xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2004 Erez Zadok
6  * Copyright (C) 2001-2004 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *   		Michael C. Thompson <mcthomps@us.ibm.com>
10  */
11 
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 #include <linux/fs.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
28 
29 #define DECRYPT		0
30 #define ENCRYPT		1
31 
32 /**
33  * ecryptfs_from_hex
34  * @dst: Buffer to take the bytes from src hex; must be at least of
35  *       size (src_size / 2)
36  * @src: Buffer to be converted from a hex string representation to raw value
37  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38  */
39 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40 {
41 	int x;
42 	char tmp[3] = { 0, };
43 
44 	for (x = 0; x < dst_size; x++) {
45 		tmp[0] = src[x * 2];
46 		tmp[1] = src[x * 2 + 1];
47 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48 	}
49 }
50 
51 static int ecryptfs_hash_digest(struct crypto_shash *tfm,
52 				char *src, int len, char *dst)
53 {
54 	SHASH_DESC_ON_STACK(desc, tfm);
55 	int err;
56 
57 	desc->tfm = tfm;
58 	err = crypto_shash_digest(desc, src, len, dst);
59 	shash_desc_zero(desc);
60 	return err;
61 }
62 
63 /**
64  * ecryptfs_calculate_md5 - calculates the md5 of @src
65  * @dst: Pointer to 16 bytes of allocated memory
66  * @crypt_stat: Pointer to crypt_stat struct for the current inode
67  * @src: Data to be md5'd
68  * @len: Length of @src
69  *
70  * Uses the allocated crypto context that crypt_stat references to
71  * generate the MD5 sum of the contents of src.
72  */
73 static int ecryptfs_calculate_md5(char *dst,
74 				  struct ecryptfs_crypt_stat *crypt_stat,
75 				  char *src, int len)
76 {
77 	struct crypto_shash *tfm;
78 	int rc = 0;
79 
80 	tfm = crypt_stat->hash_tfm;
81 	rc = ecryptfs_hash_digest(tfm, src, len, dst);
82 	if (rc) {
83 		printk(KERN_ERR
84 		       "%s: Error computing crypto hash; rc = [%d]\n",
85 		       __func__, rc);
86 		goto out;
87 	}
88 out:
89 	return rc;
90 }
91 
92 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
93 						  char *cipher_name,
94 						  char *chaining_modifier)
95 {
96 	int cipher_name_len = strlen(cipher_name);
97 	int chaining_modifier_len = strlen(chaining_modifier);
98 	int algified_name_len;
99 	int rc;
100 
101 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
102 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
103 	if (!(*algified_name)) {
104 		rc = -ENOMEM;
105 		goto out;
106 	}
107 	snprintf((*algified_name), algified_name_len, "%s(%s)",
108 		 chaining_modifier, cipher_name);
109 	rc = 0;
110 out:
111 	return rc;
112 }
113 
114 /**
115  * ecryptfs_derive_iv
116  * @iv: destination for the derived iv vale
117  * @crypt_stat: Pointer to crypt_stat struct for the current inode
118  * @offset: Offset of the extent whose IV we are to derive
119  *
120  * Generate the initialization vector from the given root IV and page
121  * offset.
122  *
123  * Returns zero on success; non-zero on error.
124  */
125 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
126 		       loff_t offset)
127 {
128 	int rc = 0;
129 	char dst[MD5_DIGEST_SIZE];
130 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
131 
132 	if (unlikely(ecryptfs_verbosity > 0)) {
133 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
134 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
135 	}
136 	/* TODO: It is probably secure to just cast the least
137 	 * significant bits of the root IV into an unsigned long and
138 	 * add the offset to that rather than go through all this
139 	 * hashing business. -Halcrow */
140 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
141 	memset((src + crypt_stat->iv_bytes), 0, 16);
142 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
143 	if (unlikely(ecryptfs_verbosity > 0)) {
144 		ecryptfs_printk(KERN_DEBUG, "source:\n");
145 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
146 	}
147 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
148 				    (crypt_stat->iv_bytes + 16));
149 	if (rc) {
150 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
151 				"MD5 while generating IV for a page\n");
152 		goto out;
153 	}
154 	memcpy(iv, dst, crypt_stat->iv_bytes);
155 	if (unlikely(ecryptfs_verbosity > 0)) {
156 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
157 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
158 	}
159 out:
160 	return rc;
161 }
162 
163 /**
164  * ecryptfs_init_crypt_stat
165  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
166  *
167  * Initialize the crypt_stat structure.
