xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision f5c27da4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2004 Erez Zadok
6  * Copyright (C) 2001-2004 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *   		Michael C. Thompson <mcthomps@us.ibm.com>
10  */
11 
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 #include <linux/fs.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
28 
29 #define DECRYPT		0
30 #define ENCRYPT		1
31 
32 /**
33  * ecryptfs_from_hex
34  * @dst: Buffer to take the bytes from src hex; must be at least of
35  *       size (src_size / 2)
36  * @src: Buffer to be converted from a hex string representation to raw value
37  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38  */
39 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40 {
41 	int x;
42 	char tmp[3] = { 0, };
43 
44 	for (x = 0; x < dst_size; x++) {
45 		tmp[0] = src[x * 2];
46 		tmp[1] = src[x * 2 + 1];
47 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48 	}
49 }
50 
51 /**
52  * ecryptfs_calculate_md5 - calculates the md5 of @src
53  * @dst: Pointer to 16 bytes of allocated memory
54  * @crypt_stat: Pointer to crypt_stat struct for the current inode
55  * @src: Data to be md5'd
56  * @len: Length of @src
57  *
58  * Uses the allocated crypto context that crypt_stat references to
59  * generate the MD5 sum of the contents of src.
60  */
61 static int ecryptfs_calculate_md5(char *dst,
62 				  struct ecryptfs_crypt_stat *crypt_stat,
63 				  char *src, int len)
64 {
65 	int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
66 
67 	if (rc) {
68 		printk(KERN_ERR
69 		       "%s: Error computing crypto hash; rc = [%d]\n",
70 		       __func__, rc);
71 		goto out;
72 	}
73 out:
74 	return rc;
75 }
76 
77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
78 						  char *cipher_name,
79 						  char *chaining_modifier)
80 {
81 	int cipher_name_len = strlen(cipher_name);
82 	int chaining_modifier_len = strlen(chaining_modifier);
83 	int algified_name_len;
84 	int rc;
85 
86 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
87 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
88 	if (!(*algified_name)) {
89 		rc = -ENOMEM;
90 		goto out;
91 	}
92 	snprintf((*algified_name), algified_name_len, "%s(%s)",
93 		 chaining_modifier, cipher_name);
94 	rc = 0;
95 out:
96 	return rc;
97 }
98 
99 /**
100  * ecryptfs_derive_iv
101  * @iv: destination for the derived iv vale
102  * @crypt_stat: Pointer to crypt_stat struct for the current inode
103  * @offset: Offset of the extent whose IV we are to derive
104  *
105  * Generate the initialization vector from the given root IV and page
106  * offset.
107  *
108  * Returns zero on success; non-zero on error.
109  */
110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
111 		       loff_t offset)
112 {
113 	int rc = 0;
114 	char dst[MD5_DIGEST_SIZE];
115 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
116 
117 	if (unlikely(ecryptfs_verbosity > 0)) {
118 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
119 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
120 	}
121 	/* TODO: It is probably secure to just cast the least
122 	 * significant bits of the root IV into an unsigned long and
123 	 * add the offset to that rather than go through all this
124 	 * hashing business. -Halcrow */
125 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
126 	memset((src + crypt_stat->iv_bytes), 0, 16);
127 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
128 	if (unlikely(ecryptfs_verbosity > 0)) {
129 		ecryptfs_printk(KERN_DEBUG, "source:\n");
130 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
131 	}
132 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
133 				    (crypt_stat->iv_bytes + 16));
134 	if (rc) {
135 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
136 				"MD5 while generating IV for a page\n");
137 		goto out;
138 	}
139 	memcpy(iv, dst, crypt_stat->iv_bytes);
140 	if (unlikely(ecryptfs_verbosity > 0)) {
141 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
142 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
143 	}
144 out:
145 	return rc;
146 }
147 
148 /**
149  * ecryptfs_init_crypt_stat
150  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
151  *
152  * Initialize the crypt_stat structure.
153  */
154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
155 {
156 	struct crypto_shash *tfm;
157 	int rc;
158 
159 	tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
160 	if (IS_ERR(tfm)) {
161 		rc = PTR_ERR(tfm);
162 		ecryptfs_printk(KERN_ERR, "Error attempting to "
163 				"allocate crypto context; rc = [%d]\n",
164 				rc);
165 		return rc;
166 	}
167 
168 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
169 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
170 	mutex_init(&crypt_stat->keysig_list_mutex);
171 	mutex_init(&crypt_stat->cs_mutex);
172 	mutex_init(&crypt_stat->cs_tfm_mutex);
173 	crypt_stat->hash_tfm = tfm;
174 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
175 
176 	return 0;
177 }
178 
179 /**
180  * ecryptfs_destroy_crypt_stat
181  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
182  *
183  * Releases all memory associated with a crypt_stat struct.
184  */
185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
186 {
187 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
188 
189 	crypto_free_skcipher(crypt_stat->tfm);
190 	crypto_free_shash(crypt_stat->hash_tfm);
191 	list_for_each_entry_safe(key_sig, key_sig_tmp,
192 				 &crypt_stat->keysig_list, crypt_stat_list) {
193 		list_del(&key_sig->crypt_stat_list);
194 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
195 	}
196 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
197 }
198 
199 void ecryptfs_destroy_mount_crypt_stat(
200 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
201 {
202 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
203 
204 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
205 		return;
206 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
207 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
208 				 &mount_crypt_stat->global_auth_tok_list,
209 				 mount_crypt_stat_list) {
210 		list_del(&auth_tok->mount_crypt_stat_list);
211 		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
212 			key_put(auth_tok->global_auth_tok_key);
213 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
214 	}
215 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
216 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
217 }
218 
219 /**
220  * virt_to_scatterlist
221  * @addr: Virtual address
222  * @size: Size of data; should be an even multiple of the block size
223  * @sg: Pointer to scatterlist array; set to NULL to obtain only
224  *      the number of scatterlist structs required in array
225  * @sg_size: Max array size
226  *
227  * Fills in a scatterlist array with page references for a passed
228  * virtual address.
