1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include <linux/slab.h> 37 #include <asm/unaligned.h> 38 #include "ecryptfs_kernel.h" 39 40 static int 41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 42 struct page *dst_page, int dst_offset, 43 struct page *src_page, int src_offset, int size, 44 unsigned char *iv); 45 static int 46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 47 struct page *dst_page, int dst_offset, 48 struct page *src_page, int src_offset, int size, 49 unsigned char *iv); 50 51 /** 52 * ecryptfs_to_hex 53 * @dst: Buffer to take hex character representation of contents of 54 * src; must be at least of size (src_size * 2) 55 * @src: Buffer to be converted to a hex string respresentation 56 * @src_size: number of bytes to convert 57 */ 58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 59 { 60 int x; 61 62 for (x = 0; x < src_size; x++) 63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 64 } 65 66 /** 67 * ecryptfs_from_hex 68 * @dst: Buffer to take the bytes from src hex; must be at least of 69 * size (src_size / 2) 70 * @src: Buffer to be converted from a hex string respresentation to raw value 71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 72 */ 73 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 74 { 75 int x; 76 char tmp[3] = { 0, }; 77 78 for (x = 0; x < dst_size; x++) { 79 tmp[0] = src[x * 2]; 80 tmp[1] = src[x * 2 + 1]; 81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 82 } 83 } 84 85 /** 86 * ecryptfs_calculate_md5 - calculates the md5 of @src 87 * @dst: Pointer to 16 bytes of allocated memory 88 * @crypt_stat: Pointer to crypt_stat struct for the current inode 89 * @src: Data to be md5'd 90 * @len: Length of @src 91 * 92 * Uses the allocated crypto context that crypt_stat references to 93 * generate the MD5 sum of the contents of src. 94 */ 95 static int ecryptfs_calculate_md5(char *dst, 96 struct ecryptfs_crypt_stat *crypt_stat, 97 char *src, int len) 98 { 99 struct scatterlist sg; 100 struct hash_desc desc = { 101 .tfm = crypt_stat->hash_tfm, 102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 103 }; 104 int rc = 0; 105 106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 107 sg_init_one(&sg, (u8 *)src, len); 108 if (!desc.tfm) { 109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 110 CRYPTO_ALG_ASYNC); 111 if (IS_ERR(desc.tfm)) { 112 rc = PTR_ERR(desc.tfm); 113 ecryptfs_printk(KERN_ERR, "Error attempting to " 114 "allocate crypto context; rc = [%d]\n", 115 rc); 116 goto out; 117 } 118 crypt_stat->hash_tfm = desc.tfm; 119 } 120 rc = crypto_hash_init(&desc); 121 if (rc) { 122 printk(KERN_ERR 123 "%s: Error initializing crypto hash; rc = [%d]\n", 124 __func__, rc); 125 goto out; 126 } 127 rc = crypto_hash_update(&desc, &sg, len); 128 if (rc) { 129 printk(KERN_ERR 130 "%s: Error updating crypto hash; rc = [%d]\n", 131 __func__, rc); 132 goto out; 133 } 134 rc = crypto_hash_final(&desc, dst); 135 if (rc) { 136 printk(KERN_ERR 137 "%s: Error finalizing crypto hash; rc = [%d]\n", 138 __func__, rc); 139 goto out; 140 } 141 out: 142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 143 return rc; 144 } 145 146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 147 char *cipher_name, 148 char *chaining_modifier) 149 { 150 int cipher_name_len = strlen(cipher_name); 151 int chaining_modifier_len = strlen(chaining_modifier); 152 int algified_name_len; 153 int rc; 154 155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 157 if (!(*algified_name)) { 158 rc = -ENOMEM; 159 goto out; 160 } 161 snprintf((*algified_name), algified_name_len, "%s(%s)", 162 chaining_modifier, cipher_name); 163 rc = 0; 164 out: 165 return rc; 166 } 167 168 /** 169 * ecryptfs_derive_iv 170 * @iv: destination for the derived iv vale 171 * @crypt_stat: Pointer to crypt_stat struct for the current inode 172 * @offset: Offset of the extent whose IV we are to derive 173 * 174 * Generate the initialization vector from the given root IV and page 175 * offset. 176 * 177 * Returns zero on success; non-zero on error. 178 */ 179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 180 loff_t offset) 181 { 182 int rc = 0; 183 char dst[MD5_DIGEST_SIZE]; 184 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 185 186 if (unlikely(ecryptfs_verbosity > 0)) { 187 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 189 } 190 /* TODO: It is probably secure to just cast the least 191 * significant bits of the root IV into an unsigned long and 192 * add the offset to that rather than go through all this 193 * hashing business. -Halcrow */ 194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 195 memset((src + crypt_stat->iv_bytes), 0, 16); 196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 197 if (unlikely(ecryptfs_verbosity > 0)) { 198 ecryptfs_printk(KERN_DEBUG, "source:\n"); 199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 200 } 201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 202 (crypt_stat->iv_bytes + 16)); 203 if (rc) { 204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 205 "MD5 while generating IV for a page\n"); 206 goto out; 207 } 208 memcpy(iv, dst, crypt_stat->iv_bytes); 209 if (unlikely(ecryptfs_verbosity > 0)) { 210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 212 } 213 out: 214 return rc; 215 } 216 217 /** 218 * ecryptfs_init_crypt_stat 219 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 220 * 221 * Initialize the crypt_stat structure. 222 */ 223 void 224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 225 { 226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 227 INIT_LIST_HEAD(&crypt_stat->keysig_list); 228 mutex_init(&crypt_stat->keysig_list_mutex); 229 mutex_init(&crypt_stat->cs_mutex); 230 mutex_init(&crypt_stat->cs_tfm_mutex); 231 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 233 } 234 235 /** 236 * ecryptfs_destroy_crypt_stat 237 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 238 * 239 * Releases all memory associated with a crypt_stat struct. 240 */ 241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 242 { 243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 244 245 if (crypt_stat->tfm) 246 crypto_free_ablkcipher(crypt_stat->tfm); 247 if (crypt_stat->hash_tfm) 248 crypto_free_hash(crypt_stat->hash_tfm); 249 list_for_each_entry_safe(key_sig, key_sig_tmp, 250 &crypt_stat->keysig_list, crypt_stat_list) { 251 list_del(&key_sig->crypt_stat_list); 252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 253 } 254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 255 } 256 257 void ecryptfs_destroy_mount_crypt_stat( 258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 259 { 260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 261 262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 263 return; 264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 265 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 266 &mount_crypt_stat->global_auth_tok_list, 267 mount_crypt_stat_list) { 268 list_del(&auth_tok->mount_crypt_stat_list); 269 if (auth_tok->global_auth_tok_key 270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 271 key_put(auth_tok->global_auth_tok_key); 272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 273 } 274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 276 } 277 278 /** 279 * virt_to_scatterlist 280 * @addr: Virtual address 281 * @size: Size of data; should be an even multiple of the block size 282 * @sg: Pointer to scatterlist array; set to NULL to obtain only 283 * the number of scatterlist structs required in array 284 * @sg_size: Max array size 285 * 286 * Fills in a scatterlist array with page references for a passed 287 * virtual address. 288 * 289 * Returns the number of scatterlist structs in array used 290 */ 291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 292 int sg_size) 293 { 294 int i = 0; 295 struct page *pg; 296 int offset; 297 int remainder_of_page; 298 299 sg_init_table(sg, sg_size); 300 301 while (size > 0 && i < sg_size) { 302 pg = virt_to_page(addr); 303 offset = offset_in_page(addr); 304 sg_set_page(&sg[i], pg, 0, offset); 305 remainder_of_page = PAGE_CACHE_SIZE - offset; 306 if (size >= remainder_of_page) { 307 sg[i].length = remainder_of_page; 308 addr += remainder_of_page; 309 size -= remainder_of_page; 310 } else { 311 sg[i].length = size; 312 addr += size; 313 size = 0; 314 } 315 i++; 316 } 317 if (size > 0) 318 return -ENOMEM; 319 return i; 320 } 321 322 struct extent_crypt_result { 323 struct completion completion; 324 int rc; 325 }; 326 327 static void extent_crypt_complete(struct crypto_async_request *req, int rc) 328 { 329 struct extent_crypt_result *ecr = req->data; 330 331 if (rc == -EINPROGRESS) 332 return; 333 334 ecr->rc = rc; 335 complete(&ecr->completion); 336 } 337 338 /** 339 * encrypt_scatterlist 340 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 341 * @dest_sg: Destination of encrypted data 342 * @src_sg: Data to be encrypted 343 * @size: Length of data to be encrypted 344 * @iv: iv to use during encryption 345 * 346 * Returns the number of bytes encrypted; negative value on error 347 */ 348 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 349 struct scatterlist *dest_sg, 350 struct scatterlist *src_sg, int