1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include <asm/unaligned.h> 37 #include "ecryptfs_kernel.h" 38 39 static int 40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 41 struct page *dst_page, int dst_offset, 42 struct page *src_page, int src_offset, int size, 43 unsigned char *iv); 44 static int 45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 46 struct page *dst_page, int dst_offset, 47 struct page *src_page, int src_offset, int size, 48 unsigned char *iv); 49 50 /** 51 * ecryptfs_to_hex 52 * @dst: Buffer to take hex character representation of contents of 53 * src; must be at least of size (src_size * 2) 54 * @src: Buffer to be converted to a hex string respresentation 55 * @src_size: number of bytes to convert 56 */ 57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 58 { 59 int x; 60 61 for (x = 0; x < src_size; x++) 62 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 63 } 64 65 /** 66 * ecryptfs_from_hex 67 * @dst: Buffer to take the bytes from src hex; must be at least of 68 * size (src_size / 2) 69 * @src: Buffer to be converted from a hex string respresentation to raw value 70 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 71 */ 72 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 73 { 74 int x; 75 char tmp[3] = { 0, }; 76 77 for (x = 0; x < dst_size; x++) { 78 tmp[0] = src[x * 2]; 79 tmp[1] = src[x * 2 + 1]; 80 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 81 } 82 } 83 84 /** 85 * ecryptfs_calculate_md5 - calculates the md5 of @src 86 * @dst: Pointer to 16 bytes of allocated memory 87 * @crypt_stat: Pointer to crypt_stat struct for the current inode 88 * @src: Data to be md5'd 89 * @len: Length of @src 90 * 91 * Uses the allocated crypto context that crypt_stat references to 92 * generate the MD5 sum of the contents of src. 93 */ 94 static int ecryptfs_calculate_md5(char *dst, 95 struct ecryptfs_crypt_stat *crypt_stat, 96 char *src, int len) 97 { 98 struct scatterlist sg; 99 struct hash_desc desc = { 100 .tfm = crypt_stat->hash_tfm, 101 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 102 }; 103 int rc = 0; 104 105 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 106 sg_init_one(&sg, (u8 *)src, len); 107 if (!desc.tfm) { 108 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 109 CRYPTO_ALG_ASYNC); 110 if (IS_ERR(desc.tfm)) { 111 rc = PTR_ERR(desc.tfm); 112 ecryptfs_printk(KERN_ERR, "Error attempting to " 113 "allocate crypto context; rc = [%d]\n", 114 rc); 115 goto out; 116 } 117 crypt_stat->hash_tfm = desc.tfm; 118 } 119 rc = crypto_hash_init(&desc); 120 if (rc) { 121 printk(KERN_ERR 122 "%s: Error initializing crypto hash; rc = [%d]\n", 123 __func__, rc); 124 goto out; 125 } 126 rc = crypto_hash_update(&desc, &sg, len); 127 if (rc) { 128 printk(KERN_ERR 129 "%s: Error updating crypto hash; rc = [%d]\n", 130 __func__, rc); 131 goto out; 132 } 133 rc = crypto_hash_final(&desc, dst); 134 if (rc) { 135 printk(KERN_ERR 136 "%s: Error finalizing crypto hash; rc = [%d]\n", 137 __func__, rc); 138 goto out; 139 } 140 out: 141 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 142 return rc; 143 } 144 145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 146 char *cipher_name, 147 char *chaining_modifier) 148 { 149 int cipher_name_len = strlen(cipher_name); 150 int chaining_modifier_len = strlen(chaining_modifier); 151 int algified_name_len; 152 int rc; 153 154 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 155 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 156 if (!(*algified_name)) { 157 rc = -ENOMEM; 158 goto out; 159 } 160 snprintf((*algified_name), algified_name_len, "%s(%s)", 161 chaining_modifier, cipher_name); 162 rc = 0; 163 out: 164 return rc; 165 } 166 167 /** 168 * ecryptfs_derive_iv 169 * @iv: destination for the derived iv vale 170 * @crypt_stat: Pointer to crypt_stat struct for the current inode 171 * @offset: Offset of the extent whose IV we are to derive 172 * 173 * Generate the initialization vector from the given root IV and page 174 * offset. 175 * 176 * Returns zero on success; non-zero on error. 177 */ 178 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 179 loff_t offset) 180 { 181 int rc = 0; 182 char dst[MD5_DIGEST_SIZE]; 183 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 184 185 if (unlikely(ecryptfs_verbosity > 0)) { 186 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 187 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 188 } 189 /* TODO: It is probably secure to just cast the least 190 * significant bits of the root IV into an unsigned long and 191 * add the offset to that rather than go through all this 192 * hashing business. -Halcrow */ 193 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 194 memset((src + crypt_stat->iv_bytes), 0, 16); 195 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 196 if (unlikely(ecryptfs_verbosity > 0)) { 197 ecryptfs_printk(KERN_DEBUG, "source:\n"); 198 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 199 } 200 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 201 (crypt_stat->iv_bytes + 16)); 202 if (rc) { 203 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 204 "MD5 while generating IV for a page\n"); 205 goto out; 206 } 207 memcpy(iv, dst, crypt_stat->iv_bytes); 208 if (unlikely(ecryptfs_verbosity > 0)) { 209 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 210 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 211 } 212 out: 213 return rc; 214 } 215 216 /** 217 * ecryptfs_init_crypt_stat 218 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 219 * 220 * Initialize the crypt_stat structure. 221 */ 222 void 223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 224 { 225 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 226 INIT_LIST_HEAD(&crypt_stat->keysig_list); 227 mutex_init(&crypt_stat->keysig_list_mutex); 228 mutex_init(&crypt_stat->cs_mutex); 229 mutex_init(&crypt_stat->cs_tfm_mutex); 230 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 231 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 232 } 233 234 /** 235 * ecryptfs_destroy_crypt_stat 236 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 237 * 238 * Releases all memory associated with a crypt_stat struct. 239 */ 240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 241 { 242 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 243 244 if (crypt_stat->tfm) 245 crypto_free_blkcipher(crypt_stat->tfm); 246 if (crypt_stat->hash_tfm) 247 crypto_free_hash(crypt_stat->hash_tfm); 248 mutex_lock(&crypt_stat->keysig_list_mutex); 249 list_for_each_entry_safe(key_sig, key_sig_tmp, 250 &crypt_stat->keysig_list, crypt_stat_list) { 251 list_del(&key_sig->crypt_stat_list); 252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 253 } 254 mutex_unlock(&crypt_stat->keysig_list_mutex); 255 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 256 } 257 258 void ecryptfs_destroy_mount_crypt_stat( 259 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 260 { 261 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 262 263 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 264 return; 265 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 266 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 267 &mount_crypt_stat->global_auth_tok_list, 268 mount_crypt_stat_list) { 269 list_del(&auth_tok->mount_crypt_stat_list); 270 mount_crypt_stat->num_global_auth_toks--; 271 if (auth_tok->global_auth_tok_key 272 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 273 key_put(auth_tok->global_auth_tok_key); 274 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 275 } 276 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 277 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 278 } 279 280 /** 281 * virt_to_scatterlist 282 * @addr: Virtual address 283 * @size: Size of data; should be an even multiple of the block size 284 * @sg: Pointer to scatterlist array; set to NULL to obtain only 285 * the number of scatterlist structs required in array 286 * @sg_size: Max array size 287 * 288 * Fills in a scatterlist array with page references for a passed 289 * virtual address. 