1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * eCryptfs: Linux filesystem encryption layer 4 * 5 * Copyright (C) 1997-2004 Erez Zadok 6 * Copyright (C) 2001-2004 Stony Brook University 7 * Copyright (C) 2004-2007 International Business Machines Corp. 8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 9 * Michael C. Thompson <mcthomps@us.ibm.com> 10 */ 11 12 #include <crypto/hash.h> 13 #include <crypto/skcipher.h> 14 #include <linux/fs.h> 15 #include <linux/mount.h> 16 #include <linux/pagemap.h> 17 #include <linux/random.h> 18 #include <linux/compiler.h> 19 #include <linux/key.h> 20 #include <linux/namei.h> 21 #include <linux/file.h> 22 #include <linux/scatterlist.h> 23 #include <linux/slab.h> 24 #include <asm/unaligned.h> 25 #include <linux/kernel.h> 26 #include <linux/xattr.h> 27 #include "ecryptfs_kernel.h" 28 29 #define DECRYPT 0 30 #define ENCRYPT 1 31 32 /** 33 * ecryptfs_from_hex 34 * @dst: Buffer to take the bytes from src hex; must be at least of 35 * size (src_size / 2) 36 * @src: Buffer to be converted from a hex string representation to raw value 37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 38 */ 39 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 40 { 41 int x; 42 char tmp[3] = { 0, }; 43 44 for (x = 0; x < dst_size; x++) { 45 tmp[0] = src[x * 2]; 46 tmp[1] = src[x * 2 + 1]; 47 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 48 } 49 } 50 51 /** 52 * ecryptfs_calculate_md5 - calculates the md5 of @src 53 * @dst: Pointer to 16 bytes of allocated memory 54 * @crypt_stat: Pointer to crypt_stat struct for the current inode 55 * @src: Data to be md5'd 56 * @len: Length of @src 57 * 58 * Uses the allocated crypto context that crypt_stat references to 59 * generate the MD5 sum of the contents of src. 60 */ 61 static int ecryptfs_calculate_md5(char *dst, 62 struct ecryptfs_crypt_stat *crypt_stat, 63 char *src, int len) 64 { 65 int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst); 66 67 if (rc) { 68 printk(KERN_ERR 69 "%s: Error computing crypto hash; rc = [%d]\n", 70 __func__, rc); 71 goto out; 72 } 73 out: 74 return rc; 75 } 76 77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 78 char *cipher_name, 79 char *chaining_modifier) 80 { 81 int cipher_name_len = strlen(cipher_name); 82 int chaining_modifier_len = strlen(chaining_modifier); 83 int algified_name_len; 84 int rc; 85 86 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 87 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 88 if (!(*algified_name)) { 89 rc = -ENOMEM; 90 goto out; 91 } 92 snprintf((*algified_name), algified_name_len, "%s(%s)", 93 chaining_modifier, cipher_name); 94 rc = 0; 95 out: 96 return rc; 97 } 98 99 /** 100 * ecryptfs_derive_iv 101 * @iv: destination for the derived iv vale 102 * @crypt_stat: Pointer to crypt_stat struct for the current inode 103 * @offset: Offset of the extent whose IV we are to derive 104 * 105 * Generate the initialization vector from the given root IV and page 106 * offset. 107 * 108 * Returns zero on success; non-zero on error. 109 */ 110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 111 loff_t offset) 112 { 113 int rc = 0; 114 char dst[MD5_DIGEST_SIZE]; 115 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 116 117 if (unlikely(ecryptfs_verbosity > 0)) { 118 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 119 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 120 } 121 /* TODO: It is probably secure to just cast the least 122 * significant bits of the root IV into an unsigned long and 123 * add the offset to that rather than go through all this 124 * hashing business. -Halcrow */ 125 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 126 memset((src + crypt_stat->iv_bytes), 0, 16); 127 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 128 if (unlikely(ecryptfs_verbosity > 0)) { 129 ecryptfs_printk(KERN_DEBUG, "source:\n"); 130 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 131 } 132 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 133 (crypt_stat->iv_bytes + 16)); 134 if (rc) { 135 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 136 "MD5 while generating IV for a page\n"); 137 goto out; 138 } 139 memcpy(iv, dst, crypt_stat->iv_bytes); 140 if (unlikely(ecryptfs_verbosity > 0)) { 141 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 142 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 143 } 144 out: 145 return rc; 146 } 147 148 /** 149 * ecryptfs_init_crypt_stat 150 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 151 * 152 * Initialize the crypt_stat structure. 153 */ 154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 155 { 156 struct crypto_shash *tfm; 157 int rc; 158 159 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0); 160 if (IS_ERR(tfm)) { 161 rc = PTR_ERR(tfm); 162 ecryptfs_printk(KERN_ERR, "Error attempting to " 163 "allocate crypto context; rc = [%d]\n", 164 rc); 165 return rc; 166 } 167 168 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 169 INIT_LIST_HEAD(&crypt_stat->keysig_list); 170 mutex_init(&crypt_stat->keysig_list_mutex); 171 mutex_init(&crypt_stat->cs_mutex); 172 mutex_init(&crypt_stat->cs_tfm_mutex); 173 crypt_stat->hash_tfm = tfm; 174 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 175 176 return 0; 177 } 178 179 /** 180 * ecryptfs_destroy_crypt_stat 181 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 182 * 183 * Releases all memory associated with a crypt_stat struct. 184 */ 185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 186 { 187 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 188 189 crypto_free_skcipher(crypt_stat->tfm); 190 crypto_free_shash(crypt_stat->hash_tfm); 191 list_for_each_entry_safe(key_sig, key_sig_tmp, 192 &crypt_stat->keysig_list, crypt_stat_list) { 193 list_del(&key_sig->crypt_stat_list); 194 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 195 } 196 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 197 } 198 199 void ecryptfs_destroy_mount_crypt_stat( 200 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 201 { 202 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 203 204 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 205 return; 206 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 207 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 208 &mount_crypt_stat->global_auth_tok_list, 209 mount_crypt_stat_list) { 210 list_del(&auth_tok->mount_crypt_stat_list); 211 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 212 key_put(auth_tok->global_auth_tok_key); 213 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 214 } 215 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 216 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 217 } 218 219 /** 220 * virt_to_scatterlist 221 * @addr: Virtual address 222 * @size: Size of data; should be an even multiple of the block size 223 * @sg: Pointer to scatterlist array; set to NULL to obtain only 224 * the number of scatterlist structs required in array 225 * @sg_size: Max array size 226 * 227 * Fills in a scatterlist array with page references for a passed 228 * virtual address. 