size, 351 unsigned char *iv) 352 { 353 struct ablkcipher_request *req = NULL; 354 struct extent_crypt_result ecr; 355 int rc = 0; 356 357 BUG_ON(!crypt_stat || !crypt_stat->tfm 358 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 359 if (unlikely(ecryptfs_verbosity > 0)) { 360 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 361 crypt_stat->key_size); 362 ecryptfs_dump_hex(crypt_stat->key, 363 crypt_stat->key_size); 364 } 365 366 init_completion(&ecr.completion); 367 368 mutex_lock(&crypt_stat->cs_tfm_mutex); 369 req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 370 if (!req) { 371 mutex_unlock(&crypt_stat->cs_tfm_mutex); 372 rc = -ENOMEM; 373 goto out; 374 } 375 376 ablkcipher_request_set_callback(req, 377 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 378 extent_crypt_complete, &ecr); 379 /* Consider doing this once, when the file is opened */ 380 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 381 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 382 crypt_stat->key_size); 383 if (rc) { 384 ecryptfs_printk(KERN_ERR, 385 "Error setting key; rc = [%d]\n", 386 rc); 387 mutex_unlock(&crypt_stat->cs_tfm_mutex); 388 rc = -EINVAL; 389 goto out; 390 } 391 crypt_stat->flags |= ECRYPTFS_KEY_SET; 392 } 393 mutex_unlock(&crypt_stat->cs_tfm_mutex); 394 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); 395 ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv); 396 rc = crypto_ablkcipher_encrypt(req); 397 if (rc == -EINPROGRESS || rc == -EBUSY) { 398 struct extent_crypt_result *ecr = req->base.data; 399 400 wait_for_completion(&ecr->completion); 401 rc = ecr->rc; 402 INIT_COMPLETION(ecr->completion); 403 } 404 out: 405 ablkcipher_request_free(req); 406 return rc; 407 } 408 409 /** 410 * ecryptfs_lower_offset_for_extent 411 * 412 * Convert an eCryptfs page index into a lower byte offset 413 */ 414 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num, 415 struct ecryptfs_crypt_stat *crypt_stat) 416 { 417 (*offset) = ecryptfs_lower_header_size(crypt_stat) 418 + (crypt_stat->extent_size * extent_num); 419 } 420 421 /** 422 * ecryptfs_encrypt_extent 423 * @enc_extent_page: Allocated page into which to encrypt the data in 424 * @page 425 * @crypt_stat: crypt_stat containing cryptographic context for the 426 * encryption operation 427 * @page: Page containing plaintext data extent to encrypt 428 * @extent_offset: Page extent offset for use in generating IV 429 * 430 * Encrypts one extent of data. 431 * 432 * Return zero on success; non-zero otherwise 433 */ 434 static int ecryptfs_encrypt_extent(struct page *enc_extent_page, 435 struct ecryptfs_crypt_stat *crypt_stat, 436 struct page *page, 437 unsigned long extent_offset) 438 { 439 loff_t extent_base; 440 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 441 int rc; 442 443 extent_base = (((loff_t)page->index) 444 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 445 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 446 (extent_base + extent_offset)); 447 if (rc) { 448 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 449 "extent [0x%.16llx]; rc = [%d]\n", 450 (unsigned long long)(extent_base + extent_offset), rc); 451 goto out; 452 } 453 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0, 454 page, (extent_offset 455 * crypt_stat->extent_size), 456 crypt_stat->extent_size, extent_iv); 457 if (rc < 0) { 458 printk(KERN_ERR "%s: Error attempting to encrypt page with " 459 "page->index = [%ld], extent_offset = [%ld]; " 460 "rc = [%d]\n", __func__, page->index, extent_offset, 461 rc); 462 goto out; 463 } 464 rc = 0; 465 out: 466 return rc; 467 } 468 469 /** 470 * ecryptfs_encrypt_page 471 * @page: Page mapped from the eCryptfs inode for the file; contains 472 * decrypted content that needs to be encrypted (to a temporary 473 * page; not in place) and written out to the lower file 474 * 475 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 476 * that eCryptfs pages may straddle the lower pages -- for instance, 477 * if the file was created on a machine with an 8K page size 478 * (resulting in an 8K header), and then the file is copied onto a 479 * host with a 32K page size, then when reading page 0 of the eCryptfs 480 * file, 24K of page 0 of the lower file will be read and decrypted, 481 * and then 8K of page 1 of the lower file will be read and decrypted. 482 * 483 * Returns zero on success; negative on error 484 */ 485 int ecryptfs_encrypt_page(struct page *page) 486 { 487 struct inode *ecryptfs_inode; 488 struct ecryptfs_crypt_stat *crypt_stat; 489 char *enc_extent_virt; 490 struct page *enc_extent_page = NULL; 491 loff_t extent_offset; 492 int rc = 0; 493 494 ecryptfs_inode = page->mapping->host; 495 crypt_stat = 496 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 497 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 498 enc_extent_page = alloc_page(GFP_USER); 499 if (!enc_extent_page) { 500 rc = -ENOMEM; 501 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 502 "encrypted extent\n"); 503 goto out; 504 } 505 enc_extent_virt = kmap(enc_extent_page); 506 for (extent_offset = 0; 507 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 508 extent_offset++) { 509 loff_t offset; 510 511 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page, 512 extent_offset); 513 if (rc) { 514 printk(KERN_ERR "%s: Error encrypting extent; " 515 "rc = [%d]\n", __func__, rc); 516 goto out; 517 } 518 ecryptfs_lower_offset_for_extent( 519 &offset, ((((loff_t)page->index) 520 * (PAGE_CACHE_SIZE 521 / crypt_stat->extent_size)) 522 + extent_offset), crypt_stat); 523 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, 524 offset, crypt_stat->extent_size); 525 if (rc < 0) { 526 ecryptfs_printk(KERN_ERR, "Error attempting " 527 "to write lower page; rc = [%d]" 528 "\n", rc); 529 goto out; 530 } 531 } 532 rc = 0; 533 out: 534 if (enc_extent_page) { 535 kunmap(enc_extent_page); 536 __free_page(enc_extent_page); 537 } 538 return rc; 539 } 540 541 static int ecryptfs_decrypt_extent(struct page *page, 542 struct ecryptfs_crypt_stat *crypt_stat, 543 struct page *enc_extent_page, 544 unsigned long extent_offset) 545 { 546 loff_t extent_base; 547 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 548 int rc; 549 550 extent_base = (((loff_t)page->index) 551 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 552 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 553 (extent_base + extent_offset)); 554 if (rc) { 555 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 556 "extent [0x%.16llx]; rc = [%d]\n", 557 (unsigned long long)(extent_base + extent_offset), rc); 558 goto out; 559 } 560 rc = ecryptfs_decrypt_page_offset(crypt_stat, page, 561 (extent_offset 562 * crypt_stat->extent_size), 563 enc_extent_page, 0, 564 crypt_stat->extent_size, extent_iv); 565 if (rc < 0) { 566 printk(KERN_ERR "%s: Error attempting to decrypt to page with " 567 "page->index = [%ld], extent_offset = [%ld]; " 568 "rc = [%d]\n", __func__, page->index, extent_offset, 569 rc); 570 goto out; 571 } 572 rc = 0; 573 out: 574 return rc; 575 } 576 577 /** 578 * ecryptfs_decrypt_page 579 * @page: Page mapped from the eCryptfs inode for the file; data read 580 * and decrypted from the lower file will be written into this 581 * page 582 * 583 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 584 * that eCryptfs pages may straddle the lower pages -- for instance, 585 * if the file was created on a machine with an 8K page size 586 * (resulting in an 8K header), and then the file is copied onto a 587 * host with a 32K page size, then when reading page 0 of the eCryptfs 588 * file, 24K of page 0 of the lower file will be read and decrypted, 589 * and then 8K of page 1 of the lower file will be read and decrypted. 590 * 591 * Returns zero on success; negative on error 592 */ 593 int ecryptfs_decrypt_page(struct page *page) 594 { 595 struct inode *ecryptfs_inode; 596 struct ecryptfs_crypt_stat *crypt_stat; 597 char *enc_extent_virt; 598 struct page *enc_extent_page = NULL; 599 unsigned long extent_offset; 600 int rc = 0; 601 602 ecryptfs_inode = page->mapping->host; 603 crypt_stat = 604 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 605 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 606 enc_extent_page = alloc_page(GFP_USER); 607 if (!enc_extent_page) { 608 rc = -ENOMEM; 609 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 610 "encrypted extent\n"); 611 goto out; 612 } 613 enc_extent_virt = kmap(enc_extent_page); 614 for (extent_offset = 0; 615 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 616 extent_offset++) { 617 loff_t offset; 618 619 ecryptfs_lower_offset_for_extent( 620 &offset, ((page->index * (PAGE_CACHE_SIZE 621 / crypt_stat->extent_size)) 622 + extent_offset), crypt_stat); 623 rc = ecryptfs_read_lower(enc_extent_virt, offset, 624 crypt_stat->extent_size, 625 ecryptfs_inode); 626 if (rc < 0) { 627 ecryptfs_printk(KERN_ERR, "Error attempting " 628 "to read lower page; rc = [%d]" 629 "\n", rc); 630 goto out; 631 } 632 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page, 633 extent_offset); 634 if (rc) { 635 printk(KERN_ERR "%s: Error encrypting extent; " 636 "rc = [%d]\n", __func__, rc); 637 goto out; 638 } 639 } 640 out: 641 if (enc_extent_page) { 