xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision ee89bd6b)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39 
40 static int
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 			     struct page *dst_page, int dst_offset,
43 			     struct page *src_page, int src_offset, int size,
44 			     unsigned char *iv);
45 static int
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 			     struct page *dst_page, int dst_offset,
48 			     struct page *src_page, int src_offset, int size,
49 			     unsigned char *iv);
50 
51 /**
52  * ecryptfs_to_hex
53  * @dst: Buffer to take hex character representation of contents of
54  *       src; must be at least of size (src_size * 2)
55  * @src: Buffer to be converted to a hex string respresentation
56  * @src_size: number of bytes to convert
57  */
58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59 {
60 	int x;
61 
62 	for (x = 0; x < src_size; x++)
63 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64 }
65 
66 /**
67  * ecryptfs_from_hex
68  * @dst: Buffer to take the bytes from src hex; must be at least of
69  *       size (src_size / 2)
70  * @src: Buffer to be converted from a hex string respresentation to raw value
71  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72  */
73 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74 {
75 	int x;
76 	char tmp[3] = { 0, };
77 
78 	for (x = 0; x < dst_size; x++) {
79 		tmp[0] = src[x * 2];
80 		tmp[1] = src[x * 2 + 1];
81 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 	}
83 }
84 
85 /**
86  * ecryptfs_calculate_md5 - calculates the md5 of @src
87  * @dst: Pointer to 16 bytes of allocated memory
88  * @crypt_stat: Pointer to crypt_stat struct for the current inode
89  * @src: Data to be md5'd
90  * @len: Length of @src
91  *
92  * Uses the allocated crypto context that crypt_stat references to
93  * generate the MD5 sum of the contents of src.
94  */
95 static int ecryptfs_calculate_md5(char *dst,
96 				  struct ecryptfs_crypt_stat *crypt_stat,
97 				  char *src, int len)
98 {
99 	struct scatterlist sg;
100 	struct hash_desc desc = {
101 		.tfm = crypt_stat->hash_tfm,
102 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 	};
104 	int rc = 0;
105 
106 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107 	sg_init_one(&sg, (u8 *)src, len);
108 	if (!desc.tfm) {
109 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 					     CRYPTO_ALG_ASYNC);
111 		if (IS_ERR(desc.tfm)) {
112 			rc = PTR_ERR(desc.tfm);
113 			ecryptfs_printk(KERN_ERR, "Error attempting to "
114 					"allocate crypto context; rc = [%d]\n",
115 					rc);
116 			goto out;
117 		}
118 		crypt_stat->hash_tfm = desc.tfm;
119 	}
120 	rc = crypto_hash_init(&desc);
121 	if (rc) {
122 		printk(KERN_ERR
123 		       "%s: Error initializing crypto hash; rc = [%d]\n",
124 		       __func__, rc);
125 		goto out;
126 	}
127 	rc = crypto_hash_update(&desc, &sg, len);
128 	if (rc) {
129 		printk(KERN_ERR
130 		       "%s: Error updating crypto hash; rc = [%d]\n",
131 		       __func__, rc);
132 		goto out;
133 	}
134 	rc = crypto_hash_final(&desc, dst);
135 	if (rc) {
136 		printk(KERN_ERR
137 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
138 		       __func__, rc);
139 		goto out;
140 	}
141 out:
142 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143 	return rc;
144 }
145 
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 						  char *cipher_name,
148 						  char *chaining_modifier)
149 {
150 	int cipher_name_len = strlen(cipher_name);
151 	int chaining_modifier_len = strlen(chaining_modifier);
152 	int algified_name_len;
153 	int rc;
154 
155 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157 	if (!(*algified_name)) {
158 		rc = -ENOMEM;
159 		goto out;
160 	}
161 	snprintf((*algified_name), algified_name_len, "%s(%s)",
162 		 chaining_modifier, cipher_name);
163 	rc = 0;
164 out:
165 	return rc;
166 }
167 
168 /**
169  * ecryptfs_derive_iv
170  * @iv: destination for the derived iv vale
171  * @crypt_stat: Pointer to crypt_stat struct for the current inode
172  * @offset: Offset of the extent whose IV we are to derive
173  *
174  * Generate the initialization vector from the given root IV and page
175  * offset.
176  *
177  * Returns zero on success; non-zero on error.
178  */
179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 		       loff_t offset)
181 {
182 	int rc = 0;
183 	char dst[MD5_DIGEST_SIZE];
184 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
185 
186 	if (unlikely(ecryptfs_verbosity > 0)) {
187 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 	}
190 	/* TODO: It is probably secure to just cast the least
191 	 * significant bits of the root IV into an unsigned long and
192 	 * add the offset to that rather than go through all this
193 	 * hashing business. -Halcrow */
194 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 	memset((src + crypt_stat->iv_bytes), 0, 16);
196 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 	if (unlikely(ecryptfs_verbosity > 0)) {
198 		ecryptfs_printk(KERN_DEBUG, "source:\n");
199 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 	}
201 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 				    (crypt_stat->iv_bytes + 16));
203 	if (rc) {
204 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 				"MD5 while generating IV for a page\n");
206 		goto out;
207 	}
208 	memcpy(iv, dst, crypt_stat->iv_bytes);
209 	if (unlikely(ecryptfs_verbosity > 0)) {
210 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 	}
213 out:
214 	return rc;
215 }
216 
217 /**
218  * ecryptfs_init_crypt_stat
219  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220  *
221  * Initialize the crypt_stat structure.
222  */
223 void
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225 {
226 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 	mutex_init(&crypt_stat->keysig_list_mutex);
229 	mutex_init(&crypt_stat->cs_mutex);
230 	mutex_init(&crypt_stat->cs_tfm_mutex);
231 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233 }
234 
235 /**
236  * ecryptfs_destroy_crypt_stat
237  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238  *
239  * Releases all memory associated with a crypt_stat struct.
240  */
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242 {
243 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244 
245 	if (crypt_stat->tfm)
246 		crypto_free_ablkcipher(crypt_stat->tfm);
247 	if (crypt_stat->hash_tfm)
248 		crypto_free_hash(crypt_stat->hash_tfm);
249 	list_for_each_entry_safe(key_sig, key_sig_tmp,
250 				 &crypt_stat->keysig_list, crypt_stat_list) {
251 		list_del(&key_sig->crypt_stat_list);
252 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 	}
254 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255 }
256 
257 void ecryptfs_destroy_mount_crypt_stat(
258 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259 {
260 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261 
262 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 		return;
264 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 				 &mount_crypt_stat->global_auth_tok_list,
267 				 mount_crypt_stat_list) {
268 		list_del(&auth_tok->mount_crypt_stat_list);
269 		if (auth_tok->global_auth_tok_key
270 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 			key_put(auth_tok->global_auth_tok_key);
272 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 	}
274 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276 }
277 
278 /**
279  * virt_to_scatterlist
280  * @addr: Virtual address
281  * @size: Size of data; should be an even multiple of the block size
282  * @sg: Pointer to scatterlist array; set to NULL to obtain only
283  *      the number of scatterlist structs required in array
284  * @sg_size: Max array size
285  *
286  * Fills in a scatterlist array with page references for a passed
287  * virtual address.