229 * 230 * Returns the number of scatterlist structs in array used 231 */ 232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 233 int sg_size) 234 { 235 int i = 0; 236 struct page *pg; 237 int offset; 238 int remainder_of_page; 239 240 sg_init_table(sg, sg_size); 241 242 while (size > 0 && i < sg_size) { 243 pg = virt_to_page(addr); 244 offset = offset_in_page(addr); 245 sg_set_page(&sg[i], pg, 0, offset); 246 remainder_of_page = PAGE_SIZE - offset; 247 if (size >= remainder_of_page) { 248 sg[i].length = remainder_of_page; 249 addr += remainder_of_page; 250 size -= remainder_of_page; 251 } else { 252 sg[i].length = size; 253 addr += size; 254 size = 0; 255 } 256 i++; 257 } 258 if (size > 0) 259 return -ENOMEM; 260 return i; 261 } 262 263 struct extent_crypt_result { 264 struct completion completion; 265 int rc; 266 }; 267 268 static void extent_crypt_complete(struct crypto_async_request *req, int rc) 269 { 270 struct extent_crypt_result *ecr = req->data; 271 272 if (rc == -EINPROGRESS) 273 return; 274 275 ecr->rc = rc; 276 complete(&ecr->completion); 277 } 278 279 /** 280 * crypt_scatterlist 281 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 282 * @dst_sg: Destination of the data after performing the crypto operation 283 * @src_sg: Data to be encrypted or decrypted 284 * @size: Length of data 285 * @iv: IV to use 286 * @op: ENCRYPT or DECRYPT to indicate the desired operation 287 * 288 * Returns the number of bytes encrypted or decrypted; negative value on error 289 */ 290 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 291 struct scatterlist *dst_sg, 292 struct scatterlist *src_sg, int size, 293 unsigned char *iv, int op) 294 { 295 struct skcipher_request *req = NULL; 296 struct extent_crypt_result ecr; 297 int rc = 0; 298 299 if (unlikely(ecryptfs_verbosity > 0)) { 300 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 301 crypt_stat->key_size); 302 ecryptfs_dump_hex(crypt_stat->key, 303 crypt_stat->key_size); 304 } 305 306 init_completion(&ecr.completion); 307 308 mutex_lock(&crypt_stat->cs_tfm_mutex); 309 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 310 if (!req) { 311 mutex_unlock(&crypt_stat->cs_tfm_mutex); 312 rc = -ENOMEM; 313 goto out; 314 } 315 316 skcipher_request_set_callback(req, 317 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 318 extent_crypt_complete, &ecr); 319 /* Consider doing this once, when the file is opened */ 320 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 321 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key, 322 crypt_stat->key_size); 323 if (rc) { 324 ecryptfs_printk(KERN_ERR, 325 "Error setting key; rc = [%d]\n", 326 rc); 327 mutex_unlock(&crypt_stat->cs_tfm_mutex); 328 rc = -EINVAL; 329 goto out; 330 } 331 crypt_stat->flags |= ECRYPTFS_KEY_SET; 332 } 333 mutex_unlock(&crypt_stat->cs_tfm_mutex); 334 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); 335 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) : 336 crypto_skcipher_decrypt(req); 337 if (rc == -EINPROGRESS || rc == -EBUSY) { 338 struct extent_crypt_result *ecr = req->base.data; 339 340 wait_for_completion(&ecr->completion); 341 rc = ecr->rc; 342 reinit_completion(&ecr->completion); 343 } 344 out: 345 skcipher_request_free(req); 346 return rc; 347 } 348 349 /* 350 * lower_offset_for_page 351 * 352 * Convert an eCryptfs page index into a lower byte offset 353 */ 354 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, 355 struct page *page) 356 { 357 return ecryptfs_lower_header_size(crypt_stat) + 358 ((loff_t)page->index << PAGE_SHIFT); 359 } 360 361 /** 362 * crypt_extent 363 * @crypt_stat: crypt_stat containing cryptographic context for the 364 * encryption operation 365 * @dst_page: The page to write the result into 366 * @src_page: The page to read from 367 * @extent_offset: Page extent offset for use in generating IV 368 * @op: ENCRYPT or DECRYPT to indicate the desired operation 369 * 370 * Encrypts or decrypts one extent of data. 371 * 372 * Return zero on success; non-zero otherwise 373 */ 374 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, 375 struct page *dst_page, 376 struct page *src_page, 377 unsigned long extent_offset, int op) 378 { 379 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index; 380 loff_t extent_base; 381 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 382 struct scatterlist src_sg, dst_sg; 383 size_t extent_size = crypt_stat->extent_size; 384 int rc; 385 386 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size)); 387 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 388 (extent_base + extent_offset)); 389 if (rc) { 390 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 391 "extent [0x%.16llx]; rc = [%d]\n", 392 (unsigned long long)(extent_base + extent_offset), rc); 393 goto out; 394 } 395 396 sg_init_table(&src_sg, 1); 397 sg_init_table(&dst_sg, 1); 398 399 sg_set_page(&src_sg, src_page, extent_size, 400 extent_offset * extent_size); 401 sg_set_page(&dst_sg, dst_page, extent_size, 402 extent_offset * extent_size); 403 404 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, 405 extent_iv, op); 406 if (rc < 0) { 407 printk(KERN_ERR "%s: Error attempting to crypt page with " 408 "page_index = [%ld], extent_offset = [%ld]; " 409 "rc = [%d]\n", __func__, page_index, extent_offset, rc); 410 goto out; 411 } 412 rc = 0; 413 out: 414 return rc; 415 } 416 417 /** 418 * ecryptfs_encrypt_page 419 * @page: Page mapped from the eCryptfs inode for the file; contains 420 * decrypted content that needs to be encrypted (to a temporary 421 * page; not in place) and written out to the lower file 422 * 423 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 424 * that eCryptfs pages may straddle the lower pages -- for instance, 425 * if the file was created on a machine with an 8K page size 426 * (resulting in an 8K header), and then the file is copied onto a 427 * host with a 32K page size, then when reading page 0 of the eCryptfs 428 * file, 24K of page 0 of the lower file will be read and decrypted, 429 * and then 8K of page 1 of the lower file will be read and decrypted. 430 * 431 * Returns zero on success; negative on error 432 */ 433 int ecryptfs_encrypt_page(struct page *page) 434 { 435 struct inode *ecryptfs_inode; 436 struct ecryptfs_crypt_stat *crypt_stat; 437 char *enc_extent_virt; 438 struct page *enc_extent_page = NULL; 439 loff_t extent_offset; 440 loff_t lower_offset; 441 int rc = 0; 442 443 ecryptfs_inode = page->mapping->host; 444 crypt_stat = 445 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 446 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 447 enc_extent_page = alloc_page(GFP_USER); 448 if (!enc_extent_page) { 449 rc = -ENOMEM; 450 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 451 "encrypted extent\n"); 452 goto out; 453 } 454 455 for (extent_offset = 0; 456 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 457 extent_offset++) { 458 rc = crypt_extent(crypt_stat, enc_extent_page, page, 459 extent_offset, ENCRYPT); 460 if (rc) { 461 printk(KERN_ERR "%s: Error encrypting extent; " 462 "rc = [%d]\n", __func__, rc); 463 goto out; 464 } 465 } 466 467 lower_offset = lower_offset_for_page(crypt_stat, page); 468 enc_extent_virt = kmap(enc_extent_page); 469 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, 470 PAGE_SIZE); 471 kunmap(enc_extent_page); 472 if (rc < 0) { 473 ecryptfs_printk(KERN_ERR, 474 "Error attempting to write lower page; rc = [%d]\n", 475 rc); 476 goto out; 477 } 478 rc = 0; 479 out: 480 if (enc_extent_page) { 481 __free_page(enc_extent_page); 482 } 483 return rc; 484 } 485 486 /** 487 * ecryptfs_decrypt_page 488 * @page: Page mapped from the eCryptfs inode for the file; data read 489 * and decrypted from the lower file will be written into this 490 * page 491 * 492 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 493 * that eCryptfs pages may straddle the lower pages -- for instance, 494 * if the file was created on a machine with an 8K page size 495 * (resulting in an 8K header), and then the file is copied onto a 496 * host with a 32K page size, then when reading page 0 of the eCryptfs 497 * file, 24K of page 0 of the lower file will be read and decrypted, 498 * and then 8K of page 1 of the lower file will be read and decrypted. 499 * 500 * Returns zero on success; negative on error 501 */ 502 int ecryptfs_decrypt_page(struct page *page) 503 { 504 struct inode *ecryptfs_inode; 505 struct ecryptfs_crypt_stat *crypt_stat; 506 char *page_virt; 507 unsigned long extent_offset; 508 loff_t lower_offset; 509 int rc = 0; 510 511 ecryptfs_inode = page->mapping->host; 512 crypt_stat = 513 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 514 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 515 516 lower_offset = lower_offset_for_page(crypt_stat, page); 517 page_virt = kmap(page); 518 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE, 519 ecryptfs_inode); 520 kunmap(page); 521 if (rc < 0) { 522 ecryptfs_printk(KERN_ERR, 523 "Error attempting to read lower page; rc = [%d]\n", 524 rc); 525 goto out; 526 } 527 528 for (extent_offset = 0; 529 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 530 extent_offset++) { 531 rc = crypt_extent(crypt_stat, page, page, 532 extent_offset, DECRYPT); 533 if (rc) { 534 printk(KERN_ERR "%s: Error decrypting extent; " 535 "rc = [%d]\n", __func__, rc); 536 goto out; 537 } 538 } 539 out: 540 return rc; 541 } 542 543 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 544 545 /** 546 * ecryptfs_init_crypt_ctx 547 * @crypt_stat: Uninitialized crypt stats structure 548 * 549 * Initialize the crypto context. 