642 kunmap(enc_extent_page); 643 __free_page(enc_extent_page); 644 } 645 return rc; 646 } 647 648 /** 649 * decrypt_scatterlist 650 * @crypt_stat: Cryptographic context 651 * @dest_sg: The destination scatterlist to decrypt into 652 * @src_sg: The source scatterlist to decrypt from 653 * @size: The number of bytes to decrypt 654 * @iv: The initialization vector to use for the decryption 655 * 656 * Returns the number of bytes decrypted; negative value on error 657 */ 658 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 659 struct scatterlist *dest_sg, 660 struct scatterlist *src_sg, int size, 661 unsigned char *iv) 662 { 663 struct ablkcipher_request *req = NULL; 664 struct extent_crypt_result ecr; 665 int rc = 0; 666 667 BUG_ON(!crypt_stat || !crypt_stat->tfm 668 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 669 if (unlikely(ecryptfs_verbosity > 0)) { 670 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 671 crypt_stat->key_size); 672 ecryptfs_dump_hex(crypt_stat->key, 673 crypt_stat->key_size); 674 } 675 676 init_completion(&ecr.completion); 677 678 mutex_lock(&crypt_stat->cs_tfm_mutex); 679 req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 680 if (!req) { 681 mutex_unlock(&crypt_stat->cs_tfm_mutex); 682 rc = -ENOMEM; 683 goto out; 684 } 685 686 ablkcipher_request_set_callback(req, 687 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 688 extent_crypt_complete, &ecr); 689 /* Consider doing this once, when the file is opened */ 690 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 691 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 692 crypt_stat->key_size); 693 if (rc) { 694 ecryptfs_printk(KERN_ERR, 695 "Error setting key; rc = [%d]\n", 696 rc); 697 mutex_unlock(&crypt_stat->cs_tfm_mutex); 698 rc = -EINVAL; 699 goto out; 700 } 701 crypt_stat->flags |= ECRYPTFS_KEY_SET; 702 } 703 mutex_unlock(&crypt_stat->cs_tfm_mutex); 704 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); 705 ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv); 706 rc = crypto_ablkcipher_decrypt(req); 707 if (rc == -EINPROGRESS || rc == -EBUSY) { 708 struct extent_crypt_result *ecr = req->base.data; 709 710 wait_for_completion(&ecr->completion); 711 rc = ecr->rc; 712 INIT_COMPLETION(ecr->completion); 713 } 714 out: 715 ablkcipher_request_free(req); 716 return rc; 717 718 } 719 720 /** 721 * ecryptfs_encrypt_page_offset 722 * @crypt_stat: The cryptographic context 723 * @dst_page: The page to encrypt into 724 * @dst_offset: The offset in the page to encrypt into 725 * @src_page: The page to encrypt from 726 * @src_offset: The offset in the page to encrypt from 727 * @size: The number of bytes to encrypt 728 * @iv: The initialization vector to use for the encryption 729 * 730 * Returns the number of bytes encrypted 731 */ 732 static int 733 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 734 struct page *dst_page, int dst_offset, 735 struct page *src_page, int src_offset, int size, 736 unsigned char *iv) 737 { 738 struct scatterlist src_sg, dst_sg; 739 740 sg_init_table(&src_sg, 1); 741 sg_init_table(&dst_sg, 1); 742 743 sg_set_page(&src_sg, src_page, size, src_offset); 744 sg_set_page(&dst_sg, dst_page, size, dst_offset); 745 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 746 } 747 748 /** 749 * ecryptfs_decrypt_page_offset 750 * @crypt_stat: The cryptographic context 751 * @dst_page: The page to decrypt into 752 * @dst_offset: The offset in the page to decrypt into 753 * @src_page: The page to decrypt from 754 * @src_offset: The offset in the page to decrypt from 755 * @size: The number of bytes to decrypt 756 * @iv: The initialization vector to use for the decryption 757 * 758 * Returns the number of bytes decrypted 759 */ 760 static int 761 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 762 struct page *dst_page, int dst_offset, 763 struct page *src_page, int src_offset, int size, 764 unsigned char *iv) 765 { 766 struct scatterlist src_sg, dst_sg; 767 768 sg_init_table(&src_sg, 1); 769 sg_set_page(&src_sg, src_page, size, src_offset); 770 771 sg_init_table(&dst_sg, 1); 772 sg_set_page(&dst_sg, dst_page, size, dst_offset); 773 774 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 775 } 776 777 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 778 779 /** 780 * ecryptfs_init_crypt_ctx 781 * @crypt_stat: Uninitialized crypt stats structure 782 * 783 * Initialize the crypto context. 784 * 785 * TODO: Performance: Keep a cache of initialized cipher contexts; 786 * only init if needed 787 */ 788 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 789 { 790 char *full_alg_name; 791 int rc = -EINVAL; 792 793 if (!crypt_stat->cipher) { 794 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 795 goto out; 796 } 797 ecryptfs_printk(KERN_DEBUG, 798 "Initializing cipher [%s]; strlen = [%d]; " 799 "key_size_bits = [%zd]\n", 800 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 801 crypt_stat->key_size << 3); 802 if (crypt_stat->tfm) { 803 rc = 0; 804 goto out; 805 } 806 mutex_lock(&crypt_stat->cs_tfm_mutex); 807 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 808 crypt_stat->cipher, "cbc"); 809 if (rc) 810 goto out_unlock; 811 crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0); 812 kfree(full_alg_name); 813 if (IS_ERR(crypt_stat->tfm)) { 814 rc = PTR_ERR(crypt_stat->tfm); 815 crypt_stat->tfm = NULL; 816 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 817 "Error initializing cipher [%s]\n", 818 crypt_stat->cipher); 819 goto out_unlock; 820 } 821 crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 822 rc = 0; 823 out_unlock: 824 mutex_unlock(&crypt_stat->cs_tfm_mutex); 825 out: 826 return rc; 827 } 828 829 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 830 { 831 int extent_size_tmp; 832 833 crypt_stat->extent_mask = 0xFFFFFFFF; 834 crypt_stat->extent_shift = 0; 835 if (crypt_stat->extent_size == 0) 836 return; 837 extent_size_tmp = crypt_stat->extent_size; 838 while ((extent_size_tmp & 0x01) == 0) { 839 extent_size_tmp >>= 1; 840 crypt_stat->extent_mask <<= 1; 841 crypt_stat->extent_shift++; 842 } 843 } 844 845 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 846 { 847 /* Default values; may be overwritten as we are parsing the 848 * packets. */ 849 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 850 set_extent_mask_and_shift(crypt_stat); 851 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 852 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 853 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 854 else { 855 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 856 crypt_stat->metadata_size = 857 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 858 else 859 crypt_stat->metadata_size = PAGE_CACHE_SIZE; 860 } 861 } 862 863 /** 864 * ecryptfs_compute_root_iv 865 * @crypt_stats 866 * 867 * On error, sets the root IV to all 0's. 868 */ 869 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 870 { 871 int rc = 0; 872 char dst[MD5_DIGEST_SIZE]; 873 874 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 875 BUG_ON(crypt_stat->iv_bytes <= 0); 876 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 877 rc = -EINVAL; 878 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 879 "cannot generate root IV\n"); 880 goto out; 881 } 882 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 883 crypt_stat->key_size); 884 if (rc) { 885 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 886 "MD5 while generating root IV\n"); 887 goto out; 888 } 889 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 890 out: 891 if (rc) { 892 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 893 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 894 } 895 return rc; 896 } 897 898 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 899 { 900 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 901 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 902 ecryptfs_compute_root_iv(crypt_stat); 903 if (unlikely(ecryptfs_verbosity > 0)) { 904 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 905 ecryptfs_dump_hex(crypt_stat->key, 906 crypt_stat->key_size); 907 } 908 } 909 910 /** 911 * ecryptfs_copy_mount_wide_flags_to_inode_flags 912 * @crypt_stat: The inode's cryptographic context 913 * @mount_crypt_stat: The mount point's cryptographic context 914 * 915 * This function propagates the mount-wide flags to individual inode 916 * flags. 