168  */
169 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
170 {
171 	struct crypto_shash *tfm;
172 	int rc;
173 
174 	tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
175 	if (IS_ERR(tfm)) {
176 		rc = PTR_ERR(tfm);
177 		ecryptfs_printk(KERN_ERR, "Error attempting to "
178 				"allocate crypto context; rc = [%d]\n",
179 				rc);
180 		return rc;
181 	}
182 
183 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
184 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
185 	mutex_init(&crypt_stat->keysig_list_mutex);
186 	mutex_init(&crypt_stat->cs_mutex);
187 	mutex_init(&crypt_stat->cs_tfm_mutex);
188 	crypt_stat->hash_tfm = tfm;
189 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
190 
191 	return 0;
192 }
193 
194 /**
195  * ecryptfs_destroy_crypt_stat
196  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
197  *
198  * Releases all memory associated with a crypt_stat struct.
199  */
200 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
201 {
202 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
203 
204 	crypto_free_skcipher(crypt_stat->tfm);
205 	crypto_free_shash(crypt_stat->hash_tfm);
206 	list_for_each_entry_safe(key_sig, key_sig_tmp,
207 				 &crypt_stat->keysig_list, crypt_stat_list) {
208 		list_del(&key_sig->crypt_stat_list);
209 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
210 	}
211 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
212 }
213 
214 void ecryptfs_destroy_mount_crypt_stat(
215 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
216 {
217 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
218 
219 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
220 		return;
221 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
222 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
223 				 &mount_crypt_stat->global_auth_tok_list,
224 				 mount_crypt_stat_list) {
225 		list_del(&auth_tok->mount_crypt_stat_list);
226 		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
227 			key_put(auth_tok->global_auth_tok_key);
228 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
229 	}
230 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
231 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
232 }
233 
234 /**
235  * virt_to_scatterlist
236  * @addr: Virtual address
237  * @size: Size of data; should be an even multiple of the block size
238  * @sg: Pointer to scatterlist array; set to NULL to obtain only
239  *      the number of scatterlist structs required in array
240  * @sg_size: Max array size
241  *
242  * Fills in a scatterlist array with page references for a passed
243  * virtual address.
244  *
245  * Returns the number of scatterlist structs in array used
246  */
247 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
248 			int sg_size)
249 {
250 	int i = 0;
251 	struct page *pg;
252 	int offset;
253 	int remainder_of_page;
254 
255 	sg_init_table(sg, sg_size);
256 
257 	while (size > 0 && i < sg_size) {
258 		pg = virt_to_page(addr);
259 		offset = offset_in_page(addr);
260 		sg_set_page(&sg[i], pg, 0, offset);
261 		remainder_of_page = PAGE_SIZE - offset;
262 		if (size >= remainder_of_page) {
263 			sg[i].length = remainder_of_page;
264 			addr += remainder_of_page;
265 			size -= remainder_of_page;
266 		} else {
267 			sg[i].length = size;
268 			addr += size;
269 			size = 0;
270 		}
271 		i++;
272 	}
273 	if (size > 0)
274 		return -ENOMEM;
275 	return i;
276 }
277 
278 struct extent_crypt_result {
279 	struct completion completion;
280 	int rc;
281 };
282 
283 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
284 {
285 	struct extent_crypt_result *ecr = req->data;
286 
287 	if (rc == -EINPROGRESS)
288 		return;
289 
290 	ecr->rc = rc;
291 	complete(&ecr->completion);
292 }
293 
294 /**
295  * crypt_scatterlist
296  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
297  * @dst_sg: Destination of the data after performing the crypto operation
298  * @src_sg: Data to be encrypted or decrypted
299  * @size: Length of data
300  * @iv: IV to use
301  * @op: ENCRYPT or DECRYPT to indicate the desired operation
302  *
303  * Returns the number of bytes encrypted or decrypted; negative value on error
304  */
305 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
306 			     struct scatterlist *dst_sg,
307 			     struct scatterlist *src_sg, int size,
308 			     unsigned char *iv, int op)
309 {
310 	struct skcipher_request *req = NULL;
311 	struct extent_crypt_result ecr;
312 	int rc = 0;
313 
314 	if (!crypt_stat || !crypt_stat->tfm
315 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED))
316 		return -EINVAL;