550 * 551 * TODO: Performance: Keep a cache of initialized cipher contexts; 552 * only init if needed 553 */ 554 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 555 { 556 char *full_alg_name; 557 int rc = -EINVAL; 558 559 ecryptfs_printk(KERN_DEBUG, 560 "Initializing cipher [%s]; strlen = [%d]; " 561 "key_size_bits = [%zd]\n", 562 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 563 crypt_stat->key_size << 3); 564 mutex_lock(&crypt_stat->cs_tfm_mutex); 565 if (crypt_stat->tfm) { 566 rc = 0; 567 goto out_unlock; 568 } 569 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 570 crypt_stat->cipher, "cbc"); 571 if (rc) 572 goto out_unlock; 573 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0); 574 if (IS_ERR(crypt_stat->tfm)) { 575 rc = PTR_ERR(crypt_stat->tfm); 576 crypt_stat->tfm = NULL; 577 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 578 "Error initializing cipher [%s]\n", 579 full_alg_name); 580 goto out_free; 581 } 582 crypto_skcipher_set_flags(crypt_stat->tfm, 583 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 584 rc = 0; 585 out_free: 586 kfree(full_alg_name); 587 out_unlock: 588 mutex_unlock(&crypt_stat->cs_tfm_mutex); 589 return rc; 590 } 591 592 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 593 { 594 int extent_size_tmp; 595 596 crypt_stat->extent_mask = 0xFFFFFFFF; 597 crypt_stat->extent_shift = 0; 598 if (crypt_stat->extent_size == 0) 599 return; 600 extent_size_tmp = crypt_stat->extent_size; 601 while ((extent_size_tmp & 0x01) == 0) { 602 extent_size_tmp >>= 1; 603 crypt_stat->extent_mask <<= 1; 604 crypt_stat->extent_shift++; 605 } 606 } 607 608 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 609 { 610 /* Default values; may be overwritten as we are parsing the 611 * packets. */ 612 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 613 set_extent_mask_and_shift(crypt_stat); 614 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 615 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 616 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 617 else { 618 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 619 crypt_stat->metadata_size = 620 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 621 else 622 crypt_stat->metadata_size = PAGE_SIZE; 623 } 624 } 625 626 /* 627 * ecryptfs_compute_root_iv 628 * 629 * On error, sets the root IV to all 0's. 630 */ 631 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 632 { 633 int rc = 0; 634 char dst[MD5_DIGEST_SIZE]; 635 636 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 637 BUG_ON(crypt_stat->iv_bytes <= 0); 638 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 639 rc = -EINVAL; 640 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 641 "cannot generate root IV\n"); 642 goto out; 643 } 644 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 645 crypt_stat->key_size); 646 if (rc) { 647 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 648 "MD5 while generating root IV\n"); 649 goto out; 650 } 651 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 652 out: 653 if (rc) { 654 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 655 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 656 } 657 return rc; 658 } 659 660 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 661 { 662 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 663 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 664 ecryptfs_compute_root_iv(crypt_stat); 665 if (unlikely(ecryptfs_verbosity > 0)) { 666 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 667 ecryptfs_dump_hex(crypt_stat->key, 668 crypt_stat->key_size); 669 } 670 } 671 672 /** 673 * ecryptfs_copy_mount_wide_flags_to_inode_flags 674 * @crypt_stat: The inode's cryptographic context 675 * @mount_crypt_stat: The mount point's cryptographic context 676 * 677 * This function propagates the mount-wide flags to individual inode 678 * flags. 679 */ 680 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 681 struct ecryptfs_crypt_stat *crypt_stat, 682 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 683 { 684 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 685 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 686 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 687 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 688 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 689 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 690 if (mount_crypt_stat->flags 691 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 692 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 693 else if (mount_crypt_stat->flags 694 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 695 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 696 } 697 } 698 699 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 700 struct ecryptfs_crypt_stat *crypt_stat, 701 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 702 { 703 struct ecryptfs_global_auth_tok *global_auth_tok; 704 int rc = 0; 705 706 mutex_lock(&crypt_stat->keysig_list_mutex); 707 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 708 709 list_for_each_entry(global_auth_tok, 710 &mount_crypt_stat->global_auth_tok_list, 711 mount_crypt_stat_list) { 712 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 713 continue; 714 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 715 if (rc) { 716 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 717 goto out; 718 } 719 } 720 721 out: 722 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 723 mutex_unlock(&crypt_stat->keysig_list_mutex); 724 return rc; 725 } 726 727 /** 728 * ecryptfs_set_default_crypt_stat_vals 729 * @crypt_stat: The inode's cryptographic context 730 * @mount_crypt_stat: The mount point's cryptographic context 731 * 732 * Default values in the event that policy does not override them. 733 */ 734 static void ecryptfs_set_default_crypt_stat_vals( 735 struct ecryptfs_crypt_stat *crypt_stat, 736 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 737 { 738 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 739 mount_crypt_stat); 740 ecryptfs_set_default_sizes(crypt_stat); 741 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 742 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 743 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 744 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 745 crypt_stat->mount_crypt_stat = mount_crypt_stat; 746 } 747 748 /** 749 * ecryptfs_new_file_context 750 * @ecryptfs_inode: The eCryptfs inode 751 * 752 * If the crypto context for the file has not yet been established, 753 * this is where we do that. Establishing a new crypto context 754 * involves the following decisions: 755 * - What cipher to use? 756 * - What set of authentication tokens to use? 757 * Here we just worry about getting enough information into the 758 * authentication tokens so that we know that they are available. 759 * We associate the available authentication tokens with the new file 760 * via the set of signatures in the crypt_stat struct. Later, when 761 * the headers are actually written out, we may again defer to 762 * userspace to perform the encryption of the session key; for the 763 * foreseeable future, this will be the case with public key packets. 