917 */ 918 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 919 struct ecryptfs_crypt_stat *crypt_stat, 920 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 921 { 922 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 923 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 924 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 925 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 926 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 927 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 928 if (mount_crypt_stat->flags 929 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 930 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 931 else if (mount_crypt_stat->flags 932 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 933 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 934 } 935 } 936 937 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 938 struct ecryptfs_crypt_stat *crypt_stat, 939 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 940 { 941 struct ecryptfs_global_auth_tok *global_auth_tok; 942 int rc = 0; 943 944 mutex_lock(&crypt_stat->keysig_list_mutex); 945 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 946 947 list_for_each_entry(global_auth_tok, 948 &mount_crypt_stat->global_auth_tok_list, 949 mount_crypt_stat_list) { 950 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 951 continue; 952 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 953 if (rc) { 954 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 955 goto out; 956 } 957 } 958 959 out: 960 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 961 mutex_unlock(&crypt_stat->keysig_list_mutex); 962 return rc; 963 } 964 965 /** 966 * ecryptfs_set_default_crypt_stat_vals 967 * @crypt_stat: The inode's cryptographic context 968 * @mount_crypt_stat: The mount point's cryptographic context 969 * 970 * Default values in the event that policy does not override them. 971 */ 972 static void ecryptfs_set_default_crypt_stat_vals( 973 struct ecryptfs_crypt_stat *crypt_stat, 974 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 975 { 976 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 977 mount_crypt_stat); 978 ecryptfs_set_default_sizes(crypt_stat); 979 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 980 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 981 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 982 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 983 crypt_stat->mount_crypt_stat = mount_crypt_stat; 984 } 985 986 /** 987 * ecryptfs_new_file_context 988 * @ecryptfs_inode: The eCryptfs inode 989 * 990 * If the crypto context for the file has not yet been established, 991 * this is where we do that. Establishing a new crypto context 992 * involves the following decisions: 993 * - What cipher to use? 994 * - What set of authentication tokens to use? 995 * Here we just worry about getting enough information into the 996 * authentication tokens so that we know that they are available. 997 * We associate the available authentication tokens with the new file 998 * via the set of signatures in the crypt_stat struct. Later, when 999 * the headers are actually written out, we may again defer to 1000 * userspace to perform the encryption of the session key; for the 1001 * foreseeable future, this will be the case with public key packets. 1002 * 1003 * Returns zero on success; non-zero otherwise 1004 */ 1005 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 1006 { 1007 struct ecryptfs_crypt_stat *crypt_stat = 1008 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1009 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1010 &ecryptfs_superblock_to_private( 1011 ecryptfs_inode->i_sb)->mount_crypt_stat; 1012 int cipher_name_len; 1013 int rc = 0; 1014 1015 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 1016 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 1017 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1018 mount_crypt_stat); 1019 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 1020 mount_crypt_stat); 1021 if (rc) { 1022 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 1023 "to the inode key sigs; rc = [%d]\n", rc); 1024 goto out; 1025 } 1026 cipher_name_len = 1027 strlen(mount_crypt_stat->global_default_cipher_name); 1028 memcpy(crypt_stat->cipher, 1029 mount_crypt_stat->global_default_cipher_name, 1030 cipher_name_len); 1031 crypt_stat->cipher[cipher_name_len] = '\0'; 1032 crypt_stat->key_size = 1033 mount_crypt_stat->global_default_cipher_key_size; 1034 ecryptfs_generate_new_key(crypt_stat); 1035 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1036 if (rc) 1037 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 1038 "context for cipher [%s]: rc = [%d]\n", 1039 crypt_stat->cipher, rc); 1040 out: 1041 return rc; 1042 } 1043 1044 /** 1045 * ecryptfs_validate_marker - check for the ecryptfs marker 1046 * @data: The data block in which to check 1047 * 1048 * Returns zero if marker found; -EINVAL if not found 1049 */ 1050 static int ecryptfs_validate_marker(char *data) 1051 { 1052 u32 m_1, m_2; 1053 1054 m_1 = get_unaligned_be32(data); 1055 m_2 = get_unaligned_be32(data + 4); 1056 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 1057 return 0; 1058 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 1059 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 1060 MAGIC_ECRYPTFS_MARKER); 1061 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 1062 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 1063 return -EINVAL; 1064 } 1065 1066 struct ecryptfs_flag_map_elem { 1067 u32 file_flag; 1068 u32 local_flag; 1069 }; 1070 1071 /* Add support for additional flags by adding elements here. */ 1072 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 1073 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 1074 {0x00000002, ECRYPTFS_ENCRYPTED}, 1075 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 1076 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 1077 }; 1078 1079 /** 1080 * ecryptfs_process_flags 1081 * @crypt_stat: The cryptographic context 1082 * @page_virt: Source data to be parsed 1083 * @bytes_read: Updated with the number of bytes read 1084 * 1085 * Returns zero on success; non-zero if the flag set is invalid 1086 */ 1087 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 1088 char *page_virt, int *bytes_read) 1089 { 1090 int rc = 0; 1091 int i; 1092 u32 flags; 1093 1094 flags = get_unaligned_be32(page_virt); 1095 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1096 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1097 if (flags & ecryptfs_flag_map[i].file_flag) { 1098 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 1099 } else 1100 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 1101 /* Version is in top 8 bits of the 32-bit flag vector */ 1102 crypt_stat->file_version = ((flags >> 24) & 0xFF); 1103 (*bytes_read) = 4; 1104 return rc; 1105 } 1106 1107 /** 1108 * write_ecryptfs_marker 1109 * @page_virt: The pointer to in a page to begin writing the marker 1110 * @written: Number of bytes written 1111 * 1112 * Marker = 0x3c81b7f5 1113 */ 1114 static void write_ecryptfs_marker(char *page_virt, size_t *written) 1115 { 1116 u32 m_1, m_2; 1117 1118 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1119 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 1120 put_unaligned_be32(m_1, page_virt); 1121 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 1122 put_unaligned_be32(m_2, page_virt); 1123 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1124 } 1125 1126 void ecryptfs_write_crypt_stat_flags(char *page_virt, 1127 struct ecryptfs_crypt_stat *crypt_stat, 1128 size_t *written) 1129 { 1130 u32 flags = 0; 1131 int i; 1132 1133 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1134 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1135 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 1136 flags |= ecryptfs_flag_map[i].file_flag; 1137 /* Version is in top 8 bits of the 32-bit flag vector */ 1138 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 1139 put_unaligned_be32(flags, page_virt); 1140 (*written) = 4; 1141 } 1142 1143 struct ecryptfs_cipher_code_str_map_elem { 1144 char cipher_str[16]; 1145 u8 cipher_code; 1146 }; 1147 1148 /* Add support for additional ciphers by adding elements here. The 1149 * cipher_code is whatever OpenPGP applicatoins use to identify the 1150 * ciphers. List in order of probability. */ 1151 static struct ecryptfs_cipher_code_str_map_elem 1152 ecryptfs_cipher_code_str_map[] = { 1153 {"aes",RFC2440_CIPHER_AES_128 }, 1154 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 1155 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 1156 {"cast5", RFC2440_CIPHER_CAST_5}, 1157 {"twofish", RFC2440_CIPHER_TWOFISH}, 1158 {"cast6", RFC2440_CIPHER_CAST_6}, 1159 {"aes", RFC2440_CIPHER_AES_192}, 1160 {"aes", RFC2440_CIPHER_AES_256} 1161 }; 1162 1163 /** 1164 * ecryptfs_code_for_cipher_string 1165 * @cipher_name: The string alias for the cipher 1166 * @key_bytes: Length of key in bytes; used for AES code selection 1167 * 1168 * Returns zero on no match, or the cipher code on match 1169 */ 1170 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 1171 { 1172 int i; 1173 u8 code = 0; 1174 struct ecryptfs_cipher_code_str_map_elem *map = 1175 ecryptfs_cipher_code_str_map; 1176 1177 if (strcmp(cipher_name, "aes") == 0) { 1178 switch (key_bytes) { 1179 case 16: 1180 code = RFC2440_CIPHER_AES_128; 1181 break; 1182 case 24: 1183 code = RFC2440_CIPHER_AES_192; 1184 break; 1185 case 32: 1186 code = RFC2440_CIPHER_AES_256; 1187 } 1188 } else { 1189 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1190 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 1191 code = map[i].cipher_code; 1192 break; 1193 } 1194 } 1195 return code; 1196 } 1197 1198 /** 1199 * ecryptfs_cipher_code_to_string 1200 * @str: Destination to write out the cipher name 1201 * @cipher_code: The code to convert to cipher name string 1202 * 1203 * Returns zero on success 1204 */ 1205 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 