317 
318 	if (unlikely(ecryptfs_verbosity > 0)) {
319 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
320 				crypt_stat->key_size);
321 		ecryptfs_dump_hex(crypt_stat->key,
322 				  crypt_stat->key_size);
323 	}
324 
325 	init_completion(&ecr.completion);
326 
327 	mutex_lock(&crypt_stat->cs_tfm_mutex);
328 	req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
329 	if (!req) {
330 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
331 		rc = -ENOMEM;
332 		goto out;
333 	}
334 
335 	skcipher_request_set_callback(req,
336 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
337 			extent_crypt_complete, &ecr);
338 	/* Consider doing this once, when the file is opened */
339 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
340 		rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
341 					    crypt_stat->key_size);
342 		if (rc) {
343 			ecryptfs_printk(KERN_ERR,
344 					"Error setting key; rc = [%d]\n",
345 					rc);
346 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
347 			rc = -EINVAL;
348 			goto out;
349 		}
350 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
351 	}
352 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
353 	skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
354 	rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
355 			     crypto_skcipher_decrypt(req);
356 	if (rc == -EINPROGRESS || rc == -EBUSY) {
357 		struct extent_crypt_result *ecr = req->base.data;
358 
359 		wait_for_completion(&ecr->completion);
360 		rc = ecr->rc;
361 		reinit_completion(&ecr->completion);
362 	}
363 out:
364 	skcipher_request_free(req);
365 	return rc;
366 }
367 
368 /**
369  * lower_offset_for_page
370  *
371  * Convert an eCryptfs page index into a lower byte offset
372  */
373 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
374 				    struct page *page)
375 {
376 	return ecryptfs_lower_header_size(crypt_stat) +
377 	       ((loff_t)page->index << PAGE_SHIFT);
378 }
379 
380 /**
381  * crypt_extent
382  * @crypt_stat: crypt_stat containing cryptographic context for the
383  *              encryption operation
384  * @dst_page: The page to write the result into
385  * @src_page: The page to read from
386  * @extent_offset: Page extent offset for use in generating IV
387  * @op: ENCRYPT or DECRYPT to indicate the desired operation
388  *
389  * Encrypts or decrypts one extent of data.
390  *
391  * Return zero on success; non-zero otherwise
392  */
393 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
394 			struct page *dst_page,
395 			struct page *src_page,
396 			unsigned long extent_offset, int op)
397 {
398 	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
399 	loff_t extent_base;
400 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
401 	struct scatterlist src_sg, dst_sg;
402 	size_t extent_size = crypt_stat->extent_size;
403 	int rc;
404 
405 	extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
406 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
407 				(extent_base + extent_offset));
408 	if (rc) {
409 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
410 			"extent [0x%.16llx]; rc = [%d]\n",
411 			(unsigned long long)(extent_base + extent_offset), rc);
412 		goto out;
413 	}
414 
415 	sg_init_table(&src_sg, 1);
416 	sg_init_table(&dst_sg, 1);
417 
418 	sg_set_page(&src_sg, src_page, extent_size,
419 		    extent_offset * extent_size);
420 	sg_set_page(&dst_sg, dst_page, extent_size,
421 		    extent_offset * extent_size);
422 
423 	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
424 			       extent_iv, op);
425 	if (rc < 0) {
426 		printk(KERN_ERR "%s: Error attempting to crypt page with "
427 		       "page_index = [%ld], extent_offset = [%ld]; "
428 		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
429 		goto out;
430 	}
431 	rc = 0;
432 out:
433 	return rc;
434 }
435 
436 /**
437  * ecryptfs_encrypt_page
438  * @page: Page mapped from the eCryptfs inode for the file; contains
439  *        decrypted content that needs to be encrypted (to a temporary
440  *        page; not in place) and written out to the lower file
441  *
442  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
443  * that eCryptfs pages may straddle the lower pages -- for instance,
444  * if the file was created on a machine with an 8K page size
445  * (resulting in an 8K header), and then the file is copied onto a
446  * host with a 32K page size, then when reading page 0 of the eCryptfs
447  * file, 24K of page 0 of the lower file will be read and decrypted,
448  * and then 8K of page 1 of the lower file will be read and decrypted.
