc = -EINVAL;
1430 		goto out_free;
1431 	}
1432 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1433 		printk(KERN_WARNING "Unknown version number [%d]\n",
1434 		       data[(*packet_size) - 1]);
1435 		rc = -EINVAL;
1436 		goto out_free;
1437 	}
1438 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1439 					    (u16)data[(*packet_size)]);
1440 	if (rc)
1441 		goto out_free;
1442 	/* A little extra work to differentiate among the AES key
1443 	 * sizes; see RFC2440 */
1444 	switch(data[(*packet_size)++]) {
1445 	case RFC2440_CIPHER_AES_192:
1446 		crypt_stat->key_size = 24;
1447 		break;
1448 	default:
1449 		crypt_stat->key_size =
1450 			(*new_auth_tok)->session_key.encrypted_key_size;
1451 	}
1452 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1453 	if (rc)
1454 		goto out_free;
1455 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1456 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1457 		rc = -ENOSYS;
1458 		goto out_free;
1459 	}
1460 	/* TODO: finish the hash mapping */
1461 	switch (data[(*packet_size)++]) {
1462 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1463 		/* Choose MD5 */
1464 		memcpy((*new_auth_tok)->token.password.salt,
1465 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1466 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1467 		/* This conversion was taken straight from RFC2440 */
1468 		(*new_auth_tok)->token.password.hash_iterations =
1469 			((u32) 16 + (data[(*packet_size)] & 15))
1470 				<< ((data[(*packet_size)] >> 4) + 6);
1471 		(*packet_size)++;
1472 		/* Friendly reminder:
1473 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1474 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1475 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1476 		       &data[(*packet_size)],
1477 		       (*new_auth_tok)->session_key.encrypted_key_size);
1478 		(*packet_size) +=
1479 			(*new_auth_tok)->session_key.encrypted_key_size;
1480 		(*new_auth_tok)->session_key.flags &=
1481 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1482 		(*new_auth_tok)->session_key.flags |=
1483 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1484 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1485 		break;
1486 	default:
1487 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1488 				"[%d]\n", data[(*packet_size) - 1]);
1489 		rc = -ENOSYS;
1490 		goto out_free;
1491 	}
1492 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1493 	/* TODO: Parametarize; we might actually want userspace to
1494 	 * decrypt the session key. */
1495 	(*new_auth_tok)->session_key.flags &=
1496 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1497 	(*new_auth_tok)->session_key.flags &=
1498 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1499 	list_add(&auth_tok_list_item->list, auth_tok_list);
1500 	goto out;
1501 out_free:
1502 	(*new_auth_tok) = NULL;
1503 	memset(auth_tok_list_item, 0,
1504 	       sizeof(struct ecryptfs_auth_tok_list_item));
1505 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1506 			auth_tok_list_item);
1507 out:
1508 	if (rc)
1509 		(*packet_size) = 0;
1510 	return rc;
1511 }
1512 
1513 /**
1514  * parse_tag_11_packet
1515  * @data: The raw bytes of the packet
1516  * @contents: This function writes the data contents of the literal
1517  *            packet into this memory location
1518  * @max_contents_bytes: The maximum number of bytes that this function
1519  *                      is allowed to write into contents
1520  * @tag_11_contents_size: This function writes the size of the parsed
1521  *                        contents into this memory location; zero on
1522  *                        error
1523  * @packet_size: This function writes the size of the parsed packet
1524  *               into this memory location; zero on error
1525  * @max_packet_size: maximum number of bytes to parse
1526  *
1527  * Returns zero on success; non-zero on error.
1528  */
1529 static int
1530 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1531 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1532 		    size_t *packet_size, size_t max_packet_size)
1533 {
1534 	size_t body_size;
1535 	size_t length_size;
1536 	int rc = 0;
1537 
1538 	(*packet_size) = 0;
1539 	(*tag_11_contents_size) = 0;
1540 	/* This format is inspired by OpenPGP; see RFC 2440
1541 	 * packet tag 11
1542 	 *
1543 	 * Tag 11 identifier (1 byte)
1544 	 * Max Tag 11 packet size (max 3 bytes)
1545 	 * Binary format specifier (1 byte)
1546 	 * Filename length (1 byte)
1547 	 * Filename ("_CONSOLE") (8 bytes)
1548 	 * Modification date (4 bytes)
1549 	 * Literal data (arbitrary)
1550 	 *
1551 	 * We need at least 16 bytes of data for the packet to even be
1552 	 * valid.