1206 { 1207 int rc = 0; 1208 int i; 1209 1210 str[0] = '\0'; 1211 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1212 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1213 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1214 if (str[0] == '\0') { 1215 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1216 "[%d]\n", cipher_code); 1217 rc = -EINVAL; 1218 } 1219 return rc; 1220 } 1221 1222 int ecryptfs_read_and_validate_header_region(struct inode *inode) 1223 { 1224 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1225 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1226 int rc; 1227 1228 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 1229 inode); 1230 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1231 return rc >= 0 ? -EINVAL : rc; 1232 rc = ecryptfs_validate_marker(marker); 1233 if (!rc) 1234 ecryptfs_i_size_init(file_size, inode); 1235 return rc; 1236 } 1237 1238 void 1239 ecryptfs_write_header_metadata(char *virt, 1240 struct ecryptfs_crypt_stat *crypt_stat, 1241 size_t *written) 1242 { 1243 u32 header_extent_size; 1244 u16 num_header_extents_at_front; 1245 1246 header_extent_size = (u32)crypt_stat->extent_size; 1247 num_header_extents_at_front = 1248 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1249 put_unaligned_be32(header_extent_size, virt); 1250 virt += 4; 1251 put_unaligned_be16(num_header_extents_at_front, virt); 1252 (*written) = 6; 1253 } 1254 1255 struct kmem_cache *ecryptfs_header_cache; 1256 1257 /** 1258 * ecryptfs_write_headers_virt 1259 * @page_virt: The virtual address to write the headers to 1260 * @max: The size of memory allocated at page_virt 1261 * @size: Set to the number of bytes written by this function 1262 * @crypt_stat: The cryptographic context 1263 * @ecryptfs_dentry: The eCryptfs dentry 1264 * 1265 * Format version: 1 1266 * 1267 * Header Extent: 1268 * Octets 0-7: Unencrypted file size (big-endian) 1269 * Octets 8-15: eCryptfs special marker 1270 * Octets 16-19: Flags 1271 * Octet 16: File format version number (between 0 and 255) 1272 * Octets 17-18: Reserved 1273 * Octet 19: Bit 1 (lsb): Reserved 1274 * Bit 2: Encrypted? 1275 * Bits 3-8: Reserved 1276 * Octets 20-23: Header extent size (big-endian) 1277 * Octets 24-25: Number of header extents at front of file 1278 * (big-endian) 1279 * Octet 26: Begin RFC 2440 authentication token packet set 1280 * Data Extent 0: 1281 * Lower data (CBC encrypted) 1282 * Data Extent 1: 1283 * Lower data (CBC encrypted) 1284 * ... 1285 * 1286 * Returns zero on success 1287 */ 1288 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1289 size_t *size, 1290 struct ecryptfs_crypt_stat *crypt_stat, 1291 struct dentry *ecryptfs_dentry) 1292 { 1293 int rc; 1294 size_t written; 1295 size_t offset; 1296 1297 offset = ECRYPTFS_FILE_SIZE_BYTES; 1298 write_ecryptfs_marker((page_virt + offset), &written); 1299 offset += written; 1300 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1301 &written); 1302 offset += written; 1303 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1304 &written); 1305 offset += written; 1306 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1307 ecryptfs_dentry, &written, 1308 max - offset); 1309 if (rc) 1310 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1311 "set; rc = [%d]\n", rc); 1312 if (size) { 1313 offset += written; 1314 *size = offset; 1315 } 1316 return rc; 1317 } 1318 1319 static int 1320 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1321 char *virt, size_t virt_len) 1322 { 1323 int rc; 1324 1325 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1326 0, virt_len); 1327 if (rc < 0) 1328 printk(KERN_ERR "%s: Error attempting to write header " 1329 "information to lower file; rc = [%d]\n", __func__, rc); 1330 else 1331 rc = 0; 1332 return rc; 1333 } 1334 1335 static int 1336 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1337 char *page_virt, size_t size) 1338 { 1339 int rc; 1340 1341 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1342 size, 0); 1343 return rc; 1344 } 1345 1346 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1347 unsigned int order) 1348 { 1349 struct page *page; 1350 1351 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1352 if (page) 1353 return (unsigned long) page_address(page); 1354 return 0; 1355 } 1356 1357 /** 1358 * ecryptfs_write_metadata 1359 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1360 * @ecryptfs_inode: The newly created eCryptfs inode 1361 * 1362 * Write the file headers out. This will likely involve a userspace 1363 * callout, in which the session key is encrypted with one or more 1364 * public keys and/or the passphrase necessary to do the encryption is 1365 * retrieved via a prompt. Exactly what happens at this point should 1366 * be policy-dependent. 1367 * 1368 * Returns zero on success; non-zero on error 1369 */ 1370 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1371 struct inode *ecryptfs_inode) 1372 { 1373 struct ecryptfs_crypt_stat *crypt_stat = 1374 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1375 unsigned int order; 1376 char *virt; 1377 size_t virt_len; 1378 size_t size = 0; 1379 int rc = 0; 1380 1381 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1382 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1383 printk(KERN_ERR "Key is invalid; bailing out\n"); 1384 rc = -EINVAL; 1385 goto out; 1386 } 1387 } else { 1388 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1389 __func__); 1390 rc = -EINVAL; 1391 goto out; 1392 } 1393 virt_len = crypt_stat->metadata_size; 1394 order = get_order(virt_len); 1395 /* Released in this function */ 1396 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1397 if (!virt) { 1398 printk(KERN_ERR "%s: Out of memory\n", __func__); 1399 rc = -ENOMEM; 1400 goto out; 1401 } 1402 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1403 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1404 ecryptfs_dentry); 1405 if (unlikely(rc)) { 1406 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1407 __func__, rc); 1408 goto out_free; 1409 } 1410 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1411 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt, 1412 size); 1413 else 1414 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1415 virt_len); 1416 if (rc) { 1417 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1418 "rc = [%d]\n", __func__, rc); 1419 goto out_free; 1420 } 1421 out_free: 1422 free_pages((unsigned long)virt, order); 1423 out: 1424 return rc; 1425 } 1426 1427 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1428 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1429 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1430 char *virt, int *bytes_read, 1431 int validate_header_size) 1432 { 1433 int rc = 0; 1434 u32 header_extent_size; 1435 u16 num_header_extents_at_front; 1436 1437 header_extent_size = get_unaligned_be32(virt); 1438 virt += sizeof(__be32); 1439 num_header_extents_at_front = get_unaligned_be16(virt); 1440 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1441 * (size_t)header_extent_size)); 1442 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1443 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1444 && (crypt_stat->metadata_size 1445 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1446 rc = -EINVAL; 1447 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1448 crypt_stat->metadata_size); 1449 } 1450 return rc; 1451 } 1452 1453 /** 1454 * set_default_header_data 1455 * @crypt_stat: The cryptographic context 1456 * 1457 * For version 0 file format; this function is only for backwards 1458 * compatibility for files created with the prior versions of 1459 * eCryptfs. 1460 */ 1461 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1462 { 1463 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1464 } 1465 1466 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1467 { 1468 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1469 struct ecryptfs_crypt_stat *crypt_stat; 1470 u64 file_size; 1471 1472 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1473 mount_crypt_stat = 1474 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1475 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1476 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1477 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1478 file_size += crypt_stat->metadata_size; 1479 } else 1480 file_size = get_unaligned_be64(page_virt); 1481 i_size_write(inode, (loff_t)file_size); 1482 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1483 } 1484 1485 /** 1486 * ecryptfs_read_headers_virt 1487 * @page_virt: The virtual address into which to read the headers 1488 * @crypt_stat: The cryptographic context 1489 * @ecryptfs_dentry: The eCryptfs dentry 1490 * @validate_header_size: Whether to validate the header size while reading 1491 * 1492 * Read/parse the header data. The header format is detailed in the 1493 * comment block for the ecryptfs_write_headers_virt() function. 