290 * 291 * Returns the number of scatterlist structs in array used 292 */ 293 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 294 int sg_size) 295 { 296 int i = 0; 297 struct page *pg; 298 int offset; 299 int remainder_of_page; 300 301 sg_init_table(sg, sg_size); 302 303 while (size > 0 && i < sg_size) { 304 pg = virt_to_page(addr); 305 offset = offset_in_page(addr); 306 if (sg) 307 sg_set_page(&sg[i], pg, 0, offset); 308 remainder_of_page = PAGE_CACHE_SIZE - offset; 309 if (size >= remainder_of_page) { 310 if (sg) 311 sg[i].length = remainder_of_page; 312 addr += remainder_of_page; 313 size -= remainder_of_page; 314 } else { 315 if (sg) 316 sg[i].length = size; 317 addr += size; 318 size = 0; 319 } 320 i++; 321 } 322 if (size > 0) 323 return -ENOMEM; 324 return i; 325 } 326 327 /** 328 * encrypt_scatterlist 329 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 330 * @dest_sg: Destination of encrypted data 331 * @src_sg: Data to be encrypted 332 * @size: Length of data to be encrypted 333 * @iv: iv to use during encryption 334 * 335 * Returns the number of bytes encrypted; negative value on error 336 */ 337 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 338 struct scatterlist *dest_sg, 339 struct scatterlist *src_sg, int size, 340 unsigned char *iv) 341 { 342 struct blkcipher_desc desc = { 343 .tfm = crypt_stat->tfm, 344 .info = iv, 345 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 346 }; 347 int rc = 0; 348 349 BUG_ON(!crypt_stat || !crypt_stat->tfm 350 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 351 if (unlikely(ecryptfs_verbosity > 0)) { 352 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n", 353 crypt_stat->key_size); 354 ecryptfs_dump_hex(crypt_stat->key, 355 crypt_stat->key_size); 356 } 357 /* Consider doing this once, when the file is opened */ 358 mutex_lock(&crypt_stat->cs_tfm_mutex); 359 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 360 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 361 crypt_stat->key_size); 362 crypt_stat->flags |= ECRYPTFS_KEY_SET; 363 } 364 if (rc) { 365 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 366 rc); 367 mutex_unlock(&crypt_stat->cs_tfm_mutex); 368 rc = -EINVAL; 369 goto out; 370 } 371 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); 372 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); 373 mutex_unlock(&crypt_stat->cs_tfm_mutex); 374 out: 375 return rc; 376 } 377 378 /** 379 * ecryptfs_lower_offset_for_extent 380 * 381 * Convert an eCryptfs page index into a lower byte offset 382 */ 383 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num, 384 struct ecryptfs_crypt_stat *crypt_stat) 385 { 386 (*offset) = (crypt_stat->num_header_bytes_at_front 387 + (crypt_stat->extent_size * extent_num)); 388 } 389 390 /** 391 * ecryptfs_encrypt_extent 392 * @enc_extent_page: Allocated page into which to encrypt the data in 393 * @page 394 * @crypt_stat: crypt_stat containing cryptographic context for the 395 * encryption operation 396 * @page: Page containing plaintext data extent to encrypt 397 * @extent_offset: Page extent offset for use in generating IV 398 * 399 * Encrypts one extent of data. 400 * 401 * Return zero on success; non-zero otherwise 402 */ 403 static int ecryptfs_encrypt_extent(struct page *enc_extent_page, 404 struct ecryptfs_crypt_stat *crypt_stat, 405 struct page *page, 406 unsigned long extent_offset) 407 { 408 loff_t extent_base; 409 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 410 int rc; 411 412 extent_base = (((loff_t)page->index) 413 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 414 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 415 (extent_base + extent_offset)); 416 if (rc) { 417 ecryptfs_printk(KERN_ERR, "Error attempting to " 418 "derive IV for extent [0x%.16x]; " 419 "rc = [%d]\n", (extent_base + extent_offset), 420 rc); 421 goto out; 422 } 423 if (unlikely(ecryptfs_verbosity > 0)) { 424 ecryptfs_printk(KERN_DEBUG, "Encrypting extent " 425 "with iv:\n"); 426 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 427 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 428 "encryption:\n"); 429 ecryptfs_dump_hex((char *) 430 (page_address(page) 431 + (extent_offset * crypt_stat->extent_size)), 432 8); 433 } 434 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0, 435 page, (extent_offset 436 * crypt_stat->extent_size), 437 crypt_stat->extent_size, extent_iv); 438 if (rc < 0) { 439 printk(KERN_ERR "%s: Error attempting to encrypt page with " 440 "page->index = [%ld], extent_offset = [%ld]; " 441 "rc = [%d]\n", __func__, page->index, extent_offset, 442 rc); 443 goto out; 444 } 445 rc = 0; 446 if (unlikely(ecryptfs_verbosity > 0)) { 447 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; " 448 "rc = [%d]\n", (extent_base + extent_offset), 449 rc); 450 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 451 "encryption:\n"); 452 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8); 453 } 454 out: 455 return rc; 456 } 457 458 /** 459 * ecryptfs_encrypt_page 460 * @page: Page mapped from the eCryptfs inode for the file; contains 461 * decrypted content that needs to be encrypted (to a temporary 462 * page; not in place) and written out to the lower file 463 * 464 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 465 * that eCryptfs pages may straddle the lower pages -- for instance, 466 * if the file was created on a machine with an 8K page size 467 * (resulting in an 8K header), and then the file is copied onto a 468 * host with a 32K page size, then when reading page 0 of the eCryptfs 469 * file, 24K of page 0 of the lower file will be read and decrypted, 470 * and then 8K of page 1 of the lower file will be read and decrypted. 471 * 472 * Returns zero on success; negative on error 473 */ 474 int ecryptfs_encrypt_page(struct page *page) 475 { 476 struct inode *ecryptfs_inode; 477 struct ecryptfs_crypt_stat *crypt_stat; 478 char *enc_extent_virt; 479 struct page *enc_extent_page = NULL; 480 loff_t extent_offset; 481 int rc = 0; 482 483 ecryptfs_inode = page->mapping->host; 484 crypt_stat = 485 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 486 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 487 enc_extent_page = alloc_page(GFP_USER); 488 if (!enc_extent_page) { 489 rc = -ENOMEM; 490 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 491 "encrypted extent\n"); 492 goto out; 493 } 494 enc_extent_virt = kmap(enc_extent_page); 495 for (extent_offset = 0; 496 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 497 extent_offset++) { 498 loff_t offset; 499 500 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page, 501 extent_offset); 502 if (rc) { 503 printk(KERN_ERR "%s: Error encrypting extent; " 504 "rc = [%d]\n", __func__, rc); 505 goto out; 506 } 507 ecryptfs_lower_offset_for_extent( 508 &offset, ((((loff_t)page->index) 509 * (PAGE_CACHE_SIZE 510 / crypt_stat->extent_size)) 511 + extent_offset), crypt_stat); 512 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, 513 offset, crypt_stat->extent_size); 514 if (rc) { 515 ecryptfs_printk(KERN_ERR, "Error attempting " 516 "to write lower page; rc = [%d]" 517 "\n", rc); 518 goto out; 519 } 520 } 521 out: 522 if (enc_extent_page) { 523 kunmap(enc_extent_page); 524 __free_page(enc_extent_page); 525 } 526 return rc; 527 } 528 529 static int ecryptfs_decrypt_extent(struct page *page, 530 struct ecryptfs_crypt_stat *crypt_stat, 531 struct page *enc_extent_page, 532 unsigned long extent_offset) 533 { 534 loff_t extent_base; 535 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 536 int rc; 537 538 extent_base = (((loff_t)page->index) 539 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 540 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 541 (extent_base + extent_offset)); 542 if (rc) { 543 ecryptfs_printk(KERN_ERR, "Error attempting to " 544 "derive IV for extent [0x%.16x]; " 545 "rc = [%d]\n", (extent_base + extent_offset), 546 rc); 547 goto out; 548 } 549 if (unlikely(ecryptfs_verbosity > 0)) { 550 ecryptfs_printk(KERN_DEBUG, "Decrypting extent " 551 "with iv:\n"); 552 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 553 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 554 "decryption:\n"); 555 ecryptfs_dump_hex((char *) 556 (page_address(enc_extent_page) 557 + (extent_offset * crypt_stat->extent_size)), 558 8); 559 } 560 rc = ecryptfs_decrypt_page_offset(crypt_stat, page, 561 (extent_offset 562 * crypt_stat->extent_size), 563 enc_extent_page, 0, 564 crypt_stat->extent_size, extent_iv); 565 if (rc < 0) { 566 printk(KERN_ERR "%s: Error attempting to decrypt to page with " 567 "page->index = [%ld], extent_offset = [%ld]; " 568 "rc = [%d]\n", __func__, page->index, extent_offset, 569 rc); 570 goto out; 571 } 572 rc = 0; 573 if (unlikely(ecryptfs_verbosity > 0)) { 574 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; " 575 "rc = [%d]\n", (extent_base + extent_offset), 576 rc); 577 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 578 "decryption:\n"); 579 ecryptfs_dump_hex((char *)(page_address(page) 580 + (extent_offset 581 * crypt_stat->extent_size)), 8); 582 } 583 out: 584 return rc; 585 } 586 587 /** 588 * ecryptfs_decrypt_page 589 * @page: Page mapped from the eCryptfs inode for the file; data read 590 * and decrypted from the lower file will be written into this 591 * page 592 * 593 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 594 * that eCryptfs pages may straddle the lower pages -- for instance, 595 * if the file was created on a machine with an 8K page size 596 * (resulting in an 8K header), and then the file is copied onto a 597 * host with a 32K page size, then when reading page 0 of the eCryptfs 598 * file, 24K of page 0 of the lower file will be read and decrypted, 599 * and then 8K of page 1 of the lower file will be read and decrypted. 