288  *
289  * Returns the number of scatterlist structs in array used
290  */
291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 			int sg_size)
293 {
294 	int i = 0;
295 	struct page *pg;
296 	int offset;
297 	int remainder_of_page;
298 
299 	sg_init_table(sg, sg_size);
300 
301 	while (size > 0 && i < sg_size) {
302 		pg = virt_to_page(addr);
303 		offset = offset_in_page(addr);
304 		sg_set_page(&sg[i], pg, 0, offset);
305 		remainder_of_page = PAGE_CACHE_SIZE - offset;
306 		if (size >= remainder_of_page) {
307 			sg[i].length = remainder_of_page;
308 			addr += remainder_of_page;
309 			size -= remainder_of_page;
310 		} else {
311 			sg[i].length = size;
312 			addr += size;
313 			size = 0;
314 		}
315 		i++;
316 	}
317 	if (size > 0)
318 		return -ENOMEM;
319 	return i;
320 }
321 
322 struct extent_crypt_result {
323 	struct completion completion;
324 	int rc;
325 };
326 
327 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
328 {
329 	struct extent_crypt_result *ecr = req->data;
330 
331 	if (rc == -EINPROGRESS)
332 		return;
333 
334 	ecr->rc = rc;
335 	complete(&ecr->completion);
336 }
337 
338 /**
339  * encrypt_scatterlist
340  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
341  * @dest_sg: Destination of encrypted data
342  * @src_sg: Data to be encrypted
343  * @size: Length of data to be encrypted
344  * @iv: iv to use during encryption
345  *
346  * Returns the number of bytes encrypted; negative value on error
347  */
348 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
349 			       struct scatterlist *dest_sg,
350 			       struct scatterlist *src_sg, int size,
351 			       unsigned char *iv)
352 {
353 	struct ablkcipher_request *req = NULL;
354 	struct extent_crypt_result ecr;
355 	int rc = 0;
356 
357 	BUG_ON(!crypt_stat || !crypt_stat->tfm
358 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
359 	if (unlikely(ecryptfs_verbosity > 0)) {
360 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
361 				crypt_stat->key_size);
362 		ecryptfs_dump_hex(crypt_stat->key,
363 				  crypt_stat->key_size);
364 	}
365 
366 	init_completion(&ecr.completion);
367 
368 	mutex_lock(&crypt_stat->cs_tfm_mutex);
369 	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
370 	if (!req) {
371 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
372 		rc = -ENOMEM;
373 		goto out;
374 	}
375 
376 	ablkcipher_request_set_callback(req,
377 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
378 			extent_crypt_complete, &ecr);
379 	/* Consider doing this once, when the file is opened */
380 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
381 		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
382 					      crypt_stat->key_size);
383 		if (rc) {
384 			ecryptfs_printk(KERN_ERR,
385 					"Error setting key; rc = [%d]\n",
386 					rc);
387 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
388 			rc = -EINVAL;
389 			goto out;
390 		}
391 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
392 	}
393 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
394 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
395 	ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
396 	rc = crypto_ablkcipher_encrypt(req);
397 	if (rc == -EINPROGRESS || rc == -EBUSY) {
398 		struct extent_crypt_result *ecr = req->base.data;
399 
400 		wait_for_completion(&ecr->completion);
401 		rc = ecr->rc;
402 		INIT_COMPLETION(ecr->completion);
403 	}
404 out:
405 	ablkcipher_request_free(req);
406 	return rc;
407 }
408 
409 /**
410  * ecryptfs_lower_offset_for_extent
411  *
412  * Convert an eCryptfs page index into a lower byte offset
413  */
414 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
415 					     struct ecryptfs_crypt_stat *crypt_stat)
416 {
417 	(*offset) = ecryptfs_lower_header_size(crypt_stat)
418 		    + (crypt_stat->extent_size * extent_num);
419 }
420 
421 /**
422  * ecryptfs_encrypt_extent
423  * @enc_extent_page: Allocated page into which to encrypt the data in
424  *                   @page
425  * @crypt_stat: crypt_stat containing cryptographic context for the
426  *              encryption operation
427  * @page: Page containing plaintext data extent to encrypt
428  * @extent_offset: Page extent offset for use in generating IV
429  *
430  * Encrypts one extent of data.
431  *
432  * Return zero on success; non-zero otherwise
433  */
434 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
435 				   struct ecryptfs_crypt_stat *crypt_stat,
436 				   struct page *page,
437 				   unsigned long extent_offset)
438 {
439 	loff_t extent_base;
440 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
441 	int rc;
442 
443 	extent_base = (((loff_t)page->index)
444 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
445 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
446 				(extent_base + extent_offset));
447 	if (rc) {
448 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
449 			"extent [0x%.16llx]; rc = [%d]\n",
450 			(unsigned long long)(extent_base + extent_offset), rc);
451 		goto out;
452 	}
453 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
454 					  page, (extent_offset
455 						 * crypt_stat->extent_size),
456 					  crypt_stat->extent_size, extent_iv);
457 	if (rc < 0) {
458 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
459 		       "page->index = [%ld], extent_offset = [%ld]; "
460 		       "rc = [%d]\n", __func__, page->index, extent_offset,
461 		       rc);
462 		goto out;
463 	}
464 	rc = 0;
465 out:
466 	return rc;
467 }
468 
469 /**
470  * ecryptfs_encrypt_page
471  * @page: Page mapped from the eCryptfs inode for the file; contains
472  *        decrypted content that needs to be encrypted (to a temporary
473  *        page; not in place) and written out to the lower file
474  *
475  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
476  * that eCryptfs pages may straddle the lower pages -- for instance,
477  * if the file was created on a machine with an 8K page size
478  * (resulting in an 8K header), and then the file is copied onto a
479  * host with a 32K page size, then when reading page 0 of the eCryptfs
480  * file, 24K of page 0 of the lower file will be read and decrypted,
481  * and then 8K of page 1 of the lower file will be read and decrypted.
482  *
483  * Returns zero on success; negative on error
484  */
485 int ecryptfs_encrypt_page(struct page *page)
486 {
487 	struct inode *ecryptfs_inode;
488 	struct ecryptfs_crypt_stat *crypt_stat;
489 	char *enc_extent_virt;
490 	struct page *enc_extent_page = NULL;
491 	loff_t extent_offset;
492 	int rc = 0;
493 
494 	ecryptfs_inode = page->mapping->host;
495 	crypt_stat =
496 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
497 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
498 	enc_extent_page = alloc_page(GFP_USER);
499 	if (!enc_extent_page) {
500 		rc = -ENOMEM;
501 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
502 				"encrypted extent\n");
503 		goto out;
504 	}
505 	enc_extent_virt = kmap(enc_extent_page);
506 	for (extent_offset = 0;
507 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
508 	     extent_offset++) {
509 		loff_t offset;
510 
511 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
512 					     extent_offset);
513 		if (rc) {
514 			printk(KERN_ERR "%s: Error encrypting extent; "
515 			       "rc = [%d]\n", __func__, rc);
516 			goto out;
517 		}
518 		ecryptfs_lower_offset_for_extent(
519 			&offset, ((((loff_t)page->index)
520 				   * (PAGE_CACHE_SIZE
521 				      / crypt_stat->extent_size))
522 				  + extent_offset), crypt_stat);
523 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
524 					  offset, crypt_stat->extent_size);
525 		if (rc < 0) {
526 			ecryptfs_printk(KERN_ERR, "Error attempting "
527 					"to write lower page; rc = [%d]"
528 					"\n", rc);
529 			goto out;
530 		}
531 	}
532 	rc = 0;
533 out:
534 	if (enc_extent_page) {
535 		kunmap(enc_extent_page);
536 		__free_page(enc_extent_page);
537 	}
538 	return rc;
539 }
540 
541 static int ecryptfs_decrypt_extent(struct page *page,
542 				   struct ecryptfs_crypt_stat *crypt_stat,
543 				   struct page *enc_extent_page,
544 				   unsigned long extent_offset)
545 {
546 	loff_t extent_base;
547 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
548 	int rc;
549 
550 	extent_base = (((loff_t)page->index)
551 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
552 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
553 				(extent_base + extent_offset));
554 	if (rc) {
555 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
556 			"extent [0x%.16llx]; rc = [%d]\n",
557 			(unsigned long long)(extent_base + extent_offset), rc);
558 		goto out;
559 	}
560 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
561 					  (extent_offset
562 					   * crypt_stat->extent_size),
563 					  enc_extent_page, 0,
564 					  crypt_stat->extent_size, extent_iv);
565 	if (rc < 0) {
566 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
567 		       "page->index = [%ld], extent_offset = [%ld]; "
568 		       "rc = [%d]\n", __func__, page->index, extent_offset,
569 		       rc);
570 		goto out;
571 	}
572 	rc = 0;
573 out:
574 	return rc;
575 }
576 
577 /**
578  * ecryptfs_decrypt_page
579  * @page: Page mapped from the eCryptfs inode for the file; data read
580  *        and decrypted from the lower file will be written into this
581  *        page
582  *
583  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
584  * that eCryptfs pages may straddle the lower pages -- for instance,
585  * if the file was created on a machine with an 8K page size
586  * (resulting in an 8K header), and then the file is copied onto a
587  * host with a 32K page size, then when reading page 0 of the eCryptfs
588  * file, 24K of page 0 of the lower file will be read and decrypted,
589  * and then 8K of page 1 of the lower file will be read and decrypted.
