xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision fd589a8f)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
38 
39 static int
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
41 			     struct page *dst_page, int dst_offset,
42 			     struct page *src_page, int src_offset, int size,
43 			     unsigned char *iv);
44 static int
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46 			     struct page *dst_page, int dst_offset,
47 			     struct page *src_page, int src_offset, int size,
48 			     unsigned char *iv);
49 
50 /**
51  * ecryptfs_to_hex
52  * @dst: Buffer to take hex character representation of contents of
53  *       src; must be at least of size (src_size * 2)
54  * @src: Buffer to be converted to a hex string respresentation
55  * @src_size: number of bytes to convert
56  */
57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
58 {
59 	int x;
60 
61 	for (x = 0; x < src_size; x++)
62 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
63 }
64 
65 /**
66  * ecryptfs_from_hex
67  * @dst: Buffer to take the bytes from src hex; must be at least of
68  *       size (src_size / 2)
69  * @src: Buffer to be converted from a hex string respresentation to raw value
70  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71  */
72 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
73 {
74 	int x;
75 	char tmp[3] = { 0, };
76 
77 	for (x = 0; x < dst_size; x++) {
78 		tmp[0] = src[x * 2];
79 		tmp[1] = src[x * 2 + 1];
80 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
81 	}
82 }
83 
84 /**
85  * ecryptfs_calculate_md5 - calculates the md5 of @src
86  * @dst: Pointer to 16 bytes of allocated memory
87  * @crypt_stat: Pointer to crypt_stat struct for the current inode
88  * @src: Data to be md5'd
89  * @len: Length of @src
90  *
91  * Uses the allocated crypto context that crypt_stat references to
92  * generate the MD5 sum of the contents of src.
93  */
94 static int ecryptfs_calculate_md5(char *dst,
95 				  struct ecryptfs_crypt_stat *crypt_stat,
96 				  char *src, int len)
97 {
98 	struct scatterlist sg;
99 	struct hash_desc desc = {
100 		.tfm = crypt_stat->hash_tfm,
101 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
102 	};
103 	int rc = 0;
104 
105 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
106 	sg_init_one(&sg, (u8 *)src, len);
107 	if (!desc.tfm) {
108 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109 					     CRYPTO_ALG_ASYNC);
110 		if (IS_ERR(desc.tfm)) {
111 			rc = PTR_ERR(desc.tfm);
112 			ecryptfs_printk(KERN_ERR, "Error attempting to "
113 					"allocate crypto context; rc = [%d]\n",
114 					rc);
115 			goto out;
116 		}
117 		crypt_stat->hash_tfm = desc.tfm;
118 	}
119 	rc = crypto_hash_init(&desc);
120 	if (rc) {
121 		printk(KERN_ERR
122 		       "%s: Error initializing crypto hash; rc = [%d]\n",
123 		       __func__, rc);
124 		goto out;
125 	}
126 	rc = crypto_hash_update(&desc, &sg, len);
127 	if (rc) {
128 		printk(KERN_ERR
129 		       "%s: Error updating crypto hash; rc = [%d]\n",
130 		       __func__, rc);
131 		goto out;
132 	}
133 	rc = crypto_hash_final(&desc, dst);
134 	if (rc) {
135 		printk(KERN_ERR
136 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
137 		       __func__, rc);
138 		goto out;
139 	}
140 out:
141 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
142 	return rc;
143 }
144 
145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
146 						  char *cipher_name,
147 						  char *chaining_modifier)
148 {
149 	int cipher_name_len = strlen(cipher_name);
150 	int chaining_modifier_len = strlen(chaining_modifier);
151 	int algified_name_len;
152 	int rc;
153 
154 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
155 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
156 	if (!(*algified_name)) {
157 		rc = -ENOMEM;
158 		goto out;
159 	}
160 	snprintf((*algified_name), algified_name_len, "%s(%s)",
161 		 chaining_modifier, cipher_name);
162 	rc = 0;
163 out:
164 	return rc;
165 }
166 
167 /**
168  * ecryptfs_derive_iv
169  * @iv: destination for the derived iv vale
170  * @crypt_stat: Pointer to crypt_stat struct for the current inode
171  * @offset: Offset of the extent whose IV we are to derive
172  *
173  * Generate the initialization vector from the given root IV and page
174  * offset.
175  *
176  * Returns zero on success; non-zero on error.
177  */
178 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
179 		       loff_t offset)
180 {
181 	int rc = 0;
182 	char dst[MD5_DIGEST_SIZE];
183 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
184 
185 	if (unlikely(ecryptfs_verbosity > 0)) {
186 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
187 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
188 	}
189 	/* TODO: It is probably secure to just cast the least
190 	 * significant bits of the root IV into an unsigned long and
191 	 * add the offset to that rather than go through all this
192 	 * hashing business. -Halcrow */
193 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
194 	memset((src + crypt_stat->iv_bytes), 0, 16);
195 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
196 	if (unlikely(ecryptfs_verbosity > 0)) {
197 		ecryptfs_printk(KERN_DEBUG, "source:\n");
198 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
199 	}
200 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
201 				    (crypt_stat->iv_bytes + 16));
202 	if (rc) {
203 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
204 				"MD5 while generating IV for a page\n");
205 		goto out;
206 	}
207 	memcpy(iv, dst, crypt_stat->iv_bytes);
208 	if (unlikely(ecryptfs_verbosity > 0)) {
209 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
210 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
211 	}
212 out:
213 	return rc;
214 }
215 
216 /**
217  * ecryptfs_init_crypt_stat
218  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
219  *
220  * Initialize the crypt_stat structure.
221  */
222 void
223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
224 {
225 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
227 	mutex_init(&crypt_stat->keysig_list_mutex);
228 	mutex_init(&crypt_stat->cs_mutex);
229 	mutex_init(&crypt_stat->cs_tfm_mutex);
230 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
231 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
232 }
233 
234 /**
235  * ecryptfs_destroy_crypt_stat
236  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
237  *
238  * Releases all memory associated with a crypt_stat struct.
239  */
240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
241 {
242 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
243 
244 	if (crypt_stat->tfm)
245 		crypto_free_blkcipher(crypt_stat->tfm);
246 	if (crypt_stat->hash_tfm)
247 		crypto_free_hash(crypt_stat->hash_tfm);
248 	mutex_lock(&crypt_stat->keysig_list_mutex);
249 	list_for_each_entry_safe(key_sig, key_sig_tmp,
250 				 &crypt_stat->keysig_list, crypt_stat_list) {
251 		list_del(&key_sig->crypt_stat_list);
252 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 	}
254 	mutex_unlock(&crypt_stat->keysig_list_mutex);
255 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
256 }
257 
258 void ecryptfs_destroy_mount_crypt_stat(
259 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
260 {
261 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
262 
263 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
264 		return;
265 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
266 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
267 				 &mount_crypt_stat->global_auth_tok_list,
268 				 mount_crypt_stat_list) {
269 		list_del(&auth_tok->mount_crypt_stat_list);
270 		mount_crypt_stat->num_global_auth_toks--;
271 		if (auth_tok->global_auth_tok_key
272 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
273 			key_put(auth_tok->global_auth_tok_key);
274 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
275 	}
276 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
277 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
278 }
279 
280 /**
281  * virt_to_scatterlist
282  * @addr: Virtual address
283  * @size: Size of data; should be an even multiple of the block size
284  * @sg: Pointer to scatterlist array; set to NULL to obtain only
285  *      the number of scatterlist structs required in array
286  * @sg_size: Max array size
287  *
288  * Fills in a scatterlist array with page references for a passed
289  * virtual address.
