xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision e190bfe5)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39 
40 static int
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 			     struct page *dst_page, int dst_offset,
43 			     struct page *src_page, int src_offset, int size,
44 			     unsigned char *iv);
45 static int
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 			     struct page *dst_page, int dst_offset,
48 			     struct page *src_page, int src_offset, int size,
49 			     unsigned char *iv);
50 
51 /**
52  * ecryptfs_to_hex
53  * @dst: Buffer to take hex character representation of contents of
54  *       src; must be at least of size (src_size * 2)
55  * @src: Buffer to be converted to a hex string respresentation
56  * @src_size: number of bytes to convert
57  */
58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59 {
60 	int x;
61 
62 	for (x = 0; x < src_size; x++)
63 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64 }
65 
66 /**
67  * ecryptfs_from_hex
68  * @dst: Buffer to take the bytes from src hex; must be at least of
69  *       size (src_size / 2)
70  * @src: Buffer to be converted from a hex string respresentation to raw value
71  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72  */
73 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74 {
75 	int x;
76 	char tmp[3] = { 0, };
77 
78 	for (x = 0; x < dst_size; x++) {
79 		tmp[0] = src[x * 2];
80 		tmp[1] = src[x * 2 + 1];
81 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 	}
83 }
84 
85 /**
86  * ecryptfs_calculate_md5 - calculates the md5 of @src
87  * @dst: Pointer to 16 bytes of allocated memory
88  * @crypt_stat: Pointer to crypt_stat struct for the current inode
89  * @src: Data to be md5'd
90  * @len: Length of @src
91  *
92  * Uses the allocated crypto context that crypt_stat references to
93  * generate the MD5 sum of the contents of src.
94  */
95 static int ecryptfs_calculate_md5(char *dst,
96 				  struct ecryptfs_crypt_stat *crypt_stat,
97 				  char *src, int len)
98 {
99 	struct scatterlist sg;
100 	struct hash_desc desc = {
101 		.tfm = crypt_stat->hash_tfm,
102 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 	};
104 	int rc = 0;
105 
106 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107 	sg_init_one(&sg, (u8 *)src, len);
108 	if (!desc.tfm) {
109 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 					     CRYPTO_ALG_ASYNC);
111 		if (IS_ERR(desc.tfm)) {
112 			rc = PTR_ERR(desc.tfm);
113 			ecryptfs_printk(KERN_ERR, "Error attempting to "
114 					"allocate crypto context; rc = [%d]\n",
115 					rc);
116 			goto out;
117 		}
118 		crypt_stat->hash_tfm = desc.tfm;
119 	}
120 	rc = crypto_hash_init(&desc);
121 	if (rc) {
122 		printk(KERN_ERR
123 		       "%s: Error initializing crypto hash; rc = [%d]\n",
124 		       __func__, rc);
125 		goto out;
126 	}
127 	rc = crypto_hash_update(&desc, &sg, len);
128 	if (rc) {
129 		printk(KERN_ERR
130 		       "%s: Error updating crypto hash; rc = [%d]\n",
131 		       __func__, rc);
132 		goto out;
133 	}
134 	rc = crypto_hash_final(&desc, dst);
135 	if (rc) {
136 		printk(KERN_ERR
137 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
138 		       __func__, rc);
139 		goto out;
140 	}
141 out:
142 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143 	return rc;
144 }
145 
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 						  char *cipher_name,
148 						  char *chaining_modifier)
149 {
150 	int cipher_name_len = strlen(cipher_name);
151 	int chaining_modifier_len = strlen(chaining_modifier);
152 	int algified_name_len;
153 	int rc;
154 
155 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157 	if (!(*algified_name)) {
158 		rc = -ENOMEM;
159 		goto out;
160 	}
161 	snprintf((*algified_name), algified_name_len, "%s(%s)",
162 		 chaining_modifier, cipher_name);
163 	rc = 0;
164 out:
165 	return rc;
166 }
167 
168 /**
169  * ecryptfs_derive_iv
170  * @iv: destination for the derived iv vale
171  * @crypt_stat: Pointer to crypt_stat struct for the current inode
172  * @offset: Offset of the extent whose IV we are to derive
173  *
174  * Generate the initialization vector from the given root IV and page
175  * offset.
176  *
177  * Returns zero on success; non-zero on error.
178  */
179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 		       loff_t offset)
181 {
182 	int rc = 0;
183 	char dst[MD5_DIGEST_SIZE];
184 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
185 
186 	if (unlikely(ecryptfs_verbosity > 0)) {
187 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 	}
190 	/* TODO: It is probably secure to just cast the least
191 	 * significant bits of the root IV into an unsigned long and
192 	 * add the offset to that rather than go through all this
193 	 * hashing business. -Halcrow */
194 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 	memset((src + crypt_stat->iv_bytes), 0, 16);
196 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 	if (unlikely(ecryptfs_verbosity > 0)) {
198 		ecryptfs_printk(KERN_DEBUG, "source:\n");
199 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 	}
201 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 				    (crypt_stat->iv_bytes + 16));
203 	if (rc) {
204 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 				"MD5 while generating IV for a page\n");
206 		goto out;
207 	}
208 	memcpy(iv, dst, crypt_stat->iv_bytes);
209 	if (unlikely(ecryptfs_verbosity > 0)) {
210 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 	}
213 out:
214 	return rc;
215 }
216 
217 /**
218  * ecryptfs_init_crypt_stat
219  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220  *
221  * Initialize the crypt_stat structure.
222  */
223 void
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225 {
226 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 	mutex_init(&crypt_stat->keysig_list_mutex);
229 	mutex_init(&crypt_stat->cs_mutex);
230 	mutex_init(&crypt_stat->cs_tfm_mutex);
231 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233 }
234 
235 /**
236  * ecryptfs_destroy_crypt_stat
237  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238  *
239  * Releases all memory associated with a crypt_stat struct.
240  */
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242 {
243 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244 
245 	if (crypt_stat->tfm)
246 		crypto_free_blkcipher(crypt_stat->tfm);
247 	if (crypt_stat->hash_tfm)
248 		crypto_free_hash(crypt_stat->hash_tfm);
249 	list_for_each_entry_safe(key_sig, key_sig_tmp,
250 				 &crypt_stat->keysig_list, crypt_stat_list) {
251 		list_del(&key_sig->crypt_stat_list);
252 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 	}
254 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255 }
256 
257 void ecryptfs_destroy_mount_crypt_stat(
258 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259 {
260 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261 
262 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 		return;
264 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 				 &mount_crypt_stat->global_auth_tok_list,
267 				 mount_crypt_stat_list) {
268 		list_del(&auth_tok->mount_crypt_stat_list);
269 		mount_crypt_stat->num_global_auth_toks--;
270 		if (auth_tok->global_auth_tok_key
271 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
272 			key_put(auth_tok->global_auth_tok_key);
273 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
274 	}
275 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
276 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
277 }
278 
279 /**
280  * virt_to_scatterlist
281  * @addr: Virtual address
282  * @size: Size of data; should be an even multiple of the block size
283  * @sg: Pointer to scatterlist array; set to NULL to obtain only
284  *      the number of scatterlist structs required in array
285  * @sg_size: Max array size
286  *
287  * Fills in a scatterlist array with page references for a passed
288  * virtual address.