600 * 601 * Returns zero on success; negative on error 602 */ 603 int ecryptfs_decrypt_page(struct page *page) 604 { 605 struct inode *ecryptfs_inode; 606 struct ecryptfs_crypt_stat *crypt_stat; 607 char *enc_extent_virt; 608 struct page *enc_extent_page = NULL; 609 unsigned long extent_offset; 610 int rc = 0; 611 612 ecryptfs_inode = page->mapping->host; 613 crypt_stat = 614 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 615 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 616 enc_extent_page = alloc_page(GFP_USER); 617 if (!enc_extent_page) { 618 rc = -ENOMEM; 619 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 620 "encrypted extent\n"); 621 goto out; 622 } 623 enc_extent_virt = kmap(enc_extent_page); 624 for (extent_offset = 0; 625 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 626 extent_offset++) { 627 loff_t offset; 628 629 ecryptfs_lower_offset_for_extent( 630 &offset, ((page->index * (PAGE_CACHE_SIZE 631 / crypt_stat->extent_size)) 632 + extent_offset), crypt_stat); 633 rc = ecryptfs_read_lower(enc_extent_virt, offset, 634 crypt_stat->extent_size, 635 ecryptfs_inode); 636 if (rc) { 637 ecryptfs_printk(KERN_ERR, "Error attempting " 638 "to read lower page; rc = [%d]" 639 "\n", rc); 640 goto out; 641 } 642 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page, 643 extent_offset); 644 if (rc) { 645 printk(KERN_ERR "%s: Error encrypting extent; " 646 "rc = [%d]\n", __func__, rc); 647 goto out; 648 } 649 } 650 out: 651 if (enc_extent_page) { 652 kunmap(enc_extent_page); 653 __free_page(enc_extent_page); 654 } 655 return rc; 656 } 657 658 /** 659 * decrypt_scatterlist 660 * @crypt_stat: Cryptographic context 661 * @dest_sg: The destination scatterlist to decrypt into 662 * @src_sg: The source scatterlist to decrypt from 663 * @size: The number of bytes to decrypt 664 * @iv: The initialization vector to use for the decryption 665 * 666 * Returns the number of bytes decrypted; negative value on error 667 */ 668 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 669 struct scatterlist *dest_sg, 670 struct scatterlist *src_sg, int size, 671 unsigned char *iv) 672 { 673 struct blkcipher_desc desc = { 674 .tfm = crypt_stat->tfm, 675 .info = iv, 676 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 677 }; 678 int rc = 0; 679 680 /* Consider doing this once, when the file is opened */ 681 mutex_lock(&crypt_stat->cs_tfm_mutex); 682 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 683 crypt_stat->key_size); 684 if (rc) { 685 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 686 rc); 687 mutex_unlock(&crypt_stat->cs_tfm_mutex); 688 rc = -EINVAL; 689 goto out; 690 } 691 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); 692 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); 693 mutex_unlock(&crypt_stat->cs_tfm_mutex); 694 if (rc) { 695 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", 696 rc); 697 goto out; 698 } 699 rc = size; 700 out: 701 return rc; 702 } 703 704 /** 705 * ecryptfs_encrypt_page_offset 706 * @crypt_stat: The cryptographic context 707 * @dst_page: The page to encrypt into 708 * @dst_offset: The offset in the page to encrypt into 709 * @src_page: The page to encrypt from 710 * @src_offset: The offset in the page to encrypt from 711 * @size: The number of bytes to encrypt 712 * @iv: The initialization vector to use for the encryption 713 * 714 * Returns the number of bytes encrypted 715 */ 716 static int 717 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 718 struct page *dst_page, int dst_offset, 719 struct page *src_page, int src_offset, int size, 720 unsigned char *iv) 721 { 722 struct scatterlist src_sg, dst_sg; 723 724 sg_init_table(&src_sg, 1); 725 sg_init_table(&dst_sg, 1); 726 727 sg_set_page(&src_sg, src_page, size, src_offset); 728 sg_set_page(&dst_sg, dst_page, size, dst_offset); 729 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 730 } 731 732 /** 733 * ecryptfs_decrypt_page_offset 734 * @crypt_stat: The cryptographic context 735 * @dst_page: The page to decrypt into 736 * @dst_offset: The offset in the page to decrypt into 737 * @src_page: The page to decrypt from 738 * @src_offset: The offset in the page to decrypt from 739 * @size: The number of bytes to decrypt 740 * @iv: The initialization vector to use for the decryption 741 * 742 * Returns the number of bytes decrypted 743 */ 744 static int 745 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 746 struct page *dst_page, int dst_offset, 747 struct page *src_page, int src_offset, int size, 748 unsigned char *iv) 749 { 750 struct scatterlist src_sg, dst_sg; 751 752 sg_init_table(&src_sg, 1); 753 sg_set_page(&src_sg, src_page, size, src_offset); 754 755 sg_init_table(&dst_sg, 1); 756 sg_set_page(&dst_sg, dst_page, size, dst_offset); 757 758 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 759 } 760 761 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 762 763 /** 764 * ecryptfs_init_crypt_ctx 765 * @crypt_stat: Uninitilized crypt stats structure 766 * 767 * Initialize the crypto context. 768 * 769 * TODO: Performance: Keep a cache of initialized cipher contexts; 770 * only init if needed 771 */ 772 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 773 { 774 char *full_alg_name; 775 int rc = -EINVAL; 776 777 if (!crypt_stat->cipher) { 778 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 779 goto out; 780 } 781 ecryptfs_printk(KERN_DEBUG, 782 "Initializing cipher [%s]; strlen = [%d]; " 783 "key_size_bits = [%d]\n", 784 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 785 crypt_stat->key_size << 3); 786 if (crypt_stat->tfm) { 787 rc = 0; 788 goto out; 789 } 790 mutex_lock(&crypt_stat->cs_tfm_mutex); 791 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 792 crypt_stat->cipher, "cbc"); 793 if (rc) 794 goto out_unlock; 795 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, 796 CRYPTO_ALG_ASYNC); 797 kfree(full_alg_name); 798 if (IS_ERR(crypt_stat->tfm)) { 799 rc = PTR_ERR(crypt_stat->tfm); 800 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 801 "Error initializing cipher [%s]\n", 802 crypt_stat->cipher); 803 goto out_unlock; 804 } 805 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 806 rc = 0; 807 out_unlock: 808 mutex_unlock(&crypt_stat->cs_tfm_mutex); 809 out: 810 return rc; 811 } 812 813 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 814 { 815 int extent_size_tmp; 816 817 crypt_stat->extent_mask = 0xFFFFFFFF; 818 crypt_stat->extent_shift = 0; 819 if (crypt_stat->extent_size == 0) 820 return; 821 extent_size_tmp = crypt_stat->extent_size; 822 while ((extent_size_tmp & 0x01) == 0) { 823 extent_size_tmp >>= 1; 824 crypt_stat->extent_mask <<= 1; 825 crypt_stat->extent_shift++; 826 } 827 } 828 829 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 830 { 831 /* Default values; may be overwritten as we are parsing the 832 * packets. */ 833 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 834 set_extent_mask_and_shift(crypt_stat); 835 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 836 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 837 crypt_stat->num_header_bytes_at_front = 0; 838 else { 839 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 840 crypt_stat->num_header_bytes_at_front = 841 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 842 else 843 crypt_stat->num_header_bytes_at_front = PAGE_CACHE_SIZE; 844 } 845 } 846 847 /** 848 * ecryptfs_compute_root_iv 849 * @crypt_stats 850 * 851 * On error, sets the root IV to all 0's. 852 */ 853 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 854 { 855 int rc = 0; 856 char dst[MD5_DIGEST_SIZE]; 857 858 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 859 BUG_ON(crypt_stat->iv_bytes <= 0); 860 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 861 rc = -EINVAL; 862 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 863 "cannot generate root IV\n"); 864 goto out; 865 } 866 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 867 crypt_stat->key_size); 868 if (rc) { 869 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 870 "MD5 while generating root IV\n"); 871 goto out; 872 } 873 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 874 out: 875 if (rc) { 876 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 877 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 878 } 879 return rc; 880 } 881 882 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 883 { 884 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 885 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 886 ecryptfs_compute_root_iv(crypt_stat); 887 if (unlikely(ecryptfs_verbosity > 0)) { 888 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 889 ecryptfs_dump_hex(crypt_stat->key, 890 crypt_stat->key_size); 891 } 892 } 893 894 /** 895 * ecryptfs_copy_mount_wide_flags_to_inode_flags 896 * @crypt_stat: The inode's cryptographic context 897 * @mount_crypt_stat: The mount point's cryptographic context 898 * 899 * This function propagates the mount-wide flags to individual inode 900 * flags. 