1553 	 */
1554 	if (max_packet_size < 16) {
1555 		printk(KERN_ERR "Maximum packet size too small\n");
1556 		rc = -EINVAL;
1557 		goto out;
1558 	}
1559 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1560 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1561 		rc = -EINVAL;
1562 		goto out;
1563 	}
1564 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1565 					  &length_size);
1566 	if (rc) {
1567 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1568 		goto out;
1569 	}
1570 	if (body_size < 14) {
1571 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1572 		rc = -EINVAL;
1573 		goto out;
1574 	}
1575 	(*packet_size) += length_size;
1576 	(*tag_11_contents_size) = (body_size - 14);
1577 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1578 		printk(KERN_ERR "Packet size exceeds max\n");
1579 		rc = -EINVAL;
1580 		goto out;
1581 	}
1582 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1583 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1584 		       "expected size\n");
1585 		rc = -EINVAL;
1586 		goto out;
1587 	}
1588 	if (data[(*packet_size)++] != 0x62) {
1589 		printk(KERN_WARNING "Unrecognizable packet\n");
1590 		rc = -EINVAL;
1591 		goto out;
1592 	}
1593 	if (data[(*packet_size)++] != 0x08) {
1594 		printk(KERN_WARNING "Unrecognizable packet\n");
1595 		rc = -EINVAL;
1596 		goto out;
1597 	}
1598 	(*packet_size) += 12; /* Ignore filename and modification date */
1599 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1600 	(*packet_size) += (*tag_11_contents_size);
1601 out:
1602 	if (rc) {
1603 		(*packet_size) = 0;
1604 		(*tag_11_contents_size) = 0;
1605 	}
1606 	return rc;
1607 }
1608 
1609 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1610 				      struct ecryptfs_auth_tok **auth_tok,
1611 				      char *sig)
1612 {
1613 	int rc = 0;
1614 
1615 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1616 	if (IS_ERR(*auth_tok_key)) {
1617 		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1618 		if (IS_ERR(*auth_tok_key)) {
1619 			printk(KERN_ERR "Could not find key with description: [%s]\n",
1620 			      sig);
1621 			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1622 			(*auth_tok_key) = NULL;
1623 			goto out;
1624 		}
1625 	}
1626 	down_write(&(*auth_tok_key)->sem);
1627 	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1628 	if (rc) {
1629 		up_write(&(*auth_tok_key)->sem);
1630 		key_put(*auth_tok_key);
1631 		(*auth_tok_key) = NULL;
1632 		goto out;
1633 	}
1634 out:
1635 	return rc;
1636 }
1637 
1638 /**
1639  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1640  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1641  * @crypt_stat: The cryptographic context
1642  *
1643  * Returns zero on success; non-zero error otherwise
1644  */
1645 static int
1646 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1647 					 struct ecryptfs_crypt_stat *crypt_stat)
1648 {
1649 	struct scatterlist dst_sg[2];
1650 	struct scatterlist src_sg[2];
1651 	struct mutex *tfm_mutex;
1652 	struct crypto_skcipher *tfm;
1653 	struct skcipher_request *req = NULL;
1654 	int rc = 0;
1655 
1656 	if (unlikely(ecryptfs_verbosity > 0)) {
1657 		ecryptfs_printk(
1658 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1659 			auth_tok->token.password.session_key_encryption_key_bytes);
1660 		ecryptfs_dump_hex(
1661 			auth_tok->token.password.session_key_encryption_key,
1662 			auth_tok->token.password.session_key_encryption_key_bytes);
1663 	}
1664 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1665 							crypt_stat->cipher);
1666 	if (unlikely(rc)) {
1667 		printk(KERN_ERR "Internal error whilst attempting to get "
1668 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1669 		       crypt_stat->cipher, rc);
1670 		goto out;
1671 	}
1672 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1673 				 auth_tok->session_key.encrypted_key_size,
1674 				 src_sg, 2);
1675 	if (rc < 1 || rc > 2) {
1676 		printk(KERN_ERR "Internal error whilst attempting to convert "
1677 			"auth_tok->session_key.encrypted_key to scatterlist; "
1678 			"expected rc = 1; got rc = [%d]. "
1679 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1680 			auth_tok->session_key.encrypted_key_size);
1681 		goto out;
1682 	}
1683 	auth_tok->session_key.decrypted_key_size =
1684 		auth_tok->session_key.encrypted_key_size;
1685 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1686 				 auth_tok->session_key.decrypted_key_size,
1687 				 dst_sg, 2);
1688 	if (rc < 1 || rc > 2) {
1689 		printk(KERN_ERR "Internal error whilst attempting to convert "
1690 			"auth_tok->session_key.decrypted_key to scatterlist; "
1691 			"expected rc = 1; got rc = [%d]\n", rc);
1692 		goto out;
1693 	}
1694 	mutex_lock(tfm_mutex);
1695 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
1696 	if (!req) {
1697 		mutex_unlock(tfm_mutex);
1698 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1699 		       "skcipher_request_alloc for %s\n", __func__,
1700 		       crypto_skcipher_driver_name(tfm));
1701 		rc = -ENOMEM;
1702 		goto out;
1703 	}
1704 
1705 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1706 				      NULL, NULL);
1707 	rc = crypto_skcipher_setkey(
1708 		tfm, auth_tok->token.password.session_key_encryption_key,
1709 		crypt_stat->key_size);
1710 	if (unlikely(rc < 0)) {
1711 		mutex_unlock(tfm_mutex);
1712 		printk(KERN_ERR "Error setting key for crypto context\n");
1713 		rc = -EINVAL;
1714 		goto out;
1715 	}
1716 	skcipher_request_set_crypt(req, src_sg, dst_sg,
1717 				   auth_tok->session_key.encrypted_key_size,
1718 				   NULL);
1719 	rc = crypto_skcipher_decrypt(req);
1720 	mutex_unlock(tfm_mutex);
1721 	if (unlikely(rc)) {
1722 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1723 		goto out;
1724 	}
1725 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1726 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1727 	       auth_tok->session_key.decrypted_key_size);
1728 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1729 	if (unlikely(ecryptfs_verbosity > 0)) {
1730 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1731 				crypt_stat->key_size);
1732 		ecryptfs_dump_hex(crypt_stat->key,
1733 				  crypt_stat->key_size);
1734 	}
1735 out:
1736 	skcipher_request_free(req);
1737 	return rc;
1738 }
1739 
1740 /**
1741  * ecryptfs_parse_packet_set
1742  * @crypt_stat: The cryptographic context
1743  * @src: Virtual address of region of memory containing the packets
1744  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1745  *
1746  * Get crypt_stat to have the file's session key if the requisite key
1747  * is available to decrypt the session key.