590  *
591  * Returns zero on success; negative on error
592  */
593 int ecryptfs_decrypt_page(struct page *page)
594 {
595 	struct inode *ecryptfs_inode;
596 	struct ecryptfs_crypt_stat *crypt_stat;
597 	char *enc_extent_virt;
598 	struct page *enc_extent_page = NULL;
599 	unsigned long extent_offset;
600 	int rc = 0;
601 
602 	ecryptfs_inode = page->mapping->host;
603 	crypt_stat =
604 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
605 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
606 	enc_extent_page = alloc_page(GFP_USER);
607 	if (!enc_extent_page) {
608 		rc = -ENOMEM;
609 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
610 				"encrypted extent\n");
611 		goto out;
612 	}
613 	enc_extent_virt = kmap(enc_extent_page);
614 	for (extent_offset = 0;
615 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
616 	     extent_offset++) {
617 		loff_t offset;
618 
619 		ecryptfs_lower_offset_for_extent(
620 			&offset, ((page->index * (PAGE_CACHE_SIZE
621 						  / crypt_stat->extent_size))
622 				  + extent_offset), crypt_stat);
623 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
624 					 crypt_stat->extent_size,
625 					 ecryptfs_inode);
626 		if (rc < 0) {
627 			ecryptfs_printk(KERN_ERR, "Error attempting "
628 					"to read lower page; rc = [%d]"
629 					"\n", rc);
630 			goto out;
631 		}
632 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
633 					     extent_offset);
634 		if (rc) {
635 			printk(KERN_ERR "%s: Error encrypting extent; "
636 			       "rc = [%d]\n", __func__, rc);
637 			goto out;
638 		}
639 	}
640 out:
641 	if (enc_extent_page) {
642 		kunmap(enc_extent_page);
643 		__free_page(enc_extent_page);
644 	}
645 	return rc;
646 }
647 
648 /**
649  * decrypt_scatterlist
650  * @crypt_stat: Cryptographic context
651  * @dest_sg: The destination scatterlist to decrypt into
652  * @src_sg: The source scatterlist to decrypt from
653  * @size: The number of bytes to decrypt
654  * @iv: The initialization vector to use for the decryption
655  *
656  * Returns the number of bytes decrypted; negative value on error
657  */
658 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
659 			       struct scatterlist *dest_sg,
660 			       struct scatterlist *src_sg, int size,
661 			       unsigned char *iv)
662 {
663 	struct ablkcipher_request *req = NULL;
664 	struct extent_crypt_result ecr;
665 	int rc = 0;
666 
667 	BUG_ON(!crypt_stat || !crypt_stat->tfm
668 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
669 	if (unlikely(ecryptfs_verbosity > 0)) {
670 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
671 				crypt_stat->key_size);
672 		ecryptfs_dump_hex(crypt_stat->key,
673 				  crypt_stat->key_size);
674 	}
675 
676 	init_completion(&ecr.completion);
677 
678 	mutex_lock(&crypt_stat->cs_tfm_mutex);
679 	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
680 	if (!req) {
681 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
682 		rc = -ENOMEM;
683 		goto out;
684 	}
685 
686 	ablkcipher_request_set_callback(req,
687 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
688 			extent_crypt_complete, &ecr);
689 	/* Consider doing this once, when the file is opened */
690 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
691 		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
692 					      crypt_stat->key_size);
693 		if (rc) {
694 			ecryptfs_printk(KERN_ERR,
695 					"Error setting key; rc = [%d]\n",
696 					rc);
697 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
698 			rc = -EINVAL;
699 			goto out;
700 		}
701 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
702 	}
703 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
704 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
705 	ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
706 	rc = crypto_ablkcipher_decrypt(req);
707 	if (rc == -EINPROGRESS || rc == -EBUSY) {
708 		struct extent_crypt_result *ecr = req->base.data;
709 
710 		wait_for_completion(&ecr->completion);
711 		rc = ecr->rc;
712 		INIT_COMPLETION(ecr->completion);
713 	}
714 out:
715 	ablkcipher_request_free(req);
716 	return rc;
717 
718 }
719 
720 /**
721  * ecryptfs_encrypt_page_offset
722  * @crypt_stat: The cryptographic context
723  * @dst_page: The page to encrypt into
724  * @dst_offset: The offset in the page to encrypt into
725  * @src_page: The page to encrypt from
726  * @src_offset: The offset in the page to encrypt from
727  * @size: The number of bytes to encrypt
728  * @iv: The initialization vector to use for the encryption
729  *
730  * Returns the number of bytes encrypted
731  */
732 static int
733 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
734 			     struct page *dst_page, int dst_offset,
735 			     struct page *src_page, int src_offset, int size,
736 			     unsigned char *iv)
737 {
738 	struct scatterlist src_sg, dst_sg;
739 
740 	sg_init_table(&src_sg, 1);
741 	sg_init_table(&dst_sg, 1);
742 
743 	sg_set_page(&src_sg, src_page, size, src_offset);
744 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
745 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
746 }
747 
748 /**
749  * ecryptfs_decrypt_page_offset
750  * @crypt_stat: The cryptographic context
751  * @dst_page: The page to decrypt into
752  * @dst_offset: The offset in the page to decrypt into
753  * @src_page: The page to decrypt from
754  * @src_offset: The offset in the page to decrypt from
755  * @size: The number of bytes to decrypt
756  * @iv: The initialization vector to use for the decryption
757  *
758  * Returns the number of bytes decrypted
759  */
760 static int
761 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
762 			     struct page *dst_page, int dst_offset,
763 			     struct page *src_page, int src_offset, int size,
764 			     unsigned char *iv)
765 {
766 	struct scatterlist src_sg, dst_sg;
767 
768 	sg_init_table(&src_sg, 1);
769 	sg_set_page(&src_sg, src_page, size, src_offset);
770 
771 	sg_init_table(&dst_sg, 1);
772 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
773 
774 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
775 }
776 
777 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
778 
779 /**
780  * ecryptfs_init_crypt_ctx
781  * @crypt_stat: Uninitialized crypt stats structure
782  *
783  * Initialize the crypto context.
784  *
785  * TODO: Performance: Keep a cache of initialized cipher contexts;
786  * only init if needed
787  */
788 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
789 {
790 	char *full_alg_name;
791 	int rc = -EINVAL;
792 
793 	if (!crypt_stat->cipher) {
794 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
795 		goto out;
796 	}
797 	ecryptfs_printk(KERN_DEBUG,
798 			"Initializing cipher [%s]; strlen = [%d]; "
799 			"key_size_bits = [%zd]\n",
800 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
801 			crypt_stat->key_size << 3);
802 	if (crypt_stat->tfm) {
803 		rc = 0;
804 		goto out;
805 	}
806 	mutex_lock(&crypt_stat->cs_tfm_mutex);
807 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
808 						    crypt_stat->cipher, "cbc");
809 	if (rc)
810 		goto out_unlock;
811 	crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
812 	kfree(full_alg_name);
813 	if (IS_ERR(crypt_stat->tfm)) {
814 		rc = PTR_ERR(crypt_stat->tfm);
815 		crypt_stat->tfm = NULL;
816 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
817 				"Error initializing cipher [%s]\n",
818 				crypt_stat->cipher);
819 		goto out_unlock;
820 	}
821 	crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
822 	rc = 0;
823 out_unlock:
824 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
825 out:
826 	return rc;
827 }
828 
829 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
830 {
831 	int extent_size_tmp;
832 
833 	crypt_stat->extent_mask = 0xFFFFFFFF;
834 	crypt_stat->extent_shift = 0;
835 	if (crypt_stat->extent_size == 0)
836 		return;
837 	extent_size_tmp = crypt_stat->extent_size;
838 	while ((extent_size_tmp & 0x01) == 0) {
839 		extent_size_tmp >>= 1;
840 		crypt_stat->extent_mask <<= 1;
841 		crypt_stat->extent_shift++;
842 	}
843 }
844 
845 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
846 {
847 	/* Default values; may be overwritten as we are parsing the
848 	 * packets. */
849 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
850 	set_extent_mask_and_shift(crypt_stat);
851 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
852 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
853 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
854 	else {
855 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
856 			crypt_stat->metadata_size =
857 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
858 		else
859 			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
860 	}
861 }
862 
863 /**
864  * ecryptfs_compute_root_iv
865  * @crypt_stats
866  *
867  * On error, sets the root IV to all 0's.
868  */
869 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
870 {
871 	int rc = 0;
872 	char dst[MD5_DIGEST_SIZE];
873 
874 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
875 	BUG_ON(crypt_stat->iv_bytes <= 0);
876 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
877 		rc = -EINVAL;
878 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
879 				"cannot generate root IV\n");
880 		goto out;
881 	}
882 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
883 				    crypt_stat->key_size);
884 	if (rc) {
885 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
886 				"MD5 while generating root IV\n");
887 		goto out;
888 	}
889 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
890 out:
891 	if (rc) {
892 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
893 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
894 	}
895 	return rc;
896 }
897 
898 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
899 {
900 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
901 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
902 	ecryptfs_compute_root_iv(crypt_stat);
903 	if (unlikely(ecryptfs_verbosity > 0)) {
904 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
905 		ecryptfs_dump_hex(crypt_stat->key,
906 				  crypt_stat->key_size);
907 	}
908 }
909 
910 /**
911  * ecryptfs_copy_mount_wide_flags_to_inode_flags
912  * @crypt_stat: The inode's cryptographic context
913  * @mount_crypt_stat: The mount point's cryptographic context
914  *
915  * This function propagates the mount-wide flags to individual inode
916  * flags.