289  *
290  * Returns the number of scatterlist structs in array used
291  */
292 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
293 			int sg_size)
294 {
295 	int i = 0;
296 	struct page *pg;
297 	int offset;
298 	int remainder_of_page;
299 
300 	sg_init_table(sg, sg_size);
301 
302 	while (size > 0 && i < sg_size) {
303 		pg = virt_to_page(addr);
304 		offset = offset_in_page(addr);
305 		if (sg)
306 			sg_set_page(&sg[i], pg, 0, offset);
307 		remainder_of_page = PAGE_CACHE_SIZE - offset;
308 		if (size >= remainder_of_page) {
309 			if (sg)
310 				sg[i].length = remainder_of_page;
311 			addr += remainder_of_page;
312 			size -= remainder_of_page;
313 		} else {
314 			if (sg)
315 				sg[i].length = size;
316 			addr += size;
317 			size = 0;
318 		}
319 		i++;
320 	}
321 	if (size > 0)
322 		return -ENOMEM;
323 	return i;
324 }
325 
326 /**
327  * encrypt_scatterlist
328  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
329  * @dest_sg: Destination of encrypted data
330  * @src_sg: Data to be encrypted
331  * @size: Length of data to be encrypted
332  * @iv: iv to use during encryption
333  *
334  * Returns the number of bytes encrypted; negative value on error
335  */
336 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
337 			       struct scatterlist *dest_sg,
338 			       struct scatterlist *src_sg, int size,
339 			       unsigned char *iv)
340 {
341 	struct blkcipher_desc desc = {
342 		.tfm = crypt_stat->tfm,
343 		.info = iv,
344 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
345 	};
346 	int rc = 0;
347 
348 	BUG_ON(!crypt_stat || !crypt_stat->tfm
349 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
350 	if (unlikely(ecryptfs_verbosity > 0)) {
351 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
352 				crypt_stat->key_size);
353 		ecryptfs_dump_hex(crypt_stat->key,
354 				  crypt_stat->key_size);
355 	}
356 	/* Consider doing this once, when the file is opened */
357 	mutex_lock(&crypt_stat->cs_tfm_mutex);
358 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
359 		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
360 					     crypt_stat->key_size);
361 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
362 	}
363 	if (rc) {
364 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
365 				rc);
366 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
367 		rc = -EINVAL;
368 		goto out;
369 	}
370 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
371 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
372 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
373 out:
374 	return rc;
375 }
376 
377 /**
378  * ecryptfs_lower_offset_for_extent
379  *
380  * Convert an eCryptfs page index into a lower byte offset
381  */
382 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
383 					     struct ecryptfs_crypt_stat *crypt_stat)
384 {
385 	(*offset) = ecryptfs_lower_header_size(crypt_stat)
386 		    + (crypt_stat->extent_size * extent_num);
387 }
388 
389 /**
390  * ecryptfs_encrypt_extent
391  * @enc_extent_page: Allocated page into which to encrypt the data in
392  *                   @page
393  * @crypt_stat: crypt_stat containing cryptographic context for the
394  *              encryption operation
395  * @page: Page containing plaintext data extent to encrypt
396  * @extent_offset: Page extent offset for use in generating IV
397  *
398  * Encrypts one extent of data.
399  *
400  * Return zero on success; non-zero otherwise
401  */
402 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
403 				   struct ecryptfs_crypt_stat *crypt_stat,
404 				   struct page *page,
405 				   unsigned long extent_offset)
406 {
407 	loff_t extent_base;
408 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
409 	int rc;
410 
411 	extent_base = (((loff_t)page->index)
412 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
413 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
414 				(extent_base + extent_offset));
415 	if (rc) {
416 		ecryptfs_printk(KERN_ERR, "Error attempting to "
417 				"derive IV for extent [0x%.16x]; "
418 				"rc = [%d]\n", (extent_base + extent_offset),
419 				rc);
420 		goto out;
421 	}
422 	if (unlikely(ecryptfs_verbosity > 0)) {
423 		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
424 				"with iv:\n");
425 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
426 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
427 				"encryption:\n");
428 		ecryptfs_dump_hex((char *)
429 				  (page_address(page)
430 				   + (extent_offset * crypt_stat->extent_size)),
431 				  8);
432 	}
433 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
434 					  page, (extent_offset
435 						 * crypt_stat->extent_size),
436 					  crypt_stat->extent_size, extent_iv);
437 	if (rc < 0) {
438 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
439 		       "page->index = [%ld], extent_offset = [%ld]; "
440 		       "rc = [%d]\n", __func__, page->index, extent_offset,
441 		       rc);
442 		goto out;
443 	}
444 	rc = 0;
445 	if (unlikely(ecryptfs_verbosity > 0)) {
446 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
447 				"rc = [%d]\n", (extent_base + extent_offset),
448 				rc);
449 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
450 				"encryption:\n");
451 		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
452 	}
453 out:
454 	return rc;
455 }
456 
457 /**
458  * ecryptfs_encrypt_page
459  * @page: Page mapped from the eCryptfs inode for the file; contains
460  *        decrypted content that needs to be encrypted (to a temporary
461  *        page; not in place) and written out to the lower file
462  *
463  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
464  * that eCryptfs pages may straddle the lower pages -- for instance,
465  * if the file was created on a machine with an 8K page size
466  * (resulting in an 8K header), and then the file is copied onto a
467  * host with a 32K page size, then when reading page 0 of the eCryptfs
468  * file, 24K of page 0 of the lower file will be read and decrypted,
469  * and then 8K of page 1 of the lower file will be read and decrypted.
470  *
471  * Returns zero on success; negative on error
472  */
473 int ecryptfs_encrypt_page(struct page *page)
474 {
475 	struct inode *ecryptfs_inode;
476 	struct ecryptfs_crypt_stat *crypt_stat;
477 	char *enc_extent_virt;
478 	struct page *enc_extent_page = NULL;
479 	loff_t extent_offset;
480 	int rc = 0;
481 
482 	ecryptfs_inode = page->mapping->host;
483 	crypt_stat =
484 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
485 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
486 	enc_extent_page = alloc_page(GFP_USER);
487 	if (!enc_extent_page) {
488 		rc = -ENOMEM;
489 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
490 				"encrypted extent\n");
491 		goto out;
492 	}
493 	enc_extent_virt = kmap(enc_extent_page);
494 	for (extent_offset = 0;
495 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
496 	     extent_offset++) {
497 		loff_t offset;
498 
499 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
500 					     extent_offset);
501 		if (rc) {
502 			printk(KERN_ERR "%s: Error encrypting extent; "
503 			       "rc = [%d]\n", __func__, rc);
504 			goto out;
505 		}
506 		ecryptfs_lower_offset_for_extent(
507 			&offset, ((((loff_t)page->index)
508 				   * (PAGE_CACHE_SIZE
509 				      / crypt_stat->extent_size))
510 				  + extent_offset), crypt_stat);
511 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
512 					  offset, crypt_stat->extent_size);
513 		if (rc < 0) {
514 			ecryptfs_printk(KERN_ERR, "Error attempting "
515 					"to write lower page; rc = [%d]"
516 					"\n", rc);
517 			goto out;
518 		}
519 	}
520 	rc = 0;
521 out:
522 	if (enc_extent_page) {
523 		kunmap(enc_extent_page);
524 		__free_page(enc_extent_page);
525 	}
526 	return rc;
527 }
528 
529 static int ecryptfs_decrypt_extent(struct page *page,
530 				   struct ecryptfs_crypt_stat *crypt_stat,
531 				   struct page *enc_extent_page,
532 				   unsigned long extent_offset)
533 {
534 	loff_t extent_base;
535 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
536 	int rc;
537 
538 	extent_base = (((loff_t)page->index)
539 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
540 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
541 				(extent_base + extent_offset));
542 	if (rc) {
543 		ecryptfs_printk(KERN_ERR, "Error attempting to "
544 				"derive IV for extent [0x%.16x]; "
545 				"rc = [%d]\n", (extent_base + extent_offset),
546 				rc);
547 		goto out;
548 	}
549 	if (unlikely(ecryptfs_verbosity > 0)) {
550 		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
551 				"with iv:\n");
552 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
553 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
554 				"decryption:\n");
555 		ecryptfs_dump_hex((char *)
556 				  (page_address(enc_extent_page)
557 				   + (extent_offset * crypt_stat->extent_size)),
558 				  8);
559 	}
560 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
561 					  (extent_offset
562 					   * crypt_stat->extent_size),
563 					  enc_extent_page, 0,
564 					  crypt_stat->extent_size, extent_iv);
565 	if (rc < 0) {
566 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
567 		       "page->index = [%ld], extent_offset = [%ld]; "
568 		       "rc = [%d]\n", __func__, page->index, extent_offset,
569 		       rc);
570 		goto out;
571 	}
572 	rc = 0;
573 	if (unlikely(ecryptfs_verbosity > 0)) {
574 		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
575 				"rc = [%d]\n", (extent_base + extent_offset),
576 				rc);
577 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
578 				"decryption:\n");
579 		ecryptfs_dump_hex((char *)(page_address(page)
580 					   + (extent_offset
581 					      * crypt_stat->extent_size)), 8);
582 	}
583 out:
584 	return rc;
585 }
586 
587 /**
588  * ecryptfs_decrypt_page
589  * @page: Page mapped from the eCryptfs inode for the file; data read
590  *        and decrypted from the lower file will be written into this
591  *        page
592  *
593  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
594  * that eCryptfs pages may straddle the lower pages -- for instance,
595  * if the file was created on a machine with an 8K page size
596  * (resulting in an 8K header), and then the file is copied onto a
597  * host with a 32K page size, then when reading page 0 of the eCryptfs
598  * file, 24K of page 0 of the lower file will be read and decrypted,
599  * and then 8K of page 1 of the lower file will be read and decrypted.