290  *
291  * Returns the number of scatterlist structs in array used
292  */
293 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
294 			int sg_size)
295 {
296 	int i = 0;
297 	struct page *pg;
298 	int offset;
299 	int remainder_of_page;
300 
301 	sg_init_table(sg, sg_size);
302 
303 	while (size > 0 && i < sg_size) {
304 		pg = virt_to_page(addr);
305 		offset = offset_in_page(addr);
306 		if (sg)
307 			sg_set_page(&sg[i], pg, 0, offset);
308 		remainder_of_page = PAGE_CACHE_SIZE - offset;
309 		if (size >= remainder_of_page) {
310 			if (sg)
311 				sg[i].length = remainder_of_page;
312 			addr += remainder_of_page;
313 			size -= remainder_of_page;
314 		} else {
315 			if (sg)
316 				sg[i].length = size;
317 			addr += size;
318 			size = 0;
319 		}
320 		i++;
321 	}
322 	if (size > 0)
323 		return -ENOMEM;
324 	return i;
325 }
326 
327 /**
328  * encrypt_scatterlist
329  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
330  * @dest_sg: Destination of encrypted data
331  * @src_sg: Data to be encrypted
332  * @size: Length of data to be encrypted
333  * @iv: iv to use during encryption
334  *
335  * Returns the number of bytes encrypted; negative value on error
336  */
337 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
338 			       struct scatterlist *dest_sg,
339 			       struct scatterlist *src_sg, int size,
340 			       unsigned char *iv)
341 {
342 	struct blkcipher_desc desc = {
343 		.tfm = crypt_stat->tfm,
344 		.info = iv,
345 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
346 	};
347 	int rc = 0;
348 
349 	BUG_ON(!crypt_stat || !crypt_stat->tfm
350 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
351 	if (unlikely(ecryptfs_verbosity > 0)) {
352 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
353 				crypt_stat->key_size);
354 		ecryptfs_dump_hex(crypt_stat->key,
355 				  crypt_stat->key_size);
356 	}
357 	/* Consider doing this once, when the file is opened */
358 	mutex_lock(&crypt_stat->cs_tfm_mutex);
359 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
360 		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
361 					     crypt_stat->key_size);
362 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
363 	}
364 	if (rc) {
365 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
366 				rc);
367 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
368 		rc = -EINVAL;
369 		goto out;
370 	}
371 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
372 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
373 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
374 out:
375 	return rc;
376 }
377 
378 /**
379  * ecryptfs_lower_offset_for_extent
380  *
381  * Convert an eCryptfs page index into a lower byte offset
382  */
383 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
384 					     struct ecryptfs_crypt_stat *crypt_stat)
385 {
386 	(*offset) = (crypt_stat->num_header_bytes_at_front
387 		     + (crypt_stat->extent_size * extent_num));
388 }
389 
390 /**
391  * ecryptfs_encrypt_extent
392  * @enc_extent_page: Allocated page into which to encrypt the data in
393  *                   @page
394  * @crypt_stat: crypt_stat containing cryptographic context for the
395  *              encryption operation
396  * @page: Page containing plaintext data extent to encrypt
397  * @extent_offset: Page extent offset for use in generating IV
398  *
399  * Encrypts one extent of data.
400  *
401  * Return zero on success; non-zero otherwise
402  */
403 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
404 				   struct ecryptfs_crypt_stat *crypt_stat,
405 				   struct page *page,
406 				   unsigned long extent_offset)
407 {
408 	loff_t extent_base;
409 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
410 	int rc;
411 
412 	extent_base = (((loff_t)page->index)
413 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
414 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
415 				(extent_base + extent_offset));
416 	if (rc) {
417 		ecryptfs_printk(KERN_ERR, "Error attempting to "
418 				"derive IV for extent [0x%.16x]; "
419 				"rc = [%d]\n", (extent_base + extent_offset),
420 				rc);
421 		goto out;
422 	}
423 	if (unlikely(ecryptfs_verbosity > 0)) {
424 		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
425 				"with iv:\n");
426 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
427 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
428 				"encryption:\n");
429 		ecryptfs_dump_hex((char *)
430 				  (page_address(page)
431 				   + (extent_offset * crypt_stat->extent_size)),
432 				  8);
433 	}
434 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
435 					  page, (extent_offset
436 						 * crypt_stat->extent_size),
437 					  crypt_stat->extent_size, extent_iv);
438 	if (rc < 0) {
439 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
440 		       "page->index = [%ld], extent_offset = [%ld]; "
441 		       "rc = [%d]\n", __func__, page->index, extent_offset,
442 		       rc);
443 		goto out;
444 	}
445 	rc = 0;
446 	if (unlikely(ecryptfs_verbosity > 0)) {
447 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
448 				"rc = [%d]\n", (extent_base + extent_offset),
449 				rc);
450 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
451 				"encryption:\n");
452 		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
453 	}
454 out:
455 	return rc;
456 }
457 
458 /**
459  * ecryptfs_encrypt_page
460  * @page: Page mapped from the eCryptfs inode for the file; contains
461  *        decrypted content that needs to be encrypted (to a temporary
462  *        page; not in place) and written out to the lower file
463  *
464  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
465  * that eCryptfs pages may straddle the lower pages -- for instance,
466  * if the file was created on a machine with an 8K page size
467  * (resulting in an 8K header), and then the file is copied onto a
468  * host with a 32K page size, then when reading page 0 of the eCryptfs
469  * file, 24K of page 0 of the lower file will be read and decrypted,
470  * and then 8K of page 1 of the lower file will be read and decrypted.
471  *
472  * Returns zero on success; negative on error
473  */
474 int ecryptfs_encrypt_page(struct page *page)
475 {
476 	struct inode *ecryptfs_inode;
477 	struct ecryptfs_crypt_stat *crypt_stat;
478 	char *enc_extent_virt;
479 	struct page *enc_extent_page = NULL;
480 	loff_t extent_offset;
481 	int rc = 0;
482 
483 	ecryptfs_inode = page->mapping->host;
484 	crypt_stat =
485 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
486 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
487 	enc_extent_page = alloc_page(GFP_USER);
488 	if (!enc_extent_page) {
489 		rc = -ENOMEM;
490 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
491 				"encrypted extent\n");
492 		goto out;
493 	}
494 	enc_extent_virt = kmap(enc_extent_page);
495 	for (extent_offset = 0;
496 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
497 	     extent_offset++) {
498 		loff_t offset;
499 
500 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
501 					     extent_offset);
502 		if (rc) {
503 			printk(KERN_ERR "%s: Error encrypting extent; "
504 			       "rc = [%d]\n", __func__, rc);
505 			goto out;
506 		}
507 		ecryptfs_lower_offset_for_extent(
508 			&offset, ((((loff_t)page->index)
509 				   * (PAGE_CACHE_SIZE
510 				      / crypt_stat->extent_size))
511 				  + extent_offset), crypt_stat);
512 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
513 					  offset, crypt_stat->extent_size);
514 		if (rc) {
515 			ecryptfs_printk(KERN_ERR, "Error attempting "
516 					"to write lower page; rc = [%d]"
517 					"\n", rc);
518 			goto out;
519 		}
520 	}
521 out:
522 	if (enc_extent_page) {
523 		kunmap(enc_extent_page);
524 		__free_page(enc_extent_page);
525 	}
526 	return rc;
527 }
528 
529 static int ecryptfs_decrypt_extent(struct page *page,
530 				   struct ecryptfs_crypt_stat *crypt_stat,
531 				   struct page *enc_extent_page,
532 				   unsigned long extent_offset)
533 {
534 	loff_t extent_base;
535 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
536 	int rc;
537 
538 	extent_base = (((loff_t)page->index)
539 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
540 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
541 				(extent_base + extent_offset));
542 	if (rc) {
543 		ecryptfs_printk(KERN_ERR, "Error attempting to "
544 				"derive IV for extent [0x%.16x]; "
545 				"rc = [%d]\n", (extent_base + extent_offset),
546 				rc);
547 		goto out;
548 	}
549 	if (unlikely(ecryptfs_verbosity > 0)) {
550 		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
551 				"with iv:\n");
552 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
553 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
554 				"decryption:\n");
555 		ecryptfs_dump_hex((char *)
556 				  (page_address(enc_extent_page)
557 				   + (extent_offset * crypt_stat->extent_size)),
558 				  8);
559 	}
560 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
561 					  (extent_offset
562 					   * crypt_stat->extent_size),
563 					  enc_extent_page, 0,
564 					  crypt_stat->extent_size, extent_iv);
565 	if (rc < 0) {
566 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
567 		       "page->index = [%ld], extent_offset = [%ld]; "
568 		       "rc = [%d]\n", __func__, page->index, extent_offset,
569 		       rc);
570 		goto out;
571 	}
572 	rc = 0;
573 	if (unlikely(ecryptfs_verbosity > 0)) {
574 		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
575 				"rc = [%d]\n", (extent_base + extent_offset),
576 				rc);
577 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
578 				"decryption:\n");
579 		ecryptfs_dump_hex((char *)(page_address(page)
580 					   + (extent_offset
581 					      * crypt_stat->extent_size)), 8);
582 	}
583 out:
584 	return rc;
585 }
586 
587 /**
588  * ecryptfs_decrypt_page
589  * @page: Page mapped from the eCryptfs inode for the file; data read
590  *        and decrypted from the lower file will be written into this
591  *        page
592  *
593  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
594  * that eCryptfs pages may straddle the lower pages -- for instance,
595  * if the file was created on a machine with an 8K page size
596  * (resulting in an 8K header), and then the file is copied onto a
597  * host with a 32K page size, then when reading page 0 of the eCryptfs
598  * file, 24K of page 0 of the lower file will be read and decrypted,
599  * and then 8K of page 1 of the lower file will be read and decrypted.