764 * 765 * Returns zero on success; non-zero otherwise 766 */ 767 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 768 { 769 struct ecryptfs_crypt_stat *crypt_stat = 770 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 771 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 772 &ecryptfs_superblock_to_private( 773 ecryptfs_inode->i_sb)->mount_crypt_stat; 774 int cipher_name_len; 775 int rc = 0; 776 777 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 778 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 779 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 780 mount_crypt_stat); 781 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 782 mount_crypt_stat); 783 if (rc) { 784 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 785 "to the inode key sigs; rc = [%d]\n", rc); 786 goto out; 787 } 788 cipher_name_len = 789 strlen(mount_crypt_stat->global_default_cipher_name); 790 memcpy(crypt_stat->cipher, 791 mount_crypt_stat->global_default_cipher_name, 792 cipher_name_len); 793 crypt_stat->cipher[cipher_name_len] = '\0'; 794 crypt_stat->key_size = 795 mount_crypt_stat->global_default_cipher_key_size; 796 ecryptfs_generate_new_key(crypt_stat); 797 rc = ecryptfs_init_crypt_ctx(crypt_stat); 798 if (rc) 799 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 800 "context for cipher [%s]: rc = [%d]\n", 801 crypt_stat->cipher, rc); 802 out: 803 return rc; 804 } 805 806 /** 807 * ecryptfs_validate_marker - check for the ecryptfs marker 808 * @data: The data block in which to check 809 * 810 * Returns zero if marker found; -EINVAL if not found 811 */ 812 static int ecryptfs_validate_marker(char *data) 813 { 814 u32 m_1, m_2; 815 816 m_1 = get_unaligned_be32(data); 817 m_2 = get_unaligned_be32(data + 4); 818 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 819 return 0; 820 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 821 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 822 MAGIC_ECRYPTFS_MARKER); 823 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 824 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 825 return -EINVAL; 826 } 827 828 struct ecryptfs_flag_map_elem { 829 u32 file_flag; 830 u32 local_flag; 831 }; 832 833 /* Add support for additional flags by adding elements here. */ 834 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 835 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 836 {0x00000002, ECRYPTFS_ENCRYPTED}, 837 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 838 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 839 }; 840 841 /** 842 * ecryptfs_process_flags 843 * @crypt_stat: The cryptographic context 844 * @page_virt: Source data to be parsed 845 * @bytes_read: Updated with the number of bytes read 846 */ 847 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 848 char *page_virt, int *bytes_read) 849 { 850 int i; 851 u32 flags; 852 853 flags = get_unaligned_be32(page_virt); 854 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 855 if (flags & ecryptfs_flag_map[i].file_flag) { 856 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 857 } else 858 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 859 /* Version is in top 8 bits of the 32-bit flag vector */ 860 crypt_stat->file_version = ((flags >> 24) & 0xFF); 861 (*bytes_read) = 4; 862 } 863 864 /** 865 * write_ecryptfs_marker 866 * @page_virt: The pointer to in a page to begin writing the marker 867 * @written: Number of bytes written 868 * 869 * Marker = 0x3c81b7f5 870 */ 871 static void write_ecryptfs_marker(char *page_virt, size_t *written) 872 { 873 u32 m_1, m_2; 874 875 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 876 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 877 put_unaligned_be32(m_1, page_virt); 878 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 879 put_unaligned_be32(m_2, page_virt); 880 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 881 } 882 883 void ecryptfs_write_crypt_stat_flags(char *page_virt, 884 struct ecryptfs_crypt_stat *crypt_stat, 885 size_t *written) 886 { 887 u32 flags = 0; 888 int i; 889 890 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 891 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 892 flags |= ecryptfs_flag_map[i].file_flag; 893 /* Version is in top 8 bits of the 32-bit flag vector */ 894 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 895 put_unaligned_be32(flags, page_virt); 896 (*written) = 4; 897 } 898 899 struct ecryptfs_cipher_code_str_map_elem { 900 char cipher_str[16]; 901 u8 cipher_code; 902 }; 903 904 /* Add support for additional ciphers by adding elements here. The 905 * cipher_code is whatever OpenPGP applications use to identify the 906 * ciphers. List in order of probability. */ 907 static struct ecryptfs_cipher_code_str_map_elem 908 ecryptfs_cipher_code_str_map[] = { 909 {"aes",RFC2440_CIPHER_AES_128 }, 910 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 911 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 912 {"cast5", RFC2440_CIPHER_CAST_5}, 913 {"twofish", RFC2440_CIPHER_TWOFISH}, 914 {"cast6", RFC2440_CIPHER_CAST_6}, 915 {"aes", RFC2440_CIPHER_AES_192}, 916 {"aes", RFC2440_CIPHER_AES_256} 917 }; 918 919 /** 920 * ecryptfs_code_for_cipher_string 921 * @cipher_name: The string alias for the cipher 922 * @key_bytes: Length of key in bytes; used for AES code selection 923 * 924 * Returns zero on no match, or the cipher code on match 925 */ 926 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 927 { 928 int i; 929 u8 code = 0; 930 struct ecryptfs_cipher_code_str_map_elem *map = 931 ecryptfs_cipher_code_str_map; 932 933 if (strcmp(cipher_name, "aes") == 0) { 934 switch (key_bytes) { 935 case 16: 936 code = RFC2440_CIPHER_AES_128; 937 break; 938 case 24: 939 code = RFC2440_CIPHER_AES_192; 940 break; 941 case 32: 942 code = RFC2440_CIPHER_AES_256; 943 } 944 } else { 945 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 946 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 947 code = map[i].cipher_code; 948 break; 949 } 950 } 951 return code; 952 } 953 954 /** 955 * ecryptfs_cipher_code_to_string 956 * @str: Destination to write out the cipher name 957 * @cipher_code: The code to convert to cipher name string 958 * 959 * Returns zero on success 960 */ 961 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 962 { 963 int rc = 0; 964 int i; 965 966 str[0] = '\0'; 967 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 968 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 969 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 970 if (str[0] == '\0') { 971 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 972 "[%d]\n", cipher_code); 973 rc = -EINVAL; 974 } 975 return rc; 976 } 977 978 int ecryptfs_read_and_validate_header_region(struct inode *inode) 979 { 980 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 981 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 982 int rc; 983 984 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 985 inode); 986 if (rc < 0) 987 return rc; 988 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 989 return -EINVAL; 990 rc = ecryptfs_validate_marker(marker); 991 if (!rc) 992 ecryptfs_i_size_init(file_size, inode); 993 return rc; 994 } 995 996 void 997 ecryptfs_write_header_metadata(char *virt, 998 struct ecryptfs_crypt_stat *crypt_stat, 999 size_t *written) 1000 { 1001 u32 header_extent_size; 1002 u16 num_header_extents_at_front; 1003 1004 header_extent_size = (u32)crypt_stat->extent_size; 1005 num_header_extents_at_front = 1006 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1007 put_unaligned_be32(header_extent_size, virt); 1008 virt += 4; 1009 put_unaligned_be16(num_header_extents_at_front, virt); 1010 (*written) = 6; 1011 } 1012 1013 struct kmem_cache *ecryptfs_header_cache; 1014 1015 /** 1016 * ecryptfs_write_headers_virt 1017 * @page_virt: The virtual address to write the headers to 1018 * @max: The size of memory allocated at page_virt 1019 * @size: Set to the number of bytes written by this function 1020 * @crypt_stat: The cryptographic context 1021 * @ecryptfs_dentry: The eCryptfs dentry 1022 * 1023 * Format version: 1 1024 * 1025 * Header Extent: 1026 * Octets 0-7: Unencrypted file size (big-endian) 1027 * Octets 8-15: eCryptfs special marker 1028 * Octets 16-19: Flags 1029 * Octet 16: File format version number (between 0 and 255) 1030 * Octets 17-18: Reserved 1031 * Octet 19: Bit 1 (lsb): Reserved 1032 * Bit 2: Encrypted? 1033 * Bits 3-8: Reserved 1034 * Octets 20-23: Header extent size (big-endian) 1035 * Octets 24-25: Number of header extents at front of file 1036 * (big-endian) 1037 * Octet 26: Begin RFC 2440 authentication token packet set 1038 * Data Extent 0: 1039 * Lower data (CBC encrypted) 1040 * Data Extent 1: 1041 * Lower data (CBC encrypted) 1042 * ... 