600  *
601  * Returns zero on success; negative on error
602  */
603 int ecryptfs_decrypt_page(struct page *page)
604 {
605 	struct inode *ecryptfs_inode;
606 	struct ecryptfs_crypt_stat *crypt_stat;
607 	char *enc_extent_virt;
608 	struct page *enc_extent_page = NULL;
609 	unsigned long extent_offset;
610 	int rc = 0;
611 
612 	ecryptfs_inode = page->mapping->host;
613 	crypt_stat =
614 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
615 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
616 	enc_extent_page = alloc_page(GFP_USER);
617 	if (!enc_extent_page) {
618 		rc = -ENOMEM;
619 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
620 				"encrypted extent\n");
621 		goto out;
622 	}
623 	enc_extent_virt = kmap(enc_extent_page);
624 	for (extent_offset = 0;
625 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
626 	     extent_offset++) {
627 		loff_t offset;
628 
629 		ecryptfs_lower_offset_for_extent(
630 			&offset, ((page->index * (PAGE_CACHE_SIZE
631 						  / crypt_stat->extent_size))
632 				  + extent_offset), crypt_stat);
633 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
634 					 crypt_stat->extent_size,
635 					 ecryptfs_inode);
636 		if (rc < 0) {
637 			ecryptfs_printk(KERN_ERR, "Error attempting "
638 					"to read lower page; rc = [%d]"
639 					"\n", rc);
640 			goto out;
641 		}
642 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
643 					     extent_offset);
644 		if (rc) {
645 			printk(KERN_ERR "%s: Error encrypting extent; "
646 			       "rc = [%d]\n", __func__, rc);
647 			goto out;
648 		}
649 	}
650 out:
651 	if (enc_extent_page) {
652 		kunmap(enc_extent_page);
653 		__free_page(enc_extent_page);
654 	}
655 	return rc;
656 }
657 
658 /**
659  * decrypt_scatterlist
660  * @crypt_stat: Cryptographic context
661  * @dest_sg: The destination scatterlist to decrypt into
662  * @src_sg: The source scatterlist to decrypt from
663  * @size: The number of bytes to decrypt
664  * @iv: The initialization vector to use for the decryption
665  *
666  * Returns the number of bytes decrypted; negative value on error
667  */
668 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
669 			       struct scatterlist *dest_sg,
670 			       struct scatterlist *src_sg, int size,
671 			       unsigned char *iv)
672 {
673 	struct blkcipher_desc desc = {
674 		.tfm = crypt_stat->tfm,
675 		.info = iv,
676 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
677 	};
678 	int rc = 0;
679 
680 	/* Consider doing this once, when the file is opened */
681 	mutex_lock(&crypt_stat->cs_tfm_mutex);
682 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
683 				     crypt_stat->key_size);
684 	if (rc) {
685 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
686 				rc);
687 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
688 		rc = -EINVAL;
689 		goto out;
690 	}
691 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
692 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
693 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
694 	if (rc) {
695 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
696 				rc);
697 		goto out;
698 	}
699 	rc = size;
700 out:
701 	return rc;
702 }
703 
704 /**
705  * ecryptfs_encrypt_page_offset
706  * @crypt_stat: The cryptographic context
707  * @dst_page: The page to encrypt into
708  * @dst_offset: The offset in the page to encrypt into
709  * @src_page: The page to encrypt from
710  * @src_offset: The offset in the page to encrypt from
711  * @size: The number of bytes to encrypt
712  * @iv: The initialization vector to use for the encryption
713  *
714  * Returns the number of bytes encrypted
715  */
716 static int
717 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
718 			     struct page *dst_page, int dst_offset,
719 			     struct page *src_page, int src_offset, int size,
720 			     unsigned char *iv)
721 {
722 	struct scatterlist src_sg, dst_sg;
723 
724 	sg_init_table(&src_sg, 1);
725 	sg_init_table(&dst_sg, 1);
726 
727 	sg_set_page(&src_sg, src_page, size, src_offset);
728 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
729 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
730 }
731 
732 /**
733  * ecryptfs_decrypt_page_offset
734  * @crypt_stat: The cryptographic context
735  * @dst_page: The page to decrypt into
736  * @dst_offset: The offset in the page to decrypt into
737  * @src_page: The page to decrypt from
738  * @src_offset: The offset in the page to decrypt from
739  * @size: The number of bytes to decrypt
740  * @iv: The initialization vector to use for the decryption
741  *
742  * Returns the number of bytes decrypted
743  */
744 static int
745 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
746 			     struct page *dst_page, int dst_offset,
747 			     struct page *src_page, int src_offset, int size,
748 			     unsigned char *iv)
749 {
750 	struct scatterlist src_sg, dst_sg;
751 
752 	sg_init_table(&src_sg, 1);
753 	sg_set_page(&src_sg, src_page, size, src_offset);
754 
755 	sg_init_table(&dst_sg, 1);
756 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
757 
758 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
759 }
760 
761 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
762 
763 /**
764  * ecryptfs_init_crypt_ctx
765  * @crypt_stat: Uninitilized crypt stats structure
766  *
767  * Initialize the crypto context.
768  *
769  * TODO: Performance: Keep a cache of initialized cipher contexts;
770  * only init if needed
771  */
772 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
773 {
774 	char *full_alg_name;
775 	int rc = -EINVAL;
776 
777 	if (!crypt_stat->cipher) {
778 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
779 		goto out;
780 	}
781 	ecryptfs_printk(KERN_DEBUG,
782 			"Initializing cipher [%s]; strlen = [%d]; "
783 			"key_size_bits = [%d]\n",
784 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
785 			crypt_stat->key_size << 3);
786 	if (crypt_stat->tfm) {
787 		rc = 0;
788 		goto out;
789 	}
790 	mutex_lock(&crypt_stat->cs_tfm_mutex);
791 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
792 						    crypt_stat->cipher, "cbc");
793 	if (rc)
794 		goto out_unlock;
795 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
796 						 CRYPTO_ALG_ASYNC);
797 	kfree(full_alg_name);
798 	if (IS_ERR(crypt_stat->tfm)) {
799 		rc = PTR_ERR(crypt_stat->tfm);
800 		crypt_stat->tfm = NULL;
801 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
802 				"Error initializing cipher [%s]\n",
803 				crypt_stat->cipher);
804 		goto out_unlock;
805 	}
806 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
807 	rc = 0;
808 out_unlock:
809 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
810 out:
811 	return rc;
812 }
813 
814 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
815 {
816 	int extent_size_tmp;
817 
818 	crypt_stat->extent_mask = 0xFFFFFFFF;
819 	crypt_stat->extent_shift = 0;
820 	if (crypt_stat->extent_size == 0)
821 		return;
822 	extent_size_tmp = crypt_stat->extent_size;
823 	while ((extent_size_tmp & 0x01) == 0) {
824 		extent_size_tmp >>= 1;
825 		crypt_stat->extent_mask <<= 1;
826 		crypt_stat->extent_shift++;
827 	}
828 }
829 
830 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
831 {
832 	/* Default values; may be overwritten as we are parsing the
833 	 * packets. */
834 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
835 	set_extent_mask_and_shift(crypt_stat);
836 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
837 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
838 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
839 	else {
840 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
841 			crypt_stat->metadata_size =
842 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
843 		else
844 			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
845 	}
846 }
847 
848 /**
849  * ecryptfs_compute_root_iv
850  * @crypt_stats
851  *
852  * On error, sets the root IV to all 0's.