917  */
918 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
919 	struct ecryptfs_crypt_stat *crypt_stat,
920 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
921 {
922 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
923 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
924 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
925 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
926 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
927 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
928 		if (mount_crypt_stat->flags
929 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
930 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
931 		else if (mount_crypt_stat->flags
932 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
933 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
934 	}
935 }
936 
937 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
938 	struct ecryptfs_crypt_stat *crypt_stat,
939 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
940 {
941 	struct ecryptfs_global_auth_tok *global_auth_tok;
942 	int rc = 0;
943 
944 	mutex_lock(&crypt_stat->keysig_list_mutex);
945 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
946 
947 	list_for_each_entry(global_auth_tok,
948 			    &mount_crypt_stat->global_auth_tok_list,
949 			    mount_crypt_stat_list) {
950 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
951 			continue;
952 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
953 		if (rc) {
954 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
955 			goto out;
956 		}
957 	}
958 
959 out:
960 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
961 	mutex_unlock(&crypt_stat->keysig_list_mutex);
962 	return rc;
963 }
964 
965 /**
966  * ecryptfs_set_default_crypt_stat_vals
967  * @crypt_stat: The inode's cryptographic context
968  * @mount_crypt_stat: The mount point's cryptographic context
969  *
970  * Default values in the event that policy does not override them.
971  */
972 static void ecryptfs_set_default_crypt_stat_vals(
973 	struct ecryptfs_crypt_stat *crypt_stat,
974 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
975 {
976 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
977 						      mount_crypt_stat);
978 	ecryptfs_set_default_sizes(crypt_stat);
979 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
980 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
981 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
982 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
983 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
984 }
985 
986 /**
987  * ecryptfs_new_file_context
988  * @ecryptfs_inode: The eCryptfs inode
989  *
990  * If the crypto context for the file has not yet been established,
991  * this is where we do that.  Establishing a new crypto context
992  * involves the following decisions:
993  *  - What cipher to use?
994  *  - What set of authentication tokens to use?
995  * Here we just worry about getting enough information into the
996  * authentication tokens so that we know that they are available.
997  * We associate the available authentication tokens with the new file
998  * via the set of signatures in the crypt_stat struct.  Later, when
999  * the headers are actually written out, we may again defer to
1000  * userspace to perform the encryption of the session key; for the
1001  * foreseeable future, this will be the case with public key packets.
1002  *
1003  * Returns zero on success; non-zero otherwise
1004  */
1005 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
1006 {
1007 	struct ecryptfs_crypt_stat *crypt_stat =
1008 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1009 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1010 	    &ecryptfs_superblock_to_private(
1011 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
1012 	int cipher_name_len;
1013 	int rc = 0;
1014 
1015 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1016 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1017 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1018 						      mount_crypt_stat);
1019 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1020 							 mount_crypt_stat);
1021 	if (rc) {
1022 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1023 		       "to the inode key sigs; rc = [%d]\n", rc);
1024 		goto out;
1025 	}
1026 	cipher_name_len =
1027 		strlen(mount_crypt_stat->global_default_cipher_name);
1028 	memcpy(crypt_stat->cipher,
1029 	       mount_crypt_stat->global_default_cipher_name,
1030 	       cipher_name_len);
1031 	crypt_stat->cipher[cipher_name_len] = '\0';
1032 	crypt_stat->key_size =
1033 		mount_crypt_stat->global_default_cipher_key_size;
1034 	ecryptfs_generate_new_key(crypt_stat);
1035 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1036 	if (rc)
1037 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1038 				"context for cipher [%s]: rc = [%d]\n",
1039 				crypt_stat->cipher, rc);
1040 out:
1041 	return rc;
1042 }
1043 
1044 /**
1045  * ecryptfs_validate_marker - check for the ecryptfs marker
1046  * @data: The data block in which to check
1047  *
1048  * Returns zero if marker found; -EINVAL if not found
1049  */
1050 static int ecryptfs_validate_marker(char *data)
1051 {
1052 	u32 m_1, m_2;
1053 
1054 	m_1 = get_unaligned_be32(data);
1055 	m_2 = get_unaligned_be32(data + 4);
1056 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1057 		return 0;
1058 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1059 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1060 			MAGIC_ECRYPTFS_MARKER);
1061 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1062 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1063 	return -EINVAL;
1064 }
1065 
1066 struct ecryptfs_flag_map_elem {
1067 	u32 file_flag;
1068 	u32 local_flag;
1069 };
1070 
1071 /* Add support for additional flags by adding elements here. */
1072 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1073 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1074 	{0x00000002, ECRYPTFS_ENCRYPTED},
1075 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1076 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1077 };
1078 
1079 /**
1080  * ecryptfs_process_flags
1081  * @crypt_stat: The cryptographic context
1082  * @page_virt: Source data to be parsed
1083  * @bytes_read: Updated with the number of bytes read
1084  *
1085  * Returns zero on success; non-zero if the flag set is invalid
1086  */
1087 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1088 				  char *page_virt, int *bytes_read)
1089 {
1090 	int rc = 0;
1091 	int i;
1092 	u32 flags;
1093 
1094 	flags = get_unaligned_be32(page_virt);
1095 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1096 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1097 		if (flags & ecryptfs_flag_map[i].file_flag) {
1098 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1099 		} else
1100 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1101 	/* Version is in top 8 bits of the 32-bit flag vector */
1102 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1103 	(*bytes_read) = 4;
1104 	return rc;
1105 }
1106 
1107 /**
1108  * write_ecryptfs_marker
1109  * @page_virt: The pointer to in a page to begin writing the marker
1110  * @written: Number of bytes written
1111  *
1112  * Marker = 0x3c81b7f5
1113  */
1114 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1115 {
1116 	u32 m_1, m_2;
1117 
1118 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1119 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1120 	put_unaligned_be32(m_1, page_virt);
1121 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1122 	put_unaligned_be32(m_2, page_virt);
1123 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1124 }
1125 
1126 void ecryptfs_write_crypt_stat_flags(char *page_virt,
1127 				     struct ecryptfs_crypt_stat *crypt_stat,
1128 				     size_t *written)
1129 {
1130 	u32 flags = 0;
1131 	int i;
1132 
1133 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1134 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1135 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1136 			flags |= ecryptfs_flag_map[i].file_flag;
1137 	/* Version is in top 8 bits of the 32-bit flag vector */
1138 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1139 	put_unaligned_be32(flags, page_virt);
1140 	(*written) = 4;
1141 }
1142 
1143 struct ecryptfs_cipher_code_str_map_elem {
1144 	char cipher_str[16];
1145 	u8 cipher_code;
1146 };
1147 
1148 /* Add support for additional ciphers by adding elements here. The
1149  * cipher_code is whatever OpenPGP applicatoins use to identify the
1150  * ciphers. List in order of probability. */
1151 static struct ecryptfs_cipher_code_str_map_elem
1152 ecryptfs_cipher_code_str_map[] = {
1153 	{"aes",RFC2440_CIPHER_AES_128 },
1154 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1155 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1156 	{"cast5", RFC2440_CIPHER_CAST_5},
1157 	{"twofish", RFC2440_CIPHER_TWOFISH},
1158 	{"cast6", RFC2440_CIPHER_CAST_6},
1159 	{"aes", RFC2440_CIPHER_AES_192},
1160 	{"aes", RFC2440_CIPHER_AES_256}
1161 };
1162 
1163 /**
1164  * ecryptfs_code_for_cipher_string
1165  * @cipher_name: The string alias for the cipher
1166  * @key_bytes: Length of key in bytes; used for AES code selection
1167  *
1168  * Returns zero on no match, or the cipher code on match
1169  */
1170 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1171 {
1172 	int i;
1173 	u8 code = 0;
1174 	struct ecryptfs_cipher_code_str_map_elem *map =
1175 		ecryptfs_cipher_code_str_map;
1176 
1177 	if (strcmp(cipher_name, "aes") == 0) {
1178 		switch (key_bytes) {
1179 		case 16:
1180 			code = RFC2440_CIPHER_AES_128;
1181 			break;
1182 		case 24:
1183 			code = RFC2440_CIPHER_AES_192;
1184 			break;
1185 		case 32:
1186 			code = RFC2440_CIPHER_AES_256;
1187 		}
1188 	} else {
1189 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1190 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1191 				code = map[i].cipher_code;
1192 				break;
1193 			}
1194 	}
1195 	return code;
1196 }
1197 
1198 /**
1199  * ecryptfs_cipher_code_to_string
1200  * @str: Destination to write out the cipher name
1201  * @cipher_code: The code to convert to cipher name string
1202  *
1203  * Returns zero on success
1204  */
1205 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1206 {
1207 	int rc = 0;
1208 	int i;
1209 
1210 	str[0] = '\0';
1211 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1212 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1213 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1214 	if (str[0] == '\0') {
1215 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1216 				"[%d]\n", cipher_code);
1217 		rc = -EINVAL;
1218 	}
1219 	return rc;
1220 }
1221 
1222 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1223 {
1224 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1225 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1226 	int rc;
1227 
1228 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1229 				 inode);
1230 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1231 		return rc >= 0 ? -EINVAL : rc;
1232 	rc = ecryptfs_validate_marker(marker);
1233 	if (!rc)
1234 		ecryptfs_i_size_init(file_size, inode);
1235 	return rc;
1236 }
1237 
1238 void
1239 ecryptfs_write_header_metadata(char *virt,
1240 			       struct ecryptfs_crypt_stat *crypt_stat,
1241 			       size_t *written)
1242 {
1243 	u32 header_extent_size;
1244 	u16 num_header_extents_at_front;
1245 
1246 	header_extent_size = (u32)crypt_stat->extent_size;
1247 	num_header_extents_at_front =
1248 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1249 	put_unaligned_be32(header_extent_size, virt);
1250 	virt += 4;
1251 	put_unaligned_be16(num_header_extents_at_front, virt);
1252 	(*written) = 6;
1253 }
1254 
1255 struct kmem_cache *ecryptfs_header_cache;
1256 
1257 /**
1258  * ecryptfs_write_headers_virt
1259  * @page_virt: The virtual address to write the headers to
1260  * @max: The size of memory allocated at page_virt
1261  * @size: Set to the number of bytes written by this function
1262  * @crypt_stat: The cryptographic context
1263  * @ecryptfs_dentry: The eCryptfs dentry
1264  *
1265  * Format version: 1
1266  *
1267  *   Header Extent:
1268  *     Octets 0-7:        Unencrypted file size (big-endian)
1269  *     Octets 8-15:       eCryptfs special marker
1270  *     Octets 16-19:      Flags
1271  *      Octet 16:         File format version number (between 0 and 255)
1272  *      Octets 17-18:     Reserved
1273  *      Octet 19:         Bit 1 (lsb): Reserved
1274  *                        Bit 2: Encrypted?