1043 * 1044 * Returns zero on success 1045 */ 1046 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1047 size_t *size, 1048 struct ecryptfs_crypt_stat *crypt_stat, 1049 struct dentry *ecryptfs_dentry) 1050 { 1051 int rc; 1052 size_t written; 1053 size_t offset; 1054 1055 offset = ECRYPTFS_FILE_SIZE_BYTES; 1056 write_ecryptfs_marker((page_virt + offset), &written); 1057 offset += written; 1058 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1059 &written); 1060 offset += written; 1061 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1062 &written); 1063 offset += written; 1064 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1065 ecryptfs_dentry, &written, 1066 max - offset); 1067 if (rc) 1068 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1069 "set; rc = [%d]\n", rc); 1070 if (size) { 1071 offset += written; 1072 *size = offset; 1073 } 1074 return rc; 1075 } 1076 1077 static int 1078 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1079 char *virt, size_t virt_len) 1080 { 1081 int rc; 1082 1083 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1084 0, virt_len); 1085 if (rc < 0) 1086 printk(KERN_ERR "%s: Error attempting to write header " 1087 "information to lower file; rc = [%d]\n", __func__, rc); 1088 else 1089 rc = 0; 1090 return rc; 1091 } 1092 1093 static int 1094 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1095 struct inode *ecryptfs_inode, 1096 char *page_virt, size_t size) 1097 { 1098 int rc; 1099 struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry); 1100 struct inode *lower_inode = d_inode(lower_dentry); 1101 1102 if (!(lower_inode->i_opflags & IOP_XATTR)) { 1103 rc = -EOPNOTSUPP; 1104 goto out; 1105 } 1106 1107 inode_lock(lower_inode); 1108 rc = __vfs_setxattr(&init_user_ns, lower_dentry, lower_inode, 1109 ECRYPTFS_XATTR_NAME, page_virt, size, 0); 1110 if (!rc && ecryptfs_inode) 1111 fsstack_copy_attr_all(ecryptfs_inode, lower_inode); 1112 inode_unlock(lower_inode); 1113 out: 1114 return rc; 1115 } 1116 1117 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1118 unsigned int order) 1119 { 1120 struct page *page; 1121 1122 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1123 if (page) 1124 return (unsigned long) page_address(page); 1125 return 0; 1126 } 1127 1128 /** 1129 * ecryptfs_write_metadata 1130 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1131 * @ecryptfs_inode: The newly created eCryptfs inode 1132 * 1133 * Write the file headers out. This will likely involve a userspace 1134 * callout, in which the session key is encrypted with one or more 1135 * public keys and/or the passphrase necessary to do the encryption is 1136 * retrieved via a prompt. Exactly what happens at this point should 1137 * be policy-dependent. 1138 * 1139 * Returns zero on success; non-zero on error 1140 */ 1141 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1142 struct inode *ecryptfs_inode) 1143 { 1144 struct ecryptfs_crypt_stat *crypt_stat = 1145 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1146 unsigned int order; 1147 char *virt; 1148 size_t virt_len; 1149 size_t size = 0; 1150 int rc = 0; 1151 1152 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1153 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1154 printk(KERN_ERR "Key is invalid; bailing out\n"); 1155 rc = -EINVAL; 1156 goto out; 1157 } 1158 } else { 1159 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1160 __func__); 1161 rc = -EINVAL; 1162 goto out; 1163 } 1164 virt_len = crypt_stat->metadata_size; 1165 order = get_order(virt_len); 1166 /* Released in this function */ 1167 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1168 if (!virt) { 1169 printk(KERN_ERR "%s: Out of memory\n", __func__); 1170 rc = -ENOMEM; 1171 goto out; 1172 } 1173 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1174 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1175 ecryptfs_dentry); 1176 if (unlikely(rc)) { 1177 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1178 __func__, rc); 1179 goto out_free; 1180 } 1181 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1182 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode, 1183 virt, size); 1184 else 1185 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1186 virt_len); 1187 if (rc) { 1188 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1189 "rc = [%d]\n", __func__, rc); 1190 goto out_free; 1191 } 1192 out_free: 1193 free_pages((unsigned long)virt, order); 1194 out: 1195 return rc; 1196 } 1197 1198 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1199 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1200 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1201 char *virt, int *bytes_read, 1202 int validate_header_size) 1203 { 1204 int rc = 0; 1205 u32 header_extent_size; 1206 u16 num_header_extents_at_front; 1207 1208 header_extent_size = get_unaligned_be32(virt); 1209 virt += sizeof(__be32); 1210 num_header_extents_at_front = get_unaligned_be16(virt); 1211 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1212 * (size_t)header_extent_size)); 1213 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1214 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1215 && (crypt_stat->metadata_size 1216 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1217 rc = -EINVAL; 1218 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1219 crypt_stat->metadata_size); 1220 } 1221 return rc; 1222 } 1223 1224 /** 1225 * set_default_header_data 1226 * @crypt_stat: The cryptographic context 1227 * 1228 * For version 0 file format; this function is only for backwards 1229 * compatibility for files created with the prior versions of 1230 * eCryptfs. 1231 */ 1232 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1233 { 1234 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1235 } 1236 1237 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1238 { 1239 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1240 struct ecryptfs_crypt_stat *crypt_stat; 1241 u64 file_size; 1242 1243 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1244 mount_crypt_stat = 1245 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1246 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1247 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1248 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1249 file_size += crypt_stat->metadata_size; 1250 } else 1251 file_size = get_unaligned_be64(page_virt); 1252 i_size_write(inode, (loff_t)file_size); 1253 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1254 } 1255 1256 /** 1257 * ecryptfs_read_headers_virt 1258 * @page_virt: The virtual address into which to read the headers 1259 * @crypt_stat: The cryptographic context 1260 * @ecryptfs_dentry: The eCryptfs dentry 1261 * @validate_header_size: Whether to validate the header size while reading 1262 * 1263 * Read/parse the header data. The header format is detailed in the 1264 * comment block for the ecryptfs_write_headers_virt() function. 1265 * 1266 * Returns zero on success 1267 */ 1268 static int ecryptfs_read_headers_virt(char *page_virt, 1269 struct ecryptfs_crypt_stat *crypt_stat, 1270 struct dentry *ecryptfs_dentry, 1271 int validate_header_size) 1272 { 1273 int rc = 0; 1274 int offset; 1275 int bytes_read; 1276 1277 ecryptfs_set_default_sizes(crypt_stat); 1278 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1279 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1280 offset = ECRYPTFS_FILE_SIZE_BYTES; 1281 rc = ecryptfs_validate_marker(page_virt + offset); 1282 if (rc) 1283 goto out; 1284 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1285 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry)); 1286 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1287 ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read); 1288 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1289 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1290 "file version [%d] is supported by this " 1291 "version of eCryptfs\n", 1292 crypt_stat->file_version, 1293 ECRYPTFS_SUPPORTED_FILE_VERSION); 1294 rc = -EINVAL; 1295 goto out; 1296 } 1297 offset += bytes_read; 1298 if (crypt_stat->file_version >= 1) { 1299 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1300 &bytes_read, validate_header_size); 1301 if (rc) { 1302 ecryptfs_printk(KERN_WARNING, "Error reading header " 1303 "metadata; rc = [%d]\n", rc); 1304 } 1305 offset += bytes_read; 1306 } else 1307 set_default_header_data(crypt_stat); 1308 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1309 ecryptfs_dentry); 1310 out: 1311 return rc; 1312 } 1313 1314 /** 1315 * ecryptfs_read_xattr_region 1316 * @page_virt: The vitual address into which to read the xattr data 1317 * @ecryptfs_inode: The eCryptfs inode 1318 * 1319 * Attempts to read the crypto metadata from the extended attribute 1320 * region of the lower file. 1321 * 1322 * Returns zero on success; non-zero on error 