853  */
854 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
855 {
856 	int rc = 0;
857 	char dst[MD5_DIGEST_SIZE];
858 
859 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
860 	BUG_ON(crypt_stat->iv_bytes <= 0);
861 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
862 		rc = -EINVAL;
863 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
864 				"cannot generate root IV\n");
865 		goto out;
866 	}
867 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
868 				    crypt_stat->key_size);
869 	if (rc) {
870 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
871 				"MD5 while generating root IV\n");
872 		goto out;
873 	}
874 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
875 out:
876 	if (rc) {
877 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
878 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
879 	}
880 	return rc;
881 }
882 
883 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
884 {
885 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
886 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
887 	ecryptfs_compute_root_iv(crypt_stat);
888 	if (unlikely(ecryptfs_verbosity > 0)) {
889 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
890 		ecryptfs_dump_hex(crypt_stat->key,
891 				  crypt_stat->key_size);
892 	}
893 }
894 
895 /**
896  * ecryptfs_copy_mount_wide_flags_to_inode_flags
897  * @crypt_stat: The inode's cryptographic context
898  * @mount_crypt_stat: The mount point's cryptographic context
899  *
900  * This function propagates the mount-wide flags to individual inode
901  * flags.
902  */
903 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
904 	struct ecryptfs_crypt_stat *crypt_stat,
905 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
906 {
907 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
908 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
909 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
910 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
911 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
912 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
913 		if (mount_crypt_stat->flags
914 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
915 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
916 		else if (mount_crypt_stat->flags
917 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
918 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
919 	}
920 }
921 
922 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
923 	struct ecryptfs_crypt_stat *crypt_stat,
924 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
925 {
926 	struct ecryptfs_global_auth_tok *global_auth_tok;
927 	int rc = 0;
928 
929 	mutex_lock(&crypt_stat->keysig_list_mutex);
930 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
931 
932 	list_for_each_entry(global_auth_tok,
933 			    &mount_crypt_stat->global_auth_tok_list,
934 			    mount_crypt_stat_list) {
935 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
936 			continue;
937 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
938 		if (rc) {
939 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
940 			goto out;
941 		}
942 	}
943 
944 out:
945 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
946 	mutex_unlock(&crypt_stat->keysig_list_mutex);
947 	return rc;
948 }
949 
950 /**
951  * ecryptfs_set_default_crypt_stat_vals
952  * @crypt_stat: The inode's cryptographic context
953  * @mount_crypt_stat: The mount point's cryptographic context
954  *
955  * Default values in the event that policy does not override them.
956  */
957 static void ecryptfs_set_default_crypt_stat_vals(
958 	struct ecryptfs_crypt_stat *crypt_stat,
959 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
960 {
961 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
962 						      mount_crypt_stat);
963 	ecryptfs_set_default_sizes(crypt_stat);
964 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
965 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
966 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
967 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
968 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
969 }
970 
971 /**
972  * ecryptfs_new_file_context
973  * @ecryptfs_dentry: The eCryptfs dentry
974  *
975  * If the crypto context for the file has not yet been established,
976  * this is where we do that.  Establishing a new crypto context
977  * involves the following decisions:
978  *  - What cipher to use?
979  *  - What set of authentication tokens to use?
980  * Here we just worry about getting enough information into the
981  * authentication tokens so that we know that they are available.
982  * We associate the available authentication tokens with the new file
983  * via the set of signatures in the crypt_stat struct.  Later, when
984  * the headers are actually written out, we may again defer to
985  * userspace to perform the encryption of the session key; for the
986  * foreseeable future, this will be the case with public key packets.
987  *
988  * Returns zero on success; non-zero otherwise
989  */
990 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
991 {
992 	struct ecryptfs_crypt_stat *crypt_stat =
993 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
994 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
995 	    &ecryptfs_superblock_to_private(
996 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
997 	int cipher_name_len;
998 	int rc = 0;
999 
1000 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1001 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1002 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1003 						      mount_crypt_stat);
1004 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1005 							 mount_crypt_stat);
1006 	if (rc) {
1007 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1008 		       "to the inode key sigs; rc = [%d]\n", rc);
1009 		goto out;
1010 	}
1011 	cipher_name_len =
1012 		strlen(mount_crypt_stat->global_default_cipher_name);
1013 	memcpy(crypt_stat->cipher,
1014 	       mount_crypt_stat->global_default_cipher_name,
1015 	       cipher_name_len);
1016 	crypt_stat->cipher[cipher_name_len] = '\0';
1017 	crypt_stat->key_size =
1018 		mount_crypt_stat->global_default_cipher_key_size;
1019 	ecryptfs_generate_new_key(crypt_stat);
1020 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1021 	if (rc)
1022 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1023 				"context for cipher [%s]: rc = [%d]\n",
1024 				crypt_stat->cipher, rc);
1025 out:
1026 	return rc;
1027 }
1028 
1029 /**
1030  * contains_ecryptfs_marker - check for the ecryptfs marker
1031  * @data: The data block in which to check
1032  *
1033  * Returns one if marker found; zero if not found
1034  */
1035 static int contains_ecryptfs_marker(char *data)
1036 {
1037 	u32 m_1, m_2;
1038 
1039 	m_1 = get_unaligned_be32(data);
1040 	m_2 = get_unaligned_be32(data + 4);
1041 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1042 		return 1;
1043 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1044 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1045 			MAGIC_ECRYPTFS_MARKER);
1046 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1047 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1048 	return 0;
1049 }
1050 
1051 struct ecryptfs_flag_map_elem {
1052 	u32 file_flag;
1053 	u32 local_flag;
1054 };
1055 
1056 /* Add support for additional flags by adding elements here. */
1057 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1058 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1059 	{0x00000002, ECRYPTFS_ENCRYPTED},
1060 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1061 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1062 };
1063 
1064 /**
1065  * ecryptfs_process_flags
1066  * @crypt_stat: The cryptographic context
1067  * @page_virt: Source data to be parsed
1068  * @bytes_read: Updated with the number of bytes read
1069  *
1070  * Returns zero on success; non-zero if the flag set is invalid
1071  */
1072 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1073 				  char *page_virt, int *bytes_read)
1074 {
1075 	int rc = 0;
1076 	int i;
1077 	u32 flags;
1078 
1079 	flags = get_unaligned_be32(page_virt);
1080 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1081 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1082 		if (flags & ecryptfs_flag_map[i].file_flag) {
1083 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1084 		} else
1085 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1086 	/* Version is in top 8 bits of the 32-bit flag vector */
1087 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1088 	(*bytes_read) = 4;
1089 	return rc;
1090 }
1091 
1092 /**
1093  * write_ecryptfs_marker
1094  * @page_virt: The pointer to in a page to begin writing the marker
1095  * @written: Number of bytes written
1096  *
1097  * Marker = 0x3c81b7f5
1098  */
1099 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1100 {
1101 	u32 m_1, m_2;
1102 
1103 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1104 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1105 	put_unaligned_be32(m_1, page_virt);
1106 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1107 	put_unaligned_be32(m_2, page_virt);
1108 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1109 }
1110 
1111 void ecryptfs_write_crypt_stat_flags(char *page_virt,
1112 				     struct ecryptfs_crypt_stat *crypt_stat,
1113 				     size_t *written)
1114 {
1115 	u32 flags = 0;
1116 	int i;
1117 
1118 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1119 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1120 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1121 			flags |= ecryptfs_flag_map[i].file_flag;
1122 	/* Version is in top 8 bits of the 32-bit flag vector */
1123 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1124 	put_unaligned_be32(flags, page_virt);
1125 	(*written) = 4;
1126 }
1127 
1128 struct ecryptfs_cipher_code_str_map_elem {
1129 	char cipher_str[16];
1130 	u8 cipher_code;
1131 };
1132 
1133 /* Add support for additional ciphers by adding elements here. The