229  *
230  * Returns the number of scatterlist structs in array used
231  */
232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
233 			int sg_size)
234 {
235 	int i = 0;
236 	struct page *pg;
237 	int offset;
238 	int remainder_of_page;
239 
240 	sg_init_table(sg, sg_size);
241 
242 	while (size > 0 && i < sg_size) {
243 		pg = virt_to_page(addr);
244 		offset = offset_in_page(addr);
245 		sg_set_page(&sg[i], pg, 0, offset);
246 		remainder_of_page = PAGE_SIZE - offset;
247 		if (size >= remainder_of_page) {
248 			sg[i].length = remainder_of_page;
249 			addr += remainder_of_page;
250 			size -= remainder_of_page;
251 		} else {
252 			sg[i].length = size;
253 			addr += size;
254 			size = 0;
255 		}
256 		i++;
257 	}
258 	if (size > 0)
259 		return -ENOMEM;
260 	return i;
261 }
262 
263 struct extent_crypt_result {
264 	struct completion completion;
265 	int rc;
266 };
267 
268 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
269 {
270 	struct extent_crypt_result *ecr = req->data;
271 
272 	if (rc == -EINPROGRESS)
273 		return;
274 
275 	ecr->rc = rc;
276 	complete(&ecr->completion);
277 }
278 
279 /**
280  * crypt_scatterlist
281  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
282  * @dst_sg: Destination of the data after performing the crypto operation
283  * @src_sg: Data to be encrypted or decrypted
284  * @size: Length of data
285  * @iv: IV to use
286  * @op: ENCRYPT or DECRYPT to indicate the desired operation
287  *
288  * Returns the number of bytes encrypted or decrypted; negative value on error
289  */
290 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
291 			     struct scatterlist *dst_sg,
292 			     struct scatterlist *src_sg, int size,
293 			     unsigned char *iv, int op)
294 {
295 	struct skcipher_request *req = NULL;
296 	struct extent_crypt_result ecr;
297 	int rc = 0;
298 
299 	if (unlikely(ecryptfs_verbosity > 0)) {
300 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
301 				crypt_stat->key_size);
302 		ecryptfs_dump_hex(crypt_stat->key,
303 				  crypt_stat->key_size);
304 	}
305 
306 	init_completion(&ecr.completion);
307 
308 	mutex_lock(&crypt_stat->cs_tfm_mutex);
309 	req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
310 	if (!req) {
311 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
312 		rc = -ENOMEM;
313 		goto out;
314 	}
315 
316 	skcipher_request_set_callback(req,
317 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
318 			extent_crypt_complete, &ecr);
319 	/* Consider doing this once, when the file is opened */
320 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
321 		rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
322 					    crypt_stat->key_size);
323 		if (rc) {
324 			ecryptfs_printk(KERN_ERR,
325 					"Error setting key; rc = [%d]\n",
326 					rc);
327 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
328 			rc = -EINVAL;
329 			goto out;
330 		}
331 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
332 	}
333 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
334 	skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
335 	rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
336 			     crypto_skcipher_decrypt(req);
337 	if (rc == -EINPROGRESS || rc == -EBUSY) {
338 		struct extent_crypt_result *ecr = req->base.data;
339 
340 		wait_for_completion(&ecr->completion);
341 		rc = ecr->rc;
342 		reinit_completion(&ecr->completion);
343 	}
344 out:
345 	skcipher_request_free(req);
346 	return rc;
347 }
348 
349 /*
350  * lower_offset_for_page
351  *
352  * Convert an eCryptfs page index into a lower byte offset
353  */
354 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
355 				    struct page *page)
356 {
357 	return ecryptfs_lower_header_size(crypt_stat) +
358 	       ((loff_t)page->index << PAGE_SHIFT);
359 }
360 
361 /**
362  * crypt_extent
363  * @crypt_stat: crypt_stat containing cryptographic context for the
364  *              encryption operation
365  * @dst_page: The page to write the result into
366  * @src_page: The page to read from
367  * @extent_offset: Page extent offset for use in generating IV
368  * @op: ENCRYPT or DECRYPT to indicate the desired operation
369  *
370  * Encrypts or decrypts one extent of data.
371  *
372  * Return zero on success; non-zero otherwise
373  */
374 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
375 			struct page *dst_page,
376 			struct page *src_page,
377 			unsigned long extent_offset, int op)
378 {
379 	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
380 	loff_t extent_base;
381 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
382 	struct scatterlist src_sg, dst_sg;
383 	size_t extent_size = crypt_stat->extent_size;
384 	int rc;
385 
386 	extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
387 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
388 				(extent_base + extent_offset));
389 	if (rc) {
390 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
391 			"extent [0x%.16llx]; rc = [%d]\n",
392 			(unsigned long long)(extent_base + extent_offset), rc);
393 		goto out;
394 	}
395 
396 	sg_init_table(&src_sg, 1);
397 	sg_init_table(&dst_sg, 1);
398 
399 	sg_set_page(&src_sg, src_page, extent_size,
400 		    extent_offset * extent_size);
401 	sg_set_page(&dst_sg, dst_page, extent_size,
402 		    extent_offset * extent_size);
403 
404 	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
405 			       extent_iv, op);
406 	if (rc < 0) {
407 		printk(KERN_ERR "%s: Error attempting to crypt page with "
408 		       "page_index = [%ld], extent_offset = [%ld]; "
409 		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
410 		goto out;
411 	}
412 	rc = 0;
413 out:
414 	return rc;
415 }
416 
417 /**
418  * ecryptfs_encrypt_page
419  * @page: Page mapped from the eCryptfs inode for the file; contains
420  *        decrypted content that needs to be encrypted (to a temporary
421  *        page; not in place) and written out to the lower file
422  *
423  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
424  * that eCryptfs pages may straddle the lower pages -- for instance,
425  * if the file was created on a machine with an 8K page size
426  * (resulting in an 8K header), and then the file is copied onto a
427  * host with a 32K page size, then when reading page 0 of the eCryptfs
428  * file, 24K of page 0 of the lower file will be read and decrypted,
429  * and then 8K of page 1 of the lower file will be read and decrypted.
430  *
431  * Returns zero on success; negative on error
432  */
433 int ecryptfs_encrypt_page(struct page *page)
434 {
435 	struct inode *ecryptfs_inode;
436 	struct ecryptfs_crypt_stat *crypt_stat;
437 	char *enc_extent_virt;
438 	struct page *enc_extent_page = NULL;
439 	loff_t extent_offset;
440 	loff_t lower_offset;
441 	int rc = 0;
442 
443 	ecryptfs_inode = page->mapping->host;
444 	crypt_stat =
445 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
446 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
447 	enc_extent_page = alloc_page(GFP_USER);
448 	if (!enc_extent_page) {
449 		rc = -ENOMEM;
450 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
451 				"encrypted extent\n");
452 		goto out;
453 	}
454 
455 	for (extent_offset = 0;
456 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
457 	     extent_offset++) {
458 		rc = crypt_extent(crypt_stat, enc_extent_page, page,
459 				  extent_offset, ENCRYPT);
460 		if (rc) {
461 			printk(KERN_ERR "%s: Error encrypting extent; "
462 			       "rc = [%d]\n", __func__, rc);
463 			goto out;
464 		}
465 	}
466 
467 	lower_offset = lower_offset_for_page(crypt_stat, page);
468 	enc_extent_virt = kmap(enc_extent_page);
469 	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
470 				  PAGE_SIZE);
471 	kunmap(enc_extent_page);
472 	if (rc < 0) {
473 		ecryptfs_printk(KERN_ERR,
474 			"Error attempting to write lower page; rc = [%d]\n",
475 			rc);
476 		goto out;
477 	}
478 	rc = 0;
479 out:
480 	if (enc_extent_page) {
481 		__free_page(enc_extent_page);
482 	}
483 	return rc;
484 }
485 
486 /**
487  * ecryptfs_decrypt_page
488  * @page: Page mapped from the eCryptfs inode for the file; data read
489  *        and decrypted from the lower file will be written into this
490  *        page
491  *
492  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
493  * that eCryptfs pages may straddle the lower pages -- for instance,
494  * if the file was created on a machine with an 8K page size
495  * (resulting in an 8K header), and then the file is copied onto a
496  * host with a 32K page size, then when reading page 0 of the eCryptfs
497  * file, 24K of page 0 of the lower file will be read and decrypted,
498  * and then 8K of page 1 of the lower file will be read and decrypted.
499  *
500  * Returns zero on success; negative on error
501  */
502 int ecryptfs_decrypt_page(struct page *page)
503 {
504 	struct inode *ecryptfs_inode;
505 	struct ecryptfs_crypt_stat *crypt_stat;
506 	char *page_virt;
507 	unsigned long extent_offset;
508 	loff_t lower_offset;
509 	int rc = 0;
510 
511 	ecryptfs_inode = page->mapping->host;
512 	crypt_stat =
513 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
514 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
515 
516 	lower_offset = lower_offset_for_page(crypt_stat, page);
517 	page_virt = kmap(page);
518 	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
519 				 ecryptfs_inode);
520 	kunmap(page);
521 	if (rc < 0) {
522 		ecryptfs_printk(KERN_ERR,
523 			"Error attempting to read lower page; rc = [%d]\n",
524 			rc);
525 		goto out;
526 	}
527 
528 	for (extent_offset = 0;
529 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
530 	     extent_offset++) {
531 		rc = crypt_extent(crypt_stat, page, page,
532 				  extent_offset, DECRYPT);
533 		if (rc) {
534 			printk(KERN_ERR "%s: Error decrypting extent; "
535 			       "rc = [%d]\n", __func__, rc);
536 			goto out;
537 		}
538 	}
539 out:
540 	return rc;
541 }
542 
543 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
544 
545 /**
546  * ecryptfs_init_crypt_ctx
547  * @crypt_stat: Uninitialized crypt stats structure
548  *
549  * Initialize the crypto context.