1748  *
1749  * Returns Zero if a valid authentication token was retrieved and
1750  * processed; negative value for file not encrypted or for error
1751  * conditions.
1752  */
1753 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1754 			      unsigned char *src,
1755 			      struct dentry *ecryptfs_dentry)
1756 {
1757 	size_t i = 0;
1758 	size_t found_auth_tok;
1759 	size_t next_packet_is_auth_tok_packet;
1760 	struct list_head auth_tok_list;
1761 	struct ecryptfs_auth_tok *matching_auth_tok;
1762 	struct ecryptfs_auth_tok *candidate_auth_tok;
1763 	char *candidate_auth_tok_sig;
1764 	size_t packet_size;
1765 	struct ecryptfs_auth_tok *new_auth_tok;
1766 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1767 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1768 	size_t tag_11_contents_size;
1769 	size_t tag_11_packet_size;
1770 	struct key *auth_tok_key = NULL;
1771 	int rc = 0;
1772 
1773 	INIT_LIST_HEAD(&auth_tok_list);
1774 	/* Parse the header to find as many packets as we can; these will be
1775 	 * added the our &auth_tok_list */
1776 	next_packet_is_auth_tok_packet = 1;
1777 	while (next_packet_is_auth_tok_packet) {
1778 		size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1779 
1780 		switch (src[i]) {
1781 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1782 			rc = parse_tag_3_packet(crypt_stat,
1783 						(unsigned char *)&src[i],
1784 						&auth_tok_list, &new_auth_tok,
1785 						&packet_size, max_packet_size);
1786 			if (rc) {
1787 				ecryptfs_printk(KERN_ERR, "Error parsing "
1788 						"tag 3 packet\n");
1789 				rc = -EIO;
1790 				goto out_wipe_list;
1791 			}
1792 			i += packet_size;
1793 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1794 						 sig_tmp_space,
1795 						 ECRYPTFS_SIG_SIZE,
1796 						 &tag_11_contents_size,
1797 						 &tag_11_packet_size,
1798 						 max_packet_size);
1799 			if (rc) {
1800 				ecryptfs_printk(KERN_ERR, "No valid "
1801 						"(ecryptfs-specific) literal "
1802 						"packet containing "
1803 						"authentication token "
1804 						"signature found after "
1805 						"tag 3 packet\n");
1806 				rc = -EIO;
1807 				goto out_wipe_list;
1808 			}
1809 			i += tag_11_packet_size;
1810 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1811 				ecryptfs_printk(KERN_ERR, "Expected "
1812 						"signature of size [%d]; "
1813 						"read size [%zd]\n",
1814 						ECRYPTFS_SIG_SIZE,
1815 						tag_11_contents_size);
1816 				rc = -EIO;
1817 				goto out_wipe_list;
1818 			}
1819 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1820 					sig_tmp_space, tag_11_contents_size);
1821 			new_auth_tok->token.password.signature[
1822 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1823 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1824 			break;
1825 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1826 			rc = parse_tag_1_packet(crypt_stat,
1827 						(unsigned char *)&src[i],
1828 						&auth_tok_list, &new_auth_tok,
1829 						&packet_size, max_packet_size);
1830 			if (rc) {
1831 				ecryptfs_printk(KERN_ERR, "Error parsing "
1832 						"tag 1 packet\n");
1833 				rc = -EIO;
1834 				goto out_wipe_list;
1835 			}
1836 			i += packet_size;
1837 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1838 			break;
1839 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1840 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1841 					"(Tag 11 not allowed by itself)\n");
1842 			rc = -EIO;
1843 			goto out_wipe_list;
1844 		default:
1845 			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1846 					"of the file header; hex value of "
1847 					"character is [0x%.2x]\n", i, src[i]);
1848 			next_packet_is_auth_tok_packet = 0;
1849 		}
1850 	}
1851 	if (list_empty(&auth_tok_list)) {
1852 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1853 		       "eCryptfs file; this is not supported in this version "
1854 		       "of the eCryptfs kernel module\n");
1855 		rc = -EINVAL;
1856 		goto out;
1857 	}
1858 	/* auth_tok_list contains the set of authentication tokens
1859 	 * parsed from the metadata. We need to find a matching
1860 	 * authentication token that has the secret component(s)
1861 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1862 	 * the metadata. There may be several potential matches, but
1863 	 * just one will be sufficient to decrypt to get the FEK. */
1864 find_next_matching_auth_tok:
1865 	found_auth_tok = 0;
1866 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1867 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1868 		if (unlikely(ecryptfs_verbosity > 0)) {
1869 			ecryptfs_printk(KERN_DEBUG,
1870 					"Considering candidate auth tok:\n");
1871 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1872 		}
1873 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1874 					       candidate_auth_tok);
1875 		if (rc) {
1876 			printk(KERN_ERR
1877 			       "Unrecognized candidate auth tok type: [%d]\n",