1323 */ 1324 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1325 { 1326 struct dentry *lower_dentry = 1327 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry; 1328 ssize_t size; 1329 int rc = 0; 1330 1331 size = ecryptfs_getxattr_lower(lower_dentry, 1332 ecryptfs_inode_to_lower(ecryptfs_inode), 1333 ECRYPTFS_XATTR_NAME, 1334 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1335 if (size < 0) { 1336 if (unlikely(ecryptfs_verbosity > 0)) 1337 printk(KERN_INFO "Error attempting to read the [%s] " 1338 "xattr from the lower file; return value = " 1339 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1340 rc = -EINVAL; 1341 goto out; 1342 } 1343 out: 1344 return rc; 1345 } 1346 1347 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1348 struct inode *inode) 1349 { 1350 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1351 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1352 int rc; 1353 1354 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1355 ecryptfs_inode_to_lower(inode), 1356 ECRYPTFS_XATTR_NAME, file_size, 1357 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1358 if (rc < 0) 1359 return rc; 1360 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1361 return -EINVAL; 1362 rc = ecryptfs_validate_marker(marker); 1363 if (!rc) 1364 ecryptfs_i_size_init(file_size, inode); 1365 return rc; 1366 } 1367 1368 /* 1369 * ecryptfs_read_metadata 1370 * 1371 * Common entry point for reading file metadata. From here, we could 1372 * retrieve the header information from the header region of the file, 1373 * the xattr region of the file, or some other repository that is 1374 * stored separately from the file itself. The current implementation 1375 * supports retrieving the metadata information from the file contents 1376 * and from the xattr region. 1377 * 1378 * Returns zero if valid headers found and parsed; non-zero otherwise 1379 */ 1380 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1381 { 1382 int rc; 1383 char *page_virt; 1384 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry); 1385 struct ecryptfs_crypt_stat *crypt_stat = 1386 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1387 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1388 &ecryptfs_superblock_to_private( 1389 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1390 1391 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1392 mount_crypt_stat); 1393 /* Read the first page from the underlying file */ 1394 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1395 if (!page_virt) { 1396 rc = -ENOMEM; 1397 goto out; 1398 } 1399 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1400 ecryptfs_inode); 1401 if (rc >= 0) 1402 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1403 ecryptfs_dentry, 1404 ECRYPTFS_VALIDATE_HEADER_SIZE); 1405 if (rc) { 1406 /* metadata is not in the file header, so try xattrs */ 1407 memset(page_virt, 0, PAGE_SIZE); 1408 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1409 if (rc) { 1410 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1411 "file header region or xattr region, inode %lu\n", 1412 ecryptfs_inode->i_ino); 1413 rc = -EINVAL; 1414 goto out; 1415 } 1416 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1417 ecryptfs_dentry, 1418 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1419 if (rc) { 1420 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1421 "file xattr region either, inode %lu\n", 1422 ecryptfs_inode->i_ino); 1423 rc = -EINVAL; 1424 } 1425 if (crypt_stat->mount_crypt_stat->flags 1426 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1427 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1428 } else { 1429 printk(KERN_WARNING "Attempt to access file with " 1430 "crypto metadata only in the extended attribute " 1431 "region, but eCryptfs was mounted without " 1432 "xattr support enabled. eCryptfs will not treat " 1433 "this like an encrypted file, inode %lu\n", 1434 ecryptfs_inode->i_ino); 1435 rc = -EINVAL; 1436 } 1437 } 1438 out: 1439 if (page_virt) { 1440 memset(page_virt, 0, PAGE_SIZE); 1441 kmem_cache_free(ecryptfs_header_cache, page_virt); 1442 } 1443 return rc; 1444 } 1445 1446 /* 1447 * ecryptfs_encrypt_filename - encrypt filename 1448 * 1449 * CBC-encrypts the filename. We do not want to encrypt the same 1450 * filename with the same key and IV, which may happen with hard 1451 * links, so we prepend random bits to each filename. 1452 * 1453 * Returns zero on success; non-zero otherwise 1454 */ 1455 static int 1456 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1457 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1458 { 1459 int rc = 0; 1460 1461 filename->encrypted_filename = NULL; 1462 filename->encrypted_filename_size = 0; 1463 if (mount_crypt_stat && (mount_crypt_stat->flags 1464 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1465 size_t packet_size; 1466 size_t remaining_bytes; 1467 1468 rc = ecryptfs_write_tag_70_packet( 1469 NULL, NULL, 1470 &filename->encrypted_filename_size, 1471 mount_crypt_stat, NULL, 1472 filename->filename_size); 1473 if (rc) { 1474 printk(KERN_ERR "%s: Error attempting to get packet " 1475 "size for tag 72; rc = [%d]\n", __func__, 1476 rc); 1477 filename->encrypted_filename_size = 0; 1478 goto out; 1479 } 1480 filename->encrypted_filename = 1481 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1482 if (!filename->encrypted_filename) { 1483 rc = -ENOMEM; 1484 goto out; 1485 } 1486 remaining_bytes = filename->encrypted_filename_size; 1487 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1488 &remaining_bytes, 1489 &packet_size, 1490 mount_crypt_stat, 1491 filename->filename, 1492 filename->filename_size); 1493 if (rc) { 1494 printk(KERN_ERR "%s: Error attempting to generate " 1495 "tag 70 packet; rc = [%d]\n", __func__, 1496 rc); 1497 kfree(filename->encrypted_filename); 1498 filename->encrypted_filename = NULL; 1499 filename->encrypted_filename_size = 0; 1500 goto out; 1501 } 1502 filename->encrypted_filename_size = packet_size; 1503 } else { 1504 printk(KERN_ERR "%s: No support for requested filename " 1505 "encryption method in this release\n", __func__); 1506 rc = -EOPNOTSUPP; 1507 goto out; 1508 } 1509 out: 1510 return rc; 1511 } 1512 1513 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1514 const char *name, size_t name_size) 1515 { 1516 int rc = 0; 1517 1518 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1519 if (!(*copied_name)) { 1520 rc = -ENOMEM; 1521 goto out; 1522 } 1523 memcpy((void *)(*copied_name), (void *)name, name_size); 1524 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1525 * in printing out the 1526 * string in debug 1527 * messages */ 1528 (*copied_name_size) = name_size; 1529 out: 1530 return rc; 1531 } 1532 1533 /** 1534 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1535 * @key_tfm: Crypto context for key material, set by this function 1536 * @cipher_name: Name of the cipher 1537 * @key_size: Size of the key in bytes 1538 * 1539 * Returns zero on success. Any crypto_tfm structs allocated here 1540 * should be released by other functions, such as on a superblock put 1541 * event, regardless of whether this function succeeds for fails. 