449  *
450  * Returns zero on success; negative on error
451  */
452 int ecryptfs_encrypt_page(struct page *page)
453 {
454 	struct inode *ecryptfs_inode;
455 	struct ecryptfs_crypt_stat *crypt_stat;
456 	char *enc_extent_virt;
457 	struct page *enc_extent_page = NULL;
458 	loff_t extent_offset;
459 	loff_t lower_offset;
460 	int rc = 0;
461 
462 	ecryptfs_inode = page->mapping->host;
463 	crypt_stat =
464 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
465 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
466 	enc_extent_page = alloc_page(GFP_USER);
467 	if (!enc_extent_page) {
468 		rc = -ENOMEM;
469 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
470 				"encrypted extent\n");
471 		goto out;
472 	}
473 
474 	for (extent_offset = 0;
475 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
476 	     extent_offset++) {
477 		rc = crypt_extent(crypt_stat, enc_extent_page, page,
478 				  extent_offset, ENCRYPT);
479 		if (rc) {
480 			printk(KERN_ERR "%s: Error encrypting extent; "
481 			       "rc = [%d]\n", __func__, rc);
482 			goto out;
483 		}
484 	}
485 
486 	lower_offset = lower_offset_for_page(crypt_stat, page);
487 	enc_extent_virt = kmap(enc_extent_page);
488 	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
489 				  PAGE_SIZE);
490 	kunmap(enc_extent_page);
491 	if (rc < 0) {
492 		ecryptfs_printk(KERN_ERR,
493 			"Error attempting to write lower page; rc = [%d]\n",
494 			rc);
495 		goto out;
496 	}
497 	rc = 0;
498 out:
499 	if (enc_extent_page) {
500 		__free_page(enc_extent_page);
501 	}
502 	return rc;
503 }
504 
505 /**
506  * ecryptfs_decrypt_page
507  * @page: Page mapped from the eCryptfs inode for the file; data read
508  *        and decrypted from the lower file will be written into this
509  *        page
510  *
511  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
512  * that eCryptfs pages may straddle the lower pages -- for instance,
513  * if the file was created on a machine with an 8K page size
514  * (resulting in an 8K header), and then the file is copied onto a
515  * host with a 32K page size, then when reading page 0 of the eCryptfs
516  * file, 24K of page 0 of the lower file will be read and decrypted,
517  * and then 8K of page 1 of the lower file will be read and decrypted.
518  *
519  * Returns zero on success; negative on error
520  */
521 int ecryptfs_decrypt_page(struct page *page)
522 {
523 	struct inode *ecryptfs_inode;
524 	struct ecryptfs_crypt_stat *crypt_stat;
525 	char *page_virt;
526 	unsigned long extent_offset;
527 	loff_t lower_offset;
528 	int rc = 0;
529 
530 	ecryptfs_inode = page->mapping->host;
531 	crypt_stat =
532 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
533 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
534 
535 	lower_offset = lower_offset_for_page(crypt_stat, page);
536 	page_virt = kmap(page);
537 	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
538 				 ecryptfs_inode);
539 	kunmap(page);
540 	if (rc < 0) {
541 		ecryptfs_printk(KERN_ERR,
542 			"Error attempting to read lower page; rc = [%d]\n",
543 			rc);
544 		goto out;
545 	}
546 
547 	for (extent_offset = 0;
548 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
549 	     extent_offset++) {
550 		rc = crypt_extent(crypt_stat, page, page,
551 				  extent_offset, DECRYPT);
552 		if (rc) {
553 			printk(KERN_ERR "%s: Error encrypting extent; "
554 			       "rc = [%d]\n", __func__, rc);
555 			goto out;
556 		}
557 	}
558 out:
559 	return rc;
560 }
561 
562 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
563 
564 /**
565  * ecryptfs_init_crypt_ctx
566  * @crypt_stat: Uninitialized crypt stats structure
567  *
568  * Initialize the crypto context.