901 */ 902 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 903 struct ecryptfs_crypt_stat *crypt_stat, 904 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 905 { 906 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 907 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 908 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 909 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 910 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 911 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 912 if (mount_crypt_stat->flags 913 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 914 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 915 else if (mount_crypt_stat->flags 916 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 917 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 918 } 919 } 920 921 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 922 struct ecryptfs_crypt_stat *crypt_stat, 923 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 924 { 925 struct ecryptfs_global_auth_tok *global_auth_tok; 926 int rc = 0; 927 928 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 929 list_for_each_entry(global_auth_tok, 930 &mount_crypt_stat->global_auth_tok_list, 931 mount_crypt_stat_list) { 932 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 933 continue; 934 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 935 if (rc) { 936 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 937 mutex_unlock( 938 &mount_crypt_stat->global_auth_tok_list_mutex); 939 goto out; 940 } 941 } 942 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 943 out: 944 return rc; 945 } 946 947 /** 948 * ecryptfs_set_default_crypt_stat_vals 949 * @crypt_stat: The inode's cryptographic context 950 * @mount_crypt_stat: The mount point's cryptographic context 951 * 952 * Default values in the event that policy does not override them. 953 */ 954 static void ecryptfs_set_default_crypt_stat_vals( 955 struct ecryptfs_crypt_stat *crypt_stat, 956 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 957 { 958 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 959 mount_crypt_stat); 960 ecryptfs_set_default_sizes(crypt_stat); 961 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 962 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 963 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 964 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 965 crypt_stat->mount_crypt_stat = mount_crypt_stat; 966 } 967 968 /** 969 * ecryptfs_new_file_context 970 * @ecryptfs_dentry: The eCryptfs dentry 971 * 972 * If the crypto context for the file has not yet been established, 973 * this is where we do that. Establishing a new crypto context 974 * involves the following decisions: 975 * - What cipher to use? 976 * - What set of authentication tokens to use? 977 * Here we just worry about getting enough information into the 978 * authentication tokens so that we know that they are available. 979 * We associate the available authentication tokens with the new file 980 * via the set of signatures in the crypt_stat struct. Later, when 981 * the headers are actually written out, we may again defer to 982 * userspace to perform the encryption of the session key; for the 983 * foreseeable future, this will be the case with public key packets. 984 * 985 * Returns zero on success; non-zero otherwise 986 */ 987 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry) 988 { 989 struct ecryptfs_crypt_stat *crypt_stat = 990 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 991 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 992 &ecryptfs_superblock_to_private( 993 ecryptfs_dentry->d_sb)->mount_crypt_stat; 994 int cipher_name_len; 995 int rc = 0; 996 997 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 998 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 999 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1000 mount_crypt_stat); 1001 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 1002 mount_crypt_stat); 1003 if (rc) { 1004 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 1005 "to the inode key sigs; rc = [%d]\n", rc); 1006 goto out; 1007 } 1008 cipher_name_len = 1009 strlen(mount_crypt_stat->global_default_cipher_name); 1010 memcpy(crypt_stat->cipher, 1011 mount_crypt_stat->global_default_cipher_name, 1012 cipher_name_len); 1013 crypt_stat->cipher[cipher_name_len] = '\0'; 1014 crypt_stat->key_size = 1015 mount_crypt_stat->global_default_cipher_key_size; 1016 ecryptfs_generate_new_key(crypt_stat); 1017 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1018 if (rc) 1019 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 1020 "context for cipher [%s]: rc = [%d]\n", 1021 crypt_stat->cipher, rc); 1022 out: 1023 return rc; 1024 } 1025 1026 /** 1027 * contains_ecryptfs_marker - check for the ecryptfs marker 1028 * @data: The data block in which to check 1029 * 1030 * Returns one if marker found; zero if not found 1031 */ 1032 static int contains_ecryptfs_marker(char *data) 1033 { 1034 u32 m_1, m_2; 1035 1036 m_1 = get_unaligned_be32(data); 1037 m_2 = get_unaligned_be32(data + 4); 1038 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 1039 return 1; 1040 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 1041 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 1042 MAGIC_ECRYPTFS_MARKER); 1043 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 1044 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 1045 return 0; 1046 } 1047 1048 struct ecryptfs_flag_map_elem { 1049 u32 file_flag; 1050 u32 local_flag; 1051 }; 1052 1053 /* Add support for additional flags by adding elements here. */ 1054 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 1055 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 1056 {0x00000002, ECRYPTFS_ENCRYPTED}, 1057 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 1058 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 1059 }; 1060 1061 /** 1062 * ecryptfs_process_flags 1063 * @crypt_stat: The cryptographic context 1064 * @page_virt: Source data to be parsed 1065 * @bytes_read: Updated with the number of bytes read 1066 * 1067 * Returns zero on success; non-zero if the flag set is invalid 1068 */ 1069 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 1070 char *page_virt, int *bytes_read) 1071 { 1072 int rc = 0; 1073 int i; 1074 u32 flags; 1075 1076 flags = get_unaligned_be32(page_virt); 1077 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1078 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1079 if (flags & ecryptfs_flag_map[i].file_flag) { 1080 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 1081 } else 1082 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 1083 /* Version is in top 8 bits of the 32-bit flag vector */ 1084 crypt_stat->file_version = ((flags >> 24) & 0xFF); 1085 (*bytes_read) = 4; 1086 return rc; 1087 } 1088 1089 /** 1090 * write_ecryptfs_marker 1091 * @page_virt: The pointer to in a page to begin writing the marker 1092 * @written: Number of bytes written 1093 * 1094 * Marker = 0x3c81b7f5 1095 */ 1096 static void write_ecryptfs_marker(char *page_virt, size_t *written) 1097 { 1098 u32 m_1, m_2; 1099 1100 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1101 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 1102 put_unaligned_be32(m_1, page_virt); 1103 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 1104 put_unaligned_be32(m_2, page_virt); 1105 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1106 } 1107 1108 static void 1109 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat, 1110 size_t *written) 1111 { 1112 u32 flags = 0; 1113 int i; 1114 1115 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1116 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1117 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 1118 flags |= ecryptfs_flag_map[i].file_flag; 1119 /* Version is in top 8 bits of the 32-bit flag vector */ 1120 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 1121 put_unaligned_be32(flags, page_virt); 1122 (*written) = 4; 1123 } 1124 1125 struct ecryptfs_cipher_code_str_map_elem { 1126 char cipher_str[16]; 1127 u8 cipher_code; 1128 }; 1129 1130 /* Add support for additional ciphers by adding elements here. The 1131 * cipher_code is whatever OpenPGP applicatoins use to identify the 1132 * ciphers. List in order of probability. */ 1133 static struct ecryptfs_cipher_code_str_map_elem 1134 ecryptfs_cipher_code_str_map[] = { 1135 {"aes",RFC2440_CIPHER_AES_128 }, 1136 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 1137 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 