1542 */ 1543 static int 1544 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, 1545 char *cipher_name, size_t *key_size) 1546 { 1547 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1548 char *full_alg_name = NULL; 1549 int rc; 1550 1551 *key_tfm = NULL; 1552 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1553 rc = -EINVAL; 1554 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1555 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1556 goto out; 1557 } 1558 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1559 "ecb"); 1560 if (rc) 1561 goto out; 1562 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1563 if (IS_ERR(*key_tfm)) { 1564 rc = PTR_ERR(*key_tfm); 1565 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1566 "[%s]; rc = [%d]\n", full_alg_name, rc); 1567 goto out; 1568 } 1569 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 1570 if (*key_size == 0) 1571 *key_size = crypto_skcipher_max_keysize(*key_tfm); 1572 get_random_bytes(dummy_key, *key_size); 1573 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size); 1574 if (rc) { 1575 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1576 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1577 rc); 1578 rc = -EINVAL; 1579 goto out; 1580 } 1581 out: 1582 kfree(full_alg_name); 1583 return rc; 1584 } 1585 1586 struct kmem_cache *ecryptfs_key_tfm_cache; 1587 static struct list_head key_tfm_list; 1588 DEFINE_MUTEX(key_tfm_list_mutex); 1589 1590 int __init ecryptfs_init_crypto(void) 1591 { 1592 INIT_LIST_HEAD(&key_tfm_list); 1593 return 0; 1594 } 1595 1596 /** 1597 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1598 * 1599 * Called only at module unload time 1600 */ 1601 int ecryptfs_destroy_crypto(void) 1602 { 1603 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1604 1605 mutex_lock(&key_tfm_list_mutex); 1606 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1607 key_tfm_list) { 1608 list_del(&key_tfm->key_tfm_list); 1609 crypto_free_skcipher(key_tfm->key_tfm); 1610 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1611 } 1612 mutex_unlock(&key_tfm_list_mutex); 1613 return 0; 1614 } 1615 1616 int 1617 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1618 size_t key_size) 1619 { 1620 struct ecryptfs_key_tfm *tmp_tfm; 1621 int rc = 0; 1622 1623 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1624 1625 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1626 if (key_tfm) 1627 (*key_tfm) = tmp_tfm; 1628 if (!tmp_tfm) { 1629 rc = -ENOMEM; 1630 goto out; 1631 } 1632 mutex_init(&tmp_tfm->key_tfm_mutex); 1633 strncpy(tmp_tfm->cipher_name, cipher_name, 1634 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1635 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1636 tmp_tfm->key_size = key_size; 1637 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1638 tmp_tfm->cipher_name, 1639 &tmp_tfm->key_size); 1640 if (rc) { 1641 printk(KERN_ERR "Error attempting to initialize key TFM " 1642 "cipher with name = [%s]; rc = [%d]\n", 1643 tmp_tfm->cipher_name, rc); 1644 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1645 if (key_tfm) 1646 (*key_tfm) = NULL; 1647 goto out; 1648 } 1649 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1650 out: 1651 return rc; 1652 } 1653 1654 /** 1655 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1656 * @cipher_name: the name of the cipher to search for 1657 * @key_tfm: set to corresponding tfm if found 1658 * 1659 * Searches for cached key_tfm matching @cipher_name 1660 * Must be called with &key_tfm_list_mutex held 1661 * Returns 1 if found, with @key_tfm set 1662 * Returns 0 if not found, with @key_tfm set to NULL 1663 */ 1664 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1665 { 1666 struct ecryptfs_key_tfm *tmp_key_tfm; 1667 1668 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1669 1670 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1671 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1672 if (key_tfm) 1673 (*key_tfm) = tmp_key_tfm; 1674 return 1; 1675 } 1676 } 1677 if (key_tfm) 1678 (*key_tfm) = NULL; 1679 return 0; 1680 } 1681 1682 /** 1683 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1684 * 1685 * @tfm: set to cached tfm found, or new tfm created 1686 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1687 * @cipher_name: the name of the cipher to search for and/or add 1688 * 1689 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1690 * Searches for cached item first, and creates new if not found. 1691 * Returns 0 on success, non-zero if adding new cipher failed 1692 */ 1693 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, 1694 struct mutex **tfm_mutex, 1695 char *cipher_name) 1696 { 1697 struct ecryptfs_key_tfm *key_tfm; 1698 int rc = 0; 1699 1700 (*tfm) = NULL; 1701 (*tfm_mutex) = NULL; 1702 1703 mutex_lock(&key_tfm_list_mutex); 1704 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1705 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1706 if (rc) { 1707 printk(KERN_ERR "Error adding new key_tfm to list; " 1708 "rc = [%d]\n", rc); 1709 goto out; 1710 } 1711 } 1712 (*tfm) = key_tfm->key_tfm; 1713 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1714 out: 1715 mutex_unlock(&key_tfm_list_mutex); 1716 return rc; 1717 } 1718 1719 /* 64 characters forming a 6-bit target field */ 1720 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1721 "EFGHIJKLMNOPQRST" 1722 "UVWXYZabcdefghij" 1723 "klmnopqrstuvwxyz"); 1724 1725 /* We could either offset on every reverse map or just pad some 0x00's 1726 * at the front here */ 1727 static const unsigned char filename_rev_map[256] = { 1728 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1729 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1730 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1731 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1732 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1733 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1734 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1735 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1736 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1737 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1738 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1739 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1740 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1741 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1742 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1743 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1744 }; 1745 1746 /** 1747 * ecryptfs_encode_for_filename 1748 * @dst: Destination location for encoded filename 1749 * @dst_size: Size of the encoded filename in bytes 1750 * @src: Source location for the filename to encode 1751 * @src_size: Size of the source in bytes 1752 */ 1753 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1754 unsigned char *src, size_t src_size) 1755 { 1756 size_t num_blocks; 1757 size_t block_num = 0; 1758 size_t dst_offset = 0; 1759 unsigned char last_block[3]; 1760 1761 if (src_size == 0) { 1762 (*dst_size) = 0; 1763 goto out; 1764 } 1765 num_blocks = (src_size / 3); 1766 if ((src_size % 3) == 0) { 1767 memcpy(last_block, (&src[src_size - 3]), 3); 1768 } else { 1769 num_blocks++; 1770 last_block[2] = 0x00; 1771 switch (src_size % 3) { 1772 case 1: 1773 last_block[0] = src[src_size - 1]; 1774 last_block[1] = 0x00; 1775 break; 1776 case 2: 1777 last_block[0] = src[src_size - 2]; 1778 last_block[1] = src[src_size - 1]; 1779 } 1780 } 1781 (*dst_size) = (num_blocks * 4); 1782 if (!dst) 1783 goto out; 1784 while (block_num < num_blocks) { 1785 unsigned char *src_block; 1786 unsigned char dst_block[4]; 1787 1788 if (block_num == (num_blocks - 1)) 1789 src_block = last_block; 1790 else 1791 src_block = &src[block_num * 3]; 1792 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1793 dst_block[1] = (((src_block[0] << 4) & 0x30) 1794 | ((src_block[1] >> 4) & 0x0F)); 1795 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1796 | ((src_block[2] >> 6) & 0x03)); 1797 dst_block[3] = (src_block[2] & 0x3F); 1798 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1799 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1800 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1801 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1802 block_num++; 1803 } 1804 out: 1805 return; 1806 } 1807 1808 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1809 { 1810 /* Not exact; conservatively long. Every block of 4 1811 * encoded characters decodes into a block of 3 1812 * decoded characters. This segment of code provides 1813 * the caller with the maximum amount of allocated 1814 * space that @dst will need to point to in a 1815 * subsequent call. */ 1816 return ((encoded_size + 1) * 3) / 4; 1817 } 1818 1819 /** 1820 * ecryptfs_decode_from_filename 1821 * @dst: If NULL, this function only sets @dst_size and returns. If 1822 * non-NULL, this function decodes the encoded octets in @src 1823 * into the memory that @dst points to. 1824 * @dst_size: Set to the size of the decoded string. 1825 * @src: The encoded set of octets to decode. 1826 * @src_size: The size of the encoded set of octets to decode. 