1878 			       candidate_auth_tok->token_type);
1879 			rc = -EINVAL;
1880 			goto out_wipe_list;
1881 		}
1882 		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1883 					       &matching_auth_tok,
1884 					       crypt_stat->mount_crypt_stat,
1885 					       candidate_auth_tok_sig);
1886 		if (!rc) {
1887 			found_auth_tok = 1;
1888 			goto found_matching_auth_tok;
1889 		}
1890 	}
1891 	if (!found_auth_tok) {
1892 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1893 				"authentication token\n");
1894 		rc = -EIO;
1895 		goto out_wipe_list;
1896 	}
1897 found_matching_auth_tok:
1898 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1899 		memcpy(&(candidate_auth_tok->token.private_key),
1900 		       &(matching_auth_tok->token.private_key),
1901 		       sizeof(struct ecryptfs_private_key));
1902 		up_write(&(auth_tok_key->sem));
1903 		key_put(auth_tok_key);
1904 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1905 						       crypt_stat);
1906 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1907 		memcpy(&(candidate_auth_tok->token.password),
1908 		       &(matching_auth_tok->token.password),
1909 		       sizeof(struct ecryptfs_password));
1910 		up_write(&(auth_tok_key->sem));
1911 		key_put(auth_tok_key);
1912 		rc = decrypt_passphrase_encrypted_session_key(
1913 			candidate_auth_tok, crypt_stat);
1914 	} else {
1915 		up_write(&(auth_tok_key->sem));
1916 		key_put(auth_tok_key);
1917 		rc = -EINVAL;
1918 	}
1919 	if (rc) {
1920 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1921 
1922 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1923 				"session key for authentication token with sig "
1924 				"[%.*s]; rc = [%d]. Removing auth tok "
1925 				"candidate from the list and searching for "
1926 				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1927 				candidate_auth_tok_sig,	rc);
1928 		list_for_each_entry_safe(auth_tok_list_item,
1929 					 auth_tok_list_item_tmp,
1930 					 &auth_tok_list, list) {
1931 			if (candidate_auth_tok
1932 			    == &auth_tok_list_item->auth_tok) {
1933 				list_del(&auth_tok_list_item->list);
1934 				kmem_cache_free(
1935 					ecryptfs_auth_tok_list_item_cache,
1936 					auth_tok_list_item);
1937 				goto find_next_matching_auth_tok;
1938 			}
1939 		}
1940 		BUG();
1941 	}
1942 	rc = ecryptfs_compute_root_iv(crypt_stat);
1943 	if (rc) {
1944 		ecryptfs_printk(KERN_ERR, "Error computing "
1945 				"the root IV\n");
1946 		goto out_wipe_list;
1947 	}
1948 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1949 	if (rc) {
1950 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1951 				"context for cipher [%s]; rc = [%d]\n",
1952 				crypt_stat->cipher, rc);
1953 	}
1954 out_wipe_list:
1955 	wipe_auth_tok_list(&auth_tok_list);
1956 out:
1957 	return rc;
1958 }
1959 
1960 static int
1961 pki_encrypt_session_key(struct key *auth_tok_key,
1962 			struct ecryptfs_auth_tok *auth_tok,
1963 			struct ecryptfs_crypt_stat *crypt_stat,
1964 			struct ecryptfs_key_record *key_rec)
1965 {
1966 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1967 	char *payload = NULL;
1968 	size_t payload_len = 0;
1969 	struct ecryptfs_message *msg;
1970 	int rc;
1971 
1972 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1973 				 ecryptfs_code_for_cipher_string(
1974 					 crypt_stat->cipher,
1975 					 crypt_stat->key_size),
1976 				 crypt_stat, &payload, &payload_len);
1977 	up_write(&(auth_tok_key->sem));
1978 	key_put(auth_tok_key);
1979 	if (rc) {
1980 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1981 		goto out;
1982 	}
1983 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1984 	if (rc) {
1985 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1986 				"ecryptfsd: %d\n", rc);
1987 		goto out;
1988 	}
1989 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1990 	if (rc) {
1991 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1992 				"from the user space daemon\n");
1993 		rc = -EIO;
1994 		goto out;
1995 	}
1996 	rc = parse_tag_67_packet(key_rec, msg);
1997 	if (rc)
1998 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1999 	kfree(msg);
2000 out:
2001 	kfree(payload);
2002 	return rc;
2003 }
2004 /**
2005  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2006  * @dest: Buffer into which to write the packet
2007  * @remaining_bytes: Maximum number of bytes that can be writtn
2008  * @auth_tok_key: The authentication token key to unlock and put when done with
2009  *                @auth_tok
2010  * @auth_tok: The authentication token used for generating the tag 1 packet
2011  * @crypt_stat: The cryptographic context
2012  * @key_rec: The key record struct for the tag 1 packet
2013  * @packet_size: This function will write the number of bytes that end
2014  *               up constituting the packet; set to zero on error
2015  *
2016  * Returns zero on success; non-zero on error.