1275  *                        Bits 3-8: Reserved
1276  *     Octets 20-23:      Header extent size (big-endian)
1277  *     Octets 24-25:      Number of header extents at front of file
1278  *                        (big-endian)
1279  *     Octet  26:         Begin RFC 2440 authentication token packet set
1280  *   Data Extent 0:
1281  *     Lower data (CBC encrypted)
1282  *   Data Extent 1:
1283  *     Lower data (CBC encrypted)
1284  *   ...
1285  *
1286  * Returns zero on success
1287  */
1288 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1289 				       size_t *size,
1290 				       struct ecryptfs_crypt_stat *crypt_stat,
1291 				       struct dentry *ecryptfs_dentry)
1292 {
1293 	int rc;
1294 	size_t written;
1295 	size_t offset;
1296 
1297 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1298 	write_ecryptfs_marker((page_virt + offset), &written);
1299 	offset += written;
1300 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1301 					&written);
1302 	offset += written;
1303 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1304 				       &written);
1305 	offset += written;
1306 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1307 					      ecryptfs_dentry, &written,
1308 					      max - offset);
1309 	if (rc)
1310 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1311 				"set; rc = [%d]\n", rc);
1312 	if (size) {
1313 		offset += written;
1314 		*size = offset;
1315 	}
1316 	return rc;
1317 }
1318 
1319 static int
1320 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1321 				    char *virt, size_t virt_len)
1322 {
1323 	int rc;
1324 
1325 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1326 				  0, virt_len);
1327 	if (rc < 0)
1328 		printk(KERN_ERR "%s: Error attempting to write header "
1329 		       "information to lower file; rc = [%d]\n", __func__, rc);
1330 	else
1331 		rc = 0;
1332 	return rc;
1333 }
1334 
1335 static int
1336 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1337 				 char *page_virt, size_t size)
1338 {
1339 	int rc;
1340 
1341 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1342 			       size, 0);
1343 	return rc;
1344 }
1345 
1346 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1347 					       unsigned int order)
1348 {
1349 	struct page *page;
1350 
1351 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1352 	if (page)
1353 		return (unsigned long) page_address(page);
1354 	return 0;
1355 }
1356 
1357 /**
1358  * ecryptfs_write_metadata
1359  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1360  * @ecryptfs_inode: The newly created eCryptfs inode
1361  *
1362  * Write the file headers out.  This will likely involve a userspace
1363  * callout, in which the session key is encrypted with one or more
1364  * public keys and/or the passphrase necessary to do the encryption is
1365  * retrieved via a prompt.  Exactly what happens at this point should
1366  * be policy-dependent.
1367  *
1368  * Returns zero on success; non-zero on error
1369  */
1370 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1371 			    struct inode *ecryptfs_inode)
1372 {
1373 	struct ecryptfs_crypt_stat *crypt_stat =
1374 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1375 	unsigned int order;
1376 	char *virt;
1377 	size_t virt_len;
1378 	size_t size = 0;
1379 	int rc = 0;
1380 
1381 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1382 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1383 			printk(KERN_ERR "Key is invalid; bailing out\n");
1384 			rc = -EINVAL;
1385 			goto out;
1386 		}
1387 	} else {
1388 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1389 		       __func__);
1390 		rc = -EINVAL;
1391 		goto out;
1392 	}
1393 	virt_len = crypt_stat->metadata_size;
1394 	order = get_order(virt_len);
1395 	/* Released in this function */
1396 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1397 	if (!virt) {
1398 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1399 		rc = -ENOMEM;
1400 		goto out;
1401 	}
1402 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1403 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1404 					 ecryptfs_dentry);
1405 	if (unlikely(rc)) {
1406 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1407 		       __func__, rc);
1408 		goto out_free;
1409 	}
1410 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1411 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1412 						      size);
1413 	else
1414 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1415 							 virt_len);
1416 	if (rc) {
1417 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1418 		       "rc = [%d]\n", __func__, rc);
1419 		goto out_free;
1420 	}
1421 out_free:
1422 	free_pages((unsigned long)virt, order);
1423 out:
1424 	return rc;
1425 }
1426 
1427 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1428 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1429 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1430 				 char *virt, int *bytes_read,
1431 				 int validate_header_size)
1432 {
1433 	int rc = 0;
1434 	u32 header_extent_size;
1435 	u16 num_header_extents_at_front;
1436 
1437 	header_extent_size = get_unaligned_be32(virt);
1438 	virt += sizeof(__be32);
1439 	num_header_extents_at_front = get_unaligned_be16(virt);
1440 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1441 				     * (size_t)header_extent_size));
1442 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1443 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1444 	    && (crypt_stat->metadata_size
1445 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1446 		rc = -EINVAL;
1447 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1448 		       crypt_stat->metadata_size);
1449 	}
1450 	return rc;
1451 }
1452 
1453 /**
1454  * set_default_header_data
1455  * @crypt_stat: The cryptographic context
1456  *
1457  * For version 0 file format; this function is only for backwards
1458  * compatibility for files created with the prior versions of
1459  * eCryptfs.
1460  */
1461 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1462 {
1463 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1464 }
1465 
1466 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1467 {
1468 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1469 	struct ecryptfs_crypt_stat *crypt_stat;
1470 	u64 file_size;
1471 
1472 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1473 	mount_crypt_stat =
1474 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1475 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1476 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1477 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1478 			file_size += crypt_stat->metadata_size;
1479 	} else
1480 		file_size = get_unaligned_be64(page_virt);
1481 	i_size_write(inode, (loff_t)file_size);
1482 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1483 }
1484 
1485 /**
1486  * ecryptfs_read_headers_virt
1487  * @page_virt: The virtual address into which to read the headers
1488  * @crypt_stat: The cryptographic context
1489  * @ecryptfs_dentry: The eCryptfs dentry
1490  * @validate_header_size: Whether to validate the header size while reading
1491  *
1492  * Read/parse the header data. The header format is detailed in the
1493  * comment block for the ecryptfs_write_headers_virt() function.