569  *
570  * TODO: Performance: Keep a cache of initialized cipher contexts;
571  * only init if needed
572  */
573 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
574 {
575 	char *full_alg_name;
576 	int rc = -EINVAL;
577 
578 	ecryptfs_printk(KERN_DEBUG,
579 			"Initializing cipher [%s]; strlen = [%d]; "
580 			"key_size_bits = [%zd]\n",
581 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
582 			crypt_stat->key_size << 3);
583 	mutex_lock(&crypt_stat->cs_tfm_mutex);
584 	if (crypt_stat->tfm) {
585 		rc = 0;
586 		goto out_unlock;
587 	}
588 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
589 						    crypt_stat->cipher, "cbc");
590 	if (rc)
591 		goto out_unlock;
592 	crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
593 	if (IS_ERR(crypt_stat->tfm)) {
594 		rc = PTR_ERR(crypt_stat->tfm);
595 		crypt_stat->tfm = NULL;
596 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
597 				"Error initializing cipher [%s]\n",
598 				full_alg_name);
599 		goto out_free;
600 	}
601 	crypto_skcipher_set_flags(crypt_stat->tfm,
602 				  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
603 	rc = 0;
604 out_free:
605 	kfree(full_alg_name);
606 out_unlock:
607 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
608 	return rc;
609 }
610 
611 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
612 {
613 	int extent_size_tmp;
614 
615 	crypt_stat->extent_mask = 0xFFFFFFFF;
616 	crypt_stat->extent_shift = 0;
617 	if (crypt_stat->extent_size == 0)
618 		return;
619 	extent_size_tmp = crypt_stat->extent_size;
620 	while ((extent_size_tmp & 0x01) == 0) {
621 		extent_size_tmp >>= 1;
622 		crypt_stat->extent_mask <<= 1;
623 		crypt_stat->extent_shift++;
624 	}
625 }
626 
627 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
628 {
629 	/* Default values; may be overwritten as we are parsing the
630 	 * packets. */
631 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
632 	set_extent_mask_and_shift(crypt_stat);
633 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
634 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
635 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
636 	else {
637 		if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
638 			crypt_stat->metadata_size =
639 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
640 		else
641 			crypt_stat->metadata_size = PAGE_SIZE;
642 	}
643 }
644 
645 /**
646  * ecryptfs_compute_root_iv
647  * @crypt_stats
648  *
649  * On error, sets the root IV to all 0's.
650  */
651 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
652 {
653 	int rc = 0;
654 	char dst[MD5_DIGEST_SIZE];
655 
656 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
657 	BUG_ON(crypt_stat->iv_bytes <= 0);
658 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
659 		rc = -EINVAL;
660 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
661 				"cannot generate root IV\n");
662 		goto out;
663 	}
664 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
665 				    crypt_stat->key_size);
666 	if (rc) {
667 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
668 				"MD5 while generating root IV\n");
669 		goto out;
670 	}
671 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
672 out:
673 	if (rc) {
674 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
675 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
676 	}
677 	return rc;
678 }
679 
680 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
681 {
682 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
683 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
684 	ecryptfs_compute_root_iv(crypt_stat);
685 	if (unlikely(ecryptfs_verbosity > 0)) {
686 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
687 		ecryptfs_dump_hex(crypt_stat->key,
688 				  crypt_stat->key_size);
689 	}
690 }
691 
692 /**
693  * ecryptfs_copy_mount_wide_flags_to_inode_flags
694  * @crypt_stat: The inode's cryptographic context
695  * @mount_crypt_stat: The mount point's cryptographic context
696  *
697  * This function propagates the mount-wide flags to individual inode
698  * flags.
699  */
700 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
701 	struct ecryptfs_crypt_stat *crypt_stat,
702 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
703 {
704 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
705 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
706 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
707 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
708 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
709 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
710 		if (mount_crypt_stat->flags
711 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
712 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
713 		else if (mount_crypt_stat->flags
714 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
715 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
716 	}
717 }
718 
719 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
720 	struct ecryptfs_crypt_stat *crypt_stat,
721 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
722 {
723 	struct ecryptfs_global_auth_tok *global_auth_tok;
724 	int rc = 0;
725 
726 	mutex_lock(&crypt_stat->keysig_list_mutex);
727 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
728 
729 	list_for_each_entry(global_auth_tok,
730 			    &mount_crypt_stat->global_auth_tok_list,
731 			    mount_crypt_stat_list) {
732 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
733 			continue;
734 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
735 		if (rc) {
736 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
737 			goto out;
738 		}
739 	}
740 
741 out:
742 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
743 	mutex_unlock(&crypt_stat->keysig_list_mutex);
744 	return rc;
745 }
746 
747 /**
748  * ecryptfs_set_default_crypt_stat_vals
749  * @crypt_stat: The inode's cryptographic context
750  * @mount_crypt_stat: The mount point's cryptographic context
751  *
752  * Default values in the event that policy does not override them.
753  */
754 static void ecryptfs_set_default_crypt_stat_vals(
755 	struct ecryptfs_crypt_stat *crypt_stat,
756 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
757 {
758 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
759 						      mount_crypt_stat);
760 	ecryptfs_set_default_sizes(crypt_stat);
761 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
762 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
763 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
764 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
765 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
766 }
767 
768 /**
769  * ecryptfs_new_file_context
770  * @ecryptfs_inode: The eCryptfs inode
771  *
772  * If the crypto context for the file has not yet been established,
773  * this is where we do that.  Establishing a new crypto context
774  * involves the following decisions:
775  *  - What cipher to use?