550  *
551  * TODO: Performance: Keep a cache of initialized cipher contexts;
552  * only init if needed
553  */
554 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
555 {
556 	char *full_alg_name;
557 	int rc = -EINVAL;
558 
559 	ecryptfs_printk(KERN_DEBUG,
560 			"Initializing cipher [%s]; strlen = [%d]; "
561 			"key_size_bits = [%zd]\n",
562 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
563 			crypt_stat->key_size << 3);
564 	mutex_lock(&crypt_stat->cs_tfm_mutex);
565 	if (crypt_stat->tfm) {
566 		rc = 0;
567 		goto out_unlock;
568 	}
569 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
570 						    crypt_stat->cipher, "cbc");
571 	if (rc)
572 		goto out_unlock;
573 	crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
574 	if (IS_ERR(crypt_stat->tfm)) {
575 		rc = PTR_ERR(crypt_stat->tfm);
576 		crypt_stat->tfm = NULL;
577 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
578 				"Error initializing cipher [%s]\n",
579 				full_alg_name);
580 		goto out_free;
581 	}
582 	crypto_skcipher_set_flags(crypt_stat->tfm,
583 				  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
584 	rc = 0;
585 out_free:
586 	kfree(full_alg_name);
587 out_unlock:
588 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
589 	return rc;
590 }
591 
592 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
593 {
594 	int extent_size_tmp;
595 
596 	crypt_stat->extent_mask = 0xFFFFFFFF;
597 	crypt_stat->extent_shift = 0;
598 	if (crypt_stat->extent_size == 0)
599 		return;
600 	extent_size_tmp = crypt_stat->extent_size;
601 	while ((extent_size_tmp & 0x01) == 0) {
602 		extent_size_tmp >>= 1;
603 		crypt_stat->extent_mask <<= 1;
604 		crypt_stat->extent_shift++;
605 	}
606 }
607 
608 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
609 {
610 	/* Default values; may be overwritten as we are parsing the
611 	 * packets. */
612 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
613 	set_extent_mask_and_shift(crypt_stat);
614 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
615 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
616 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
617 	else {
618 		if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
619 			crypt_stat->metadata_size =
620 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
621 		else
622 			crypt_stat->metadata_size = PAGE_SIZE;
623 	}
624 }
625 
626 /*
627  * ecryptfs_compute_root_iv
628  *
629  * On error, sets the root IV to all 0's.
630  */
631 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
632 {
633 	int rc = 0;
634 	char dst[MD5_DIGEST_SIZE];
635 
636 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
637 	BUG_ON(crypt_stat->iv_bytes <= 0);
638 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
639 		rc = -EINVAL;
640 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
641 				"cannot generate root IV\n");
642 		goto out;
643 	}
644 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
645 				    crypt_stat->key_size);
646 	if (rc) {
647 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
648 				"MD5 while generating root IV\n");
649 		goto out;
650 	}
651 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
652 out:
653 	if (rc) {
654 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
655 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
656 	}
657 	return rc;
658 }
659 
660 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
661 {
662 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
663 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
664 	ecryptfs_compute_root_iv(crypt_stat);
665 	if (unlikely(ecryptfs_verbosity > 0)) {
666 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
667 		ecryptfs_dump_hex(crypt_stat->key,
668 				  crypt_stat->key_size);
669 	}
670 }
671 
672 /**
673  * ecryptfs_copy_mount_wide_flags_to_inode_flags
674  * @crypt_stat: The inode's cryptographic context
675  * @mount_crypt_stat: The mount point's cryptographic context
676  *
677  * This function propagates the mount-wide flags to individual inode
678  * flags.
679  */
680 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
681 	struct ecryptfs_crypt_stat *crypt_stat,
682 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
683 {
684 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
685 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
686 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
687 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
688 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
689 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
690 		if (mount_crypt_stat->flags
691 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
692 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
693 		else if (mount_crypt_stat->flags
694 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
695 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
696 	}
697 }
698 
699 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
700 	struct ecryptfs_crypt_stat *crypt_stat,
701 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
702 {
703 	struct ecryptfs_global_auth_tok *global_auth_tok;
704 	int rc = 0;
705 
706 	mutex_lock(&crypt_stat->keysig_list_mutex);
707 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
708 
709 	list_for_each_entry(global_auth_tok,
710 			    &mount_crypt_stat->global_auth_tok_list,
711 			    mount_crypt_stat_list) {
712 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
713 			continue;
714 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
715 		if (rc) {
716 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
717 			goto out;
718 		}
719 	}
720 
721 out:
722 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
723 	mutex_unlock(&crypt_stat->keysig_list_mutex);
724 	return rc;
725 }
726 
727 /**
728  * ecryptfs_set_default_crypt_stat_vals
729  * @crypt_stat: The inode's cryptographic context
730  * @mount_crypt_stat: The mount point's cryptographic context
731  *
732  * Default values in the event that policy does not override them.
733  */
734 static void ecryptfs_set_default_crypt_stat_vals(
735 	struct ecryptfs_crypt_stat *crypt_stat,
736 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
737 {
738 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
739 						      mount_crypt_stat);
740 	ecryptfs_set_default_sizes(crypt_stat);
741 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
742 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
743 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
744 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
745 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
746 }
747 
748 /**
749  * ecryptfs_new_file_context
750  * @ecryptfs_inode: The eCryptfs inode
751  *
752  * If the crypto context for the file has not yet been established,
753  * this is where we do that.  Establishing a new crypto context
754  * involves the following decisions:
755  *  - What cipher to use?
756  *  - What set of authentication tokens to use?
757  * Here we just worry about getting enough information into the
758  * authentication tokens so that we know that they are available.
759  * We associate the available authentication tokens with the new file
760  * via the set of signatures in the crypt_stat struct.  Later, when
761  * the headers are actually written out, we may again defer to
762  * userspace to perform the encryption of the session key; for the
763  * foreseeable future, this will be the case with public key packets.