1494  *
1495  * Returns zero on success
1496  */
1497 static int ecryptfs_read_headers_virt(char *page_virt,
1498 				      struct ecryptfs_crypt_stat *crypt_stat,
1499 				      struct dentry *ecryptfs_dentry,
1500 				      int validate_header_size)
1501 {
1502 	int rc = 0;
1503 	int offset;
1504 	int bytes_read;
1505 
1506 	ecryptfs_set_default_sizes(crypt_stat);
1507 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1508 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1509 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1510 	rc = ecryptfs_validate_marker(page_virt + offset);
1511 	if (rc)
1512 		goto out;
1513 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1514 		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1515 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1516 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1517 				    &bytes_read);
1518 	if (rc) {
1519 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1520 		goto out;
1521 	}
1522 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1523 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1524 				"file version [%d] is supported by this "
1525 				"version of eCryptfs\n",
1526 				crypt_stat->file_version,
1527 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1528 		rc = -EINVAL;
1529 		goto out;
1530 	}
1531 	offset += bytes_read;
1532 	if (crypt_stat->file_version >= 1) {
1533 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1534 					   &bytes_read, validate_header_size);
1535 		if (rc) {
1536 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1537 					"metadata; rc = [%d]\n", rc);
1538 		}
1539 		offset += bytes_read;
1540 	} else
1541 		set_default_header_data(crypt_stat);
1542 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1543 				       ecryptfs_dentry);
1544 out:
1545 	return rc;
1546 }
1547 
1548 /**
1549  * ecryptfs_read_xattr_region
1550  * @page_virt: The vitual address into which to read the xattr data
1551  * @ecryptfs_inode: The eCryptfs inode
1552  *
1553  * Attempts to read the crypto metadata from the extended attribute
1554  * region of the lower file.
1555  *
1556  * Returns zero on success; non-zero on error
1557  */
1558 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1559 {
1560 	struct dentry *lower_dentry =
1561 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1562 	ssize_t size;
1563 	int rc = 0;
1564 
1565 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1566 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1567 	if (size < 0) {
1568 		if (unlikely(ecryptfs_verbosity > 0))
1569 			printk(KERN_INFO "Error attempting to read the [%s] "
1570 			       "xattr from the lower file; return value = "
1571 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1572 		rc = -EINVAL;
1573 		goto out;
1574 	}
1575 out:
1576 	return rc;
1577 }
1578 
1579 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1580 					    struct inode *inode)
1581 {
1582 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1583 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1584 	int rc;
1585 
1586 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1587 				     ECRYPTFS_XATTR_NAME, file_size,
1588 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1589 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1590 		return rc >= 0 ? -EINVAL : rc;
1591 	rc = ecryptfs_validate_marker(marker);
1592 	if (!rc)
1593 		ecryptfs_i_size_init(file_size, inode);
1594 	return rc;
1595 }
1596 
1597 /**
1598  * ecryptfs_read_metadata
1599  *
1600  * Common entry point for reading file metadata. From here, we could
1601  * retrieve the header information from the header region of the file,
1602  * the xattr region of the file, or some other repostory that is
1603  * stored separately from the file itself. The current implementation
1604  * supports retrieving the metadata information from the file contents
1605  * and from the xattr region.
1606  *
1607  * Returns zero if valid headers found and parsed; non-zero otherwise
1608  */
1609 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1610 {
1611 	int rc;
1612 	char *page_virt;
1613 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1614 	struct ecryptfs_crypt_stat *crypt_stat =
1615 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1616 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1617 		&ecryptfs_superblock_to_private(
1618 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1619 
1620 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1621 						      mount_crypt_stat);
1622 	/* Read the first page from the underlying file */
1623 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1624 	if (!page_virt) {
1625 		rc = -ENOMEM;
1626 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1627 		       __func__);
1628 		goto out;
1629 	}
1630 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1631 				 ecryptfs_inode);
1632 	if (rc >= 0)
1633 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1634 						ecryptfs_dentry,
1635 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1636 	if (rc) {
1637 		/* metadata is not in the file header, so try xattrs */
1638 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1639 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1640 		if (rc) {
1641 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1642 			       "file header region or xattr region, inode %lu\n",
1643 				ecryptfs_inode->i_ino);
1644 			rc = -EINVAL;
1645 			goto out;
1646 		}
1647 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1648 						ecryptfs_dentry,
1649 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1650 		if (rc) {
1651 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1652 			       "file xattr region either, inode %lu\n",
1653 				ecryptfs_inode->i_ino);
1654 			rc = -EINVAL;
1655 		}
1656 		if (crypt_stat->mount_crypt_stat->flags
1657 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1658 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1659 		} else {
1660 			printk(KERN_WARNING "Attempt to access file with "
1661 			       "crypto metadata only in the extended attribute "
1662 			       "region, but eCryptfs was mounted without "
1663 			       "xattr support enabled. eCryptfs will not treat "
1664 			       "this like an encrypted file, inode %lu\n",
1665 				ecryptfs_inode->i_ino);
1666 			rc = -EINVAL;
1667 		}
1668 	}
1669 out:
1670 	if (page_virt) {
1671 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1672 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1673 	}
1674 	return rc;
1675 }
1676 
1677 /**
1678  * ecryptfs_encrypt_filename - encrypt filename
1679  *
1680  * CBC-encrypts the filename. We do not want to encrypt the same
1681  * filename with the same key and IV, which may happen with hard
1682  * links, so we prepend random bits to each filename.
1683  *
1684  * Returns zero on success; non-zero otherwise
1685  */
1686 static int
1687 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1688 			  struct ecryptfs_crypt_stat *crypt_stat,
1689 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1690 {
1691 	int rc = 0;
1692 
1693 	filename->encrypted_filename = NULL;
1694 	filename->encrypted_filename_size = 0;
1695 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1696 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1697 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1698 		size_t packet_size;
1699 		size_t remaining_bytes;
1700 
1701 		rc = ecryptfs_write_tag_70_packet(
1702 			NULL, NULL,
1703 			&filename->encrypted_filename_size,
1704 			mount_crypt_stat, NULL,
1705 			filename->filename_size);
1706 		if (rc) {
1707 			printk(KERN_ERR "%s: Error attempting to get packet "
1708 			       "size for tag 72; rc = [%d]\n", __func__,
1709 			       rc);
1710 			filename->encrypted_filename_size = 0;
1711 			goto out;
1712 		}
1713 		filename->encrypted_filename =
1714 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1715 		if (!filename->encrypted_filename) {
1716 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1717 			       "to kmalloc [%zd] bytes\n", __func__,
1718 			       filename->encrypted_filename_size);
1719 			rc = -ENOMEM;
1720 			goto out;
1721 		}
1722 		remaining_bytes = filename->encrypted_filename_size;
1723 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1724 						  &remaining_bytes,
1725 						  &packet_size,
1726 						  mount_crypt_stat,
1727 						  filename->filename,
1728 						  filename->filename_size);
1729 		if (rc) {
1730 			printk(KERN_ERR "%s: Error attempting to generate "
1731 			       "tag 70 packet; rc = [%d]\n", __func__,
1732 			       rc);
1733 			kfree(filename->encrypted_filename);
1734 			filename->encrypted_filename = NULL;
1735 			filename->encrypted_filename_size = 0;
1736 			goto out;
1737 		}
1738 		filename->encrypted_filename_size = packet_size;
1739 	} else {
1740 		printk(KERN_ERR "%s: No support for requested filename "
1741 		       "encryption method in this release\n", __func__);
1742 		rc = -EOPNOTSUPP;
1743 		goto out;
1744 	}
1745 out:
1746 	return rc;
1747 }
1748 
1749 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1750 				  const char *name, size_t name_size)
1751 {
1752 	int rc = 0;
1753 
1754 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1755 	if (!(*copied_name)) {
1756 		rc = -ENOMEM;
1757 		goto out;
1758 	}
1759 	memcpy((void *)(*copied_name), (void *)name, name_size);
1760 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1761 						 * in printing out the
1762 						 * string in debug
1763 						 * messages */
1764 	(*copied_name_size) = name_size;
1765 out:
1766 	return rc;
1767 }
1768 
1769 /**
1770  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1771  * @key_tfm: Crypto context for key material, set by this function
1772  * @cipher_name: Name of the cipher
1773  * @key_size: Size of the key in bytes
1774  *
1775  * Returns zero on success. Any crypto_tfm structs allocated here
1776  * should be released by other functions, such as on a superblock put
1777  * event, regardless of whether this function succeeds for fails.