1138 {"cast5", RFC2440_CIPHER_CAST_5}, 1139 {"twofish", RFC2440_CIPHER_TWOFISH}, 1140 {"cast6", RFC2440_CIPHER_CAST_6}, 1141 {"aes", RFC2440_CIPHER_AES_192}, 1142 {"aes", RFC2440_CIPHER_AES_256} 1143 }; 1144 1145 /** 1146 * ecryptfs_code_for_cipher_string 1147 * @cipher_name: The string alias for the cipher 1148 * @key_bytes: Length of key in bytes; used for AES code selection 1149 * 1150 * Returns zero on no match, or the cipher code on match 1151 */ 1152 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 1153 { 1154 int i; 1155 u8 code = 0; 1156 struct ecryptfs_cipher_code_str_map_elem *map = 1157 ecryptfs_cipher_code_str_map; 1158 1159 if (strcmp(cipher_name, "aes") == 0) { 1160 switch (key_bytes) { 1161 case 16: 1162 code = RFC2440_CIPHER_AES_128; 1163 break; 1164 case 24: 1165 code = RFC2440_CIPHER_AES_192; 1166 break; 1167 case 32: 1168 code = RFC2440_CIPHER_AES_256; 1169 } 1170 } else { 1171 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1172 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 1173 code = map[i].cipher_code; 1174 break; 1175 } 1176 } 1177 return code; 1178 } 1179 1180 /** 1181 * ecryptfs_cipher_code_to_string 1182 * @str: Destination to write out the cipher name 1183 * @cipher_code: The code to convert to cipher name string 1184 * 1185 * Returns zero on success 1186 */ 1187 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 1188 { 1189 int rc = 0; 1190 int i; 1191 1192 str[0] = '\0'; 1193 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1194 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1195 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1196 if (str[0] == '\0') { 1197 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1198 "[%d]\n", cipher_code); 1199 rc = -EINVAL; 1200 } 1201 return rc; 1202 } 1203 1204 int ecryptfs_read_and_validate_header_region(char *data, 1205 struct inode *ecryptfs_inode) 1206 { 1207 struct ecryptfs_crypt_stat *crypt_stat = 1208 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 1209 int rc; 1210 1211 if (crypt_stat->extent_size == 0) 1212 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 1213 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size, 1214 ecryptfs_inode); 1215 if (rc) { 1216 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n", 1217 __func__, rc); 1218 goto out; 1219 } 1220 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) { 1221 rc = -EINVAL; 1222 } 1223 out: 1224 return rc; 1225 } 1226 1227 void 1228 ecryptfs_write_header_metadata(char *virt, 1229 struct ecryptfs_crypt_stat *crypt_stat, 1230 size_t *written) 1231 { 1232 u32 header_extent_size; 1233 u16 num_header_extents_at_front; 1234 1235 header_extent_size = (u32)crypt_stat->extent_size; 1236 num_header_extents_at_front = 1237 (u16)(crypt_stat->num_header_bytes_at_front 1238 / crypt_stat->extent_size); 1239 put_unaligned_be32(header_extent_size, virt); 1240 virt += 4; 1241 put_unaligned_be16(num_header_extents_at_front, virt); 1242 (*written) = 6; 1243 } 1244 1245 struct kmem_cache *ecryptfs_header_cache_1; 1246 struct kmem_cache *ecryptfs_header_cache_2; 1247 1248 /** 1249 * ecryptfs_write_headers_virt 1250 * @page_virt: The virtual address to write the headers to 1251 * @max: The size of memory allocated at page_virt 1252 * @size: Set to the number of bytes written by this function 1253 * @crypt_stat: The cryptographic context 1254 * @ecryptfs_dentry: The eCryptfs dentry 1255 * 1256 * Format version: 1 1257 * 1258 * Header Extent: 1259 * Octets 0-7: Unencrypted file size (big-endian) 1260 * Octets 8-15: eCryptfs special marker 1261 * Octets 16-19: Flags 1262 * Octet 16: File format version number (between 0 and 255) 1263 * Octets 17-18: Reserved 1264 * Octet 19: Bit 1 (lsb): Reserved 1265 * Bit 2: Encrypted? 1266 * Bits 3-8: Reserved 1267 * Octets 20-23: Header extent size (big-endian) 1268 * Octets 24-25: Number of header extents at front of file 1269 * (big-endian) 1270 * Octet 26: Begin RFC 2440 authentication token packet set 1271 * Data Extent 0: 1272 * Lower data (CBC encrypted) 1273 * Data Extent 1: 1274 * Lower data (CBC encrypted) 1275 * ... 1276 * 1277 * Returns zero on success 1278 */ 1279 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1280 size_t *size, 1281 struct ecryptfs_crypt_stat *crypt_stat, 1282 struct dentry *ecryptfs_dentry) 1283 { 1284 int rc; 1285 size_t written; 1286 size_t offset; 1287 1288 offset = ECRYPTFS_FILE_SIZE_BYTES; 1289 write_ecryptfs_marker((page_virt + offset), &written); 1290 offset += written; 1291 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written); 1292 offset += written; 1293 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1294 &written); 1295 offset += written; 1296 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1297 ecryptfs_dentry, &written, 1298 max - offset); 1299 if (rc) 1300 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1301 "set; rc = [%d]\n", rc); 1302 if (size) { 1303 offset += written; 1304 *size = offset; 1305 } 1306 return rc; 1307 } 1308 1309 static int 1310 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry, 1311 char *virt, size_t virt_len) 1312 { 1313 int rc; 1314 1315 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt, 1316 0, virt_len); 1317 if (rc) 1318 printk(KERN_ERR "%s: Error attempting to write header " 1319 "information to lower file; rc = [%d]\n", __func__, 1320 rc); 1321 return rc; 1322 } 1323 1324 static int 1325 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1326 char *page_virt, size_t size) 1327 { 1328 int rc; 1329 1330 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1331 size, 0); 1332 return rc; 1333 } 1334 1335 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1336 unsigned int order) 1337 { 1338 struct page *page; 1339 1340 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1341 if (page) 1342 return (unsigned long) page_address(page); 1343 return 0; 1344 } 1345 1346 /** 1347 * ecryptfs_write_metadata 1348 * @ecryptfs_dentry: The eCryptfs dentry 1349 * 1350 * Write the file headers out. This will likely involve a userspace 1351 * callout, in which the session key is encrypted with one or more 1352 * public keys and/or the passphrase necessary to do the encryption is 1353 * retrieved via a prompt. Exactly what happens at this point should 1354 * be policy-dependent. 1355 * 1356 * Returns zero on success; non-zero on error 1357 */ 1358 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry) 1359 { 1360 struct ecryptfs_crypt_stat *crypt_stat = 1361 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 1362 unsigned int order; 1363 char *virt; 1364 size_t virt_len; 1365 size_t size = 0; 1366 int rc = 0; 1367 1368 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1369 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1370 printk(KERN_ERR "Key is invalid; bailing out\n"); 1371 rc = -EINVAL; 1372 goto out; 1373 } 1374 } else { 1375 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1376 __func__); 1377 rc = -EINVAL; 1378 goto out; 1379 } 1380 virt_len = crypt_stat->num_header_bytes_at_front; 1381 order = get_order(virt_len); 1382 /* Released in this function */ 1383 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1384 if (!virt) { 1385 printk(KERN_ERR "%s: Out of memory\n", __func__); 1386 rc = -ENOMEM; 1387 goto out; 1388 } 1389 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1390 ecryptfs_dentry); 1391 if (unlikely(rc)) { 1392 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1393 __func__, rc); 1394 goto out_free; 1395 } 1396 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1397 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt, 1398 size); 1399 else 1400 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt, 1401 virt_len); 1402 if (rc) { 1403 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1404 "rc = [%d]\n", __func__, rc); 1405 goto out_free; 1406 } 1407 out_free: 1408 free_pages((unsigned long)virt, order); 1409 out: 1410 return rc; 1411 } 1412 1413 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1414 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1415 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1416 char *virt, int *bytes_read, 1417 int validate_header_size) 1418 { 1419 int rc = 0; 1420 u32 header_extent_size; 1421 u16 num_header_extents_at_front; 1422 1423 header_extent_size = get_unaligned_be32(virt); 1424 virt += sizeof(__be32); 1425 num_header_extents_at_front = get_unaligned_be16(virt); 1426 crypt_stat->num_header_bytes_at_front = 1427 (((size_t)num_header_extents_at_front 1428 * (size_t)header_extent_size)); 1429 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1430 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1431 && (crypt_stat->num_header_bytes_at_front 1432 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1433 rc = -EINVAL; 1434 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1435 crypt_stat->num_header_bytes_at_front); 1436 } 1437 return rc; 1438 } 1439 1440 /** 1441 * set_default_header_data 1442 * @crypt_stat: The cryptographic context 1443 * 1444 * For version 0 file format; this function is only for backwards 1445 * compatibility for files created with the prior versions of 1446 * eCryptfs. 