1134  * cipher_code is whatever OpenPGP applicatoins use to identify the
1135  * ciphers. List in order of probability. */
1136 static struct ecryptfs_cipher_code_str_map_elem
1137 ecryptfs_cipher_code_str_map[] = {
1138 	{"aes",RFC2440_CIPHER_AES_128 },
1139 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1140 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1141 	{"cast5", RFC2440_CIPHER_CAST_5},
1142 	{"twofish", RFC2440_CIPHER_TWOFISH},
1143 	{"cast6", RFC2440_CIPHER_CAST_6},
1144 	{"aes", RFC2440_CIPHER_AES_192},
1145 	{"aes", RFC2440_CIPHER_AES_256}
1146 };
1147 
1148 /**
1149  * ecryptfs_code_for_cipher_string
1150  * @cipher_name: The string alias for the cipher
1151  * @key_bytes: Length of key in bytes; used for AES code selection
1152  *
1153  * Returns zero on no match, or the cipher code on match
1154  */
1155 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1156 {
1157 	int i;
1158 	u8 code = 0;
1159 	struct ecryptfs_cipher_code_str_map_elem *map =
1160 		ecryptfs_cipher_code_str_map;
1161 
1162 	if (strcmp(cipher_name, "aes") == 0) {
1163 		switch (key_bytes) {
1164 		case 16:
1165 			code = RFC2440_CIPHER_AES_128;
1166 			break;
1167 		case 24:
1168 			code = RFC2440_CIPHER_AES_192;
1169 			break;
1170 		case 32:
1171 			code = RFC2440_CIPHER_AES_256;
1172 		}
1173 	} else {
1174 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1175 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1176 				code = map[i].cipher_code;
1177 				break;
1178 			}
1179 	}
1180 	return code;
1181 }
1182 
1183 /**
1184  * ecryptfs_cipher_code_to_string
1185  * @str: Destination to write out the cipher name
1186  * @cipher_code: The code to convert to cipher name string
1187  *
1188  * Returns zero on success
1189  */
1190 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1191 {
1192 	int rc = 0;
1193 	int i;
1194 
1195 	str[0] = '\0';
1196 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1197 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1198 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1199 	if (str[0] == '\0') {
1200 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1201 				"[%d]\n", cipher_code);
1202 		rc = -EINVAL;
1203 	}
1204 	return rc;
1205 }
1206 
1207 int ecryptfs_read_and_validate_header_region(char *data,
1208 					     struct inode *ecryptfs_inode)
1209 {
1210 	struct ecryptfs_crypt_stat *crypt_stat =
1211 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1212 	int rc;
1213 
1214 	if (crypt_stat->extent_size == 0)
1215 		crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
1216 	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1217 				 ecryptfs_inode);
1218 	if (rc < 0) {
1219 		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1220 		       __func__, rc);
1221 		goto out;
1222 	}
1223 	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1224 		rc = -EINVAL;
1225 	} else
1226 		rc = 0;
1227 out:
1228 	return rc;
1229 }
1230 
1231 void
1232 ecryptfs_write_header_metadata(char *virt,
1233 			       struct ecryptfs_crypt_stat *crypt_stat,
1234 			       size_t *written)
1235 {
1236 	u32 header_extent_size;
1237 	u16 num_header_extents_at_front;
1238 
1239 	header_extent_size = (u32)crypt_stat->extent_size;
1240 	num_header_extents_at_front =
1241 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1242 	put_unaligned_be32(header_extent_size, virt);
1243 	virt += 4;
1244 	put_unaligned_be16(num_header_extents_at_front, virt);
1245 	(*written) = 6;
1246 }
1247 
1248 struct kmem_cache *ecryptfs_header_cache_1;
1249 struct kmem_cache *ecryptfs_header_cache_2;
1250 
1251 /**
1252  * ecryptfs_write_headers_virt
1253  * @page_virt: The virtual address to write the headers to
1254  * @max: The size of memory allocated at page_virt
1255  * @size: Set to the number of bytes written by this function
1256  * @crypt_stat: The cryptographic context
1257  * @ecryptfs_dentry: The eCryptfs dentry
1258  *
1259  * Format version: 1
1260  *
1261  *   Header Extent:
1262  *     Octets 0-7:        Unencrypted file size (big-endian)
1263  *     Octets 8-15:       eCryptfs special marker
1264  *     Octets 16-19:      Flags
1265  *      Octet 16:         File format version number (between 0 and 255)
1266  *      Octets 17-18:     Reserved
1267  *      Octet 19:         Bit 1 (lsb): Reserved
1268  *                        Bit 2: Encrypted?
1269  *                        Bits 3-8: Reserved
1270  *     Octets 20-23:      Header extent size (big-endian)
1271  *     Octets 24-25:      Number of header extents at front of file
1272  *                        (big-endian)
1273  *     Octet  26:         Begin RFC 2440 authentication token packet set
1274  *   Data Extent 0:
1275  *     Lower data (CBC encrypted)
1276  *   Data Extent 1:
1277  *     Lower data (CBC encrypted)
1278  *   ...
1279  *
1280  * Returns zero on success
1281  */
1282 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1283 				       size_t *size,
1284 				       struct ecryptfs_crypt_stat *crypt_stat,
1285 				       struct dentry *ecryptfs_dentry)
1286 {
1287 	int rc;
1288 	size_t written;
1289 	size_t offset;
1290 
1291 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1292 	write_ecryptfs_marker((page_virt + offset), &written);
1293 	offset += written;
1294 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1295 					&written);
1296 	offset += written;
1297 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1298 				       &written);
1299 	offset += written;
1300 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1301 					      ecryptfs_dentry, &written,
1302 					      max - offset);
1303 	if (rc)
1304 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1305 				"set; rc = [%d]\n", rc);
1306 	if (size) {
1307 		offset += written;
1308 		*size = offset;
1309 	}
1310 	return rc;
1311 }
1312 
1313 static int
1314 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1315 				    char *virt, size_t virt_len)
1316 {
1317 	int rc;
1318 
1319 	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1320 				  0, virt_len);
1321 	if (rc < 0)
1322 		printk(KERN_ERR "%s: Error attempting to write header "
1323 		       "information to lower file; rc = [%d]\n", __func__, rc);
1324 	else
1325 		rc = 0;
1326 	return rc;
1327 }
1328 
1329 static int
1330 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1331 				 char *page_virt, size_t size)
1332 {
1333 	int rc;
1334 
1335 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1336 			       size, 0);
1337 	return rc;
1338 }
1339 
1340 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1341 					       unsigned int order)
1342 {
1343 	struct page *page;
1344 
1345 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1346 	if (page)
1347 		return (unsigned long) page_address(page);
1348 	return 0;
1349 }
1350 
1351 /**
1352  * ecryptfs_write_metadata
1353  * @ecryptfs_dentry: The eCryptfs dentry
1354  *
1355  * Write the file headers out.  This will likely involve a userspace
1356  * callout, in which the session key is encrypted with one or more
1357  * public keys and/or the passphrase necessary to do the encryption is
1358  * retrieved via a prompt.  Exactly what happens at this point should
1359  * be policy-dependent.
1360  *
1361  * Returns zero on success; non-zero on error
1362  */
1363 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1364 {
1365 	struct ecryptfs_crypt_stat *crypt_stat =
1366 		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1367 	unsigned int order;
1368 	char *virt;
1369 	size_t virt_len;
1370 	size_t size = 0;
1371 	int rc = 0;
1372 
1373 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1374 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1375 			printk(KERN_ERR "Key is invalid; bailing out\n");
1376 			rc = -EINVAL;
1377 			goto out;
1378 		}
1379 	} else {
1380 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1381 		       __func__);
1382 		rc = -EINVAL;
1383 		goto out;
1384 	}
1385 	virt_len = crypt_stat->metadata_size;
1386 	order = get_order(virt_len);
1387 	/* Released in this function */
1388 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1389 	if (!virt) {
1390 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1391 		rc = -ENOMEM;
1392 		goto out;
1393 	}
1394 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1395 					 ecryptfs_dentry);
1396 	if (unlikely(rc)) {
1397 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1398 		       __func__, rc);
1399 		goto out_free;
1400 	}
1401 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1402 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1403 						      size);
1404 	else
1405 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1406 							 virt_len);
1407 	if (rc) {
1408 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1409 		       "rc = [%d]\n", __func__, rc);
1410 		goto out_free;
1411 	}
1412 out_free:
1413 	free_pages((unsigned long)virt, order);
1414 out:
1415 	return rc;
1416 }
1417 
1418 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1419 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1420 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1421 				 char *virt, int *bytes_read,
1422 				 int validate_header_size)
1423 {
1424 	int rc = 0;
1425 	u32 header_extent_size;
1426 	u16 num_header_extents_at_front;
1427 
1428 	header_extent_size = get_unaligned_be32(virt);
1429 	virt += sizeof(__be32);
1430 	num_header_extents_at_front = get_unaligned_be16(virt);
1431 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1432 				     * (size_t)header_extent_size));
1433 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1434 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1435 	    && (crypt_stat->metadata_size
1436 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1437 		rc = -EINVAL;
1438 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1439 		       crypt_stat->metadata_size);
1440 	}
1441 	return rc;
1442 }
1443 
1444 /**
1445  * set_default_header_data
1446  * @crypt_stat: The cryptographic context
1447  *
1448  * For version 0 file format; this function is only for backwards
1449  * compatibility for files created with the prior versions of
1450  * eCryptfs.