1827 */ 1828 static void 1829 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 1830 const unsigned char *src, size_t src_size) 1831 { 1832 u8 current_bit_offset = 0; 1833 size_t src_byte_offset = 0; 1834 size_t dst_byte_offset = 0; 1835 1836 if (!dst) { 1837 (*dst_size) = ecryptfs_max_decoded_size(src_size); 1838 goto out; 1839 } 1840 while (src_byte_offset < src_size) { 1841 unsigned char src_byte = 1842 filename_rev_map[(int)src[src_byte_offset]]; 1843 1844 switch (current_bit_offset) { 1845 case 0: 1846 dst[dst_byte_offset] = (src_byte << 2); 1847 current_bit_offset = 6; 1848 break; 1849 case 6: 1850 dst[dst_byte_offset++] |= (src_byte >> 4); 1851 dst[dst_byte_offset] = ((src_byte & 0xF) 1852 << 4); 1853 current_bit_offset = 4; 1854 break; 1855 case 4: 1856 dst[dst_byte_offset++] |= (src_byte >> 2); 1857 dst[dst_byte_offset] = (src_byte << 6); 1858 current_bit_offset = 2; 1859 break; 1860 case 2: 1861 dst[dst_byte_offset++] |= (src_byte); 1862 current_bit_offset = 0; 1863 break; 1864 } 1865 src_byte_offset++; 1866 } 1867 (*dst_size) = dst_byte_offset; 1868 out: 1869 return; 1870 } 1871 1872 /** 1873 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 1874 * @encoded_name: The encrypted name 1875 * @encoded_name_size: Length of the encrypted name 1876 * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode 1877 * @name: The plaintext name 1878 * @name_size: The length of the plaintext name 1879 * 1880 * Encrypts and encodes a filename into something that constitutes a 1881 * valid filename for a filesystem, with printable characters. 1882 * 1883 * We assume that we have a properly initialized crypto context, 1884 * pointed to by crypt_stat->tfm. 1885 * 1886 * Returns zero on success; non-zero on otherwise 1887 */ 1888 int ecryptfs_encrypt_and_encode_filename( 1889 char **encoded_name, 1890 size_t *encoded_name_size, 1891 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 1892 const char *name, size_t name_size) 1893 { 1894 size_t encoded_name_no_prefix_size; 1895 int rc = 0; 1896 1897 (*encoded_name) = NULL; 1898 (*encoded_name_size) = 0; 1899 if (mount_crypt_stat && (mount_crypt_stat->flags 1900 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 1901 struct ecryptfs_filename *filename; 1902 1903 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 1904 if (!filename) { 1905 rc = -ENOMEM; 1906 goto out; 1907 } 1908 filename->filename = (char *)name; 1909 filename->filename_size = name_size; 1910 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat); 1911 if (rc) { 1912 printk(KERN_ERR "%s: Error attempting to encrypt " 1913 "filename; rc = [%d]\n", __func__, rc); 1914 kfree(filename); 1915 goto out; 1916 } 1917 ecryptfs_encode_for_filename( 1918 NULL, &encoded_name_no_prefix_size, 1919 filename->encrypted_filename, 1920 filename->encrypted_filename_size); 1921 if (mount_crypt_stat 1922 && (mount_crypt_stat->flags 1923 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) 1924 (*encoded_name_size) = 1925 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1926 + encoded_name_no_prefix_size); 1927 else 1928 (*encoded_name_size) = 1929 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1930 + encoded_name_no_prefix_size); 1931 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 1932 if (!(*encoded_name)) { 1933 rc = -ENOMEM; 1934 kfree(filename->encrypted_filename); 1935 kfree(filename); 1936 goto out; 1937 } 1938 if (mount_crypt_stat 1939 && (mount_crypt_stat->flags 1940 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1941 memcpy((*encoded_name), 1942 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 1943 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 1944 ecryptfs_encode_for_filename( 1945 ((*encoded_name) 1946 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 1947 &encoded_name_no_prefix_size, 1948 filename->encrypted_filename, 1949 filename->encrypted_filename_size); 1950 (*encoded_name_size) = 1951 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1952 + encoded_name_no_prefix_size); 1953 (*encoded_name)[(*encoded_name_size)] = '\0'; 1954 } else { 1955 rc = -EOPNOTSUPP; 1956 } 1957 if (rc) { 1958 printk(KERN_ERR "%s: Error attempting to encode " 1959 "encrypted filename; rc = [%d]\n", __func__, 1960 rc); 1961 kfree((*encoded_name)); 1962 (*encoded_name) = NULL; 1963 (*encoded_name_size) = 0; 1964 } 1965 kfree(filename->encrypted_filename); 1966 kfree(filename); 1967 } else { 1968 rc = ecryptfs_copy_filename(encoded_name, 1969 encoded_name_size, 1970 name, name_size); 1971 } 1972 out: 1973 return rc; 1974 } 1975 1976 static bool is_dot_dotdot(const char *name, size_t name_size) 1977 { 1978 if (name_size == 1 && name[0] == '.') 1979 return true; 1980 else if (name_size == 2 && name[0] == '.' && name[1] == '.') 1981 return true; 1982 1983 return false; 1984 } 1985 1986 /** 1987 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 1988 * @plaintext_name: The plaintext name 1989 * @plaintext_name_size: The plaintext name size 1990 * @sb: Ecryptfs's super_block 1991 * @name: The filename in cipher text 1992 * @name_size: The cipher text name size 1993 * 1994 * Decrypts and decodes the filename. 1995 * 1996 * Returns zero on error; non-zero otherwise 1997 */ 1998 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 1999 size_t *plaintext_name_size, 2000 struct super_block *sb, 2001 const char *name, size_t name_size) 2002 { 2003 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2004 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 2005 char *decoded_name; 2006 size_t decoded_name_size; 2007 size_t packet_size; 2008 int rc = 0; 2009 2010 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) && 2011 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) { 2012 if (is_dot_dotdot(name, name_size)) { 2013 rc = ecryptfs_copy_filename(plaintext_name, 2014 plaintext_name_size, 2015 name, name_size); 2016 goto out; 2017 } 2018 2019 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE || 2020 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2021 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) { 2022 rc = -EINVAL; 2023 goto out; 2024 } 2025 2026 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2027 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2028 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2029 name, name_size); 2030 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2031 if (!decoded_name) { 2032 rc = -ENOMEM; 2033 goto out; 2034 } 2035 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2036 name, name_size); 2037 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2038 plaintext_name_size, 2039 &packet_size, 2040 mount_crypt_stat, 2041 decoded_name, 2042 decoded_name_size); 2043 if (rc) { 2044 ecryptfs_printk(KERN_DEBUG, 2045 "%s: Could not parse tag 70 packet from filename\n", 2046 __func__); 2047 goto out_free; 2048 } 2049 } else { 2050 rc = ecryptfs_copy_filename(plaintext_name, 2051 plaintext_name_size, 2052 name, name_size); 2053 goto out; 2054 } 2055 out_free: 2056 kfree(decoded_name); 2057 out: 2058 return rc; 2059 } 2060 2061 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2062 2063 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2064 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2065 { 2066 struct crypto_skcipher *tfm; 2067 struct mutex *tfm_mutex; 2068 size_t cipher_blocksize; 2069 int rc; 2070 2071 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2072 (*namelen) = lower_namelen; 2073 return 0; 2074 } 2075 2076 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, 2077 mount_crypt_stat->global_default_fn_cipher_name); 2078 if (unlikely(rc)) { 2079 (*namelen) = 0; 2080 return rc; 2081 } 2082 2083 mutex_lock(tfm_mutex); 2084 cipher_blocksize = crypto_skcipher_blocksize(tfm); 2085 mutex_unlock(tfm_mutex); 2086 2087 /* Return an exact amount for the common cases */ 2088 if (lower_namelen == NAME_MAX 2089 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2090 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2091 return 0; 2092 } 2093 2094 /* Return a safe estimate for the uncommon cases */ 2095 (*namelen) = lower_namelen; 2096 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2097 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2098 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2099 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2100 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2101 /* Worst case is that the filename is padded nearly a full block size */ 2102 (*namelen) -= cipher_blocksize - 1; 2103 2104 if ((*namelen) < 0) 2105 (*namelen) = 0; 2106 2107 return 0; 2108 } 2109