1447 */ 1448 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1449 { 1450 crypt_stat->num_header_bytes_at_front = 1451 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1452 } 1453 1454 /** 1455 * ecryptfs_read_headers_virt 1456 * @page_virt: The virtual address into which to read the headers 1457 * @crypt_stat: The cryptographic context 1458 * @ecryptfs_dentry: The eCryptfs dentry 1459 * @validate_header_size: Whether to validate the header size while reading 1460 * 1461 * Read/parse the header data. The header format is detailed in the 1462 * comment block for the ecryptfs_write_headers_virt() function. 1463 * 1464 * Returns zero on success 1465 */ 1466 static int ecryptfs_read_headers_virt(char *page_virt, 1467 struct ecryptfs_crypt_stat *crypt_stat, 1468 struct dentry *ecryptfs_dentry, 1469 int validate_header_size) 1470 { 1471 int rc = 0; 1472 int offset; 1473 int bytes_read; 1474 1475 ecryptfs_set_default_sizes(crypt_stat); 1476 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1477 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1478 offset = ECRYPTFS_FILE_SIZE_BYTES; 1479 rc = contains_ecryptfs_marker(page_virt + offset); 1480 if (rc == 0) { 1481 rc = -EINVAL; 1482 goto out; 1483 } 1484 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1485 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1486 &bytes_read); 1487 if (rc) { 1488 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1489 goto out; 1490 } 1491 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1492 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1493 "file version [%d] is supported by this " 1494 "version of eCryptfs\n", 1495 crypt_stat->file_version, 1496 ECRYPTFS_SUPPORTED_FILE_VERSION); 1497 rc = -EINVAL; 1498 goto out; 1499 } 1500 offset += bytes_read; 1501 if (crypt_stat->file_version >= 1) { 1502 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1503 &bytes_read, validate_header_size); 1504 if (rc) { 1505 ecryptfs_printk(KERN_WARNING, "Error reading header " 1506 "metadata; rc = [%d]\n", rc); 1507 } 1508 offset += bytes_read; 1509 } else 1510 set_default_header_data(crypt_stat); 1511 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1512 ecryptfs_dentry); 1513 out: 1514 return rc; 1515 } 1516 1517 /** 1518 * ecryptfs_read_xattr_region 1519 * @page_virt: The vitual address into which to read the xattr data 1520 * @ecryptfs_inode: The eCryptfs inode 1521 * 1522 * Attempts to read the crypto metadata from the extended attribute 1523 * region of the lower file. 1524 * 1525 * Returns zero on success; non-zero on error 1526 */ 1527 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1528 { 1529 struct dentry *lower_dentry = 1530 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1531 ssize_t size; 1532 int rc = 0; 1533 1534 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1535 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1536 if (size < 0) { 1537 if (unlikely(ecryptfs_verbosity > 0)) 1538 printk(KERN_INFO "Error attempting to read the [%s] " 1539 "xattr from the lower file; return value = " 1540 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1541 rc = -EINVAL; 1542 goto out; 1543 } 1544 out: 1545 return rc; 1546 } 1547 1548 int ecryptfs_read_and_validate_xattr_region(char *page_virt, 1549 struct dentry *ecryptfs_dentry) 1550 { 1551 int rc; 1552 1553 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode); 1554 if (rc) 1555 goto out; 1556 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) { 1557 printk(KERN_WARNING "Valid data found in [%s] xattr, but " 1558 "the marker is invalid\n", ECRYPTFS_XATTR_NAME); 1559 rc = -EINVAL; 1560 } 1561 out: 1562 return rc; 1563 } 1564 1565 /** 1566 * ecryptfs_read_metadata 1567 * 1568 * Common entry point for reading file metadata. From here, we could 1569 * retrieve the header information from the header region of the file, 1570 * the xattr region of the file, or some other repostory that is 1571 * stored separately from the file itself. The current implementation 1572 * supports retrieving the metadata information from the file contents 1573 * and from the xattr region. 1574 * 1575 * Returns zero if valid headers found and parsed; non-zero otherwise 1576 */ 1577 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1578 { 1579 int rc = 0; 1580 char *page_virt = NULL; 1581 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1582 struct ecryptfs_crypt_stat *crypt_stat = 1583 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1584 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1585 &ecryptfs_superblock_to_private( 1586 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1587 1588 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1589 mount_crypt_stat); 1590 /* Read the first page from the underlying file */ 1591 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER); 1592 if (!page_virt) { 1593 rc = -ENOMEM; 1594 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1595 __func__); 1596 goto out; 1597 } 1598 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1599 ecryptfs_inode); 1600 if (!rc) 1601 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1602 ecryptfs_dentry, 1603 ECRYPTFS_VALIDATE_HEADER_SIZE); 1604 if (rc) { 1605 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1606 if (rc) { 1607 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1608 "file header region or xattr region\n"); 1609 rc = -EINVAL; 1610 goto out; 1611 } 1612 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1613 ecryptfs_dentry, 1614 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1615 if (rc) { 1616 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1617 "file xattr region either\n"); 1618 rc = -EINVAL; 1619 } 1620 if (crypt_stat->mount_crypt_stat->flags 1621 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1622 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1623 } else { 1624 printk(KERN_WARNING "Attempt to access file with " 1625 "crypto metadata only in the extended attribute " 1626 "region, but eCryptfs was mounted without " 1627 "xattr support enabled. eCryptfs will not treat " 1628 "this like an encrypted file.\n"); 1629 rc = -EINVAL; 1630 } 1631 } 1632 out: 1633 if (page_virt) { 1634 memset(page_virt, 0, PAGE_CACHE_SIZE); 1635 kmem_cache_free(ecryptfs_header_cache_1, page_virt); 1636 } 1637 return rc; 1638 } 1639 1640 /** 1641 * ecryptfs_encrypt_filename - encrypt filename 1642 * 1643 * CBC-encrypts the filename. We do not want to encrypt the same 1644 * filename with the same key and IV, which may happen with hard 1645 * links, so we prepend random bits to each filename. 1646 * 1647 * Returns zero on success; non-zero otherwise 1648 */ 1649 static int 1650 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1651 struct ecryptfs_crypt_stat *crypt_stat, 1652 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1653 { 1654 int rc = 0; 1655 1656 filename->encrypted_filename = NULL; 1657 filename->encrypted_filename_size = 0; 1658 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1659 || (mount_crypt_stat && (mount_crypt_stat->flags 1660 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 1661 size_t packet_size; 1662 size_t remaining_bytes; 1663 1664 rc = ecryptfs_write_tag_70_packet( 1665 NULL, NULL, 1666 &filename->encrypted_filename_size, 1667 mount_crypt_stat, NULL, 1668 filename->filename_size); 1669 if (rc) { 1670 printk(KERN_ERR "%s: Error attempting to get packet " 1671 "size for tag 72; rc = [%d]\n", __func__, 1672 rc); 1673 filename->encrypted_filename_size = 0; 1674 goto out; 1675 } 1676 filename->encrypted_filename = 1677 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1678 if (!filename->encrypted_filename) { 1679 printk(KERN_ERR "%s: Out of memory whilst attempting " 1680 "to kmalloc [%zd] bytes\n", __func__, 1681 filename->encrypted_filename_size); 1682 rc = -ENOMEM; 1683 goto out; 1684 } 1685 remaining_bytes = filename->encrypted_filename_size; 1686 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1687 &remaining_bytes, 1688 &packet_size, 1689 mount_crypt_stat, 1690 filename->filename, 1691 filename->filename_size); 1692 if (rc) { 1693 printk(KERN_ERR "%s: Error attempting to generate " 1694 "tag 70 packet; rc = [%d]\n", __func__, 1695 rc); 1696 kfree(filename->encrypted_filename); 1697 filename->encrypted_filename = NULL; 1698 filename->encrypted_filename_size = 0; 1699 goto out; 1700 } 1701 filename->encrypted_filename_size = packet_size; 1702 } else { 1703 printk(KERN_ERR "%s: No support for requested filename " 1704 "encryption method in this release\n", __func__); 1705 rc = -ENOTSUPP; 1706 goto out; 1707 } 1708 out: 1709 return rc; 1710 } 1711 1712 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1713 const char *name, size_t name_size) 1714 { 1715 int rc = 0; 1716 1717 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1718 if (!