1451  */
1452 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1453 {
1454 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1455 }
1456 
1457 /**
1458  * ecryptfs_read_headers_virt
1459  * @page_virt: The virtual address into which to read the headers
1460  * @crypt_stat: The cryptographic context
1461  * @ecryptfs_dentry: The eCryptfs dentry
1462  * @validate_header_size: Whether to validate the header size while reading
1463  *
1464  * Read/parse the header data. The header format is detailed in the
1465  * comment block for the ecryptfs_write_headers_virt() function.
1466  *
1467  * Returns zero on success
1468  */
1469 static int ecryptfs_read_headers_virt(char *page_virt,
1470 				      struct ecryptfs_crypt_stat *crypt_stat,
1471 				      struct dentry *ecryptfs_dentry,
1472 				      int validate_header_size)
1473 {
1474 	int rc = 0;
1475 	int offset;
1476 	int bytes_read;
1477 
1478 	ecryptfs_set_default_sizes(crypt_stat);
1479 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1480 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1481 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1482 	rc = contains_ecryptfs_marker(page_virt + offset);
1483 	if (rc == 0) {
1484 		rc = -EINVAL;
1485 		goto out;
1486 	}
1487 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1488 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1489 				    &bytes_read);
1490 	if (rc) {
1491 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1492 		goto out;
1493 	}
1494 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1495 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1496 				"file version [%d] is supported by this "
1497 				"version of eCryptfs\n",
1498 				crypt_stat->file_version,
1499 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1500 		rc = -EINVAL;
1501 		goto out;
1502 	}
1503 	offset += bytes_read;
1504 	if (crypt_stat->file_version >= 1) {
1505 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1506 					   &bytes_read, validate_header_size);
1507 		if (rc) {
1508 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1509 					"metadata; rc = [%d]\n", rc);
1510 		}
1511 		offset += bytes_read;
1512 	} else
1513 		set_default_header_data(crypt_stat);
1514 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1515 				       ecryptfs_dentry);
1516 out:
1517 	return rc;
1518 }
1519 
1520 /**
1521  * ecryptfs_read_xattr_region
1522  * @page_virt: The vitual address into which to read the xattr data
1523  * @ecryptfs_inode: The eCryptfs inode
1524  *
1525  * Attempts to read the crypto metadata from the extended attribute
1526  * region of the lower file.
1527  *
1528  * Returns zero on success; non-zero on error
1529  */
1530 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1531 {
1532 	struct dentry *lower_dentry =
1533 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1534 	ssize_t size;
1535 	int rc = 0;
1536 
1537 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1538 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1539 	if (size < 0) {
1540 		if (unlikely(ecryptfs_verbosity > 0))
1541 			printk(KERN_INFO "Error attempting to read the [%s] "
1542 			       "xattr from the lower file; return value = "
1543 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1544 		rc = -EINVAL;
1545 		goto out;
1546 	}
1547 out:
1548 	return rc;
1549 }
1550 
1551 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1552 					    struct dentry *ecryptfs_dentry)
1553 {
1554 	int rc;
1555 
1556 	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1557 	if (rc)
1558 		goto out;
1559 	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
1560 		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1561 			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1562 		rc = -EINVAL;
1563 	}
1564 out:
1565 	return rc;
1566 }
1567 
1568 /**
1569  * ecryptfs_read_metadata
1570  *
1571  * Common entry point for reading file metadata. From here, we could
1572  * retrieve the header information from the header region of the file,
1573  * the xattr region of the file, or some other repostory that is
1574  * stored separately from the file itself. The current implementation
1575  * supports retrieving the metadata information from the file contents
1576  * and from the xattr region.
1577  *
1578  * Returns zero if valid headers found and parsed; non-zero otherwise
1579  */
1580 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1581 {
1582 	int rc = 0;
1583 	char *page_virt = NULL;
1584 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1585 	struct ecryptfs_crypt_stat *crypt_stat =
1586 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1587 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1588 		&ecryptfs_superblock_to_private(
1589 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1590 
1591 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1592 						      mount_crypt_stat);
1593 	/* Read the first page from the underlying file */
1594 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1595 	if (!page_virt) {
1596 		rc = -ENOMEM;
1597 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1598 		       __func__);
1599 		goto out;
1600 	}
1601 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1602 				 ecryptfs_inode);
1603 	if (rc >= 0)
1604 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1605 						ecryptfs_dentry,
1606 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1607 	if (rc) {
1608 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1609 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1610 		if (rc) {
1611 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1612 			       "file header region or xattr region\n");
1613 			rc = -EINVAL;
1614 			goto out;
1615 		}
1616 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1617 						ecryptfs_dentry,
1618 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1619 		if (rc) {
1620 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1621 			       "file xattr region either\n");
1622 			rc = -EINVAL;
1623 		}
1624 		if (crypt_stat->mount_crypt_stat->flags
1625 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1626 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1627 		} else {
1628 			printk(KERN_WARNING "Attempt to access file with "
1629 			       "crypto metadata only in the extended attribute "
1630 			       "region, but eCryptfs was mounted without "
1631 			       "xattr support enabled. eCryptfs will not treat "
1632 			       "this like an encrypted file.\n");
1633 			rc = -EINVAL;
1634 		}
1635 	}
1636 out:
1637 	if (page_virt) {
1638 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1639 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1640 	}
1641 	return rc;
1642 }
1643 
1644 /**
1645  * ecryptfs_encrypt_filename - encrypt filename
1646  *
1647  * CBC-encrypts the filename. We do not want to encrypt the same
1648  * filename with the same key and IV, which may happen with hard
1649  * links, so we prepend random bits to each filename.
1650  *
1651  * Returns zero on success; non-zero otherwise
1652  */
1653 static int
1654 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1655 			  struct ecryptfs_crypt_stat *crypt_stat,
1656 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1657 {
1658 	int rc = 0;
1659 
1660 	filename->encrypted_filename = NULL;
1661 	filename->encrypted_filename_size = 0;
1662 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1663 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1664 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1665 		size_t packet_size;
1666 		size_t remaining_bytes;
1667 
1668 		rc = ecryptfs_write_tag_70_packet(
1669 			NULL, NULL,
1670 			&filename->encrypted_filename_size,
1671 			mount_crypt_stat, NULL,
1672 			filename->filename_size);
1673 		if (rc) {
1674 			printk(KERN_ERR "%s: Error attempting to get packet "
1675 			       "size for tag 72; rc = [%d]\n", __func__,
1676 			       rc);
1677 			filename->encrypted_filename_size = 0;
1678 			goto out;
1679 		}
1680 		filename->encrypted_filename =
1681 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1682 		if (!filename->encrypted_filename) {
1683 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1684 			       "to kmalloc [%zd] bytes\n", __func__,
1685 			       filename->encrypted_filename_size);
1686 			rc = -ENOMEM;
1687 			goto out;
1688 		}
1689 		remaining_bytes = filename->encrypted_filename_size;
1690 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1691 						  &remaining_bytes,
1692 						  &packet_size,
1693 						  mount_crypt_stat,
1694 						  filename->filename,
1695 						  filename->filename_size);
1696 		if (rc) {
1697 			printk(KERN_ERR "%s: Error attempting to generate "
1698 			       "tag 70 packet; rc = [%d]\n", __func__,
1699 			       rc);
1700 			kfree(filename->encrypted_filename);
1701 			filename->encrypted_filename = NULL;
1702 			filename->encrypted_filename_size = 0;
1703 			goto out;
1704 		}
1705 		filename->encrypted_filename_size = packet_size;
1706 	} else {
1707 		printk(KERN_ERR "%s: No support for requested filename "
1708 		       "encryption method in this release\n", __func__);
1709 		rc = -EOPNOTSUPP;
1710 		goto out;
1711 	}
1712 out:
1713 	return rc;
1714 }
1715 
1716 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1717 				  const char *name, size_t name_size)
1718 {
1719 	int rc = 0;
1720 
1721 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1722 	if (!(*copied_name)) {
1723 		rc = -ENOMEM;
1724 		goto out;
1725 	}
1726 	memcpy((void *)(*copied_name), (void *)name, name_size);
1727 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1728 						 * in printing out the
1729 						 * string in debug
1730 						 * messages */
1731 	(*copied_name_size) = name_size;
1732 out:
1733 	return rc;
1734 }
1735 
1736 /**
1737  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1738  * @key_tfm: Crypto context for key material, set by this function
1739  * @cipher_name: Name of the cipher
1740  * @key_size: Size of the key in bytes
1741  *
1742  * Returns zero on success. Any crypto_tfm structs allocated here
1743  * should be released by other functions, such as on a superblock put
1744  * event, regardless of whether this function succeeds for fails.