1494 * 1495 * Returns zero on success 1496 */ 1497 static int ecryptfs_read_headers_virt(char *page_virt, 1498 struct ecryptfs_crypt_stat *crypt_stat, 1499 struct dentry *ecryptfs_dentry, 1500 int validate_header_size) 1501 { 1502 int rc = 0; 1503 int offset; 1504 int bytes_read; 1505 1506 ecryptfs_set_default_sizes(crypt_stat); 1507 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1508 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1509 offset = ECRYPTFS_FILE_SIZE_BYTES; 1510 rc = ecryptfs_validate_marker(page_virt + offset); 1511 if (rc) 1512 goto out; 1513 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1514 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode); 1515 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1516 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1517 &bytes_read); 1518 if (rc) { 1519 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1520 goto out; 1521 } 1522 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1523 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1524 "file version [%d] is supported by this " 1525 "version of eCryptfs\n", 1526 crypt_stat->file_version, 1527 ECRYPTFS_SUPPORTED_FILE_VERSION); 1528 rc = -EINVAL; 1529 goto out; 1530 } 1531 offset += bytes_read; 1532 if (crypt_stat->file_version >= 1) { 1533 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1534 &bytes_read, validate_header_size); 1535 if (rc) { 1536 ecryptfs_printk(KERN_WARNING, "Error reading header " 1537 "metadata; rc = [%d]\n", rc); 1538 } 1539 offset += bytes_read; 1540 } else 1541 set_default_header_data(crypt_stat); 1542 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1543 ecryptfs_dentry); 1544 out: 1545 return rc; 1546 } 1547 1548 /** 1549 * ecryptfs_read_xattr_region 1550 * @page_virt: The vitual address into which to read the xattr data 1551 * @ecryptfs_inode: The eCryptfs inode 1552 * 1553 * Attempts to read the crypto metadata from the extended attribute 1554 * region of the lower file. 1555 * 1556 * Returns zero on success; non-zero on error 1557 */ 1558 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1559 { 1560 struct dentry *lower_dentry = 1561 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1562 ssize_t size; 1563 int rc = 0; 1564 1565 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1566 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1567 if (size < 0) { 1568 if (unlikely(ecryptfs_verbosity > 0)) 1569 printk(KERN_INFO "Error attempting to read the [%s] " 1570 "xattr from the lower file; return value = " 1571 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1572 rc = -EINVAL; 1573 goto out; 1574 } 1575 out: 1576 return rc; 1577 } 1578 1579 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1580 struct inode *inode) 1581 { 1582 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1583 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1584 int rc; 1585 1586 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1587 ECRYPTFS_XATTR_NAME, file_size, 1588 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1589 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1590 return rc >= 0 ? -EINVAL : rc; 1591 rc = ecryptfs_validate_marker(marker); 1592 if (!rc) 1593 ecryptfs_i_size_init(file_size, inode); 1594 return rc; 1595 } 1596 1597 /** 1598 * ecryptfs_read_metadata 1599 * 1600 * Common entry point for reading file metadata. From here, we could 1601 * retrieve the header information from the header region of the file, 1602 * the xattr region of the file, or some other repostory that is 1603 * stored separately from the file itself. The current implementation 1604 * supports retrieving the metadata information from the file contents 1605 * and from the xattr region. 1606 * 1607 * Returns zero if valid headers found and parsed; non-zero otherwise 1608 */ 1609 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1610 { 1611 int rc; 1612 char *page_virt; 1613 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1614 struct ecryptfs_crypt_stat *crypt_stat = 1615 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1616 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1617 &ecryptfs_superblock_to_private( 1618 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1619 1620 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1621 mount_crypt_stat); 1622 /* Read the first page from the underlying file */ 1623 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1624 if (!page_virt) { 1625 rc = -ENOMEM; 1626 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1627 __func__); 1628 goto out; 1629 } 1630 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1631 ecryptfs_inode); 1632 if (rc >= 0) 1633 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1634 ecryptfs_dentry, 1635 ECRYPTFS_VALIDATE_HEADER_SIZE); 1636 if (rc) { 1637 /* metadata is not in the file header, so try xattrs */ 1638 memset(page_virt, 0, PAGE_CACHE_SIZE); 1639 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1640 if (rc) { 1641 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1642 "file header region or xattr region, inode %lu\n", 1643 ecryptfs_inode->i_ino); 1644 rc = -EINVAL; 1645 goto out; 1646 } 1647 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1648 ecryptfs_dentry, 1649 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1650 if (rc) { 1651 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1652 "file xattr region either, inode %lu\n", 1653 ecryptfs_inode->i_ino); 1654 rc = -EINVAL; 1655 } 1656 if (crypt_stat->mount_crypt_stat->flags 1657 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1658 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1659 } else { 1660 printk(KERN_WARNING "Attempt to access file with " 1661 "crypto metadata only in the extended attribute " 1662 "region, but eCryptfs was mounted without " 1663 "xattr support enabled. eCryptfs will not treat " 1664 "this like an encrypted file, inode %lu\n", 1665 ecryptfs_inode->i_ino); 1666 rc = -EINVAL; 1667 } 1668 } 1669 out: 1670 if (page_virt) { 1671 memset(page_virt, 0, PAGE_CACHE_SIZE); 1672 kmem_cache_free(ecryptfs_header_cache, page_virt); 1673 } 1674 return rc; 1675 } 1676 1677 /** 1678 * ecryptfs_encrypt_filename - encrypt filename 1679 * 1680 * CBC-encrypts the filename. We do not want to encrypt the same 1681 * filename with the same key and IV, which may happen with hard 1682 * links, so we prepend random bits to each filename. 1683 * 1684 * Returns zero on success; non-zero otherwise 1685 */ 1686 static int 1687 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1688 struct ecryptfs_crypt_stat *crypt_stat, 1689 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1690 { 1691 int rc = 0; 1692 1693 filename->encrypted_filename = NULL; 1694 filename->encrypted_filename_size = 0; 1695 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1696 || (mount_crypt_stat && (mount_crypt_stat->flags 1697 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 1698 size_t packet_size; 1699 size_t remaining_bytes; 1700 1701 rc = ecryptfs_write_tag_70_packet( 1702 NULL, NULL, 1703 &filename->encrypted_filename_size, 1704 mount_crypt_stat, NULL, 1705 filename->filename_size); 1706 if (rc) { 1707 printk(KERN_ERR "%s: Error attempting to get packet " 1708 "size for tag 72; rc = [%d]\n", __func__, 1709 rc); 1710 filename->encrypted_filename_size = 0; 1711 goto out; 1712 } 1713 filename->encrypted_filename = 1714 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1715 if (!filename->encrypted_filename) { 1716 printk(KERN_ERR "%s: Out of memory whilst attempting " 1717 "to kmalloc [%zd] bytes\n", __func__, 1718 filename->encrypted_filename_size); 1719 rc = -ENOMEM; 1720 goto out; 1721 } 1722 remaining_bytes = filename->encrypted_filename_size; 1723 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1724 &remaining_bytes, 1725 &packet_size, 1726 mount_crypt_stat, 1727 filename->filename, 1728 filename->filename_size); 1729 if (rc) { 1730 printk(KERN_ERR "%s: Error attempting to generate " 1731 "tag 70 packet; rc = [%d]\n", __func__, 1732 rc); 1733 kfree(filename->encrypted_filename); 1734 filename->encrypted_filename = NULL; 1735 filename->encrypted_filename_size = 0; 1736 goto out; 1737 } 1738 filename->encrypted_filename_size = packet_size; 1739 } else { 1740 printk(KERN_ERR "%s: No support for requested filename " 1741 "encryption method in this release\n", __func__); 1742 rc = -EOPNOTSUPP; 1743 goto out; 1744 } 1745 out: 1746 return rc; 1747 } 1748 1749 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1750 const char *name, size_t name_size) 1751 { 1752 int rc = 0; 1753 1754 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1755 if (!(*copied_name)) { 1756 rc = -ENOMEM; 1757 goto out; 1758 } 1759 memcpy((void *)(*copied_name), (void *)name, name_size); 1760 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1761 * in printing out the 1762 * string in debug 1763 * messages */ 1764 (*copied_name_size) = name_size; 1765 out: 1766 return rc; 1767 } 1768 1769 /** 1770 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1771 * @key_tfm: Crypto context for key material, set by this function 1772 * @cipher_name: Name of the cipher 1773 * @key_size: Size of the key in bytes 1774 * 1775 * Returns zero on success. Any crypto_tfm structs allocated here 1776 * should be released by other functions, such as on a superblock put 1777 * event, regardless of whether this function succeeds for fails. 