(*copied_name)) { 1719 rc = -ENOMEM; 1720 goto out; 1721 } 1722 memcpy((void *)(*copied_name), (void *)name, name_size); 1723 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1724 * in printing out the 1725 * string in debug 1726 * messages */ 1727 (*copied_name_size) = name_size; 1728 out: 1729 return rc; 1730 } 1731 1732 /** 1733 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1734 * @key_tfm: Crypto context for key material, set by this function 1735 * @cipher_name: Name of the cipher 1736 * @key_size: Size of the key in bytes 1737 * 1738 * Returns zero on success. Any crypto_tfm structs allocated here 1739 * should be released by other functions, such as on a superblock put 1740 * event, regardless of whether this function succeeds for fails. 1741 */ 1742 static int 1743 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1744 char *cipher_name, size_t *key_size) 1745 { 1746 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1747 char *full_alg_name; 1748 int rc; 1749 1750 *key_tfm = NULL; 1751 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1752 rc = -EINVAL; 1753 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1754 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1755 goto out; 1756 } 1757 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1758 "ecb"); 1759 if (rc) 1760 goto out; 1761 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1762 kfree(full_alg_name); 1763 if (IS_ERR(*key_tfm)) { 1764 rc = PTR_ERR(*key_tfm); 1765 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1766 "[%s]; rc = [%d]\n", cipher_name, rc); 1767 goto out; 1768 } 1769 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1770 if (*key_size == 0) { 1771 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1772 1773 *key_size = alg->max_keysize; 1774 } 1775 get_random_bytes(dummy_key, *key_size); 1776 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1777 if (rc) { 1778 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1779 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc); 1780 rc = -EINVAL; 1781 goto out; 1782 } 1783 out: 1784 return rc; 1785 } 1786 1787 struct kmem_cache *ecryptfs_key_tfm_cache; 1788 static struct list_head key_tfm_list; 1789 struct mutex key_tfm_list_mutex; 1790 1791 int ecryptfs_init_crypto(void) 1792 { 1793 mutex_init(&key_tfm_list_mutex); 1794 INIT_LIST_HEAD(&key_tfm_list); 1795 return 0; 1796 } 1797 1798 /** 1799 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1800 * 1801 * Called only at module unload time 1802 */ 1803 int ecryptfs_destroy_crypto(void) 1804 { 1805 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1806 1807 mutex_lock(&key_tfm_list_mutex); 1808 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1809 key_tfm_list) { 1810 list_del(&key_tfm->key_tfm_list); 1811 if (key_tfm->key_tfm) 1812 crypto_free_blkcipher(key_tfm->key_tfm); 1813 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1814 } 1815 mutex_unlock(&key_tfm_list_mutex); 1816 return 0; 1817 } 1818 1819 int 1820 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1821 size_t key_size) 1822 { 1823 struct ecryptfs_key_tfm *tmp_tfm; 1824 int rc = 0; 1825 1826 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1827 1828 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1829 if (key_tfm != NULL) 1830 (*key_tfm) = tmp_tfm; 1831 if (!tmp_tfm) { 1832 rc = -ENOMEM; 1833 printk(KERN_ERR "Error attempting to allocate from " 1834 "ecryptfs_key_tfm_cache\n"); 1835 goto out; 1836 } 1837 mutex_init(&tmp_tfm->key_tfm_mutex); 1838 strncpy(tmp_tfm->cipher_name, cipher_name, 1839 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1840 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1841 tmp_tfm->key_size = key_size; 1842 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1843 tmp_tfm->cipher_name, 1844 &tmp_tfm->key_size); 1845 if (rc) { 1846 printk(KERN_ERR "Error attempting to initialize key TFM " 1847 "cipher with name = [%s]; rc = [%d]\n", 1848 tmp_tfm->cipher_name, rc); 1849 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1850 if (key_tfm != NULL) 1851 (*key_tfm) = NULL; 1852 goto out; 1853 } 1854 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1855 out: 1856 return rc; 1857 } 1858 1859 /** 1860 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1861 * @cipher_name: the name of the cipher to search for 1862 * @key_tfm: set to corresponding tfm if found 1863 * 1864 * Searches for cached key_tfm matching @cipher_name 1865 * Must be called with &key_tfm_list_mutex held 1866 * Returns 1 if found, with @key_tfm set 1867 * Returns 0 if not found, with @key_tfm set to NULL 1868 */ 1869 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1870 { 1871 struct ecryptfs_key_tfm *tmp_key_tfm; 1872 1873 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1874 1875 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1876 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1877 if (key_tfm) 1878 (*key_tfm) = tmp_key_tfm; 1879 return 1; 1880 } 1881 } 1882 if (key_tfm) 1883 (*key_tfm) = NULL; 1884 return 0; 1885 } 1886 1887 /** 1888 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1889 * 1890 * @tfm: set to cached tfm found, or new tfm created 1891 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1892 * @cipher_name: the name of the cipher to search for and/or add 1893 * 1894 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1895 * Searches for cached item first, and creates new if not found. 1896 * Returns 0 on success, non-zero if adding new cipher failed 1897 */ 1898 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1899 struct mutex **tfm_mutex, 1900 char *cipher_name) 1901 { 1902 struct ecryptfs_key_tfm *key_tfm; 1903 int rc = 0; 1904 1905 (*tfm) = NULL; 1906 (*tfm_mutex) = NULL; 1907 1908 mutex_lock(&key_tfm_list_mutex); 1909 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1910 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1911 if (rc) { 1912 printk(KERN_ERR "Error adding new key_tfm to list; " 1913 "rc = [%d]\n", rc); 1914 goto out; 1915 } 1916 } 1917 (*tfm) = key_tfm->key_tfm; 1918 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1919 out: 1920 mutex_unlock(&key_tfm_list_mutex); 1921 return rc; 1922 } 1923 1924 /* 64 characters forming a 6-bit target field */ 1925 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1926 "EFGHIJKLMNOPQRST" 1927 "UVWXYZabcdefghij" 1928 "klmnopqrstuvwxyz"); 1929 1930 /* We could either offset on every reverse map or just pad some 0x00's 1931 * at the front here */ 1932 static const unsigned char filename_rev_map[] = { 1933 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1934 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1935 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1936 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1937 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1939 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1940 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1941 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1942 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1943 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1944 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1945 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1946 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1947 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1948 0x3D, 0x3E, 0x3F 1949 }; 1950 1951 /** 1952 * ecryptfs_encode_for_filename 1953 * @dst: Destination location for encoded filename 1954 * @dst_size: Size of the encoded filename in bytes 1955 * @src: Source location for the filename to encode 1956 * @src_size: Size of the source in bytes 1957 */ 1958 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1959 unsigned char *src, size_t src_size) 1960 { 1961 size_t num_blocks; 1962 size_t block_num = 0; 1963 size_t dst_offset = 0; 1964 unsigned char last_block[3]; 1965 1966 if (src_size == 0) { 1967 (*dst_size) = 0; 1968 goto out; 1969 } 1970 num_blocks = (src_size / 3); 1971 if ((src_size % 3) == 0) { 1972 memcpy(last_block, (&src[src_size - 3]), 3); 1973 } else { 1974 num_blocks++; 1975 last_block[2] = 0x00; 1976 switch (src_size % 3) { 1977 case 1: 1978 last_block[0] = src[src_size - 1]; 1979 last_block[1] = 0x00; 1980 break; 1981 case 2: 1982 last_block[0] = src[src_size - 2]; 1983 last_block[1] = src[src_size - 1]; 1984 } 1985 } 1986 (*dst_size) = (num_blocks * 4); 1987 if (!dst) 1988 goto out; 1989 while (block_num < num_blocks) { 1990 unsigned char *src_block; 1991 unsigned char dst_block[4]; 1992 1993 if (block_num == (num_blocks - 1)) 1994 src_block = last_block; 1995 else 1996 src_block = &src[block_num * 3]; 1997 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1998 dst_block[1] = (((src_block[0] << 4) & 0x30) 1999 | ((src_block[1] >> 4) & 0x0F)); 2000 dst_block[2] = (((src_block[1] << 2) & 0x3C) 2001 | ((src_block[2] >> 6) & 0x03)); 2002 dst_block[3] = (src_block[2] & 0x3F); 2003 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 2004 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 2005 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 2006 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 2007 block_num++; 2008 } 2009 out: 2010 return; 2011 } 2012 2013 /** 2014 * ecryptfs_decode_from_filename 2015 * @dst: If NULL, this function only sets @dst_size and returns. If 2016 * non-NULL, this function decodes the encoded octets in @src 2017 * into the memory that @dst points to. 2018 * @dst_size: Set to the size of the decoded string. 