776  *  - What set of authentication tokens to use?
777  * Here we just worry about getting enough information into the
778  * authentication tokens so that we know that they are available.
779  * We associate the available authentication tokens with the new file
780  * via the set of signatures in the crypt_stat struct.  Later, when
781  * the headers are actually written out, we may again defer to
782  * userspace to perform the encryption of the session key; for the
783  * foreseeable future, this will be the case with public key packets.
784  *
785  * Returns zero on success; non-zero otherwise
786  */
787 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
788 {
789 	struct ecryptfs_crypt_stat *crypt_stat =
790 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
791 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
792 	    &ecryptfs_superblock_to_private(
793 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
794 	int cipher_name_len;
795 	int rc = 0;
796 
797 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
798 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
799 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
800 						      mount_crypt_stat);
801 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
802 							 mount_crypt_stat);
803 	if (rc) {
804 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
805 		       "to the inode key sigs; rc = [%d]\n", rc);
806 		goto out;
807 	}
808 	cipher_name_len =
809 		strlen(mount_crypt_stat->global_default_cipher_name);
810 	memcpy(crypt_stat->cipher,
811 	       mount_crypt_stat->global_default_cipher_name,
812 	       cipher_name_len);
813 	crypt_stat->cipher[cipher_name_len] = '\0';
814 	crypt_stat->key_size =
815 		mount_crypt_stat->global_default_cipher_key_size;
816 	ecryptfs_generate_new_key(crypt_stat);
817 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
818 	if (rc)
819 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
820 				"context for cipher [%s]: rc = [%d]\n",
821 				crypt_stat->cipher, rc);
822 out:
823 	return rc;
824 }
825 
826 /**
827  * ecryptfs_validate_marker - check for the ecryptfs marker
828  * @data: The data block in which to check
829  *
830  * Returns zero if marker found; -EINVAL if not found
831  */
832 static int ecryptfs_validate_marker(char *data)
833 {
834 	u32 m_1, m_2;
835 
836 	m_1 = get_unaligned_be32(data);
837 	m_2 = get_unaligned_be32(data + 4);
838 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
839 		return 0;
840 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
841 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
842 			MAGIC_ECRYPTFS_MARKER);
843 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
844 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
845 	return -EINVAL;
846 }
847 
848 struct ecryptfs_flag_map_elem {
849 	u32 file_flag;
850 	u32 local_flag;
851 };
852 
853 /* Add support for additional flags by adding elements here. */
854 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
855 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
856 	{0x00000002, ECRYPTFS_ENCRYPTED},
857 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
858 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
859 };
860 
861 /**
862  * ecryptfs_process_flags
863  * @crypt_stat: The cryptographic context
864  * @page_virt: Source data to be parsed
865  * @bytes_read: Updated with the number of bytes read
866  */
867 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
868 				  char *page_virt, int *bytes_read)
869 {
870 	int i;
871 	u32 flags;
872 
873 	flags = get_unaligned_be32(page_virt);
874 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
875 		if (flags & ecryptfs_flag_map[i].file_flag) {
876 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
877 		} else
878 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
879 	/* Version is in top 8 bits of the 32-bit flag vector */
880 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
881 	(*bytes_read) = 4;
882 }
883 
884 /**
885  * write_ecryptfs_marker
886  * @page_virt: The pointer to in a page to begin writing the marker
887  * @written: Number of bytes written
888  *
889  * Marker = 0x3c81b7f5
890  */
891 static void write_ecryptfs_marker(char *page_virt, size_t *written)
892 {
893 	u32 m_1, m_2;
894 
895 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
896 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
897 	put_unaligned_be32(m_1, page_virt);
898 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
899 	put_unaligned_be32(m_2, page_virt);
900 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
901 }
902 
903 void ecryptfs_write_crypt_stat_flags(char *page_virt,
904 				     struct ecryptfs_crypt_stat *crypt_stat,