1778  */
1779 static int
1780 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1781 			    char *cipher_name, size_t *key_size)
1782 {
1783 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1784 	char *full_alg_name = NULL;
1785 	int rc;
1786 
1787 	*key_tfm = NULL;
1788 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1789 		rc = -EINVAL;
1790 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1791 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1792 		goto out;
1793 	}
1794 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1795 						    "ecb");
1796 	if (rc)
1797 		goto out;
1798 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1799 	if (IS_ERR(*key_tfm)) {
1800 		rc = PTR_ERR(*key_tfm);
1801 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1802 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1803 		goto out;
1804 	}
1805 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1806 	if (*key_size == 0) {
1807 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1808 
1809 		*key_size = alg->max_keysize;
1810 	}
1811 	get_random_bytes(dummy_key, *key_size);
1812 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1813 	if (rc) {
1814 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1815 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1816 		       rc);
1817 		rc = -EINVAL;
1818 		goto out;
1819 	}
1820 out:
1821 	kfree(full_alg_name);
1822 	return rc;
1823 }
1824 
1825 struct kmem_cache *ecryptfs_key_tfm_cache;
1826 static struct list_head key_tfm_list;
1827 struct mutex key_tfm_list_mutex;
1828 
1829 int __init ecryptfs_init_crypto(void)
1830 {
1831 	mutex_init(&key_tfm_list_mutex);
1832 	INIT_LIST_HEAD(&key_tfm_list);
1833 	return 0;
1834 }
1835 
1836 /**
1837  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1838  *
1839  * Called only at module unload time
1840  */
1841 int ecryptfs_destroy_crypto(void)
1842 {
1843 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1844 
1845 	mutex_lock(&key_tfm_list_mutex);
1846 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1847 				 key_tfm_list) {
1848 		list_del(&key_tfm->key_tfm_list);
1849 		if (key_tfm->key_tfm)
1850 			crypto_free_blkcipher(key_tfm->key_tfm);
1851 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1852 	}
1853 	mutex_unlock(&key_tfm_list_mutex);
1854 	return 0;
1855 }
1856 
1857 int
1858 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1859 			 size_t key_size)
1860 {
1861 	struct ecryptfs_key_tfm *tmp_tfm;
1862 	int rc = 0;
1863 
1864 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1865 
1866 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1867 	if (key_tfm != NULL)
1868 		(*key_tfm) = tmp_tfm;
1869 	if (!tmp_tfm) {
1870 		rc = -ENOMEM;
1871 		printk(KERN_ERR "Error attempting to allocate from "
1872 		       "ecryptfs_key_tfm_cache\n");
1873 		goto out;
1874 	}
1875 	mutex_init(&tmp_tfm->key_tfm_mutex);
1876 	strncpy(tmp_tfm->cipher_name, cipher_name,
1877 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1878 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1879 	tmp_tfm->key_size = key_size;
1880 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1881 					 tmp_tfm->cipher_name,
1882 					 &tmp_tfm->key_size);
1883 	if (rc) {
1884 		printk(KERN_ERR "Error attempting to initialize key TFM "
1885 		       "cipher with name = [%s]; rc = [%d]\n",
1886 		       tmp_tfm->cipher_name, rc);
1887 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1888 		if (key_tfm != NULL)
1889 			(*key_tfm) = NULL;
1890 		goto out;
1891 	}
1892 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1893 out:
1894 	return rc;
1895 }
1896 
1897 /**
1898  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1899  * @cipher_name: the name of the cipher to search for
1900  * @key_tfm: set to corresponding tfm if found
1901  *
1902  * Searches for cached key_tfm matching @cipher_name
1903  * Must be called with &key_tfm_list_mutex held
1904  * Returns 1 if found, with @key_tfm set
1905  * Returns 0 if not found, with @key_tfm set to NULL
1906  */
1907 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1908 {
1909 	struct ecryptfs_key_tfm *tmp_key_tfm;
1910 
1911 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1912 
1913 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1914 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1915 			if (key_tfm)
1916 				(*key_tfm) = tmp_key_tfm;
1917 			return 1;
1918 		}
1919 	}
1920 	if (key_tfm)
1921 		(*key_tfm) = NULL;
1922 	return 0;
1923 }
1924 
1925 /**
1926  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1927  *
1928  * @tfm: set to cached tfm found, or new tfm created
1929  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1930  * @cipher_name: the name of the cipher to search for and/or add
1931  *
1932  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1933  * Searches for cached item first, and creates new if not found.
1934  * Returns 0 on success, non-zero if adding new cipher failed
1935  */
1936 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1937 					       struct mutex **tfm_mutex,
1938 					       char *cipher_name)
1939 {
1940 	struct ecryptfs_key_tfm *key_tfm;
1941 	int rc = 0;
1942 
1943 	(*tfm) = NULL;
1944 	(*tfm_mutex) = NULL;
1945 
1946 	mutex_lock(&key_tfm_list_mutex);
1947 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1948 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1949 		if (rc) {
1950 			printk(KERN_ERR "Error adding new key_tfm to list; "
1951 					"rc = [%d]\n", rc);
1952 			goto out;
1953 		}
1954 	}
1955 	(*tfm) = key_tfm->key_tfm;
1956 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1957 out:
1958 	mutex_unlock(&key_tfm_list_mutex);
1959 	return rc;
1960 }
1961 
1962 /* 64 characters forming a 6-bit target field */
1963 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1964 						 "EFGHIJKLMNOPQRST"
1965 						 "UVWXYZabcdefghij"
1966 						 "klmnopqrstuvwxyz");
1967 
1968 /* We could either offset on every reverse map or just pad some 0x00's
1969  * at the front here */
1970 static const unsigned char filename_rev_map[256] = {
1971 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1972 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1973 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1974 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1975 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1976 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1977 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1978 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1979 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1980 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1981 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1982 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1983 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1984 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1985 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1986 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1987 };
1988 
1989 /**
1990  * ecryptfs_encode_for_filename
1991  * @dst: Destination location for encoded filename
1992  * @dst_size: Size of the encoded filename in bytes
1993  * @src: Source location for the filename to encode
1994  * @src_size: Size of the source in bytes
1995  */
1996 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1997 				  unsigned char *src, size_t src_size)
1998 {
1999 	size_t num_blocks;
2000 	size_t block_num = 0;
2001 	size_t dst_offset = 0;
2002 	unsigned char last_block[3];
2003 
2004 	if (src_size == 0) {
2005 		(*dst_size) = 0;
2006 		goto out;
2007 	}
2008 	num_blocks = (src_size / 3);
2009 	if ((src_size % 3) == 0) {
2010 		memcpy(last_block, (&src[src_size - 3]), 3);
2011 	} else {
2012 		num_blocks++;
2013 		last_block[2] = 0x00;
2014 		switch (src_size % 3) {
2015 		case 1:
2016 			last_block[0] = src[src_size - 1];
2017 			last_block[1] = 0x00;
2018 			break;
2019 		case 2:
2020 			last_block[0] = src[src_size - 2];
2021 			last_block[1] = src[src_size - 1];
2022 		}
2023 	}
2024 	(*dst_size) = (num_blocks * 4);
2025 	if (!dst)
2026 		goto out;
2027 	while (block_num < num_blocks) {
2028 		unsigned char *src_block;
2029 		unsigned char dst_block[4];
2030 
2031 		if (block_num == (num_blocks - 1))
2032 			src_block = last_block;
2033 		else
2034 			src_block = &src[block_num * 3];
2035 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2036 		dst_block[1] = (((src_block[0] << 4) & 0x30)
2037 				| ((src_block[1] >> 4) & 0x0F));
2038 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
2039 				| ((src_block[2] >> 6) & 0x03));
2040 		dst_block[3] = (src_block[2] & 0x3F);
2041 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2042 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2043 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2044 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2045 		block_num++;
2046 	}
2047 out:
2048 	return;
2049 }
2050 
2051 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
2052 {
2053 	/* Not exact; conservatively long. Every block of 4
2054 	 * encoded characters decodes into a block of 3
2055 	 * decoded characters. This segment of code provides
2056 	 * the caller with the maximum amount of allocated
2057 	 * space that @dst will need to point to in a
2058 	 * subsequent call. */
2059 	return ((encoded_size + 1) * 3) / 4;
2060 }
2061 
2062 /**
2063  * ecryptfs_decode_from_filename
2064  * @dst: If NULL, this function only sets @dst_size and returns. If
2065  *       non-NULL, this function decodes the encoded octets in @src
2066  *       into the memory that @dst points to.
2067  * @dst_size: Set to the size of the decoded string.
2068  * @src: The encoded set of octets to decode.
2069  * @src_size: The size of the encoded set of octets to decode.