1745  */
1746 static int
1747 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1748 			    char *cipher_name, size_t *key_size)
1749 {
1750 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1751 	char *full_alg_name = NULL;
1752 	int rc;
1753 
1754 	*key_tfm = NULL;
1755 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1756 		rc = -EINVAL;
1757 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1758 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1759 		goto out;
1760 	}
1761 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1762 						    "ecb");
1763 	if (rc)
1764 		goto out;
1765 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1766 	if (IS_ERR(*key_tfm)) {
1767 		rc = PTR_ERR(*key_tfm);
1768 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1769 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1770 		goto out;
1771 	}
1772 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1773 	if (*key_size == 0) {
1774 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1775 
1776 		*key_size = alg->max_keysize;
1777 	}
1778 	get_random_bytes(dummy_key, *key_size);
1779 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1780 	if (rc) {
1781 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1782 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1783 		       rc);
1784 		rc = -EINVAL;
1785 		goto out;
1786 	}
1787 out:
1788 	kfree(full_alg_name);
1789 	return rc;
1790 }
1791 
1792 struct kmem_cache *ecryptfs_key_tfm_cache;
1793 static struct list_head key_tfm_list;
1794 struct mutex key_tfm_list_mutex;
1795 
1796 int ecryptfs_init_crypto(void)
1797 {
1798 	mutex_init(&key_tfm_list_mutex);
1799 	INIT_LIST_HEAD(&key_tfm_list);
1800 	return 0;
1801 }
1802 
1803 /**
1804  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1805  *
1806  * Called only at module unload time
1807  */
1808 int ecryptfs_destroy_crypto(void)
1809 {
1810 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1811 
1812 	mutex_lock(&key_tfm_list_mutex);
1813 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1814 				 key_tfm_list) {
1815 		list_del(&key_tfm->key_tfm_list);
1816 		if (key_tfm->key_tfm)
1817 			crypto_free_blkcipher(key_tfm->key_tfm);
1818 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1819 	}
1820 	mutex_unlock(&key_tfm_list_mutex);
1821 	return 0;
1822 }
1823 
1824 int
1825 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1826 			 size_t key_size)
1827 {
1828 	struct ecryptfs_key_tfm *tmp_tfm;
1829 	int rc = 0;
1830 
1831 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1832 
1833 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1834 	if (key_tfm != NULL)
1835 		(*key_tfm) = tmp_tfm;
1836 	if (!tmp_tfm) {
1837 		rc = -ENOMEM;
1838 		printk(KERN_ERR "Error attempting to allocate from "
1839 		       "ecryptfs_key_tfm_cache\n");
1840 		goto out;
1841 	}
1842 	mutex_init(&tmp_tfm->key_tfm_mutex);
1843 	strncpy(tmp_tfm->cipher_name, cipher_name,
1844 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1845 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1846 	tmp_tfm->key_size = key_size;
1847 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1848 					 tmp_tfm->cipher_name,
1849 					 &tmp_tfm->key_size);
1850 	if (rc) {
1851 		printk(KERN_ERR "Error attempting to initialize key TFM "
1852 		       "cipher with name = [%s]; rc = [%d]\n",
1853 		       tmp_tfm->cipher_name, rc);
1854 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1855 		if (key_tfm != NULL)
1856 			(*key_tfm) = NULL;
1857 		goto out;
1858 	}
1859 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1860 out:
1861 	return rc;
1862 }
1863 
1864 /**
1865  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1866  * @cipher_name: the name of the cipher to search for
1867  * @key_tfm: set to corresponding tfm if found
1868  *
1869  * Searches for cached key_tfm matching @cipher_name
1870  * Must be called with &key_tfm_list_mutex held
1871  * Returns 1 if found, with @key_tfm set
1872  * Returns 0 if not found, with @key_tfm set to NULL
1873  */
1874 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1875 {
1876 	struct ecryptfs_key_tfm *tmp_key_tfm;
1877 
1878 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1879 
1880 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1881 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1882 			if (key_tfm)
1883 				(*key_tfm) = tmp_key_tfm;
1884 			return 1;
1885 		}
1886 	}
1887 	if (key_tfm)
1888 		(*key_tfm) = NULL;
1889 	return 0;
1890 }
1891 
1892 /**
1893  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1894  *
1895  * @tfm: set to cached tfm found, or new tfm created
1896  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1897  * @cipher_name: the name of the cipher to search for and/or add
1898  *
1899  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1900  * Searches for cached item first, and creates new if not found.
1901  * Returns 0 on success, non-zero if adding new cipher failed
1902  */
1903 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1904 					       struct mutex **tfm_mutex,
1905 					       char *cipher_name)
1906 {
1907 	struct ecryptfs_key_tfm *key_tfm;
1908 	int rc = 0;
1909 
1910 	(*tfm) = NULL;
1911 	(*tfm_mutex) = NULL;
1912 
1913 	mutex_lock(&key_tfm_list_mutex);
1914 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1915 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1916 		if (rc) {
1917 			printk(KERN_ERR "Error adding new key_tfm to list; "
1918 					"rc = [%d]\n", rc);
1919 			goto out;
1920 		}
1921 	}
1922 	(*tfm) = key_tfm->key_tfm;
1923 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1924 out:
1925 	mutex_unlock(&key_tfm_list_mutex);
1926 	return rc;
1927 }
1928 
1929 /* 64 characters forming a 6-bit target field */
1930 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1931 						 "EFGHIJKLMNOPQRST"
1932 						 "UVWXYZabcdefghij"
1933 						 "klmnopqrstuvwxyz");
1934 
1935 /* We could either offset on every reverse map or just pad some 0x00's
1936  * at the front here */
1937 static const unsigned char filename_rev_map[] = {
1938 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1939 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1940 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1941 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1942 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1943 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1944 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1945 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1946 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1947 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1948 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1949 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1950 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1951 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1952 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1953 	0x3D, 0x3E, 0x3F
1954 };
1955 
1956 /**
1957  * ecryptfs_encode_for_filename
1958  * @dst: Destination location for encoded filename
1959  * @dst_size: Size of the encoded filename in bytes
1960  * @src: Source location for the filename to encode
1961  * @src_size: Size of the source in bytes
1962  */
1963 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1964 				  unsigned char *src, size_t src_size)
1965 {
1966 	size_t num_blocks;
1967 	size_t block_num = 0;
1968 	size_t dst_offset = 0;
1969 	unsigned char last_block[3];
1970 
1971 	if (src_size == 0) {
1972 		(*dst_size) = 0;
1973 		goto out;
1974 	}
1975 	num_blocks = (src_size / 3);
1976 	if ((src_size % 3) == 0) {
1977 		memcpy(last_block, (&src[src_size - 3]), 3);
1978 	} else {
1979 		num_blocks++;
1980 		last_block[2] = 0x00;
1981 		switch (src_size % 3) {
1982 		case 1:
1983 			last_block[0] = src[src_size - 1];
1984 			last_block[1] = 0x00;
1985 			break;
1986 		case 2:
1987 			last_block[0] = src[src_size - 2];
1988 			last_block[1] = src[src_size - 1];
1989 		}
1990 	}
1991 	(*dst_size) = (num_blocks * 4);
1992 	if (!dst)
1993 		goto out;
1994 	while (block_num < num_blocks) {
1995 		unsigned char *src_block;
1996 		unsigned char dst_block[4];
1997 
1998 		if (block_num == (num_blocks - 1))
1999 			src_block = last_block;
2000 		else
2001 			src_block = &src[block_num * 3];
2002 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2003 		dst_block[1] = (((src_block[0] << 4) & 0x30)
2004 				| ((src_block[1] >> 4) & 0x0F));
2005 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
2006 				| ((src_block[2] >> 6) & 0x03));
2007 		dst_block[3] = (src_block[2] & 0x3F);
2008 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2009 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2010 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2011 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2012 		block_num++;
2013 	}
2014 out:
2015 	return;
2016 }
2017 
2018 /**
2019  * ecryptfs_decode_from_filename
2020  * @dst: If NULL, this function only sets @dst_size and returns. If
2021  *       non-NULL, this function decodes the encoded octets in @src
2022  *       into the memory that @dst points to.