764  *
765  * Returns zero on success; non-zero otherwise
766  */
767 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
768 {
769 	struct ecryptfs_crypt_stat *crypt_stat =
770 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
771 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
772 	    &ecryptfs_superblock_to_private(
773 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
774 	int cipher_name_len;
775 	int rc = 0;
776 
777 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
778 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
779 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
780 						      mount_crypt_stat);
781 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
782 							 mount_crypt_stat);
783 	if (rc) {
784 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
785 		       "to the inode key sigs; rc = [%d]\n", rc);
786 		goto out;
787 	}
788 	cipher_name_len =
789 		strlen(mount_crypt_stat->global_default_cipher_name);
790 	memcpy(crypt_stat->cipher,
791 	       mount_crypt_stat->global_default_cipher_name,
792 	       cipher_name_len);
793 	crypt_stat->cipher[cipher_name_len] = '\0';
794 	crypt_stat->key_size =
795 		mount_crypt_stat->global_default_cipher_key_size;
796 	ecryptfs_generate_new_key(crypt_stat);
797 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
798 	if (rc)
799 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
800 				"context for cipher [%s]: rc = [%d]\n",
801 				crypt_stat->cipher, rc);
802 out:
803 	return rc;
804 }
805 
806 /**
807  * ecryptfs_validate_marker - check for the ecryptfs marker
808  * @data: The data block in which to check
809  *
810  * Returns zero if marker found; -EINVAL if not found
811  */
812 static int ecryptfs_validate_marker(char *data)
813 {
814 	u32 m_1, m_2;
815 
816 	m_1 = get_unaligned_be32(data);
817 	m_2 = get_unaligned_be32(data + 4);
818 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
819 		return 0;
820 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
821 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
822 			MAGIC_ECRYPTFS_MARKER);
823 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
824 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
825 	return -EINVAL;
826 }
827 
828 struct ecryptfs_flag_map_elem {
829 	u32 file_flag;
830 	u32 local_flag;
831 };
832 
833 /* Add support for additional flags by adding elements here. */
834 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
835 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
836 	{0x00000002, ECRYPTFS_ENCRYPTED},
837 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
838 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
839 };
840 
841 /**
842  * ecryptfs_process_flags
843  * @crypt_stat: The cryptographic context
844  * @page_virt: Source data to be parsed
845  * @bytes_read: Updated with the number of bytes read
846  */
847 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
848 				  char *page_virt, int *bytes_read)
849 {
850 	int i;
851 	u32 flags;
852 
853 	flags = get_unaligned_be32(page_virt);
854 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
855 		if (flags & ecryptfs_flag_map[i].file_flag) {
856 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
857 		} else
858 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
859 	/* Version is in top 8 bits of the 32-bit flag vector */
860 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
861 	(*bytes_read) = 4;
862 }
863 
864 /**
865  * write_ecryptfs_marker
866  * @page_virt: The pointer to in a page to begin writing the marker
867  * @written: Number of bytes written
868  *
869  * Marker = 0x3c81b7f5
870  */
871 static void write_ecryptfs_marker(char *page_virt, size_t *written)
872 {
873 	u32 m_1, m_2;
874 
875 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
876 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
877 	put_unaligned_be32(m_1, page_virt);
878 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
879 	put_unaligned_be32(m_2, page_virt);
880 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
881 }
882 
883 void ecryptfs_write_crypt_stat_flags(char *page_virt,
884 				     struct ecryptfs_crypt_stat *crypt_stat,
885 				     size_t *written)
886 {
887 	u32 flags = 0;
888 	int i;
889 
890 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
891 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
892 			flags |= ecryptfs_flag_map[i].file_flag;
893 	/* Version is in top 8 bits of the 32-bit flag vector */
894 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
895 	put_unaligned_be32(flags, page_virt);
896 	(*written) = 4;
897 }
898 
899 struct ecryptfs_cipher_code_str_map_elem {
900 	char cipher_str[16];
901 	u8 cipher_code;
902 };
903 
904 /* Add support for additional ciphers by adding elements here. The
905  * cipher_code is whatever OpenPGP applications use to identify the
906  * ciphers. List in order of probability. */
907 static struct ecryptfs_cipher_code_str_map_elem
908 ecryptfs_cipher_code_str_map[] = {
909 	{"aes",RFC2440_CIPHER_AES_128 },
910 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
911 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
912 	{"cast5", RFC2440_CIPHER_CAST_5},
913 	{"twofish", RFC2440_CIPHER_TWOFISH},
914 	{"cast6", RFC2440_CIPHER_CAST_6},
915 	{"aes", RFC2440_CIPHER_AES_192},
916 	{"aes", RFC2440_CIPHER_AES_256}
917 };
918 
919 /**
920  * ecryptfs_code_for_cipher_string
921  * @cipher_name: The string alias for the cipher
922  * @key_bytes: Length of key in bytes; used for AES code selection
923  *
924  * Returns zero on no match, or the cipher code on match
925  */
926 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
927 {
928 	int i;
929 	u8 code = 0;
930 	struct ecryptfs_cipher_code_str_map_elem *map =
931 		ecryptfs_cipher_code_str_map;
932 
933 	if (strcmp(cipher_name, "aes") == 0) {
934 		switch (key_bytes) {
935 		case 16:
936 			code = RFC2440_CIPHER_AES_128;
937 			break;
938 		case 24:
939 			code = RFC2440_CIPHER_AES_192;
940 			break;
941 		case 32:
942 			code = RFC2440_CIPHER_AES_256;
943 		}
944 	} else {
945 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
946 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
947 				code = map[i].cipher_code;
948 				break;
949 			}
950 	}
951 	return code;
952 }
953 
954 /**
955  * ecryptfs_cipher_code_to_string
956  * @str: Destination to write out the cipher name
957  * @cipher_code: The code to convert to cipher name string
958  *
959  * Returns zero on success
960  */
961 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
962 {
963 	int rc = 0;
964 	int i;
965 
966 	str[0] = '\0';
967 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
968 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
969 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
970 	if (str[0] == '\0') {
971 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
972 				"[%d]\n", cipher_code);
973 		rc = -EINVAL;
974 	}
975 	return rc;
976 }
977 
978 int ecryptfs_read_and_validate_header_region(struct inode *inode)
979 {
980 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
981 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
982 	int rc;
983 
984 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
985 				 inode);
986 	if (rc < 0)
987 		return rc;
988 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
989 		return -EINVAL;
990 	rc = ecryptfs_validate_marker(marker);
991 	if (!rc)
992 		ecryptfs_i_size_init(file_size, inode);
993 	return rc;
994 }
995 
996 void
997 ecryptfs_write_header_metadata(char *virt,
998 			       struct ecryptfs_crypt_stat *crypt_stat,
999 			       size_t *written)
1000 {
1001 	u32 header_extent_size;
1002 	u16 num_header_extents_at_front;
1003 
1004 	header_extent_size = (u32)crypt_stat->extent_size;
1005 	num_header_extents_at_front =
1006 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1007 	put_unaligned_be32(header_extent_size, virt);
1008 	virt += 4;
1009 	put_unaligned_be16(num_header_extents_at_front, virt);
1010 	(*written) = 6;
1011 }
1012 
1013 struct kmem_cache *ecryptfs_header_cache;
1014 
1015 /**
1016  * ecryptfs_write_headers_virt
1017  * @page_virt: The virtual address to write the headers to
1018  * @max: The size of memory allocated at page_virt
1019  * @size: Set to the number of bytes written by this function
1020  * @crypt_stat: The cryptographic context
1021  * @ecryptfs_dentry: The eCryptfs dentry
1022  *
1023  * Format version: 1
1024  *
1025  *   Header Extent:
1026  *     Octets 0-7:        Unencrypted file size (big-endian)
1027  *     Octets 8-15:       eCryptfs special marker
1028  *     Octets 16-19:      Flags
1029  *      Octet 16:         File format version number (between 0 and 255)
1030  *      Octets 17-18:     Reserved
1031  *      Octet 19:         Bit 1 (lsb): Reserved
1032  *                        Bit 2: Encrypted?
1033  *                        Bits 3-8: Reserved
1034  *     Octets 20-23:      Header extent size (big-endian)
1035  *     Octets 24-25:      Number of header extents at front of file
1036  *                        (big-endian)
1037  *     Octet  26:         Begin RFC 2440 authentication token packet set
1038  *   Data Extent 0:
1039  *     Lower data (CBC encrypted)
1040  *   Data Extent 1:
1041  *     Lower data (CBC encrypted)
1042  *   ...