1778 */ 1779 static int 1780 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1781 char *cipher_name, size_t *key_size) 1782 { 1783 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1784 char *full_alg_name = NULL; 1785 int rc; 1786 1787 *key_tfm = NULL; 1788 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1789 rc = -EINVAL; 1790 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1791 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1792 goto out; 1793 } 1794 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1795 "ecb"); 1796 if (rc) 1797 goto out; 1798 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1799 if (IS_ERR(*key_tfm)) { 1800 rc = PTR_ERR(*key_tfm); 1801 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1802 "[%s]; rc = [%d]\n", full_alg_name, rc); 1803 goto out; 1804 } 1805 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1806 if (*key_size == 0) { 1807 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1808 1809 *key_size = alg->max_keysize; 1810 } 1811 get_random_bytes(dummy_key, *key_size); 1812 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1813 if (rc) { 1814 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1815 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1816 rc); 1817 rc = -EINVAL; 1818 goto out; 1819 } 1820 out: 1821 kfree(full_alg_name); 1822 return rc; 1823 } 1824 1825 struct kmem_cache *ecryptfs_key_tfm_cache; 1826 static struct list_head key_tfm_list; 1827 struct mutex key_tfm_list_mutex; 1828 1829 int __init ecryptfs_init_crypto(void) 1830 { 1831 mutex_init(&key_tfm_list_mutex); 1832 INIT_LIST_HEAD(&key_tfm_list); 1833 return 0; 1834 } 1835 1836 /** 1837 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1838 * 1839 * Called only at module unload time 1840 */ 1841 int ecryptfs_destroy_crypto(void) 1842 { 1843 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1844 1845 mutex_lock(&key_tfm_list_mutex); 1846 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1847 key_tfm_list) { 1848 list_del(&key_tfm->key_tfm_list); 1849 if (key_tfm->key_tfm) 1850 crypto_free_blkcipher(key_tfm->key_tfm); 1851 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1852 } 1853 mutex_unlock(&key_tfm_list_mutex); 1854 return 0; 1855 } 1856 1857 int 1858 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1859 size_t key_size) 1860 { 1861 struct ecryptfs_key_tfm *tmp_tfm; 1862 int rc = 0; 1863 1864 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1865 1866 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1867 if (key_tfm != NULL) 1868 (*key_tfm) = tmp_tfm; 1869 if (!tmp_tfm) { 1870 rc = -ENOMEM; 1871 printk(KERN_ERR "Error attempting to allocate from " 1872 "ecryptfs_key_tfm_cache\n"); 1873 goto out; 1874 } 1875 mutex_init(&tmp_tfm->key_tfm_mutex); 1876 strncpy(tmp_tfm->cipher_name, cipher_name, 1877 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1878 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1879 tmp_tfm->key_size = key_size; 1880 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1881 tmp_tfm->cipher_name, 1882 &tmp_tfm->key_size); 1883 if (rc) { 1884 printk(KERN_ERR "Error attempting to initialize key TFM " 1885 "cipher with name = [%s]; rc = [%d]\n", 1886 tmp_tfm->cipher_name, rc); 1887 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1888 if (key_tfm != NULL) 1889 (*key_tfm) = NULL; 1890 goto out; 1891 } 1892 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1893 out: 1894 return rc; 1895 } 1896 1897 /** 1898 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1899 * @cipher_name: the name of the cipher to search for 1900 * @key_tfm: set to corresponding tfm if found 1901 * 1902 * Searches for cached key_tfm matching @cipher_name 1903 * Must be called with &key_tfm_list_mutex held 1904 * Returns 1 if found, with @key_tfm set 1905 * Returns 0 if not found, with @key_tfm set to NULL 1906 */ 1907 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1908 { 1909 struct ecryptfs_key_tfm *tmp_key_tfm; 1910 1911 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1912 1913 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1914 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1915 if (key_tfm) 1916 (*key_tfm) = tmp_key_tfm; 1917 return 1; 1918 } 1919 } 1920 if (key_tfm) 1921 (*key_tfm) = NULL; 1922 return 0; 1923 } 1924 1925 /** 1926 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1927 * 1928 * @tfm: set to cached tfm found, or new tfm created 1929 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1930 * @cipher_name: the name of the cipher to search for and/or add 1931 * 1932 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1933 * Searches for cached item first, and creates new if not found. 1934 * Returns 0 on success, non-zero if adding new cipher failed 1935 */ 1936 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1937 struct mutex **tfm_mutex, 1938 char *cipher_name) 1939 { 1940 struct ecryptfs_key_tfm *key_tfm; 1941 int rc = 0; 1942 1943 (*tfm) = NULL; 1944 (*tfm_mutex) = NULL; 1945 1946 mutex_lock(&key_tfm_list_mutex); 1947 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1948 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1949 if (rc) { 1950 printk(KERN_ERR "Error adding new key_tfm to list; " 1951 "rc = [%d]\n", rc); 1952 goto out; 1953 } 1954 } 1955 (*tfm) = key_tfm->key_tfm; 1956 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1957 out: 1958 mutex_unlock(&key_tfm_list_mutex); 1959 return rc; 1960 } 1961 1962 /* 64 characters forming a 6-bit target field */ 1963 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1964 "EFGHIJKLMNOPQRST" 1965 "UVWXYZabcdefghij" 1966 "klmnopqrstuvwxyz"); 1967 1968 /* We could either offset on every reverse map or just pad some 0x00's 1969 * at the front here */ 1970 static const unsigned char filename_rev_map[256] = { 1971 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1972 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1973 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1974 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1975 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1976 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1977 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1978 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1979 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1980 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1981 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1982 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1983 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1984 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1985 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1986 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1987 }; 1988 1989 /** 1990 * ecryptfs_encode_for_filename 1991 * @dst: Destination location for encoded filename 1992 * @dst_size: Size of the encoded filename in bytes 1993 * @src: Source location for the filename to encode 1994 * @src_size: Size of the source in bytes 1995 */ 1996 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1997 unsigned char *src, size_t src_size) 1998 { 1999 size_t num_blocks; 2000 size_t block_num = 0; 2001 size_t dst_offset = 0; 2002 unsigned char last_block[3]; 2003 2004 if (src_size == 0) { 2005 (*dst_size) = 0; 2006 goto out; 2007 } 2008 num_blocks = (src_size / 3); 2009 if ((src_size % 3) == 0) { 2010 memcpy(last_block, (&src[src_size - 3]), 3); 2011 } else { 2012 num_blocks++; 2013 last_block[2] = 0x00; 2014 switch (src_size % 3) { 2015 case 1: 2016 last_block[0] = src[src_size - 1]; 2017 last_block[1] = 0x00; 2018 break; 2019 case 2: 2020 last_block[0] = src[src_size - 2]; 2021 last_block[1] = src[src_size - 1]; 2022 } 2023 } 2024 (*dst_size) = (num_blocks * 4); 2025 if (!dst) 2026 goto out; 2027 while (block_num < num_blocks) { 2028 unsigned char *src_block; 2029 unsigned char dst_block[4]; 2030 2031 if (block_num == (num_blocks - 1)) 2032 src_block = last_block; 2033 else 2034 src_block = &src[block_num * 3]; 2035 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 2036 dst_block[1] = (((src_block[0] << 4) & 0x30) 2037 | ((src_block[1] >> 4) & 0x0F)); 2038 dst_block[2] = (((src_block[1] << 2) & 0x3C) 2039 | ((src_block[2] >> 6) & 0x03)); 2040 dst_block[3] = (src_block[2] & 0x3F); 2041 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 2042 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 2043 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 2044 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 2045 block_num++; 2046 } 2047 out: 2048 return; 2049 } 2050 2051 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 2052 { 2053 /* Not exact; conservatively long. Every block of 4 2054 * encoded characters decodes into a block of 3 2055 * decoded characters. This segment of code provides 2056 * the caller with the maximum amount of allocated 2057 * space that @dst will need to point to in a 2058 * subsequent call. */ 2059 return ((encoded_size + 1) * 3) / 4; 2060 } 2061 2062 /** 2063 * ecryptfs_decode_from_filename 2064 * @dst: If NULL, this function only sets @dst_size and returns. If 2065 * non-NULL, this function decodes the encoded octets in @src 2066 * into the memory that @dst points to. 2067 * @dst_size: Set to the size of the decoded string. 