600  *
601  * Returns zero on success; negative on error
602  */
603 int ecryptfs_decrypt_page(struct page *page)
604 {
605 	struct inode *ecryptfs_inode;
606 	struct ecryptfs_crypt_stat *crypt_stat;
607 	char *enc_extent_virt;
608 	struct page *enc_extent_page = NULL;
609 	unsigned long extent_offset;
610 	int rc = 0;
611 
612 	ecryptfs_inode = page->mapping->host;
613 	crypt_stat =
614 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
615 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
616 	enc_extent_page = alloc_page(GFP_USER);
617 	if (!enc_extent_page) {
618 		rc = -ENOMEM;
619 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
620 				"encrypted extent\n");
621 		goto out;
622 	}
623 	enc_extent_virt = kmap(enc_extent_page);
624 	for (extent_offset = 0;
625 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
626 	     extent_offset++) {
627 		loff_t offset;
628 
629 		ecryptfs_lower_offset_for_extent(
630 			&offset, ((page->index * (PAGE_CACHE_SIZE
631 						  / crypt_stat->extent_size))
632 				  + extent_offset), crypt_stat);
633 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
634 					 crypt_stat->extent_size,
635 					 ecryptfs_inode);
636 		if (rc) {
637 			ecryptfs_printk(KERN_ERR, "Error attempting "
638 					"to read lower page; rc = [%d]"
639 					"\n", rc);
640 			goto out;
641 		}
642 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
643 					     extent_offset);
644 		if (rc) {
645 			printk(KERN_ERR "%s: Error encrypting extent; "
646 			       "rc = [%d]\n", __func__, rc);
647 			goto out;
648 		}
649 	}
650 out:
651 	if (enc_extent_page) {
652 		kunmap(enc_extent_page);
653 		__free_page(enc_extent_page);
654 	}
655 	return rc;
656 }
657 
658 /**
659  * decrypt_scatterlist
660  * @crypt_stat: Cryptographic context
661  * @dest_sg: The destination scatterlist to decrypt into
662  * @src_sg: The source scatterlist to decrypt from
663  * @size: The number of bytes to decrypt
664  * @iv: The initialization vector to use for the decryption
665  *
666  * Returns the number of bytes decrypted; negative value on error
667  */
668 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
669 			       struct scatterlist *dest_sg,
670 			       struct scatterlist *src_sg, int size,
671 			       unsigned char *iv)
672 {
673 	struct blkcipher_desc desc = {
674 		.tfm = crypt_stat->tfm,
675 		.info = iv,
676 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
677 	};
678 	int rc = 0;
679 
680 	/* Consider doing this once, when the file is opened */
681 	mutex_lock(&crypt_stat->cs_tfm_mutex);
682 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
683 				     crypt_stat->key_size);
684 	if (rc) {
685 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
686 				rc);
687 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
688 		rc = -EINVAL;
689 		goto out;
690 	}
691 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
692 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
693 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
694 	if (rc) {
695 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
696 				rc);
697 		goto out;
698 	}
699 	rc = size;
700 out:
701 	return rc;
702 }
703 
704 /**
705  * ecryptfs_encrypt_page_offset
706  * @crypt_stat: The cryptographic context
707  * @dst_page: The page to encrypt into
708  * @dst_offset: The offset in the page to encrypt into
709  * @src_page: The page to encrypt from
710  * @src_offset: The offset in the page to encrypt from
711  * @size: The number of bytes to encrypt
712  * @iv: The initialization vector to use for the encryption
713  *
714  * Returns the number of bytes encrypted
715  */
716 static int
717 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
718 			     struct page *dst_page, int dst_offset,
719 			     struct page *src_page, int src_offset, int size,
720 			     unsigned char *iv)
721 {
722 	struct scatterlist src_sg, dst_sg;
723 
724 	sg_init_table(&src_sg, 1);
725 	sg_init_table(&dst_sg, 1);
726 
727 	sg_set_page(&src_sg, src_page, size, src_offset);
728 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
729 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
730 }
731 
732 /**
733  * ecryptfs_decrypt_page_offset
734  * @crypt_stat: The cryptographic context
735  * @dst_page: The page to decrypt into
736  * @dst_offset: The offset in the page to decrypt into
737  * @src_page: The page to decrypt from
738  * @src_offset: The offset in the page to decrypt from
739  * @size: The number of bytes to decrypt
740  * @iv: The initialization vector to use for the decryption
741  *
742  * Returns the number of bytes decrypted
743  */
744 static int
745 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
746 			     struct page *dst_page, int dst_offset,
747 			     struct page *src_page, int src_offset, int size,
748 			     unsigned char *iv)
749 {
750 	struct scatterlist src_sg, dst_sg;
751 
752 	sg_init_table(&src_sg, 1);
753 	sg_set_page(&src_sg, src_page, size, src_offset);
754 
755 	sg_init_table(&dst_sg, 1);
756 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
757 
758 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
759 }
760 
761 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
762 
763 /**
764  * ecryptfs_init_crypt_ctx
765  * @crypt_stat: Uninitilized crypt stats structure
766  *
767  * Initialize the crypto context.
768  *
769  * TODO: Performance: Keep a cache of initialized cipher contexts;
770  * only init if needed
771  */
772 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
773 {
774 	char *full_alg_name;
775 	int rc = -EINVAL;
776 
777 	if (!crypt_stat->cipher) {
778 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
779 		goto out;
780 	}
781 	ecryptfs_printk(KERN_DEBUG,
782 			"Initializing cipher [%s]; strlen = [%d]; "
783 			"key_size_bits = [%d]\n",
784 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
785 			crypt_stat->key_size << 3);
786 	if (crypt_stat->tfm) {
787 		rc = 0;
788 		goto out;
789 	}
790 	mutex_lock(&crypt_stat->cs_tfm_mutex);
791 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
792 						    crypt_stat->cipher, "cbc");
793 	if (rc)
794 		goto out_unlock;
795 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
796 						 CRYPTO_ALG_ASYNC);
797 	kfree(full_alg_name);
798 	if (IS_ERR(crypt_stat->tfm)) {
799 		rc = PTR_ERR(crypt_stat->tfm);
800 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
801 				"Error initializing cipher [%s]\n",
802 				crypt_stat->cipher);
803 		goto out_unlock;
804 	}
805 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
806 	rc = 0;
807 out_unlock:
808 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
809 out:
810 	return rc;
811 }
812 
813 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
814 {
815 	int extent_size_tmp;
816 
817 	crypt_stat->extent_mask = 0xFFFFFFFF;
818 	crypt_stat->extent_shift = 0;
819 	if (crypt_stat->extent_size == 0)
820 		return;
821 	extent_size_tmp = crypt_stat->extent_size;
822 	while ((extent_size_tmp & 0x01) == 0) {
823 		extent_size_tmp >>= 1;
824 		crypt_stat->extent_mask <<= 1;
825 		crypt_stat->extent_shift++;
826 	}
827 }
828 
829 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
830 {
831 	/* Default values; may be overwritten as we are parsing the
832 	 * packets. */
833 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
834 	set_extent_mask_and_shift(crypt_stat);
835 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
836 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
837 		crypt_stat->num_header_bytes_at_front = 0;
838 	else {
839 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
840 			crypt_stat->num_header_bytes_at_front =
841 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
842 		else
843 			crypt_stat->num_header_bytes_at_front =	PAGE_CACHE_SIZE;
844 	}
845 }
846 
847 /**
848  * ecryptfs_compute_root_iv
849  * @crypt_stats
850  *
851  * On error, sets the root IV to all 0's.