1043  *
1044  * Returns zero on success
1045  */
1046 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1047 				       size_t *size,
1048 				       struct ecryptfs_crypt_stat *crypt_stat,
1049 				       struct dentry *ecryptfs_dentry)
1050 {
1051 	int rc;
1052 	size_t written;
1053 	size_t offset;
1054 
1055 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1056 	write_ecryptfs_marker((page_virt + offset), &written);
1057 	offset += written;
1058 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1059 					&written);
1060 	offset += written;
1061 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1062 				       &written);
1063 	offset += written;
1064 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1065 					      ecryptfs_dentry, &written,
1066 					      max - offset);
1067 	if (rc)
1068 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1069 				"set; rc = [%d]\n", rc);
1070 	if (size) {
1071 		offset += written;
1072 		*size = offset;
1073 	}
1074 	return rc;
1075 }
1076 
1077 static int
1078 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1079 				    char *virt, size_t virt_len)
1080 {
1081 	int rc;
1082 
1083 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1084 				  0, virt_len);
1085 	if (rc < 0)
1086 		printk(KERN_ERR "%s: Error attempting to write header "
1087 		       "information to lower file; rc = [%d]\n", __func__, rc);
1088 	else
1089 		rc = 0;
1090 	return rc;
1091 }
1092 
1093 static int
1094 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1095 				 struct inode *ecryptfs_inode,
1096 				 char *page_virt, size_t size)
1097 {
1098 	int rc;
1099 	struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1100 	struct inode *lower_inode = d_inode(lower_dentry);
1101 
1102 	if (!(lower_inode->i_opflags & IOP_XATTR)) {
1103 		rc = -EOPNOTSUPP;
1104 		goto out;
1105 	}
1106 
1107 	inode_lock(lower_inode);
1108 	rc = __vfs_setxattr(&init_user_ns, lower_dentry, lower_inode,
1109 			    ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1110 	if (!rc && ecryptfs_inode)
1111 		fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1112 	inode_unlock(lower_inode);
1113 out:
1114 	return rc;
1115 }
1116 
1117 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1118 					       unsigned int order)
1119 {
1120 	struct page *page;
1121 
1122 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1123 	if (page)
1124 		return (unsigned long) page_address(page);
1125 	return 0;
1126 }
1127 
1128 /**
1129  * ecryptfs_write_metadata
1130  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1131  * @ecryptfs_inode: The newly created eCryptfs inode
1132  *
1133  * Write the file headers out.  This will likely involve a userspace
1134  * callout, in which the session key is encrypted with one or more
1135  * public keys and/or the passphrase necessary to do the encryption is
1136  * retrieved via a prompt.  Exactly what happens at this point should
1137  * be policy-dependent.
1138  *
1139  * Returns zero on success; non-zero on error
1140  */
1141 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1142 			    struct inode *ecryptfs_inode)
1143 {
1144 	struct ecryptfs_crypt_stat *crypt_stat =
1145 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1146 	unsigned int order;
1147 	char *virt;
1148 	size_t virt_len;
1149 	size_t size = 0;
1150 	int rc = 0;
1151 
1152 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1153 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1154 			printk(KERN_ERR "Key is invalid; bailing out\n");
1155 			rc = -EINVAL;
1156 			goto out;
1157 		}
1158 	} else {
1159 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1160 		       __func__);
1161 		rc = -EINVAL;
1162 		goto out;
1163 	}
1164 	virt_len = crypt_stat->metadata_size;
1165 	order = get_order(virt_len);
1166 	/* Released in this function */
1167 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1168 	if (!virt) {
1169 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1170 		rc = -ENOMEM;
1171 		goto out;
1172 	}
1173 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1174 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1175 					 ecryptfs_dentry);
1176 	if (unlikely(rc)) {
1177 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1178 		       __func__, rc);
1179 		goto out_free;
1180 	}
1181 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1182 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1183 						      virt, size);
1184 	else
1185 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1186 							 virt_len);
1187 	if (rc) {
1188 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1189 		       "rc = [%d]\n", __func__, rc);
1190 		goto out_free;
1191 	}
1192 out_free:
1193 	free_pages((unsigned long)virt, order);
1194 out:
1195 	return rc;
1196 }
1197 
1198 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1199 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1200 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1201 				 char *virt, int *bytes_read,
1202 				 int validate_header_size)
1203 {
1204 	int rc = 0;
1205 	u32 header_extent_size;
1206 	u16 num_header_extents_at_front;
1207 
1208 	header_extent_size = get_unaligned_be32(virt);
1209 	virt += sizeof(__be32);
1210 	num_header_extents_at_front = get_unaligned_be16(virt);
1211 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1212 				     * (size_t)header_extent_size));
1213 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1214 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1215 	    && (crypt_stat->metadata_size
1216 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1217 		rc = -EINVAL;
1218 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1219 		       crypt_stat->metadata_size);
1220 	}
1221 	return rc;
1222 }
1223 
1224 /**
1225  * set_default_header_data
1226  * @crypt_stat: The cryptographic context
1227  *
1228  * For version 0 file format; this function is only for backwards
1229  * compatibility for files created with the prior versions of
1230  * eCryptfs.
1231  */
1232 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1233 {
1234 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1235 }
1236 
1237 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1238 {
1239 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1240 	struct ecryptfs_crypt_stat *crypt_stat;
1241 	u64 file_size;
1242 
1243 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1244 	mount_crypt_stat =
1245 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1246 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1247 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1248 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1249 			file_size += crypt_stat->metadata_size;
1250 	} else
1251 		file_size = get_unaligned_be64(page_virt);
1252 	i_size_write(inode, (loff_t)file_size);
1253 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1254 }
1255 
1256 /**
1257  * ecryptfs_read_headers_virt
1258  * @page_virt: The virtual address into which to read the headers
1259  * @crypt_stat: The cryptographic context
1260  * @ecryptfs_dentry: The eCryptfs dentry
1261  * @validate_header_size: Whether to validate the header size while reading
1262  *
1263  * Read/parse the header data. The header format is detailed in the
1264  * comment block for the ecryptfs_write_headers_virt() function.
1265  *
1266  * Returns zero on success
1267  */
1268 static int ecryptfs_read_headers_virt(char *page_virt,
1269 				      struct ecryptfs_crypt_stat *crypt_stat,
1270 				      struct dentry *ecryptfs_dentry,
1271 				      int validate_header_size)
1272 {
1273 	int rc = 0;
1274 	int offset;
1275 	int bytes_read;
1276 
1277 	ecryptfs_set_default_sizes(crypt_stat);
1278 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1279 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1280 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1281 	rc = ecryptfs_validate_marker(page_virt + offset);
1282 	if (rc)
1283 		goto out;
1284 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1285 		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1286 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1287 	ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1288 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1289 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1290 				"file version [%d] is supported by this "
1291 				"version of eCryptfs\n",
1292 				crypt_stat->file_version,
1293 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1294 		rc = -EINVAL;
1295 		goto out;
1296 	}
1297 	offset += bytes_read;
1298 	if (crypt_stat->file_version >= 1) {
1299 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1300 					   &bytes_read, validate_header_size);
1301 		if (rc) {
1302 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1303 					"metadata; rc = [%d]\n", rc);
1304 		}
1305 		offset += bytes_read;
1306 	} else
1307 		set_default_header_data(crypt_stat);
1308 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1309 				       ecryptfs_dentry);
1310 out:
1311 	return rc;
1312 }
1313 
1314 /**
1315  * ecryptfs_read_xattr_region
1316  * @page_virt: The vitual address into which to read the xattr data
1317  * @ecryptfs_inode: The eCryptfs inode
1318  *
1319  * Attempts to read the crypto metadata from the extended attribute
1320  * region of the lower file.