2019 * @src: The encoded set of octets to decode. 2020 * @src_size: The size of the encoded set of octets to decode. 2021 */ 2022 static void 2023 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 2024 const unsigned char *src, size_t src_size) 2025 { 2026 u8 current_bit_offset = 0; 2027 size_t src_byte_offset = 0; 2028 size_t dst_byte_offset = 0; 2029 2030 if (dst == NULL) { 2031 /* Not exact; conservatively long. Every block of 4 2032 * encoded characters decodes into a block of 3 2033 * decoded characters. This segment of code provides 2034 * the caller with the maximum amount of allocated 2035 * space that @dst will need to point to in a 2036 * subsequent call. */ 2037 (*dst_size) = (((src_size + 1) * 3) / 4); 2038 goto out; 2039 } 2040 while (src_byte_offset < src_size) { 2041 unsigned char src_byte = 2042 filename_rev_map[(int)src[src_byte_offset]]; 2043 2044 switch (current_bit_offset) { 2045 case 0: 2046 dst[dst_byte_offset] = (src_byte << 2); 2047 current_bit_offset = 6; 2048 break; 2049 case 6: 2050 dst[dst_byte_offset++] |= (src_byte >> 4); 2051 dst[dst_byte_offset] = ((src_byte & 0xF) 2052 << 4); 2053 current_bit_offset = 4; 2054 break; 2055 case 4: 2056 dst[dst_byte_offset++] |= (src_byte >> 2); 2057 dst[dst_byte_offset] = (src_byte << 6); 2058 current_bit_offset = 2; 2059 break; 2060 case 2: 2061 dst[dst_byte_offset++] |= (src_byte); 2062 dst[dst_byte_offset] = 0; 2063 current_bit_offset = 0; 2064 break; 2065 } 2066 src_byte_offset++; 2067 } 2068 (*dst_size) = dst_byte_offset; 2069 out: 2070 return; 2071 } 2072 2073 /** 2074 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 2075 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 2076 * @name: The plaintext name 2077 * @length: The length of the plaintext 2078 * @encoded_name: The encypted name 2079 * 2080 * Encrypts and encodes a filename into something that constitutes a 2081 * valid filename for a filesystem, with printable characters. 2082 * 2083 * We assume that we have a properly initialized crypto context, 2084 * pointed to by crypt_stat->tfm. 2085 * 2086 * Returns zero on success; non-zero on otherwise 2087 */ 2088 int ecryptfs_encrypt_and_encode_filename( 2089 char **encoded_name, 2090 size_t *encoded_name_size, 2091 struct ecryptfs_crypt_stat *crypt_stat, 2092 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 2093 const char *name, size_t name_size) 2094 { 2095 size_t encoded_name_no_prefix_size; 2096 int rc = 0; 2097 2098 (*encoded_name) = NULL; 2099 (*encoded_name_size) = 0; 2100 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES)) 2101 || (mount_crypt_stat && (mount_crypt_stat->flags 2102 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) { 2103 struct ecryptfs_filename *filename; 2104 2105 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 2106 if (!filename) { 2107 printk(KERN_ERR "%s: Out of memory whilst attempting " 2108 "to kzalloc [%zd] bytes\n", __func__, 2109 sizeof(*filename)); 2110 rc = -ENOMEM; 2111 goto out; 2112 } 2113 filename->filename = (char *)name; 2114 filename->filename_size = name_size; 2115 rc = ecryptfs_encrypt_filename(filename, crypt_stat, 2116 mount_crypt_stat); 2117 if (rc) { 2118 printk(KERN_ERR "%s: Error attempting to encrypt " 2119 "filename; rc = [%d]\n", __func__, rc); 2120 kfree(filename); 2121 goto out; 2122 } 2123 ecryptfs_encode_for_filename( 2124 NULL, &encoded_name_no_prefix_size, 2125 filename->encrypted_filename, 2126 filename->encrypted_filename_size); 2127 if ((crypt_stat && (crypt_stat->flags 2128 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2129 || (mount_crypt_stat 2130 && (mount_crypt_stat->flags 2131 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) 2132 (*encoded_name_size) = 2133 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2134 + encoded_name_no_prefix_size); 2135 else 2136 (*encoded_name_size) = 2137 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2138 + encoded_name_no_prefix_size); 2139 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 2140 if (!(*encoded_name)) { 2141 printk(KERN_ERR "%s: Out of memory whilst attempting " 2142 "to kzalloc [%zd] bytes\n", __func__, 2143 (*encoded_name_size)); 2144 rc = -ENOMEM; 2145 kfree(filename->encrypted_filename); 2146 kfree(filename); 2147 goto out; 2148 } 2149 if ((crypt_stat && (crypt_stat->flags 2150 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2151 || (mount_crypt_stat 2152 && (mount_crypt_stat->flags 2153 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 2154 memcpy((*encoded_name), 2155 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2156 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 2157 ecryptfs_encode_for_filename( 2158 ((*encoded_name) 2159 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 2160 &encoded_name_no_prefix_size, 2161 filename->encrypted_filename, 2162 filename->encrypted_filename_size); 2163 (*encoded_name_size) = 2164 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2165 + encoded_name_no_prefix_size); 2166 (*encoded_name)[(*encoded_name_size)] = '\0'; 2167 (*encoded_name_size)++; 2168 } else { 2169 rc = -ENOTSUPP; 2170 } 2171 if (rc) { 2172 printk(KERN_ERR "%s: Error attempting to encode " 2173 "encrypted filename; rc = [%d]\n", __func__, 2174 rc); 2175 kfree((*encoded_name)); 2176 (*encoded_name) = NULL; 2177 (*encoded_name_size) = 0; 2178 } 2179 kfree(filename->encrypted_filename); 2180 kfree(filename); 2181 } else { 2182 rc = ecryptfs_copy_filename(encoded_name, 2183 encoded_name_size, 2184 name, name_size); 2185 } 2186 out: 2187 return rc; 2188 } 2189 2190 /** 2191 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2192 * @plaintext_name: The plaintext name 2193 * @plaintext_name_size: The plaintext name size 2194 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2195 * @name: The filename in cipher text 2196 * @name_size: The cipher text name size 2197 * 2198 * Decrypts and decodes the filename. 2199 * 2200 * Returns zero on error; non-zero otherwise 2201 */ 2202 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2203 size_t *plaintext_name_size, 2204 struct dentry *ecryptfs_dir_dentry, 2205 const char *name, size_t name_size) 2206 { 2207 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2208 &ecryptfs_superblock_to_private( 2209 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat; 2210 char *decoded_name; 2211 size_t decoded_name_size; 2212 size_t packet_size; 2213 int rc = 0; 2214 2215 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 2216 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 2217 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) 2218 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2219 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) { 2220 const char *orig_name = name; 2221 size_t orig_name_size = name_size; 2222 2223 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2224 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2225 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2226 name, name_size); 2227 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2228 if (!decoded_name) { 2229 printk(KERN_ERR "%s: Out of memory whilst attempting " 2230 "to kmalloc [%zd] bytes\n", __func__, 2231 decoded_name_size); 2232 rc = -ENOMEM; 2233 goto out; 2234 } 2235 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2236 name, name_size); 2237 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2238 plaintext_name_size, 2239 &packet_size, 2240 mount_crypt_stat, 2241 decoded_name, 2242 decoded_name_size); 2243 if (rc) { 2244 printk(KERN_INFO "%s: Could not parse tag 70 packet " 2245 "from filename; copying through filename " 2246 "as-is\n", __func__); 2247 rc = ecryptfs_copy_filename(plaintext_name, 2248 plaintext_name_size, 2249 orig_name, orig_name_size); 2250 goto out_free; 2251 } 2252 } else { 2253 rc = ecryptfs_copy_filename(plaintext_name, 2254 plaintext_name_size, 2255 name, name_size); 2256 goto out; 2257 } 2258 out_free: 2259 kfree(decoded_name); 2260 out: 2261 return rc; 2262 } 2263