2068 * @src: The encoded set of octets to decode. 2069 * @src_size: The size of the encoded set of octets to decode. 2070 */ 2071 static void 2072 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 2073 const unsigned char *src, size_t src_size) 2074 { 2075 u8 current_bit_offset = 0; 2076 size_t src_byte_offset = 0; 2077 size_t dst_byte_offset = 0; 2078 2079 if (dst == NULL) { 2080 (*dst_size) = ecryptfs_max_decoded_size(src_size); 2081 goto out; 2082 } 2083 while (src_byte_offset < src_size) { 2084 unsigned char src_byte = 2085 filename_rev_map[(int)src[src_byte_offset]]; 2086 2087 switch (current_bit_offset) { 2088 case 0: 2089 dst[dst_byte_offset] = (src_byte << 2); 2090 current_bit_offset = 6; 2091 break; 2092 case 6: 2093 dst[dst_byte_offset++] |= (src_byte >> 4); 2094 dst[dst_byte_offset] = ((src_byte & 0xF) 2095 << 4); 2096 current_bit_offset = 4; 2097 break; 2098 case 4: 2099 dst[dst_byte_offset++] |= (src_byte >> 2); 2100 dst[dst_byte_offset] = (src_byte << 6); 2101 current_bit_offset = 2; 2102 break; 2103 case 2: 2104 dst[dst_byte_offset++] |= (src_byte); 2105 dst[dst_byte_offset] = 0; 2106 current_bit_offset = 0; 2107 break; 2108 } 2109 src_byte_offset++; 2110 } 2111 (*dst_size) = dst_byte_offset; 2112 out: 2113 return; 2114 } 2115 2116 /** 2117 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 2118 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 2119 * @name: The plaintext name 2120 * @length: The length of the plaintext 2121 * @encoded_name: The encypted name 2122 * 2123 * Encrypts and encodes a filename into something that constitutes a 2124 * valid filename for a filesystem, with printable characters. 2125 * 2126 * We assume that we have a properly initialized crypto context, 2127 * pointed to by crypt_stat->tfm. 2128 * 2129 * Returns zero on success; non-zero on otherwise 2130 */ 2131 int ecryptfs_encrypt_and_encode_filename( 2132 char **encoded_name, 2133 size_t *encoded_name_size, 2134 struct ecryptfs_crypt_stat *crypt_stat, 2135 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 2136 const char *name, size_t name_size) 2137 { 2138 size_t encoded_name_no_prefix_size; 2139 int rc = 0; 2140 2141 (*encoded_name) = NULL; 2142 (*encoded_name_size) = 0; 2143 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES)) 2144 || (mount_crypt_stat && (mount_crypt_stat->flags 2145 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) { 2146 struct ecryptfs_filename *filename; 2147 2148 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 2149 if (!filename) { 2150 printk(KERN_ERR "%s: Out of memory whilst attempting " 2151 "to kzalloc [%zd] bytes\n", __func__, 2152 sizeof(*filename)); 2153 rc = -ENOMEM; 2154 goto out; 2155 } 2156 filename->filename = (char *)name; 2157 filename->filename_size = name_size; 2158 rc = ecryptfs_encrypt_filename(filename, crypt_stat, 2159 mount_crypt_stat); 2160 if (rc) { 2161 printk(KERN_ERR "%s: Error attempting to encrypt " 2162 "filename; rc = [%d]\n", __func__, rc); 2163 kfree(filename); 2164 goto out; 2165 } 2166 ecryptfs_encode_for_filename( 2167 NULL, &encoded_name_no_prefix_size, 2168 filename->encrypted_filename, 2169 filename->encrypted_filename_size); 2170 if ((crypt_stat && (crypt_stat->flags 2171 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2172 || (mount_crypt_stat 2173 && (mount_crypt_stat->flags 2174 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) 2175 (*encoded_name_size) = 2176 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2177 + encoded_name_no_prefix_size); 2178 else 2179 (*encoded_name_size) = 2180 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2181 + encoded_name_no_prefix_size); 2182 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 2183 if (!(*encoded_name)) { 2184 printk(KERN_ERR "%s: Out of memory whilst attempting " 2185 "to kzalloc [%zd] bytes\n", __func__, 2186 (*encoded_name_size)); 2187 rc = -ENOMEM; 2188 kfree(filename->encrypted_filename); 2189 kfree(filename); 2190 goto out; 2191 } 2192 if ((crypt_stat && (crypt_stat->flags 2193 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2194 || (mount_crypt_stat 2195 && (mount_crypt_stat->flags 2196 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 2197 memcpy((*encoded_name), 2198 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2199 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 2200 ecryptfs_encode_for_filename( 2201 ((*encoded_name) 2202 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 2203 &encoded_name_no_prefix_size, 2204 filename->encrypted_filename, 2205 filename->encrypted_filename_size); 2206 (*encoded_name_size) = 2207 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2208 + encoded_name_no_prefix_size); 2209 (*encoded_name)[(*encoded_name_size)] = '\0'; 2210 } else { 2211 rc = -EOPNOTSUPP; 2212 } 2213 if (rc) { 2214 printk(KERN_ERR "%s: Error attempting to encode " 2215 "encrypted filename; rc = [%d]\n", __func__, 2216 rc); 2217 kfree((*encoded_name)); 2218 (*encoded_name) = NULL; 2219 (*encoded_name_size) = 0; 2220 } 2221 kfree(filename->encrypted_filename); 2222 kfree(filename); 2223 } else { 2224 rc = ecryptfs_copy_filename(encoded_name, 2225 encoded_name_size, 2226 name, name_size); 2227 } 2228 out: 2229 return rc; 2230 } 2231 2232 /** 2233 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2234 * @plaintext_name: The plaintext name 2235 * @plaintext_name_size: The plaintext name size 2236 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2237 * @name: The filename in cipher text 2238 * @name_size: The cipher text name size 2239 * 2240 * Decrypts and decodes the filename. 2241 * 2242 * Returns zero on error; non-zero otherwise 2243 */ 2244 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2245 size_t *plaintext_name_size, 2246 struct dentry *ecryptfs_dir_dentry, 2247 const char *name, size_t name_size) 2248 { 2249 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2250 &ecryptfs_superblock_to_private( 2251 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat; 2252 char *decoded_name; 2253 size_t decoded_name_size; 2254 size_t packet_size; 2255 int rc = 0; 2256 2257 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 2258 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 2259 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) 2260 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2261 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) { 2262 const char *orig_name = name; 2263 size_t orig_name_size = name_size; 2264 2265 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2266 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2267 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2268 name, name_size); 2269 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2270 if (!decoded_name) { 2271 printk(KERN_ERR "%s: Out of memory whilst attempting " 2272 "to kmalloc [%zd] bytes\n", __func__, 2273 decoded_name_size); 2274 rc = -ENOMEM; 2275 goto out; 2276 } 2277 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2278 name, name_size); 2279 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2280 plaintext_name_size, 2281 &packet_size, 2282 mount_crypt_stat, 2283 decoded_name, 2284 decoded_name_size); 2285 if (rc) { 2286 printk(KERN_INFO "%s: Could not parse tag 70 packet " 2287 "from filename; copying through filename " 2288 "as-is\n", __func__); 2289 rc = ecryptfs_copy_filename(plaintext_name, 2290 plaintext_name_size, 2291 orig_name, orig_name_size); 2292 goto out_free; 2293 } 2294 } else { 2295 rc = ecryptfs_copy_filename(plaintext_name, 2296 plaintext_name_size, 2297 name, name_size); 2298 goto out; 2299 } 2300 out_free: 2301 kfree(decoded_name); 2302 out: 2303 return rc; 2304 } 2305 2306 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2307 2308 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2309 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2310 { 2311 struct blkcipher_desc desc; 2312 struct mutex *tfm_mutex; 2313 size_t cipher_blocksize; 2314 int rc; 2315 2316 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2317 (*namelen) = lower_namelen; 2318 return 0; 2319 } 2320 2321 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex, 2322 mount_crypt_stat->global_default_fn_cipher_name); 2323 if (unlikely(rc)) { 2324 (*namelen) = 0; 2325 return rc; 2326 } 2327 2328 mutex_lock(tfm_mutex); 2329 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm); 2330 mutex_unlock(tfm_mutex); 2331 2332 /* Return an exact amount for the common cases */ 2333 if (lower_namelen == NAME_MAX 2334 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2335 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2336 return 0; 2337 } 2338 2339 /* Return a safe estimate for the uncommon cases */ 2340 (*namelen) = lower_namelen; 2341 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2342 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2343 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2344 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2345 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2346 /* Worst case is that the filename is padded nearly a full block size */ 2347 (*namelen) -= cipher_blocksize - 1; 2348 2349 if ((*namelen) < 0) 2350 (*namelen) = 0; 2351 2352 return 0; 2353 } 2354