1321  *
1322  * Returns zero on success; non-zero on error
1323  */
1324 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1325 {
1326 	struct dentry *lower_dentry =
1327 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1328 	ssize_t size;
1329 	int rc = 0;
1330 
1331 	size = ecryptfs_getxattr_lower(lower_dentry,
1332 				       ecryptfs_inode_to_lower(ecryptfs_inode),
1333 				       ECRYPTFS_XATTR_NAME,
1334 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1335 	if (size < 0) {
1336 		if (unlikely(ecryptfs_verbosity > 0))
1337 			printk(KERN_INFO "Error attempting to read the [%s] "
1338 			       "xattr from the lower file; return value = "
1339 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1340 		rc = -EINVAL;
1341 		goto out;
1342 	}
1343 out:
1344 	return rc;
1345 }
1346 
1347 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1348 					    struct inode *inode)
1349 {
1350 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1351 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1352 	int rc;
1353 
1354 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1355 				     ecryptfs_inode_to_lower(inode),
1356 				     ECRYPTFS_XATTR_NAME, file_size,
1357 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1358 	if (rc < 0)
1359 		return rc;
1360 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1361 		return -EINVAL;
1362 	rc = ecryptfs_validate_marker(marker);
1363 	if (!rc)
1364 		ecryptfs_i_size_init(file_size, inode);
1365 	return rc;
1366 }
1367 
1368 /*
1369  * ecryptfs_read_metadata
1370  *
1371  * Common entry point for reading file metadata. From here, we could
1372  * retrieve the header information from the header region of the file,
1373  * the xattr region of the file, or some other repository that is
1374  * stored separately from the file itself. The current implementation
1375  * supports retrieving the metadata information from the file contents
1376  * and from the xattr region.
1377  *
1378  * Returns zero if valid headers found and parsed; non-zero otherwise
1379  */
1380 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1381 {
1382 	int rc;
1383 	char *page_virt;
1384 	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1385 	struct ecryptfs_crypt_stat *crypt_stat =
1386 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1387 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1388 		&ecryptfs_superblock_to_private(
1389 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1390 
1391 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1392 						      mount_crypt_stat);
1393 	/* Read the first page from the underlying file */
1394 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1395 	if (!page_virt) {
1396 		rc = -ENOMEM;
1397 		goto out;
1398 	}
1399 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1400 				 ecryptfs_inode);
1401 	if (rc >= 0)
1402 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1403 						ecryptfs_dentry,
1404 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1405 	if (rc) {
1406 		/* metadata is not in the file header, so try xattrs */
1407 		memset(page_virt, 0, PAGE_SIZE);
1408 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1409 		if (rc) {
1410 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1411 			       "file header region or xattr region, inode %lu\n",
1412 				ecryptfs_inode->i_ino);
1413 			rc = -EINVAL;
1414 			goto out;
1415 		}
1416 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1417 						ecryptfs_dentry,
1418 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1419 		if (rc) {
1420 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1421 			       "file xattr region either, inode %lu\n",
1422 				ecryptfs_inode->i_ino);
1423 			rc = -EINVAL;
1424 		}
1425 		if (crypt_stat->mount_crypt_stat->flags
1426 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1427 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1428 		} else {
1429 			printk(KERN_WARNING "Attempt to access file with "
1430 			       "crypto metadata only in the extended attribute "
1431 			       "region, but eCryptfs was mounted without "
1432 			       "xattr support enabled. eCryptfs will not treat "
1433 			       "this like an encrypted file, inode %lu\n",
1434 				ecryptfs_inode->i_ino);
1435 			rc = -EINVAL;
1436 		}
1437 	}
1438 out:
1439 	if (page_virt) {
1440 		memset(page_virt, 0, PAGE_SIZE);
1441 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1442 	}
1443 	return rc;
1444 }
1445 
1446 /*
1447  * ecryptfs_encrypt_filename - encrypt filename
1448  *
1449  * CBC-encrypts the filename. We do not want to encrypt the same
1450  * filename with the same key and IV, which may happen with hard
1451  * links, so we prepend random bits to each filename.
1452  *
1453  * Returns zero on success; non-zero otherwise
1454  */
1455 static int
1456 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1457 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1458 {
1459 	int rc = 0;
1460 
1461 	filename->encrypted_filename = NULL;
1462 	filename->encrypted_filename_size = 0;
1463 	if (mount_crypt_stat && (mount_crypt_stat->flags
1464 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1465 		size_t packet_size;
1466 		size_t remaining_bytes;
1467 
1468 		rc = ecryptfs_write_tag_70_packet(
1469 			NULL, NULL,
1470 			&filename->encrypted_filename_size,
1471 			mount_crypt_stat, NULL,
1472 			filename->filename_size);
1473 		if (rc) {
1474 			printk(KERN_ERR "%s: Error attempting to get packet "
1475 			       "size for tag 72; rc = [%d]\n", __func__,
1476 			       rc);
1477 			filename->encrypted_filename_size = 0;
1478 			goto out;
1479 		}
1480 		filename->encrypted_filename =
1481 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1482 		if (!filename->encrypted_filename) {
1483 			rc = -ENOMEM;
1484 			goto out;
1485 		}
1486 		remaining_bytes = filename->encrypted_filename_size;
1487 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1488 						  &remaining_bytes,
1489 						  &packet_size,
1490 						  mount_crypt_stat,
1491 						  filename->filename,
1492 						  filename->filename_size);
1493 		if (rc) {
1494 			printk(KERN_ERR "%s: Error attempting to generate "
1495 			       "tag 70 packet; rc = [%d]\n", __func__,
1496 			       rc);
1497 			kfree(filename->encrypted_filename);
1498 			filename->encrypted_filename = NULL;
1499 			filename->encrypted_filename_size = 0;
1500 			goto out;
1501 		}
1502 		filename->encrypted_filename_size = packet_size;
1503 	} else {
1504 		printk(KERN_ERR "%s: No support for requested filename "
1505 		       "encryption method in this release\n", __func__);
1506 		rc = -EOPNOTSUPP;
1507 		goto out;
1508 	}
1509 out:
1510 	return rc;
1511 }
1512 
1513 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1514 				  const char *name, size_t name_size)
1515 {
1516 	int rc = 0;
1517 
1518 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1519 	if (!(*copied_name)) {
1520 		rc = -ENOMEM;
1521 		goto out;
1522 	}
1523 	memcpy((void *)(*copied_name), (void *)name, name_size);
1524 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1525 						 * in printing out the
1526 						 * string in debug
1527 						 * messages */
1528 	(*copied_name_size) = name_size;
1529 out:
1530 	return rc;
1531 }
1532 
1533 /**
1534  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1535  * @key_tfm: Crypto context for key material, set by this function
1536  * @cipher_name: Name of the cipher
1537  * @key_size: Size of the key in bytes
1538  *
1539  * Returns zero on success. Any crypto_tfm structs allocated here
1540  * should be released by other functions, such as on a superblock put
1541  * event, regardless of whether this function succeeds for fails.