905 				     size_t *written)
906 {
907 	u32 flags = 0;
908 	int i;
909 
910 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
911 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
912 			flags |= ecryptfs_flag_map[i].file_flag;
913 	/* Version is in top 8 bits of the 32-bit flag vector */
914 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
915 	put_unaligned_be32(flags, page_virt);
916 	(*written) = 4;
917 }
918 
919 struct ecryptfs_cipher_code_str_map_elem {
920 	char cipher_str[16];
921 	u8 cipher_code;
922 };
923 
924 /* Add support for additional ciphers by adding elements here. The
925  * cipher_code is whatever OpenPGP applications use to identify the
926  * ciphers. List in order of probability. */
927 static struct ecryptfs_cipher_code_str_map_elem
928 ecryptfs_cipher_code_str_map[] = {
929 	{"aes",RFC2440_CIPHER_AES_128 },
930 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
931 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
932 	{"cast5", RFC2440_CIPHER_CAST_5},
933 	{"twofish", RFC2440_CIPHER_TWOFISH},
934 	{"cast6", RFC2440_CIPHER_CAST_6},
935 	{"aes", RFC2440_CIPHER_AES_192},
936 	{"aes", RFC2440_CIPHER_AES_256}
937 };
938 
939 /**
940  * ecryptfs_code_for_cipher_string
941  * @cipher_name: The string alias for the cipher
942  * @key_bytes: Length of key in bytes; used for AES code selection
943  *
944  * Returns zero on no match, or the cipher code on match
945  */
946 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
947 {
948 	int i;
949 	u8 code = 0;
950 	struct ecryptfs_cipher_code_str_map_elem *map =
951 		ecryptfs_cipher_code_str_map;
952 
953 	if (strcmp(cipher_name, "aes") == 0) {
954 		switch (key_bytes) {
955 		case 16:
956 			code = RFC2440_CIPHER_AES_128;
957 			break;
958 		case 24:
959 			code = RFC2440_CIPHER_AES_192;
960 			break;
961 		case 32:
962 			code = RFC2440_CIPHER_AES_256;
963 		}
964 	} else {
965 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
966 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
967 				code = map[i].cipher_code;
968 				break;
969 			}
970 	}
971 	return code;
972 }
973 
974 /**
975  * ecryptfs_cipher_code_to_string
976  * @str: Destination to write out the cipher name
977  * @cipher_code: The code to convert to cipher name string
978  *
979  * Returns zero on success
980  */
981 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
982 {
983 	int rc = 0;
984 	int i;
985 
986 	str[0] = '\0';
987 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
988 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
989 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
990 	if (str[0] == '\0') {
991 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
992 				"[%d]\n", cipher_code);
993 		rc = -EINVAL;
994 	}
995 	return rc;
996 }
997 
998 int ecryptfs_read_and_validate_header_region(struct inode *inode)
999 {
1000 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1001 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1002 	int rc;
1003 
1004 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1005 				 inode);
1006 	if (rc < 0)
1007 		return rc;
1008 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1009 		return -EINVAL;
1010 	rc = ecryptfs_validate_marker(marker);
1011 	if (!rc)
1012 		ecryptfs_i_size_init(file_size, inode);
1013 	return rc;
1014 }
1015 
1016 void
1017 ecryptfs_write_header_metadata(char *virt,
1018 			       struct ecryptfs_crypt_stat *crypt_stat,
1019 			       size_t *written)
1020 {
1021 	u32 header_extent_size;
1022 	u16 num_header_extents_at_front;
1023 
1024 	header_extent_size = (u32)crypt_stat->extent_size;
1025 	num_header_extents_at_front =
1026 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1027 	put_unaligned_be32(header_extent_size, virt);
1028 	virt += 4;
1029 	put_unaligned_be16(num_header_extents_at_front, virt);
1030 	(*written) = 6;
1031 }
1032 
1033 struct kmem_cache *ecryptfs_header_cache;
1034 
1035 /**
1036  * ecryptfs_write_headers_virt
1037  * @page_virt: The virtual address to write the headers to
1038  * @max: The size of memory allocated at page_virt
1039  * @size: Set to the number of bytes written by this function
1040  * @crypt_stat: The cryptographic context
1041  * @ecryptfs_dentry: The eCryptfs dentry
1042  *
1043  * Format version: 1
1044  *
1045  *   Header Extent:
1046  *     Octets 0-7:        Unencrypted file size (big-endian)
1047  *     Octets 8-15:       eCryptfs special marker
1048  *     Octets 16-19:      Flags
1049  *      Octet 16:         File format version number (between 0 and 255)
1050  *      Octets 17-18:     Reserved
1051  *      Octet 19:         Bit 1 (lsb): Reserved
1052  *                        Bit 2: Encrypted?