852  */
853 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
854 {
855 	int rc = 0;
856 	char dst[MD5_DIGEST_SIZE];
857 
858 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
859 	BUG_ON(crypt_stat->iv_bytes <= 0);
860 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
861 		rc = -EINVAL;
862 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
863 				"cannot generate root IV\n");
864 		goto out;
865 	}
866 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
867 				    crypt_stat->key_size);
868 	if (rc) {
869 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
870 				"MD5 while generating root IV\n");
871 		goto out;
872 	}
873 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
874 out:
875 	if (rc) {
876 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
877 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
878 	}
879 	return rc;
880 }
881 
882 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
883 {
884 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
885 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
886 	ecryptfs_compute_root_iv(crypt_stat);
887 	if (unlikely(ecryptfs_verbosity > 0)) {
888 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
889 		ecryptfs_dump_hex(crypt_stat->key,
890 				  crypt_stat->key_size);
891 	}
892 }
893 
894 /**
895  * ecryptfs_copy_mount_wide_flags_to_inode_flags
896  * @crypt_stat: The inode's cryptographic context
897  * @mount_crypt_stat: The mount point's cryptographic context
898  *
899  * This function propagates the mount-wide flags to individual inode
900  * flags.
901  */
902 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
903 	struct ecryptfs_crypt_stat *crypt_stat,
904 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
905 {
906 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
907 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
908 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
909 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
910 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
911 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
912 		if (mount_crypt_stat->flags
913 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
914 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
915 		else if (mount_crypt_stat->flags
916 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
917 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
918 	}
919 }
920 
921 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
922 	struct ecryptfs_crypt_stat *crypt_stat,
923 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
924 {
925 	struct ecryptfs_global_auth_tok *global_auth_tok;
926 	int rc = 0;
927 
928 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
929 	list_for_each_entry(global_auth_tok,
930 			    &mount_crypt_stat->global_auth_tok_list,
931 			    mount_crypt_stat_list) {
932 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
933 			continue;
934 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
935 		if (rc) {
936 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
937 			mutex_unlock(
938 				&mount_crypt_stat->global_auth_tok_list_mutex);
939 			goto out;
940 		}
941 	}
942 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
943 out:
944 	return rc;
945 }
946 
947 /**
948  * ecryptfs_set_default_crypt_stat_vals
949  * @crypt_stat: The inode's cryptographic context
950  * @mount_crypt_stat: The mount point's cryptographic context
951  *
952  * Default values in the event that policy does not override them.
953  */
954 static void ecryptfs_set_default_crypt_stat_vals(
955 	struct ecryptfs_crypt_stat *crypt_stat,
956 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
957 {
958 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
959 						      mount_crypt_stat);
960 	ecryptfs_set_default_sizes(crypt_stat);
961 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
962 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
963 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
964 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
965 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
966 }
967 
968 /**
969  * ecryptfs_new_file_context
970  * @ecryptfs_dentry: The eCryptfs dentry
971  *
972  * If the crypto context for the file has not yet been established,
973  * this is where we do that.  Establishing a new crypto context
974  * involves the following decisions:
975  *  - What cipher to use?
976  *  - What set of authentication tokens to use?
977  * Here we just worry about getting enough information into the
978  * authentication tokens so that we know that they are available.
979  * We associate the available authentication tokens with the new file
980  * via the set of signatures in the crypt_stat struct.  Later, when
981  * the headers are actually written out, we may again defer to
982  * userspace to perform the encryption of the session key; for the
983  * foreseeable future, this will be the case with public key packets.
984  *
985  * Returns zero on success; non-zero otherwise
986  */
987 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
988 {
989 	struct ecryptfs_crypt_stat *crypt_stat =
990 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
991 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
992 	    &ecryptfs_superblock_to_private(
993 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
994 	int cipher_name_len;
995 	int rc = 0;
996 
997 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
998 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
999 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1000 						      mount_crypt_stat);
1001 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1002 							 mount_crypt_stat);
1003 	if (rc) {
1004 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1005 		       "to the inode key sigs; rc = [%d]\n", rc);
1006 		goto out;
1007 	}
1008 	cipher_name_len =
1009 		strlen(mount_crypt_stat->global_default_cipher_name);
1010 	memcpy(crypt_stat->cipher,
1011 	       mount_crypt_stat->global_default_cipher_name,
1012 	       cipher_name_len);
1013 	crypt_stat->cipher[cipher_name_len] = '\0';
1014 	crypt_stat->key_size =
1015 		mount_crypt_stat->global_default_cipher_key_size;
1016 	ecryptfs_generate_new_key(crypt_stat);
1017 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1018 	if (rc)
1019 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1020 				"context for cipher [%s]: rc = [%d]\n",
1021 				crypt_stat->cipher, rc);
1022 out:
1023 	return rc;
1024 }
1025 
1026 /**
1027  * contains_ecryptfs_marker - check for the ecryptfs marker
1028  * @data: The data block in which to check
1029  *
1030  * Returns one if marker found; zero if not found
1031  */
1032 static int contains_ecryptfs_marker(char *data)
1033 {
1034 	u32 m_1, m_2;
1035 
1036 	m_1 = get_unaligned_be32(data);
1037 	m_2 = get_unaligned_be32(data + 4);
1038 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1039 		return 1;
1040 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1041 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1042 			MAGIC_ECRYPTFS_MARKER);
1043 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1044 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1045 	return 0;
1046 }
1047 
1048 struct ecryptfs_flag_map_elem {
1049 	u32 file_flag;
1050 	u32 local_flag;
1051 };
1052 
1053 /* Add support for additional flags by adding elements here. */
1054 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1055 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1056 	{0x00000002, ECRYPTFS_ENCRYPTED},
1057 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1058 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1059 };
1060 
1061 /**
1062  * ecryptfs_process_flags
1063  * @crypt_stat: The cryptographic context
1064  * @page_virt: Source data to be parsed
1065  * @bytes_read: Updated with the number of bytes read
1066  *
1067  * Returns zero on success; non-zero if the flag set is invalid
1068  */
1069 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1070 				  char *page_virt, int *bytes_read)
1071 {
1072 	int rc = 0;
1073 	int i;
1074 	u32 flags;
1075 
1076 	flags = get_unaligned_be32(page_virt);
1077 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1078 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1079 		if (flags & ecryptfs_flag_map[i].file_flag) {
1080 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1081 		} else
1082 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1083 	/* Version is in top 8 bits of the 32-bit flag vector */
1084 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1085 	(*bytes_read) = 4;
1086 	return rc;
1087 }
1088 
1089 /**
1090  * write_ecryptfs_marker
1091  * @page_virt: The pointer to in a page to begin writing the marker
1092  * @written: Number of bytes written
1093  *
1094  * Marker = 0x3c81b7f5
1095  */
1096 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1097 {
1098 	u32 m_1, m_2;
1099 
1100 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1101 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1102 	put_unaligned_be32(m_1, page_virt);
1103 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1104 	put_unaligned_be32(m_2, page_virt);
1105 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1106 }
1107 
1108 static void
1109 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1110 		     size_t *written)
1111 {
1112 	u32 flags = 0;
1113 	int i;
1114 
1115 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1116 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1117 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1118 			flags |= ecryptfs_flag_map[i].file_flag;
1119 	/* Version is in top 8 bits of the 32-bit flag vector */
1120 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1121 	put_unaligned_be32(flags, page_virt);
1122 	(*written) = 4;
1123 }
1124 
1125 struct ecryptfs_cipher_code_str_map_elem {
1126 	char cipher_str[16];
1127 	u8 cipher_code;
1128 };
1129 
1130 /* Add support for additional ciphers by adding elements here. The
1131  * cipher_code is whatever OpenPGP applicatoins use to identify the