1542  */
1543 static int
1544 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1545 			    char *cipher_name, size_t *key_size)
1546 {
1547 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1548 	char *full_alg_name = NULL;
1549 	int rc;
1550 
1551 	*key_tfm = NULL;
1552 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1553 		rc = -EINVAL;
1554 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1555 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1556 		goto out;
1557 	}
1558 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1559 						    "ecb");
1560 	if (rc)
1561 		goto out;
1562 	*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1563 	if (IS_ERR(*key_tfm)) {
1564 		rc = PTR_ERR(*key_tfm);
1565 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1566 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1567 		goto out;
1568 	}
1569 	crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1570 	if (*key_size == 0)
1571 		*key_size = crypto_skcipher_max_keysize(*key_tfm);
1572 	get_random_bytes(dummy_key, *key_size);
1573 	rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1574 	if (rc) {
1575 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1576 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1577 		       rc);
1578 		rc = -EINVAL;
1579 		goto out;
1580 	}
1581 out:
1582 	kfree(full_alg_name);
1583 	return rc;
1584 }
1585 
1586 struct kmem_cache *ecryptfs_key_tfm_cache;
1587 static struct list_head key_tfm_list;
1588 DEFINE_MUTEX(key_tfm_list_mutex);
1589 
1590 int __init ecryptfs_init_crypto(void)
1591 {
1592 	INIT_LIST_HEAD(&key_tfm_list);
1593 	return 0;
1594 }
1595 
1596 /**
1597  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1598  *
1599  * Called only at module unload time
1600  */
1601 int ecryptfs_destroy_crypto(void)
1602 {
1603 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1604 
1605 	mutex_lock(&key_tfm_list_mutex);
1606 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1607 				 key_tfm_list) {
1608 		list_del(&key_tfm->key_tfm_list);
1609 		crypto_free_skcipher(key_tfm->key_tfm);
1610 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1611 	}
1612 	mutex_unlock(&key_tfm_list_mutex);
1613 	return 0;
1614 }
1615 
1616 int
1617 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1618 			 size_t key_size)
1619 {
1620 	struct ecryptfs_key_tfm *tmp_tfm;
1621 	int rc = 0;
1622 
1623 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1624 
1625 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1626 	if (key_tfm)
1627 		(*key_tfm) = tmp_tfm;
1628 	if (!tmp_tfm) {
1629 		rc = -ENOMEM;
1630 		goto out;
1631 	}
1632 	mutex_init(&tmp_tfm->key_tfm_mutex);
1633 	strncpy(tmp_tfm->cipher_name, cipher_name,
1634 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1635 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1636 	tmp_tfm->key_size = key_size;
1637 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1638 					 tmp_tfm->cipher_name,
1639 					 &tmp_tfm->key_size);
1640 	if (rc) {
1641 		printk(KERN_ERR "Error attempting to initialize key TFM "
1642 		       "cipher with name = [%s]; rc = [%d]\n",
1643 		       tmp_tfm->cipher_name, rc);
1644 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1645 		if (key_tfm)
1646 			(*key_tfm) = NULL;
1647 		goto out;
1648 	}
1649 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1650 out:
1651 	return rc;
1652 }
1653 
1654 /**
1655  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1656  * @cipher_name: the name of the cipher to search for
1657  * @key_tfm: set to corresponding tfm if found
1658  *
1659  * Searches for cached key_tfm matching @cipher_name
1660  * Must be called with &key_tfm_list_mutex held
1661  * Returns 1 if found, with @key_tfm set
1662  * Returns 0 if not found, with @key_tfm set to NULL
1663  */
1664 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1665 {
1666 	struct ecryptfs_key_tfm *tmp_key_tfm;
1667 
1668 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1669 
1670 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1671 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1672 			if (key_tfm)
1673 				(*key_tfm) = tmp_key_tfm;
1674 			return 1;
1675 		}
1676 	}
1677 	if (key_tfm)
1678 		(*key_tfm) = NULL;
1679 	return 0;
1680 }
1681 
1682 /**
1683  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1684  *
1685  * @tfm: set to cached tfm found, or new tfm created
1686  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1687  * @cipher_name: the name of the cipher to search for and/or add
1688  *
1689  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1690  * Searches for cached item first, and creates new if not found.
1691  * Returns 0 on success, non-zero if adding new cipher failed
1692  */
1693 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1694 					       struct mutex **tfm_mutex,
1695 					       char *cipher_name)
1696 {
1697 	struct ecryptfs_key_tfm *key_tfm;
1698 	int rc = 0;
1699 
1700 	(*tfm) = NULL;
1701 	(*tfm_mutex) = NULL;
1702 
1703 	mutex_lock(&key_tfm_list_mutex);
1704 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1705 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1706 		if (rc) {
1707 			printk(KERN_ERR "Error adding new key_tfm to list; "
1708 					"rc = [%d]\n", rc);
1709 			goto out;
1710 		}
1711 	}
1712 	(*tfm) = key_tfm->key_tfm;
1713 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1714 out:
1715 	mutex_unlock(&key_tfm_list_mutex);
1716 	return rc;
1717 }
1718 
1719 /* 64 characters forming a 6-bit target field */
1720 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1721 						 "EFGHIJKLMNOPQRST"
1722 						 "UVWXYZabcdefghij"
1723 						 "klmnopqrstuvwxyz");
1724 
1725 /* We could either offset on every reverse map or just pad some 0x00's
1726  * at the front here */
1727 static const unsigned char filename_rev_map[256] = {
1728 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1729 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1730 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1731 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1732 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1733 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1734 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1735 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1736 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1737 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1738 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1739 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1740 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1741 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1742 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1743 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1744 };
1745 
1746 /**
1747  * ecryptfs_encode_for_filename
1748  * @dst: Destination location for encoded filename
1749  * @dst_size: Size of the encoded filename in bytes
1750  * @src: Source location for the filename to encode
1751  * @src_size: Size of the source in bytes
1752  */
1753 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1754 				  unsigned char *src, size_t src_size)
1755 {
1756 	size_t num_blocks;
1757 	size_t block_num = 0;
1758 	size_t dst_offset = 0;
1759 	unsigned char last_block[3];
1760 
1761 	if (src_size == 0) {
1762 		(*dst_size) = 0;
1763 		goto out;
1764 	}
1765 	num_blocks = (src_size / 3);
1766 	if ((src_size % 3) == 0) {
1767 		memcpy(last_block, (&src[src_size - 3]), 3);
1768 	} else {
1769 		num_blocks++;
1770 		last_block[2] = 0x00;
1771 		switch (src_size % 3) {
1772 		case 1:
1773 			last_block[0] = src[src_size - 1];
1774 			last_block[1] = 0x00;
1775 			break;
1776 		case 2:
1777 			last_block[0] = src[src_size - 2];
1778 			last_block[1] = src[src_size - 1];
1779 		}
1780 	}
1781 	(*dst_size) = (num_blocks * 4);
1782 	if (!dst)
1783 		goto out;
1784 	while (block_num < num_blocks) {
1785 		unsigned char *src_block;
1786 		unsigned char dst_block[4];
1787 
1788 		if (block_num == (num_blocks - 1))
1789 			src_block = last_block;
1790 		else
1791 			src_block = &src[block_num * 3];
1792 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1793 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1794 				| ((src_block[1] >> 4) & 0x0F));
1795 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1796 				| ((src_block[2] >> 6) & 0x03));
1797 		dst_block[3] = (src_block[2] & 0x3F);
1798 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1799 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1800 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1801 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1802 		block_num++;
1803 	}
1804 out:
1805 	return;
1806 }
1807 
1808 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1809 {
1810 	/* Not exact; conservatively long. Every block of 4
1811 	 * encoded characters decodes into a block of 3
1812 	 * decoded characters. This segment of code provides
1813 	 * the caller with the maximum amount of allocated
1814 	 * space that @dst will need to point to in a
1815 	 * subsequent call. */
1816 	return ((encoded_size + 1) * 3) / 4;
1817 }
1818 
1819 /**
1820  * ecryptfs_decode_from_filename
1821  * @dst: If NULL, this function only sets @dst_size and returns. If
1822  *       non-NULL, this function decodes the encoded octets in @src
1823  *       into the memory that @dst points to.
1824  * @dst_size: Set to the size of the decoded string.
1825  * @src: The encoded set of octets to decode.
1826  * @src_size: The size of the encoded set of octets to decode.