2070  */
2071 static void
2072 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2073 			      const unsigned char *src, size_t src_size)
2074 {
2075 	u8 current_bit_offset = 0;
2076 	size_t src_byte_offset = 0;
2077 	size_t dst_byte_offset = 0;
2078 
2079 	if (dst == NULL) {
2080 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
2081 		goto out;
2082 	}
2083 	while (src_byte_offset < src_size) {
2084 		unsigned char src_byte =
2085 				filename_rev_map[(int)src[src_byte_offset]];
2086 
2087 		switch (current_bit_offset) {
2088 		case 0:
2089 			dst[dst_byte_offset] = (src_byte << 2);
2090 			current_bit_offset = 6;
2091 			break;
2092 		case 6:
2093 			dst[dst_byte_offset++] |= (src_byte >> 4);
2094 			dst[dst_byte_offset] = ((src_byte & 0xF)
2095 						 << 4);
2096 			current_bit_offset = 4;
2097 			break;
2098 		case 4:
2099 			dst[dst_byte_offset++] |= (src_byte >> 2);
2100 			dst[dst_byte_offset] = (src_byte << 6);
2101 			current_bit_offset = 2;
2102 			break;
2103 		case 2:
2104 			dst[dst_byte_offset++] |= (src_byte);
2105 			dst[dst_byte_offset] = 0;
2106 			current_bit_offset = 0;
2107 			break;
2108 		}
2109 		src_byte_offset++;
2110 	}
2111 	(*dst_size) = dst_byte_offset;
2112 out:
2113 	return;
2114 }
2115 
2116 /**
2117  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2118  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2119  * @name: The plaintext name
2120  * @length: The length of the plaintext
2121  * @encoded_name: The encypted name
2122  *
2123  * Encrypts and encodes a filename into something that constitutes a
2124  * valid filename for a filesystem, with printable characters.
2125  *
2126  * We assume that we have a properly initialized crypto context,
2127  * pointed to by crypt_stat->tfm.
2128  *
2129  * Returns zero on success; non-zero on otherwise
2130  */
2131 int ecryptfs_encrypt_and_encode_filename(
2132 	char **encoded_name,
2133 	size_t *encoded_name_size,
2134 	struct ecryptfs_crypt_stat *crypt_stat,
2135 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2136 	const char *name, size_t name_size)
2137 {
2138 	size_t encoded_name_no_prefix_size;
2139 	int rc = 0;
2140 
2141 	(*encoded_name) = NULL;
2142 	(*encoded_name_size) = 0;
2143 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2144 	    || (mount_crypt_stat && (mount_crypt_stat->flags
2145 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2146 		struct ecryptfs_filename *filename;
2147 
2148 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2149 		if (!filename) {
2150 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2151 			       "to kzalloc [%zd] bytes\n", __func__,
2152 			       sizeof(*filename));
2153 			rc = -ENOMEM;
2154 			goto out;
2155 		}
2156 		filename->filename = (char *)name;
2157 		filename->filename_size = name_size;
2158 		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2159 					       mount_crypt_stat);
2160 		if (rc) {
2161 			printk(KERN_ERR "%s: Error attempting to encrypt "
2162 			       "filename; rc = [%d]\n", __func__, rc);
2163 			kfree(filename);
2164 			goto out;
2165 		}
2166 		ecryptfs_encode_for_filename(
2167 			NULL, &encoded_name_no_prefix_size,
2168 			filename->encrypted_filename,
2169 			filename->encrypted_filename_size);
2170 		if ((crypt_stat && (crypt_stat->flags
2171 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2172 		    || (mount_crypt_stat
2173 			&& (mount_crypt_stat->flags
2174 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2175 			(*encoded_name_size) =
2176 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2177 				 + encoded_name_no_prefix_size);
2178 		else
2179 			(*encoded_name_size) =
2180 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2181 				 + encoded_name_no_prefix_size);
2182 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2183 		if (!(*encoded_name)) {
2184 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2185 			       "to kzalloc [%zd] bytes\n", __func__,
2186 			       (*encoded_name_size));
2187 			rc = -ENOMEM;
2188 			kfree(filename->encrypted_filename);
2189 			kfree(filename);
2190 			goto out;
2191 		}
2192 		if ((crypt_stat && (crypt_stat->flags
2193 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2194 		    || (mount_crypt_stat
2195 			&& (mount_crypt_stat->flags
2196 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2197 			memcpy((*encoded_name),
2198 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2199 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2200 			ecryptfs_encode_for_filename(
2201 			    ((*encoded_name)
2202 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2203 			    &encoded_name_no_prefix_size,
2204 			    filename->encrypted_filename,
2205 			    filename->encrypted_filename_size);
2206 			(*encoded_name_size) =
2207 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2208 				 + encoded_name_no_prefix_size);
2209 			(*encoded_name)[(*encoded_name_size)] = '\0';
2210 		} else {
2211 			rc = -EOPNOTSUPP;
2212 		}
2213 		if (rc) {
2214 			printk(KERN_ERR "%s: Error attempting to encode "
2215 			       "encrypted filename; rc = [%d]\n", __func__,
2216 			       rc);
2217 			kfree((*encoded_name));
2218 			(*encoded_name) = NULL;
2219 			(*encoded_name_size) = 0;
2220 		}
2221 		kfree(filename->encrypted_filename);
2222 		kfree(filename);
2223 	} else {
2224 		rc = ecryptfs_copy_filename(encoded_name,
2225 					    encoded_name_size,
2226 					    name, name_size);
2227 	}
2228 out:
2229 	return rc;
2230 }
2231 
2232 /**
2233  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2234  * @plaintext_name: The plaintext name
2235  * @plaintext_name_size: The plaintext name size
2236  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2237  * @name: The filename in cipher text
2238  * @name_size: The cipher text name size
2239  *
2240  * Decrypts and decodes the filename.
2241  *
2242  * Returns zero on error; non-zero otherwise
2243  */
2244 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2245 					 size_t *plaintext_name_size,
2246 					 struct dentry *ecryptfs_dir_dentry,
2247 					 const char *name, size_t name_size)
2248 {
2249 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2250 		&ecryptfs_superblock_to_private(
2251 			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2252 	char *decoded_name;
2253 	size_t decoded_name_size;
2254 	size_t packet_size;
2255 	int rc = 0;
2256 
2257 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2258 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2259 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2260 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2261 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2262 		const char *orig_name = name;
2263 		size_t orig_name_size = name_size;
2264 
2265 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2266 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2267 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2268 					      name, name_size);
2269 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2270 		if (!decoded_name) {
2271 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2272 			       "to kmalloc [%zd] bytes\n", __func__,
2273 			       decoded_name_size);
2274 			rc = -ENOMEM;
2275 			goto out;
2276 		}
2277 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2278 					      name, name_size);
2279 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2280 						  plaintext_name_size,
2281 						  &packet_size,
2282 						  mount_crypt_stat,
2283 						  decoded_name,
2284 						  decoded_name_size);
2285 		if (rc) {
2286 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2287 			       "from filename; copying through filename "
2288 			       "as-is\n", __func__);
2289 			rc = ecryptfs_copy_filename(plaintext_name,
2290 						    plaintext_name_size,
2291 						    orig_name, orig_name_size);
2292 			goto out_free;
2293 		}
2294 	} else {
2295 		rc = ecryptfs_copy_filename(plaintext_name,
2296 					    plaintext_name_size,
2297 					    name, name_size);
2298 		goto out;
2299 	}
2300 out_free:
2301 	kfree(decoded_name);
2302 out:
2303 	return rc;
2304 }
2305 
2306 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2307 
2308 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2309 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2310 {
2311 	struct blkcipher_desc desc;
2312 	struct mutex *tfm_mutex;
2313 	size_t cipher_blocksize;
2314 	int rc;
2315 
2316 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2317 		(*namelen) = lower_namelen;
2318 		return 0;
2319 	}
2320 
2321 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2322 			mount_crypt_stat->global_default_fn_cipher_name);
2323 	if (unlikely(rc)) {
2324 		(*namelen) = 0;
2325 		return rc;
2326 	}
2327 
2328 	mutex_lock(tfm_mutex);
2329 	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2330 	mutex_unlock(tfm_mutex);
2331 
2332 	/* Return an exact amount for the common cases */
2333 	if (lower_namelen == NAME_MAX
2334 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2335 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2336 		return 0;
2337 	}
2338 
2339 	/* Return a safe estimate for the uncommon cases */
2340 	(*namelen) = lower_namelen;
2341 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2342 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2343 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2344 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2345 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2346 	/* Worst case is that the filename is padded nearly a full block size */
2347 	(*namelen) -= cipher_blocksize - 1;
2348 
2349 	if ((*namelen) < 0)
2350 		(*namelen) = 0;
2351 
2352 	return 0;
2353 }
2354