1132  * ciphers. List in order of probability. */
1133 static struct ecryptfs_cipher_code_str_map_elem
1134 ecryptfs_cipher_code_str_map[] = {
1135 	{"aes",RFC2440_CIPHER_AES_128 },
1136 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1137 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1138 	{"cast5", RFC2440_CIPHER_CAST_5},
1139 	{"twofish", RFC2440_CIPHER_TWOFISH},
1140 	{"cast6", RFC2440_CIPHER_CAST_6},
1141 	{"aes", RFC2440_CIPHER_AES_192},
1142 	{"aes", RFC2440_CIPHER_AES_256}
1143 };
1144 
1145 /**
1146  * ecryptfs_code_for_cipher_string
1147  * @cipher_name: The string alias for the cipher
1148  * @key_bytes: Length of key in bytes; used for AES code selection
1149  *
1150  * Returns zero on no match, or the cipher code on match
1151  */
1152 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1153 {
1154 	int i;
1155 	u8 code = 0;
1156 	struct ecryptfs_cipher_code_str_map_elem *map =
1157 		ecryptfs_cipher_code_str_map;
1158 
1159 	if (strcmp(cipher_name, "aes") == 0) {
1160 		switch (key_bytes) {
1161 		case 16:
1162 			code = RFC2440_CIPHER_AES_128;
1163 			break;
1164 		case 24:
1165 			code = RFC2440_CIPHER_AES_192;
1166 			break;
1167 		case 32:
1168 			code = RFC2440_CIPHER_AES_256;
1169 		}
1170 	} else {
1171 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1172 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1173 				code = map[i].cipher_code;
1174 				break;
1175 			}
1176 	}
1177 	return code;
1178 }
1179 
1180 /**
1181  * ecryptfs_cipher_code_to_string
1182  * @str: Destination to write out the cipher name
1183  * @cipher_code: The code to convert to cipher name string
1184  *
1185  * Returns zero on success
1186  */
1187 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1188 {
1189 	int rc = 0;
1190 	int i;
1191 
1192 	str[0] = '\0';
1193 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1194 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1195 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1196 	if (str[0] == '\0') {
1197 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1198 				"[%d]\n", cipher_code);
1199 		rc = -EINVAL;
1200 	}
1201 	return rc;
1202 }
1203 
1204 int ecryptfs_read_and_validate_header_region(char *data,
1205 					     struct inode *ecryptfs_inode)
1206 {
1207 	struct ecryptfs_crypt_stat *crypt_stat =
1208 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1209 	int rc;
1210 
1211 	if (crypt_stat->extent_size == 0)
1212 		crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
1213 	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1214 				 ecryptfs_inode);
1215 	if (rc) {
1216 		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1217 		       __func__, rc);
1218 		goto out;
1219 	}
1220 	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1221 		rc = -EINVAL;
1222 	}
1223 out:
1224 	return rc;
1225 }
1226 
1227 void
1228 ecryptfs_write_header_metadata(char *virt,
1229 			       struct ecryptfs_crypt_stat *crypt_stat,
1230 			       size_t *written)
1231 {
1232 	u32 header_extent_size;
1233 	u16 num_header_extents_at_front;
1234 
1235 	header_extent_size = (u32)crypt_stat->extent_size;
1236 	num_header_extents_at_front =
1237 		(u16)(crypt_stat->num_header_bytes_at_front
1238 		      / crypt_stat->extent_size);
1239 	put_unaligned_be32(header_extent_size, virt);
1240 	virt += 4;
1241 	put_unaligned_be16(num_header_extents_at_front, virt);
1242 	(*written) = 6;
1243 }
1244 
1245 struct kmem_cache *ecryptfs_header_cache_1;
1246 struct kmem_cache *ecryptfs_header_cache_2;
1247 
1248 /**
1249  * ecryptfs_write_headers_virt
1250  * @page_virt: The virtual address to write the headers to
1251  * @max: The size of memory allocated at page_virt
1252  * @size: Set to the number of bytes written by this function
1253  * @crypt_stat: The cryptographic context
1254  * @ecryptfs_dentry: The eCryptfs dentry
1255  *
1256  * Format version: 1
1257  *
1258  *   Header Extent:
1259  *     Octets 0-7:        Unencrypted file size (big-endian)
1260  *     Octets 8-15:       eCryptfs special marker
1261  *     Octets 16-19:      Flags
1262  *      Octet 16:         File format version number (between 0 and 255)
1263  *      Octets 17-18:     Reserved
1264  *      Octet 19:         Bit 1 (lsb): Reserved
1265  *                        Bit 2: Encrypted?
1266  *                        Bits 3-8: Reserved
1267  *     Octets 20-23:      Header extent size (big-endian)
1268  *     Octets 24-25:      Number of header extents at front of file
1269  *                        (big-endian)
1270  *     Octet  26:         Begin RFC 2440 authentication token packet set
1271  *   Data Extent 0:
1272  *     Lower data (CBC encrypted)
1273  *   Data Extent 1:
1274  *     Lower data (CBC encrypted)
1275  *   ...
1276  *
1277  * Returns zero on success
1278  */
1279 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1280 				       size_t *size,
1281 				       struct ecryptfs_crypt_stat *crypt_stat,
1282 				       struct dentry *ecryptfs_dentry)
1283 {
1284 	int rc;
1285 	size_t written;
1286 	size_t offset;
1287 
1288 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1289 	write_ecryptfs_marker((page_virt + offset), &written);
1290 	offset += written;
1291 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1292 	offset += written;
1293 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1294 				       &written);
1295 	offset += written;
1296 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1297 					      ecryptfs_dentry, &written,
1298 					      max - offset);
1299 	if (rc)
1300 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1301 				"set; rc = [%d]\n", rc);
1302 	if (size) {
1303 		offset += written;
1304 		*size = offset;
1305 	}
1306 	return rc;
1307 }
1308 
1309 static int
1310 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1311 				    char *virt, size_t virt_len)
1312 {
1313 	int rc;
1314 
1315 	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1316 				  0, virt_len);
1317 	if (rc)
1318 		printk(KERN_ERR "%s: Error attempting to write header "
1319 		       "information to lower file; rc = [%d]\n", __func__,
1320 		       rc);
1321 	return rc;
1322 }
1323 
1324 static int
1325 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1326 				 char *page_virt, size_t size)
1327 {
1328 	int rc;
1329 
1330 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1331 			       size, 0);
1332 	return rc;
1333 }
1334 
1335 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1336 					       unsigned int order)
1337 {
1338 	struct page *page;
1339 
1340 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1341 	if (page)
1342 		return (unsigned long) page_address(page);
1343 	return 0;
1344 }
1345 
1346 /**
1347  * ecryptfs_write_metadata
1348  * @ecryptfs_dentry: The eCryptfs dentry
1349  *
1350  * Write the file headers out.  This will likely involve a userspace
1351  * callout, in which the session key is encrypted with one or more
1352  * public keys and/or the passphrase necessary to do the encryption is
1353  * retrieved via a prompt.  Exactly what happens at this point should
1354  * be policy-dependent.
1355  *
1356  * Returns zero on success; non-zero on error
1357  */
1358 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1359 {
1360 	struct ecryptfs_crypt_stat *crypt_stat =
1361 		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1362 	unsigned int order;
1363 	char *virt;
1364 	size_t virt_len;
1365 	size_t size = 0;
1366 	int rc = 0;
1367 
1368 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1369 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1370 			printk(KERN_ERR "Key is invalid; bailing out\n");
1371 			rc = -EINVAL;
1372 			goto out;
1373 		}
1374 	} else {
1375 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1376 		       __func__);
1377 		rc = -EINVAL;
1378 		goto out;
1379 	}
1380 	virt_len = crypt_stat->num_header_bytes_at_front;
1381 	order = get_order(virt_len);
1382 	/* Released in this function */
1383 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1384 	if (!virt) {
1385 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1386 		rc = -ENOMEM;
1387 		goto out;
1388 	}
1389 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1390 					 ecryptfs_dentry);
1391 	if (unlikely(rc)) {
1392 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1393 		       __func__, rc);
1394 		goto out_free;
1395 	}
1396 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1397 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1398 						      size);
1399 	else
1400 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1401 							 virt_len);
1402 	if (rc) {
1403 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1404 		       "rc = [%d]\n", __func__, rc);
1405 		goto out_free;
1406 	}
1407 out_free:
1408 	free_pages((unsigned long)virt, order);
1409 out:
1410 	return rc;
1411 }
1412 
1413 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1414 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1415 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1416 				 char *virt, int *bytes_read,
1417 				 int validate_header_size)
1418 {
1419 	int rc = 0;
1420 	u32 header_extent_size;
1421 	u16 num_header_extents_at_front;
1422 
1423 	header_extent_size = get_unaligned_be32(virt);
1424 	virt += sizeof(__be32);
1425 	num_header_extents_at_front = get_unaligned_be16(virt);
1426 	crypt_stat->num_header_bytes_at_front =
1427 		(((size_t)num_header_extents_at_front
1428 		  * (size_t)header_extent_size));
1429 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1430 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1431 	    && (crypt_stat->num_header_bytes_at_front
1432 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1433 		rc = -EINVAL;
1434 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1435 		       crypt_stat->num_header_bytes_at_front);
1436 	}
1437 	return rc;
1438 }
1439 
1440 /**
1441  * set_default_header_data
1442  * @crypt_stat: The cryptographic context
1443  *
1444  * For version 0 file format; this function is only for backwards
1445  * compatibility for files created with the prior versions of
1446  * eCryptfs.