2017  */
2018 static int
2019 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2020 		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2021 		   struct ecryptfs_crypt_stat *crypt_stat,
2022 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2023 {
2024 	size_t i;
2025 	size_t encrypted_session_key_valid = 0;
2026 	size_t packet_size_length;
2027 	size_t max_packet_size;
2028 	int rc = 0;
2029 
2030 	(*packet_size) = 0;
2031 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2032 			  ECRYPTFS_SIG_SIZE);
2033 	encrypted_session_key_valid = 0;
2034 	for (i = 0; i < crypt_stat->key_size; i++)
2035 		encrypted_session_key_valid |=
2036 			auth_tok->session_key.encrypted_key[i];
2037 	if (encrypted_session_key_valid) {
2038 		memcpy(key_rec->enc_key,
2039 		       auth_tok->session_key.encrypted_key,
2040 		       auth_tok->session_key.encrypted_key_size);
2041 		up_write(&(auth_tok_key->sem));
2042 		key_put(auth_tok_key);
2043 		goto encrypted_session_key_set;
2044 	}
2045 	if (auth_tok->session_key.encrypted_key_size == 0)
2046 		auth_tok->session_key.encrypted_key_size =
2047 			auth_tok->token.private_key.key_size;
2048 	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2049 				     key_rec);
2050 	if (rc) {
2051 		printk(KERN_ERR "Failed to encrypt session key via a key "
2052 		       "module; rc = [%d]\n", rc);
2053 		goto out;
2054 	}
2055 	if (ecryptfs_verbosity > 0) {
2056 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2057 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2058 	}
2059 encrypted_session_key_set:
2060 	/* This format is inspired by OpenPGP; see RFC 2440
2061 	 * packet tag 1 */
2062 	max_packet_size = (1                         /* Tag 1 identifier */
2063 			   + 3                       /* Max Tag 1 packet size */
2064 			   + 1                       /* Version */
2065 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2066 			   + 1                       /* Cipher identifier */
2067 			   + key_rec->enc_key_size); /* Encrypted key size */
2068 	if (max_packet_size > (*remaining_bytes)) {
2069 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2070 		       "need up to [%td] bytes, but there are only [%td] "
2071 		       "available\n", max_packet_size, (*remaining_bytes));
2072 		rc = -EINVAL;
2073 		goto out;
2074 	}
2075 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2076 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2077 					  (max_packet_size - 4),
2078 					  &packet_size_length);
2079 	if (rc) {
2080 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2081 				"header; cannot generate packet length\n");
2082 		goto out;
2083 	}
2084 	(*packet_size) += packet_size_length;
2085 	dest[(*packet_size)++] = 0x03; /* version 3 */
2086 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2087 	(*packet_size) += ECRYPTFS_SIG_SIZE;
2088 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2089 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2090 	       key_rec->enc_key_size);
2091 	(*packet_size) += key_rec->enc_key_size;
2092 out:
2093 	if (rc)
2094 		(*packet_size) = 0;
2095 	else
2096 		(*remaining_bytes) -= (*packet_size);
2097 	return rc;
2098 }
2099 
2100 /**
2101  * write_tag_11_packet
2102  * @dest: Target into which Tag 11 packet is to be written
2103  * @remaining_bytes: Maximum packet length
2104  * @contents: Byte array of contents to copy in
2105  * @contents_length: Number of bytes in contents
2106  * @packet_length: Length of the Tag 11 packet written; zero on error
2107  *
2108  * Returns zero on success; non-zero on error.