2023  * @dst_size: Set to the size of the decoded string.
2024  * @src: The encoded set of octets to decode.
2025  * @src_size: The size of the encoded set of octets to decode.
2026  */
2027 static void
2028 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2029 			      const unsigned char *src, size_t src_size)
2030 {
2031 	u8 current_bit_offset = 0;
2032 	size_t src_byte_offset = 0;
2033 	size_t dst_byte_offset = 0;
2034 
2035 	if (dst == NULL) {
2036 		/* Not exact; conservatively long. Every block of 4
2037 		 * encoded characters decodes into a block of 3
2038 		 * decoded characters. This segment of code provides
2039 		 * the caller with the maximum amount of allocated
2040 		 * space that @dst will need to point to in a
2041 		 * subsequent call. */
2042 		(*dst_size) = (((src_size + 1) * 3) / 4);
2043 		goto out;
2044 	}
2045 	while (src_byte_offset < src_size) {
2046 		unsigned char src_byte =
2047 				filename_rev_map[(int)src[src_byte_offset]];
2048 
2049 		switch (current_bit_offset) {
2050 		case 0:
2051 			dst[dst_byte_offset] = (src_byte << 2);
2052 			current_bit_offset = 6;
2053 			break;
2054 		case 6:
2055 			dst[dst_byte_offset++] |= (src_byte >> 4);
2056 			dst[dst_byte_offset] = ((src_byte & 0xF)
2057 						 << 4);
2058 			current_bit_offset = 4;
2059 			break;
2060 		case 4:
2061 			dst[dst_byte_offset++] |= (src_byte >> 2);
2062 			dst[dst_byte_offset] = (src_byte << 6);
2063 			current_bit_offset = 2;
2064 			break;
2065 		case 2:
2066 			dst[dst_byte_offset++] |= (src_byte);
2067 			dst[dst_byte_offset] = 0;
2068 			current_bit_offset = 0;
2069 			break;
2070 		}
2071 		src_byte_offset++;
2072 	}
2073 	(*dst_size) = dst_byte_offset;
2074 out:
2075 	return;
2076 }
2077 
2078 /**
2079  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2080  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2081  * @name: The plaintext name
2082  * @length: The length of the plaintext
2083  * @encoded_name: The encypted name
2084  *
2085  * Encrypts and encodes a filename into something that constitutes a
2086  * valid filename for a filesystem, with printable characters.
2087  *
2088  * We assume that we have a properly initialized crypto context,
2089  * pointed to by crypt_stat->tfm.
2090  *
2091  * Returns zero on success; non-zero on otherwise
2092  */
2093 int ecryptfs_encrypt_and_encode_filename(
2094 	char **encoded_name,
2095 	size_t *encoded_name_size,
2096 	struct ecryptfs_crypt_stat *crypt_stat,
2097 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2098 	const char *name, size_t name_size)
2099 {
2100 	size_t encoded_name_no_prefix_size;
2101 	int rc = 0;
2102 
2103 	(*encoded_name) = NULL;
2104 	(*encoded_name_size) = 0;
2105 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2106 	    || (mount_crypt_stat && (mount_crypt_stat->flags
2107 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2108 		struct ecryptfs_filename *filename;
2109 
2110 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2111 		if (!filename) {
2112 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2113 			       "to kzalloc [%zd] bytes\n", __func__,
2114 			       sizeof(*filename));
2115 			rc = -ENOMEM;
2116 			goto out;
2117 		}
2118 		filename->filename = (char *)name;
2119 		filename->filename_size = name_size;
2120 		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2121 					       mount_crypt_stat);
2122 		if (rc) {
2123 			printk(KERN_ERR "%s: Error attempting to encrypt "
2124 			       "filename; rc = [%d]\n", __func__, rc);
2125 			kfree(filename);
2126 			goto out;
2127 		}
2128 		ecryptfs_encode_for_filename(
2129 			NULL, &encoded_name_no_prefix_size,
2130 			filename->encrypted_filename,
2131 			filename->encrypted_filename_size);
2132 		if ((crypt_stat && (crypt_stat->flags
2133 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2134 		    || (mount_crypt_stat
2135 			&& (mount_crypt_stat->flags
2136 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2137 			(*encoded_name_size) =
2138 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2139 				 + encoded_name_no_prefix_size);
2140 		else
2141 			(*encoded_name_size) =
2142 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2143 				 + encoded_name_no_prefix_size);
2144 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2145 		if (!(*encoded_name)) {
2146 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2147 			       "to kzalloc [%zd] bytes\n", __func__,
2148 			       (*encoded_name_size));
2149 			rc = -ENOMEM;
2150 			kfree(filename->encrypted_filename);
2151 			kfree(filename);
2152 			goto out;
2153 		}
2154 		if ((crypt_stat && (crypt_stat->flags
2155 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2156 		    || (mount_crypt_stat
2157 			&& (mount_crypt_stat->flags
2158 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2159 			memcpy((*encoded_name),
2160 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2161 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2162 			ecryptfs_encode_for_filename(
2163 			    ((*encoded_name)
2164 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2165 			    &encoded_name_no_prefix_size,
2166 			    filename->encrypted_filename,
2167 			    filename->encrypted_filename_size);
2168 			(*encoded_name_size) =
2169 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2170 				 + encoded_name_no_prefix_size);
2171 			(*encoded_name)[(*encoded_name_size)] = '\0';
2172 			(*encoded_name_size)++;
2173 		} else {
2174 			rc = -EOPNOTSUPP;
2175 		}
2176 		if (rc) {
2177 			printk(KERN_ERR "%s: Error attempting to encode "
2178 			       "encrypted filename; rc = [%d]\n", __func__,
2179 			       rc);
2180 			kfree((*encoded_name));
2181 			(*encoded_name) = NULL;
2182 			(*encoded_name_size) = 0;
2183 		}
2184 		kfree(filename->encrypted_filename);
2185 		kfree(filename);
2186 	} else {
2187 		rc = ecryptfs_copy_filename(encoded_name,
2188 					    encoded_name_size,
2189 					    name, name_size);
2190 	}
2191 out:
2192 	return rc;
2193 }
2194 
2195 /**
2196  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2197  * @plaintext_name: The plaintext name
2198  * @plaintext_name_size: The plaintext name size
2199  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2200  * @name: The filename in cipher text
2201  * @name_size: The cipher text name size
2202  *
2203  * Decrypts and decodes the filename.
2204  *
2205  * Returns zero on error; non-zero otherwise
2206  */
2207 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2208 					 size_t *plaintext_name_size,
2209 					 struct dentry *ecryptfs_dir_dentry,
2210 					 const char *name, size_t name_size)
2211 {
2212 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2213 		&ecryptfs_superblock_to_private(
2214 			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2215 	char *decoded_name;
2216 	size_t decoded_name_size;
2217 	size_t packet_size;
2218 	int rc = 0;
2219 
2220 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2221 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2222 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2223 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2224 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2225 		const char *orig_name = name;
2226 		size_t orig_name_size = name_size;
2227 
2228 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2229 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2230 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2231 					      name, name_size);
2232 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2233 		if (!decoded_name) {
2234 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2235 			       "to kmalloc [%zd] bytes\n", __func__,
2236 			       decoded_name_size);
2237 			rc = -ENOMEM;
2238 			goto out;
2239 		}
2240 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2241 					      name, name_size);
2242 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2243 						  plaintext_name_size,
2244 						  &packet_size,
2245 						  mount_crypt_stat,
2246 						  decoded_name,
2247 						  decoded_name_size);
2248 		if (rc) {
2249 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2250 			       "from filename; copying through filename "
2251 			       "as-is\n", __func__);
2252 			rc = ecryptfs_copy_filename(plaintext_name,
2253 						    plaintext_name_size,
2254 						    orig_name, orig_name_size);
2255 			goto out_free;
2256 		}
2257 	} else {
2258 		rc = ecryptfs_copy_filename(plaintext_name,
2259 					    plaintext_name_size,
2260 					    name, name_size);
2261 		goto out;
2262 	}
2263 out_free:
2264 	kfree(decoded_name);
2265 out:
2266 	return rc;
2267 }
2268