1447  */
1448 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1449 {
1450 	crypt_stat->num_header_bytes_at_front =
1451 		ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1452 }
1453 
1454 /**
1455  * ecryptfs_read_headers_virt
1456  * @page_virt: The virtual address into which to read the headers
1457  * @crypt_stat: The cryptographic context
1458  * @ecryptfs_dentry: The eCryptfs dentry
1459  * @validate_header_size: Whether to validate the header size while reading
1460  *
1461  * Read/parse the header data. The header format is detailed in the
1462  * comment block for the ecryptfs_write_headers_virt() function.
1463  *
1464  * Returns zero on success
1465  */
1466 static int ecryptfs_read_headers_virt(char *page_virt,
1467 				      struct ecryptfs_crypt_stat *crypt_stat,
1468 				      struct dentry *ecryptfs_dentry,
1469 				      int validate_header_size)
1470 {
1471 	int rc = 0;
1472 	int offset;
1473 	int bytes_read;
1474 
1475 	ecryptfs_set_default_sizes(crypt_stat);
1476 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1477 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1478 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1479 	rc = contains_ecryptfs_marker(page_virt + offset);
1480 	if (rc == 0) {
1481 		rc = -EINVAL;
1482 		goto out;
1483 	}
1484 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1485 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1486 				    &bytes_read);
1487 	if (rc) {
1488 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1489 		goto out;
1490 	}
1491 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1492 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1493 				"file version [%d] is supported by this "
1494 				"version of eCryptfs\n",
1495 				crypt_stat->file_version,
1496 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1497 		rc = -EINVAL;
1498 		goto out;
1499 	}
1500 	offset += bytes_read;
1501 	if (crypt_stat->file_version >= 1) {
1502 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1503 					   &bytes_read, validate_header_size);
1504 		if (rc) {
1505 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1506 					"metadata; rc = [%d]\n", rc);
1507 		}
1508 		offset += bytes_read;
1509 	} else
1510 		set_default_header_data(crypt_stat);
1511 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1512 				       ecryptfs_dentry);
1513 out:
1514 	return rc;
1515 }
1516 
1517 /**
1518  * ecryptfs_read_xattr_region
1519  * @page_virt: The vitual address into which to read the xattr data
1520  * @ecryptfs_inode: The eCryptfs inode
1521  *
1522  * Attempts to read the crypto metadata from the extended attribute
1523  * region of the lower file.
1524  *
1525  * Returns zero on success; non-zero on error
1526  */
1527 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1528 {
1529 	struct dentry *lower_dentry =
1530 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1531 	ssize_t size;
1532 	int rc = 0;
1533 
1534 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1535 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1536 	if (size < 0) {
1537 		if (unlikely(ecryptfs_verbosity > 0))
1538 			printk(KERN_INFO "Error attempting to read the [%s] "
1539 			       "xattr from the lower file; return value = "
1540 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1541 		rc = -EINVAL;
1542 		goto out;
1543 	}
1544 out:
1545 	return rc;
1546 }
1547 
1548 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1549 					    struct dentry *ecryptfs_dentry)
1550 {
1551 	int rc;
1552 
1553 	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1554 	if (rc)
1555 		goto out;
1556 	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
1557 		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1558 			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1559 		rc = -EINVAL;
1560 	}
1561 out:
1562 	return rc;
1563 }
1564 
1565 /**
1566  * ecryptfs_read_metadata
1567  *
1568  * Common entry point for reading file metadata. From here, we could
1569  * retrieve the header information from the header region of the file,
1570  * the xattr region of the file, or some other repostory that is
1571  * stored separately from the file itself. The current implementation
1572  * supports retrieving the metadata information from the file contents
1573  * and from the xattr region.
1574  *
1575  * Returns zero if valid headers found and parsed; non-zero otherwise
1576  */
1577 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1578 {
1579 	int rc = 0;
1580 	char *page_virt = NULL;
1581 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1582 	struct ecryptfs_crypt_stat *crypt_stat =
1583 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1584 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1585 		&ecryptfs_superblock_to_private(
1586 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1587 
1588 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1589 						      mount_crypt_stat);
1590 	/* Read the first page from the underlying file */
1591 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1592 	if (!page_virt) {
1593 		rc = -ENOMEM;
1594 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1595 		       __func__);
1596 		goto out;
1597 	}
1598 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1599 				 ecryptfs_inode);
1600 	if (!rc)
1601 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1602 						ecryptfs_dentry,
1603 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1604 	if (rc) {
1605 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1606 		if (rc) {
1607 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1608 			       "file header region or xattr region\n");
1609 			rc = -EINVAL;
1610 			goto out;
1611 		}
1612 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1613 						ecryptfs_dentry,
1614 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1615 		if (rc) {
1616 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1617 			       "file xattr region either\n");
1618 			rc = -EINVAL;
1619 		}
1620 		if (crypt_stat->mount_crypt_stat->flags
1621 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1622 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1623 		} else {
1624 			printk(KERN_WARNING "Attempt to access file with "
1625 			       "crypto metadata only in the extended attribute "
1626 			       "region, but eCryptfs was mounted without "
1627 			       "xattr support enabled. eCryptfs will not treat "
1628 			       "this like an encrypted file.\n");
1629 			rc = -EINVAL;
1630 		}
1631 	}
1632 out:
1633 	if (page_virt) {
1634 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1635 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1636 	}
1637 	return rc;
1638 }
1639 
1640 /**
1641  * ecryptfs_encrypt_filename - encrypt filename
1642  *
1643  * CBC-encrypts the filename. We do not want to encrypt the same
1644  * filename with the same key and IV, which may happen with hard
1645  * links, so we prepend random bits to each filename.
1646  *
1647  * Returns zero on success; non-zero otherwise
1648  */
1649 static int
1650 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1651 			  struct ecryptfs_crypt_stat *crypt_stat,
1652 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1653 {
1654 	int rc = 0;
1655 
1656 	filename->encrypted_filename = NULL;
1657 	filename->encrypted_filename_size = 0;
1658 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1659 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1660 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1661 		size_t packet_size;
1662 		size_t remaining_bytes;
1663 
1664 		rc = ecryptfs_write_tag_70_packet(
1665 			NULL, NULL,
1666 			&filename->encrypted_filename_size,
1667 			mount_crypt_stat, NULL,
1668 			filename->filename_size);
1669 		if (rc) {
1670 			printk(KERN_ERR "%s: Error attempting to get packet "
1671 			       "size for tag 72; rc = [%d]\n", __func__,
1672 			       rc);
1673 			filename->encrypted_filename_size = 0;
1674 			goto out;
1675 		}
1676 		filename->encrypted_filename =
1677 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1678 		if (!filename->encrypted_filename) {
1679 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1680 			       "to kmalloc [%zd] bytes\n", __func__,
1681 			       filename->encrypted_filename_size);
1682 			rc = -ENOMEM;
1683 			goto out;
1684 		}
1685 		remaining_bytes = filename->encrypted_filename_size;
1686 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1687 						  &remaining_bytes,
1688 						  &packet_size,
1689 						  mount_crypt_stat,
1690 						  filename->filename,
1691 						  filename->filename_size);
1692 		if (rc) {
1693 			printk(KERN_ERR "%s: Error attempting to generate "
1694 			       "tag 70 packet; rc = [%d]\n", __func__,
1695 			       rc);
1696 			kfree(filename->encrypted_filename);
1697 			filename->encrypted_filename = NULL;
1698 			filename->encrypted_filename_size = 0;
1699 			goto out;
1700 		}
1701 		filename->encrypted_filename_size = packet_size;
1702 	} else {
1703 		printk(KERN_ERR "%s: No support for requested filename "
1704 		       "encryption method in this release\n", __func__);
1705 		rc = -ENOTSUPP;
1706 		goto out;
1707 	}
1708 out:
1709 	return rc;
1710 }
1711 
1712 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1713 				  const char *name, size_t name_size)
1714 {
1715 	int rc = 0;
1716 
1717 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1718 	if (!(*copied_name)) {
1719 		rc = -ENOMEM;
1720 		goto out;
1721 	}
1722 	memcpy((void *)(*copied_name), (void *)name, name_size);
1723 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1724 						 * in printing out the
1725 						 * string in debug
1726 						 * messages */
1727 	(*copied_name_size) = name_size;
1728 out:
1729 	return rc;
1730 }
1731 
1732 /**
1733  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1734  * @key_tfm: Crypto context for key material, set by this function
1735  * @cipher_name: Name of the cipher
1736  * @key_size: Size of the key in bytes
1737  *
1738  * Returns zero on success. Any crypto_tfm structs allocated here
1739  * should be released by other functions, such as on a superblock put
1740  * event, regardless of whether this function succeeds for fails.