2109  */
2110 static int
2111 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2112 		    size_t contents_length, size_t *packet_length)
2113 {
2114 	size_t packet_size_length;
2115 	size_t max_packet_size;
2116 	int rc = 0;
2117 
2118 	(*packet_length) = 0;
2119 	/* This format is inspired by OpenPGP; see RFC 2440
2120 	 * packet tag 11 */
2121 	max_packet_size = (1                   /* Tag 11 identifier */
2122 			   + 3                 /* Max Tag 11 packet size */
2123 			   + 1                 /* Binary format specifier */
2124 			   + 1                 /* Filename length */
2125 			   + 8                 /* Filename ("_CONSOLE") */
2126 			   + 4                 /* Modification date */
2127 			   + contents_length); /* Literal data */
2128 	if (max_packet_size > (*remaining_bytes)) {
2129 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2130 		       "need up to [%td] bytes, but there are only [%td] "
2131 		       "available\n", max_packet_size, (*remaining_bytes));
2132 		rc = -EINVAL;
2133 		goto out;
2134 	}
2135 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2136 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2137 					  (max_packet_size - 4),
2138 					  &packet_size_length);
2139 	if (rc) {
2140 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2141 		       "generate packet length. rc = [%d]\n", rc);
2142 		goto out;
2143 	}
2144 	(*packet_length) += packet_size_length;
2145 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2146 	dest[(*packet_length)++] = 8;
2147 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2148 	(*packet_length) += 8;
2149 	memset(&dest[(*packet_length)], 0x00, 4);
2150 	(*packet_length) += 4;
2151 	memcpy(&dest[(*packet_length)], contents, contents_length);
2152 	(*packet_length) += contents_length;
2153  out:
2154 	if (rc)
2155 		(*packet_length) = 0;
2156 	else
2157 		(*remaining_bytes) -= (*packet_length);
2158 	return rc;
2159 }
2160 
2161 /**
2162  * write_tag_3_packet
2163  * @dest: Buffer into which to write the packet
2164  * @remaining_bytes: Maximum number of bytes that can be written
2165  * @auth_tok: Authentication token
2166  * @crypt_stat: The cryptographic context
2167  * @key_rec: encrypted key
2168  * @packet_size: This function will write the number of bytes that end
2169  *               up constituting the packet; set to zero on error
2170  *
2171  * Returns zero on success; non-zero on error.
2172  */
2173 static int
2174 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2175 		   struct ecryptfs_auth_tok *auth_tok,
2176 		   struct ecryptfs_crypt_stat *crypt_stat,
2177 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2178 {
2179 	size_t i;
2180 	size_t encrypted_session_key_valid = 0;
2181 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2182 	struct scatterlist dst_sg[2];
2183 	struct scatterlist src_sg[2];
2184 	struct mutex *tfm_mutex = NULL;
2185 	u8 cipher_code;
2186 	size_t packet_size_length;
2187 	size_t max_packet_size;
2188 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2189 		crypt_stat->mount_crypt_stat;
2190 	struct crypto_skcipher *tfm;
2191 	struct skcipher_request *req;
2192 	int rc = 0;
2193 
2194 	(*packet_size) = 0;
2195 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2196 			  ECRYPTFS_SIG_SIZE);
2197 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2198 							crypt_stat->cipher);
2199 	if (unlikely(rc)) {
2200 		printk(KERN_ERR "Internal error whilst attempting to get "
2201 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2202 		       crypt_stat->cipher, rc);
2203 		goto out;
2204 	}
2205 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2206 		printk(KERN_WARNING "No key size specified at mount; "
2207 		       "defaulting to [%d]\n",
2208 		       crypto_skcipher_max_keysize(tfm));
2209 		mount_crypt_stat->global_default_cipher_key_size =
2210 			crypto_skcipher_max_keysize(tfm);
2211 	}
2212 	if (crypt_stat->key_size == 0)
2213 		crypt_stat->key_size =
2214 			mount_crypt_stat->global_default_cipher_key_size;
2215 	if (auth_tok->session_key.encrypted_key_size == 0)
2216 		auth_tok->session_key.encrypted_key_size =
2217 			crypt_stat->key_size;
2218 	if (crypt_stat->key_size == 24
2219 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2220 		memset((crypt_stat->key + 24), 0, 8);
2221 		auth_tok->session_key.encrypted_key_size = 32;
2222 	} else
2223 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2224 	key_rec->enc_key_size =
2225 		auth_tok->session_key.encrypted_key_size;
2226 	encrypted_session_key_valid = 0;
2227 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2228 		encrypted_session_key_valid |=
2229 			auth_tok->session_key.encrypted_key[i];
2230 	if (encrypted_session_key_valid) {
2231 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2232 				"using auth_tok->session_key.encrypted_key, "
2233 				"where key_rec->enc_key_size = [%zd]\n",
2234 				key_rec->enc_key_size);
2235 		memcpy(key_rec->enc_key,
2236 		       auth_tok->session_key.encrypted_key,
2237 		       key_rec->enc_key_size);
2238 		goto encrypted_session_key_set;
2239 	}
2240 	if (auth_tok->token.password.flags &
2241 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2242 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2243 				"session key encryption key of size [%d]\n",
2244 				auth_tok->token.password.