1827  */
1828 static void
1829 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1830 			      const unsigned char *src, size_t src_size)
1831 {
1832 	u8 current_bit_offset = 0;
1833 	size_t src_byte_offset = 0;
1834 	size_t dst_byte_offset = 0;
1835 
1836 	if (!dst) {
1837 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1838 		goto out;
1839 	}
1840 	while (src_byte_offset < src_size) {
1841 		unsigned char src_byte =
1842 				filename_rev_map[(int)src[src_byte_offset]];
1843 
1844 		switch (current_bit_offset) {
1845 		case 0:
1846 			dst[dst_byte_offset] = (src_byte << 2);
1847 			current_bit_offset = 6;
1848 			break;
1849 		case 6:
1850 			dst[dst_byte_offset++] |= (src_byte >> 4);
1851 			dst[dst_byte_offset] = ((src_byte & 0xF)
1852 						 << 4);
1853 			current_bit_offset = 4;
1854 			break;
1855 		case 4:
1856 			dst[dst_byte_offset++] |= (src_byte >> 2);
1857 			dst[dst_byte_offset] = (src_byte << 6);
1858 			current_bit_offset = 2;
1859 			break;
1860 		case 2:
1861 			dst[dst_byte_offset++] |= (src_byte);
1862 			current_bit_offset = 0;
1863 			break;
1864 		}
1865 		src_byte_offset++;
1866 	}
1867 	(*dst_size) = dst_byte_offset;
1868 out:
1869 	return;
1870 }
1871 
1872 /**
1873  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1874  * @encoded_name: The encrypted name
1875  * @encoded_name_size: Length of the encrypted name
1876  * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode
1877  * @name: The plaintext name
1878  * @name_size: The length of the plaintext name
1879  *
1880  * Encrypts and encodes a filename into something that constitutes a
1881  * valid filename for a filesystem, with printable characters.
1882  *
1883  * We assume that we have a properly initialized crypto context,
1884  * pointed to by crypt_stat->tfm.
1885  *
1886  * Returns zero on success; non-zero on otherwise
1887  */
1888 int ecryptfs_encrypt_and_encode_filename(
1889 	char **encoded_name,
1890 	size_t *encoded_name_size,
1891 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1892 	const char *name, size_t name_size)
1893 {
1894 	size_t encoded_name_no_prefix_size;
1895 	int rc = 0;
1896 
1897 	(*encoded_name) = NULL;
1898 	(*encoded_name_size) = 0;
1899 	if (mount_crypt_stat && (mount_crypt_stat->flags
1900 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1901 		struct ecryptfs_filename *filename;
1902 
1903 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1904 		if (!filename) {
1905 			rc = -ENOMEM;
1906 			goto out;
1907 		}
1908 		filename->filename = (char *)name;
1909 		filename->filename_size = name_size;
1910 		rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1911 		if (rc) {
1912 			printk(KERN_ERR "%s: Error attempting to encrypt "
1913 			       "filename; rc = [%d]\n", __func__, rc);
1914 			kfree(filename);
1915 			goto out;
1916 		}
1917 		ecryptfs_encode_for_filename(
1918 			NULL, &encoded_name_no_prefix_size,
1919 			filename->encrypted_filename,
1920 			filename->encrypted_filename_size);
1921 		if (mount_crypt_stat
1922 			&& (mount_crypt_stat->flags
1923 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1924 			(*encoded_name_size) =
1925 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1926 				 + encoded_name_no_prefix_size);
1927 		else
1928 			(*encoded_name_size) =
1929 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1930 				 + encoded_name_no_prefix_size);
1931 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1932 		if (!(*encoded_name)) {
1933 			rc = -ENOMEM;
1934 			kfree(filename->encrypted_filename);
1935 			kfree(filename);
1936 			goto out;
1937 		}
1938 		if (mount_crypt_stat
1939 			&& (mount_crypt_stat->flags
1940 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1941 			memcpy((*encoded_name),
1942 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1943 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1944 			ecryptfs_encode_for_filename(
1945 			    ((*encoded_name)
1946 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1947 			    &encoded_name_no_prefix_size,
1948 			    filename->encrypted_filename,
1949 			    filename->encrypted_filename_size);
1950 			(*encoded_name_size) =
1951 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1952 				 + encoded_name_no_prefix_size);
1953 			(*encoded_name)[(*encoded_name_size)] = '\0';
1954 		} else {
1955 			rc = -EOPNOTSUPP;
1956 		}
1957 		if (rc) {
1958 			printk(KERN_ERR "%s: Error attempting to encode "
1959 			       "encrypted filename; rc = [%d]\n", __func__,
1960 			       rc);
1961 			kfree((*encoded_name));
1962 			(*encoded_name) = NULL;
1963 			(*encoded_name_size) = 0;
1964 		}
1965 		kfree(filename->encrypted_filename);
1966 		kfree(filename);
1967 	} else {
1968 		rc = ecryptfs_copy_filename(encoded_name,
1969 					    encoded_name_size,
1970 					    name, name_size);
1971 	}
1972 out:
1973 	return rc;
1974 }
1975 
1976 static bool is_dot_dotdot(const char *name, size_t name_size)
1977 {
1978 	if (name_size == 1 && name[0] == '.')
1979 		return true;
1980 	else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1981 		return true;
1982 
1983 	return false;
1984 }
1985 
1986 /**
1987  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1988  * @plaintext_name: The plaintext name
1989  * @plaintext_name_size: The plaintext name size
1990  * @sb: Ecryptfs's super_block
1991  * @name: The filename in cipher text
1992  * @name_size: The cipher text name size
1993  *
1994  * Decrypts and decodes the filename.
1995  *
1996  * Returns zero on error; non-zero otherwise
1997  */
1998 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
1999 					 size_t *plaintext_name_size,
2000 					 struct super_block *sb,
2001 					 const char *name, size_t name_size)
2002 {
2003 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2004 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2005 	char *decoded_name;
2006 	size_t decoded_name_size;
2007 	size_t packet_size;
2008 	int rc = 0;
2009 
2010 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2011 	    !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2012 		if (is_dot_dotdot(name, name_size)) {
2013 			rc = ecryptfs_copy_filename(plaintext_name,
2014 						    plaintext_name_size,
2015 						    name, name_size);
2016 			goto out;
2017 		}
2018 
2019 		if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2020 		    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2021 			    ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2022 			rc = -EINVAL;
2023 			goto out;
2024 		}
2025 
2026 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2027 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2028 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2029 					      name, name_size);
2030 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2031 		if (!decoded_name) {
2032 			rc = -ENOMEM;
2033 			goto out;
2034 		}
2035 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2036 					      name, name_size);
2037 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2038 						  plaintext_name_size,
2039 						  &packet_size,
2040 						  mount_crypt_stat,
2041 						  decoded_name,
2042 						  decoded_name_size);
2043 		if (rc) {
2044 			ecryptfs_printk(KERN_DEBUG,
2045 					"%s: Could not parse tag 70 packet from filename\n",
2046 					__func__);
2047 			goto out_free;
2048 		}
2049 	} else {
2050 		rc = ecryptfs_copy_filename(plaintext_name,
2051 					    plaintext_name_size,
2052 					    name, name_size);
2053 		goto out;
2054 	}
2055 out_free:
2056 	kfree(decoded_name);
2057 out:
2058 	return rc;
2059 }
2060 
2061 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2062 
2063 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2064 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2065 {
2066 	struct crypto_skcipher *tfm;
2067 	struct mutex *tfm_mutex;
2068 	size_t cipher_blocksize;
2069 	int rc;
2070 
2071 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2072 		(*namelen) = lower_namelen;
2073 		return 0;
2074 	}
2075 
2076 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2077 			mount_crypt_stat->global_default_fn_cipher_name);
2078 	if (unlikely(rc)) {
2079 		(*namelen) = 0;
2080 		return rc;
2081 	}
2082 
2083 	mutex_lock(tfm_mutex);
2084 	cipher_blocksize = crypto_skcipher_blocksize(tfm);
2085 	mutex_unlock(tfm_mutex);
2086 
2087 	/* Return an exact amount for the common cases */
2088 	if (lower_namelen == NAME_MAX
2089 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2090 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2091 		return 0;
2092 	}
2093 
2094 	/* Return a safe estimate for the uncommon cases */
2095 	(*namelen) = lower_namelen;
2096 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2097 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2098 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2099 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2100 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2101 	/* Worst case is that the filename is padded nearly a full block size */
2102 	(*namelen) -= cipher_blocksize - 1;
2103 
2104 	if ((*namelen) < 0)
2105 		(*namelen) = 0;
2106 
2107 	return 0;
2108 }
2109