1741  */
1742 static int
1743 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1744 			    char *cipher_name, size_t *key_size)
1745 {
1746 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1747 	char *full_alg_name;
1748 	int rc;
1749 
1750 	*key_tfm = NULL;
1751 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1752 		rc = -EINVAL;
1753 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1754 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1755 		goto out;
1756 	}
1757 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1758 						    "ecb");
1759 	if (rc)
1760 		goto out;
1761 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1762 	kfree(full_alg_name);
1763 	if (IS_ERR(*key_tfm)) {
1764 		rc = PTR_ERR(*key_tfm);
1765 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1766 		       "[%s]; rc = [%d]\n", cipher_name, rc);
1767 		goto out;
1768 	}
1769 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1770 	if (*key_size == 0) {
1771 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1772 
1773 		*key_size = alg->max_keysize;
1774 	}
1775 	get_random_bytes(dummy_key, *key_size);
1776 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1777 	if (rc) {
1778 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1779 		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1780 		rc = -EINVAL;
1781 		goto out;
1782 	}
1783 out:
1784 	return rc;
1785 }
1786 
1787 struct kmem_cache *ecryptfs_key_tfm_cache;
1788 static struct list_head key_tfm_list;
1789 struct mutex key_tfm_list_mutex;
1790 
1791 int ecryptfs_init_crypto(void)
1792 {
1793 	mutex_init(&key_tfm_list_mutex);
1794 	INIT_LIST_HEAD(&key_tfm_list);
1795 	return 0;
1796 }
1797 
1798 /**
1799  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1800  *
1801  * Called only at module unload time
1802  */
1803 int ecryptfs_destroy_crypto(void)
1804 {
1805 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1806 
1807 	mutex_lock(&key_tfm_list_mutex);
1808 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1809 				 key_tfm_list) {
1810 		list_del(&key_tfm->key_tfm_list);
1811 		if (key_tfm->key_tfm)
1812 			crypto_free_blkcipher(key_tfm->key_tfm);
1813 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1814 	}
1815 	mutex_unlock(&key_tfm_list_mutex);
1816 	return 0;
1817 }
1818 
1819 int
1820 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1821 			 size_t key_size)
1822 {
1823 	struct ecryptfs_key_tfm *tmp_tfm;
1824 	int rc = 0;
1825 
1826 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1827 
1828 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1829 	if (key_tfm != NULL)
1830 		(*key_tfm) = tmp_tfm;
1831 	if (!tmp_tfm) {
1832 		rc = -ENOMEM;
1833 		printk(KERN_ERR "Error attempting to allocate from "
1834 		       "ecryptfs_key_tfm_cache\n");
1835 		goto out;
1836 	}
1837 	mutex_init(&tmp_tfm->key_tfm_mutex);
1838 	strncpy(tmp_tfm->cipher_name, cipher_name,
1839 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1840 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1841 	tmp_tfm->key_size = key_size;
1842 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1843 					 tmp_tfm->cipher_name,
1844 					 &tmp_tfm->key_size);
1845 	if (rc) {
1846 		printk(KERN_ERR "Error attempting to initialize key TFM "
1847 		       "cipher with name = [%s]; rc = [%d]\n",
1848 		       tmp_tfm->cipher_name, rc);
1849 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1850 		if (key_tfm != NULL)
1851 			(*key_tfm) = NULL;
1852 		goto out;
1853 	}
1854 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1855 out:
1856 	return rc;
1857 }
1858 
1859 /**
1860  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1861  * @cipher_name: the name of the cipher to search for
1862  * @key_tfm: set to corresponding tfm if found
1863  *
1864  * Searches for cached key_tfm matching @cipher_name
1865  * Must be called with &key_tfm_list_mutex held
1866  * Returns 1 if found, with @key_tfm set
1867  * Returns 0 if not found, with @key_tfm set to NULL
1868  */
1869 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1870 {
1871 	struct ecryptfs_key_tfm *tmp_key_tfm;
1872 
1873 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1874 
1875 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1876 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1877 			if (key_tfm)
1878 				(*key_tfm) = tmp_key_tfm;
1879 			return 1;
1880 		}
1881 	}
1882 	if (key_tfm)
1883 		(*key_tfm) = NULL;
1884 	return 0;
1885 }
1886 
1887 /**
1888  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1889  *
1890  * @tfm: set to cached tfm found, or new tfm created
1891  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1892  * @cipher_name: the name of the cipher to search for and/or add
1893  *
1894  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1895  * Searches for cached item first, and creates new if not found.
1896  * Returns 0 on success, non-zero if adding new cipher failed
1897  */
1898 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1899 					       struct mutex **tfm_mutex,
1900 					       char *cipher_name)
1901 {
1902 	struct ecryptfs_key_tfm *key_tfm;
1903 	int rc = 0;
1904 
1905 	(*tfm) = NULL;
1906 	(*tfm_mutex) = NULL;
1907 
1908 	mutex_lock(&key_tfm_list_mutex);
1909 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1910 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1911 		if (rc) {
1912 			printk(KERN_ERR "Error adding new key_tfm to list; "
1913 					"rc = [%d]\n", rc);
1914 			goto out;
1915 		}
1916 	}
1917 	(*tfm) = key_tfm->key_tfm;
1918 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1919 out:
1920 	mutex_unlock(&key_tfm_list_mutex);
1921 	return rc;
1922 }
1923 
1924 /* 64 characters forming a 6-bit target field */
1925 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1926 						 "EFGHIJKLMNOPQRST"
1927 						 "UVWXYZabcdefghij"
1928 						 "klmnopqrstuvwxyz");
1929 
1930 /* We could either offset on every reverse map or just pad some 0x00's
1931  * at the front here */
1932 static const unsigned char filename_rev_map[] = {
1933 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1934 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1935 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1936 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1937 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1938 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1939 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1940 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1941 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1942 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1943 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1944 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1945 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1946 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1947 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1948 	0x3D, 0x3E, 0x3F
1949 };
1950 
1951 /**
1952  * ecryptfs_encode_for_filename
1953  * @dst: Destination location for encoded filename
1954  * @dst_size: Size of the encoded filename in bytes
1955  * @src: Source location for the filename to encode
1956  * @src_size: Size of the source in bytes
1957  */
1958 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1959 				  unsigned char *src, size_t src_size)
1960 {
1961 	size_t num_blocks;
1962 	size_t block_num = 0;
1963 	size_t dst_offset = 0;
1964 	unsigned char last_block[3];
1965 
1966 	if (src_size == 0) {
1967 		(*dst_size) = 0;
1968 		goto out;
1969 	}
1970 	num_blocks = (src_size / 3);
1971 	if ((src_size % 3) == 0) {
1972 		memcpy(last_block, (&src[src_size - 3]), 3);
1973 	} else {
1974 		num_blocks++;
1975 		last_block[2] = 0x00;
1976 		switch (src_size % 3) {
1977 		case 1:
1978 			last_block[0] = src[src_size - 1];
1979 			last_block[1] = 0x00;
1980 			break;
1981 		case 2:
1982 			last_block[0] = src[src_size - 2];
1983 			last_block[1] = src[src_size - 1];
1984 		}
1985 	}
1986 	(*dst_size) = (num_blocks * 4);
1987 	if (!dst)
1988 		goto out;
1989 	while (block_num < num_blocks) {
1990 		unsigned char *src_block;
1991 		unsigned char dst_block[4];
1992 
1993 		if (block_num == (num_blocks - 1))
1994 			src_block = last_block;
1995 		else
1996 			src_block = &src[block_num * 3];
1997 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1998 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1999 				| ((src_block[1] >> 4) & 0x0F));
2000 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
2001 				| ((src_block[2] >> 6) & 0x03));
2002 		dst_block[3] = (src_block[2] & 0x3F);
2003 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2004 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2005 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2006 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2007 		block_num++;
2008 	}
2009 out:
2010 	return;
2011 }
2012 
2013 /**
2014  * ecryptfs_decode_from_filename
2015  * @dst: If NULL, this function only sets @dst_size and returns. If
2016  *       non-NULL, this function decodes the encoded octets in @src
2017  *       into the memory that @dst points to.