2245 				session_key_encryption_key_bytes);
2246 		memcpy(session_key_encryption_key,
2247 		       auth_tok->token.password.session_key_encryption_key,
2248 		       crypt_stat->key_size);
2249 		ecryptfs_printk(KERN_DEBUG,
2250 				"Cached session key encryption key:\n");
2251 		if (ecryptfs_verbosity > 0)
2252 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2253 	}
2254 	if (unlikely(ecryptfs_verbosity > 0)) {
2255 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2256 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2257 	}
2258 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2259 				 src_sg, 2);
2260 	if (rc < 1 || rc > 2) {
2261 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2262 				"for crypt_stat session key; expected rc = 1; "
2263 				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2264 				rc, key_rec->enc_key_size);
2265 		rc = -ENOMEM;
2266 		goto out;
2267 	}
2268 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2269 				 dst_sg, 2);
2270 	if (rc < 1 || rc > 2) {
2271 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2272 				"for crypt_stat encrypted session key; "
2273 				"expected rc = 1; got rc = [%d]. "
2274 				"key_rec->enc_key_size = [%zd]\n", rc,
2275 				key_rec->enc_key_size);
2276 		rc = -ENOMEM;
2277 		goto out;
2278 	}
2279 	mutex_lock(tfm_mutex);
2280 	rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2281 				    crypt_stat->key_size);
2282 	if (rc < 0) {
2283 		mutex_unlock(tfm_mutex);
2284 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2285 				"context; rc = [%d]\n", rc);
2286 		goto out;
2287 	}
2288 
2289 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
2290 	if (!req) {
2291 		mutex_unlock(tfm_mutex);
2292 		ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2293 				"attempting to skcipher_request_alloc for "
2294 				"%s\n", crypto_skcipher_driver_name(tfm));
2295 		rc = -ENOMEM;
2296 		goto out;
2297 	}
2298 
2299 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2300 				      NULL, NULL);
2301 
2302 	rc = 0;
2303 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2304 			crypt_stat->key_size);
2305 	skcipher_request_set_crypt(req, src_sg, dst_sg,
2306 				   (*key_rec).enc_key_size, NULL);
2307 	rc = crypto_skcipher_encrypt(req);
2308 	mutex_unlock(tfm_mutex);
2309 	skcipher_request_free(req);
2310 	if (rc) {
2311 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2312 		goto out;
2313 	}
2314 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2315 	if (ecryptfs_verbosity > 0) {
2316 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2317 				key_rec->enc_key_size);
2318 		ecryptfs_dump_hex(key_rec->enc_key,
2319 				  key_rec->enc_key_size);
2320 	}
2321 encrypted_session_key_set:
2322 	/* This format is inspired by OpenPGP; see RFC 2440
2323 	 * packet tag 3 */
2324 	max_packet_size = (1                         /* Tag 3 identifier */
2325 			   + 3                       /* Max Tag 3 packet size */
2326 			   + 1                       /* Version */
2327 			   + 1                       /* Cipher code */
2328 			   + 1                       /* S2K specifier */
2329 			   + 1                       /* Hash identifier */
2330 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2331 			   + 1                       /* Hash iterations */
2332 			   + key_rec->enc_key_size); /* Encrypted key size */
2333 	if (max_packet_size > (*remaining_bytes)) {
2334 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2335 		       "there are only [%td] available\n", max_packet_size,
2336 		       (*remaining_bytes));
2337 		rc = -EINVAL;
2338 		goto out;
2339 	}
2340 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2341 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2342 	 * to get the number of octets in the actual Tag 3 packet */
2343 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2344 					  (max_packet_size - 4),
2345 					  &packet_size_length);
2346 	if (rc) {
2347 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2348 		       "generate packet length. rc = [%d]\n", rc);
2349 		goto out;
2350 	}
2351 	(*packet_size) += packet_size_length;
2352 	dest[(*packet_size)++] = 0x04; /* version 4 */
2353 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2354 	 * specified with strings */
2355 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2356 						      crypt_stat->key_size);
2357 	if (cipher_code == 0) {
2358 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2359 				"cipher [%s]\n", crypt_stat->cipher);
2360 		rc = -EINVAL;
2361 		goto out;
2362 	}
2363 	dest[(*packet_size)++] = cipher_code;
2364 	dest[(*packet_size)++] = 0x03;	/* S2K */
2365 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2366 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2367 	       ECRYPTFS_SALT_SIZE);
2368 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2369 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2370 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2371 	       key_rec->enc_key_size);
2372 	(*packet_size) += key_rec->enc_key_size;
2373 out:
2374 	if (rc)
2375 		(*packet_size) = 0;
2376 	else
2377 		(*remaining_bytes) -= (*packet_size);
2378 	return rc;
2379 }
2380 
2381 struct kmem_cache *ecryptfs_key_record_cache;
2382 
2383 /**
2384  * ecryptfs_generate_key_packet_set
2385  * @dest_base: Virtual address from which to write the key record set
2386  * @crypt_stat: The cryptographic context from which the
2387  *              authentication tokens will be retrieved
2388  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2389  *                   for the global parameters
2390  * @len: The amount written
2391  * @max: The maximum amount of data allowed to be written
2392  *
2393  * Generates a key packet set and writes it to the virtual address
2394  * passed in.
2395  *
2396  * Returns zero on success; non-zero on error.
2397  */
2398 int
2399 ecryptfs_generate_key_packet_set(char *dest_base,
2400 				 struct ecryptfs_crypt_stat *crypt_stat,
2401 				 struct dentry *ecryptfs_dentry, size_t *len,
2402 				 size_t max)
2403 {
2404 	struct ecryptfs_auth_tok *auth_tok;
2405 	struct key *auth_tok_key = NULL;
2406 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2407 		&ecryptfs_superblock_to_private(
2408 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2409 	size_t written;
2410 	struct ecryptfs_key_record *key_rec;
2411 	struct ecryptfs_key_sig *key_sig;
2412 	int rc = 0;
2413 
2414 	(*len) = 0;
2415 	mutex_lock(&crypt_stat->keysig_list_mutex);
2416 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2417 	if (!key_rec) {
2418 		rc = -ENOMEM;
2419 		goto out;
2420 	}
2421 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2422 			    crypt_stat_list) {
2423 		memset(key_rec, 0, sizeof(*key_rec));
2424 		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2425 							   &auth_tok,
2426 							   mount_crypt_stat,
2427 							   key_sig->keysig);
2428 		if (rc) {
2429 			printk(KERN_WARNING "Unable to retrieve auth tok with "
2430 			       "sig = [%s]\n", key_sig->keysig);
2431 			rc = process_find_global_auth_tok_for_sig_err(rc);
2432 			goto out_free;
2433 		}
2434 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2435 			rc = write_tag_3_packet((dest_base + (*len)),
2436 						&max, auth_tok,
2437 						crypt_stat, key_rec,
2438 						&written);
2439 			up_write(&(auth_tok_key->sem));
2440 			key_put(auth_tok_key);
2441 			if (rc) {
2442 				ecryptfs_printk(KERN_WARNING, "Error "
2443 						"writing tag 3 packet\n");
2444 				goto out_free;
2445 			}
2446 			(*len) += written;
2447 			/* Write auth tok signature packet */
2448 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2449 						 key_rec->sig,
2450 						 ECRYPTFS_SIG_SIZE, &written);
2451 			if (rc) {
2452 				ecryptfs_printk(KERN_ERR, "Error writing "
2453 						"auth tok signature packet\n");
2454 				goto out_free;
2455 			}
2456 			(*len) += written;
2457 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2458 			rc = write_tag_1_packet(dest_base + (*len), &max,
2459 						auth_tok_key, auth_tok,
2460 						crypt_stat, key_rec, &written);
2461 			if (rc) {
2462 				ecryptfs_printk(KERN_WARNING, "Error "
2463 						"writing tag 1 packet\n");
2464 				goto out_free;
2465 			}
2466 			(*len) += written;
2467 		} else {
2468 			up_write(&(auth_tok_key->sem));
2469 			key_put(auth_tok_key);
2470 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2471 					"authentication token type\n");
2472 			rc = -EINVAL;
2473 			goto out_free;
2474 		}
2475 	}
2476 	if (likely(max > 0)) {
2477 		dest_base[(*len)] = 0x00;
2478 	} else {
2479 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2480 		rc = -EIO;
2481 	}
2482 out_free:
2483 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2484 out:
2485 	if (rc)
2486 		(*len) = 0;
2487 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2488 	return rc;
2489 }
2490 
2491 struct kmem_cache *ecryptfs_key_sig_cache;
2492 
2493 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2494 {
2495 	struct ecryptfs_key_sig *new_key_sig;
2496 
2497 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2498 	if (!new_key_sig)
2499 		return -ENOMEM;
2500 
2501 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2502 	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2503 	/* Caller must hold keysig_list_mutex */
2504 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2505 
2506 	return 0;
2507 }
2508 
2509 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2510 
2511 int
2512 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2513 			     char *sig, u32 global_auth_tok_flags)
2514 {
2515 	struct ecryptfs_global_auth_tok *new_auth_tok;
2516 
2517 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2518 					GFP_KERNEL);
2519 	if (!new_auth_tok)
2520 		return -ENOMEM;
2521 
2522 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2523 	new_auth_tok->flags = global_auth_tok_flags;
2524 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2525 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2526 	list_add(&new_auth_tok->mount_crypt_stat_list,
2527 		 &mount_crypt_stat->global_auth_tok_list);
2528 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2529 	return 0;
2530 }
2531 
2532