2018  * @dst_size: Set to the size of the decoded string.
2019  * @src: The encoded set of octets to decode.
2020  * @src_size: The size of the encoded set of octets to decode.
2021  */
2022 static void
2023 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2024 			      const unsigned char *src, size_t src_size)
2025 {
2026 	u8 current_bit_offset = 0;
2027 	size_t src_byte_offset = 0;
2028 	size_t dst_byte_offset = 0;
2029 
2030 	if (dst == NULL) {
2031 		/* Not exact; conservatively long. Every block of 4
2032 		 * encoded characters decodes into a block of 3
2033 		 * decoded characters. This segment of code provides
2034 		 * the caller with the maximum amount of allocated
2035 		 * space that @dst will need to point to in a
2036 		 * subsequent call. */
2037 		(*dst_size) = (((src_size + 1) * 3) / 4);
2038 		goto out;
2039 	}
2040 	while (src_byte_offset < src_size) {
2041 		unsigned char src_byte =
2042 				filename_rev_map[(int)src[src_byte_offset]];
2043 
2044 		switch (current_bit_offset) {
2045 		case 0:
2046 			dst[dst_byte_offset] = (src_byte << 2);
2047 			current_bit_offset = 6;
2048 			break;
2049 		case 6:
2050 			dst[dst_byte_offset++] |= (src_byte >> 4);
2051 			dst[dst_byte_offset] = ((src_byte & 0xF)
2052 						 << 4);
2053 			current_bit_offset = 4;
2054 			break;
2055 		case 4:
2056 			dst[dst_byte_offset++] |= (src_byte >> 2);
2057 			dst[dst_byte_offset] = (src_byte << 6);
2058 			current_bit_offset = 2;
2059 			break;
2060 		case 2:
2061 			dst[dst_byte_offset++] |= (src_byte);
2062 			dst[dst_byte_offset] = 0;
2063 			current_bit_offset = 0;
2064 			break;
2065 		}
2066 		src_byte_offset++;
2067 	}
2068 	(*dst_size) = dst_byte_offset;
2069 out:
2070 	return;
2071 }
2072 
2073 /**
2074  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2075  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2076  * @name: The plaintext name
2077  * @length: The length of the plaintext
2078  * @encoded_name: The encypted name
2079  *
2080  * Encrypts and encodes a filename into something that constitutes a
2081  * valid filename for a filesystem, with printable characters.
2082  *
2083  * We assume that we have a properly initialized crypto context,
2084  * pointed to by crypt_stat->tfm.
2085  *
2086  * Returns zero on success; non-zero on otherwise
2087  */
2088 int ecryptfs_encrypt_and_encode_filename(
2089 	char **encoded_name,
2090 	size_t *encoded_name_size,
2091 	struct ecryptfs_crypt_stat *crypt_stat,
2092 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2093 	const char *name, size_t name_size)
2094 {
2095 	size_t encoded_name_no_prefix_size;
2096 	int rc = 0;
2097 
2098 	(*encoded_name) = NULL;
2099 	(*encoded_name_size) = 0;
2100 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2101 	    || (mount_crypt_stat && (mount_crypt_stat->flags
2102 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2103 		struct ecryptfs_filename *filename;
2104 
2105 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2106 		if (!filename) {
2107 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2108 			       "to kzalloc [%zd] bytes\n", __func__,
2109 			       sizeof(*filename));
2110 			rc = -ENOMEM;
2111 			goto out;
2112 		}
2113 		filename->filename = (char *)name;
2114 		filename->filename_size = name_size;
2115 		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2116 					       mount_crypt_stat);
2117 		if (rc) {
2118 			printk(KERN_ERR "%s: Error attempting to encrypt "
2119 			       "filename; rc = [%d]\n", __func__, rc);
2120 			kfree(filename);
2121 			goto out;
2122 		}
2123 		ecryptfs_encode_for_filename(
2124 			NULL, &encoded_name_no_prefix_size,
2125 			filename->encrypted_filename,
2126 			filename->encrypted_filename_size);
2127 		if ((crypt_stat && (crypt_stat->flags
2128 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2129 		    || (mount_crypt_stat
2130 			&& (mount_crypt_stat->flags
2131 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2132 			(*encoded_name_size) =
2133 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2134 				 + encoded_name_no_prefix_size);
2135 		else
2136 			(*encoded_name_size) =
2137 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2138 				 + encoded_name_no_prefix_size);
2139 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2140 		if (!(*encoded_name)) {
2141 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2142 			       "to kzalloc [%zd] bytes\n", __func__,
2143 			       (*encoded_name_size));
2144 			rc = -ENOMEM;
2145 			kfree(filename->encrypted_filename);
2146 			kfree(filename);
2147 			goto out;
2148 		}
2149 		if ((crypt_stat && (crypt_stat->flags
2150 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2151 		    || (mount_crypt_stat
2152 			&& (mount_crypt_stat->flags
2153 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2154 			memcpy((*encoded_name),
2155 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2156 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2157 			ecryptfs_encode_for_filename(
2158 			    ((*encoded_name)
2159 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2160 			    &encoded_name_no_prefix_size,
2161 			    filename->encrypted_filename,
2162 			    filename->encrypted_filename_size);
2163 			(*encoded_name_size) =
2164 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2165 				 + encoded_name_no_prefix_size);
2166 			(*encoded_name)[(*encoded_name_size)] = '\0';
2167 			(*encoded_name_size)++;
2168 		} else {
2169 			rc = -ENOTSUPP;
2170 		}
2171 		if (rc) {
2172 			printk(KERN_ERR "%s: Error attempting to encode "
2173 			       "encrypted filename; rc = [%d]\n", __func__,
2174 			       rc);
2175 			kfree((*encoded_name));
2176 			(*encoded_name) = NULL;
2177 			(*encoded_name_size) = 0;
2178 		}
2179 		kfree(filename->encrypted_filename);
2180 		kfree(filename);
2181 	} else {
2182 		rc = ecryptfs_copy_filename(encoded_name,
2183 					    encoded_name_size,
2184 					    name, name_size);
2185 	}
2186 out:
2187 	return rc;
2188 }
2189 
2190 /**
2191  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2192  * @plaintext_name: The plaintext name
2193  * @plaintext_name_size: The plaintext name size
2194  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2195  * @name: The filename in cipher text
2196  * @name_size: The cipher text name size
2197  *
2198  * Decrypts and decodes the filename.
2199  *
2200  * Returns zero on error; non-zero otherwise
2201  */
2202 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2203 					 size_t *plaintext_name_size,
2204 					 struct dentry *ecryptfs_dir_dentry,
2205 					 const char *name, size_t name_size)
2206 {
2207 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2208 		&ecryptfs_superblock_to_private(
2209 			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2210 	char *decoded_name;
2211 	size_t decoded_name_size;
2212 	size_t packet_size;
2213 	int rc = 0;
2214 
2215 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2216 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2217 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2218 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2219 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2220 		const char *orig_name = name;
2221 		size_t orig_name_size = name_size;
2222 
2223 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2224 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2225 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2226 					      name, name_size);
2227 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2228 		if (!decoded_name) {
2229 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2230 			       "to kmalloc [%zd] bytes\n", __func__,
2231 			       decoded_name_size);
2232 			rc = -ENOMEM;
2233 			goto out;
2234 		}
2235 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2236 					      name, name_size);
2237 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2238 						  plaintext_name_size,
2239 						  &packet_size,
2240 						  mount_crypt_stat,
2241 						  decoded_name,
2242 						  decoded_name_size);
2243 		if (rc) {
2244 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2245 			       "from filename; copying through filename "
2246 			       "as-is\n", __func__);
2247 			rc = ecryptfs_copy_filename(plaintext_name,
2248 						    plaintext_name_size,
2249 						    orig_name, orig_name_size);
2250 			goto out_free;
2251 		}
2252 	} else {
2253 		rc = ecryptfs_copy_filename(plaintext_name,
2254 					    plaintext_name_size,
2255 					    name, name_size);
2256 		goto out;
2257 	}
2258 out_free:
2259 	kfree(decoded_name);
2260 out:
2261 	return rc;
2262 }
2263