1053  *                        Bits 3-8: Reserved
1054  *     Octets 20-23:      Header extent size (big-endian)
1055  *     Octets 24-25:      Number of header extents at front of file
1056  *                        (big-endian)
1057  *     Octet  26:         Begin RFC 2440 authentication token packet set
1058  *   Data Extent 0:
1059  *     Lower data (CBC encrypted)
1060  *   Data Extent 1:
1061  *     Lower data (CBC encrypted)
1062  *   ...
1063  *
1064  * Returns zero on success
1065  */
1066 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1067 				       size_t *size,
1068 				       struct ecryptfs_crypt_stat *crypt_stat,
1069 				       struct dentry *ecryptfs_dentry)
1070 {
1071 	int rc;
1072 	size_t written;
1073 	size_t offset;
1074 
1075 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1076 	write_ecryptfs_marker((page_virt + offset), &written);
1077 	offset += written;
1078 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1079 					&written);
1080 	offset += written;
1081 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1082 				       &written);
1083 	offset += written;
1084 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1085 					      ecryptfs_dentry, &written,
1086 					      max - offset);
1087 	if (rc)
1088 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1089 				"set; rc = [%d]\n", rc);
1090 	if (size) {
1091 		offset += written;
1092 		*size = offset;
1093 	}
1094 	return rc;
1095 }
1096 
1097 static int
1098 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1099 				    char *virt, size_t virt_len)
1100 {
1101 	int rc;
1102 
1103 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1104 				  0, virt_len);
1105 	if (rc < 0)
1106 		printk(KERN_ERR "%s: Error attempting to write header "
1107 		       "information to lower file; rc = [%d]\n", __func__, rc);
1108 	else
1109 		rc = 0;
1110 	return rc;
1111 }
1112 
1113 static int
1114 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1115 				 struct inode *ecryptfs_inode,
1116 				 char *page_virt, size_t size)
1117 {
1118 	int rc;
1119 	struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1120 	struct inode *lower_inode = d_inode(lower_dentry);
1121 
1122 	if (!(lower_inode->i_opflags & IOP_XATTR)) {
1123 		rc = -EOPNOTSUPP;
1124 		goto out;
1125 	}
1126 
1127 	inode_lock(lower_inode);
1128 	rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
1129 			    page_virt, size, 0);
1130 	if (!rc && ecryptfs_inode)
1131 		fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1132 	inode_unlock(lower_inode);
1133 out:
1134 	return rc;
1135 }
1136 
1137 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1138 					       unsigned int order)
1139 {
1140 	struct page *page;
1141 
1142 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1143 	if (page)
1144 		return (unsigned long) page_address(page);
1145 	return 0;
1146 }
1147 
1148 /**
1149  * ecryptfs_write_metadata
1150  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1151  * @ecryptfs_inode: The newly created eCryptfs inode
1152  *
1153  * Write the file headers out.  This will likely involve a userspace
1154  * callout, in which the session key is encrypted with one or more
1155  * public keys and/or the passphrase necessary to do the encryption is
1156  * retrieved via a prompt.  Exactly what happens at this point should
1157  * be policy-dependent.
1158  *
1159  * Returns zero on success; non-zero on error
1160  */
1161 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1162 			    struct inode *ecryptfs_inode)
1163 {
1164 	struct ecryptfs_crypt_stat *crypt_stat =
1165 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1166 	unsigned int order;
1167 	char *virt;
1168 	size_t virt_len;
1169 	size_t size = 0;
1170 	int rc = 0;
1171 
1172 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1173 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1174 			printk(KERN_ERR "Key is invalid; bailing out\n");
1175 			rc = -EINVAL;
1176 			goto out;
1177 		}
1178 	} else {
1179 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1180 		       __func__);
1181 		rc = -EINVAL;
1182 		goto out;
1183 	}
1184 	virt_len = crypt_stat->metadata_size;
1185 	order = get_order(virt_len);
1186 	/* Released in this function */
1187 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1188 	if (!virt) {
1189 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1190 		rc = -ENOMEM;
1191 		goto out;
1192 	}
1193 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1194 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1195 					 ecryptfs_dentry);
1196 	if (unlikely(rc)) {
1197 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1198 		       __func__, rc);
1199 		goto out_free;
1200 	}
1201 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1202 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1203 						      virt, size);
1204 	else
1205 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1206 							 virt_len);
1207 	if (rc) {
1208 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1209 		       "rc = [%d]\n", __func__, rc);
1210 		goto out_free;
1211 	}
1212 out_free:
1213 	free_pages((unsigned long)virt, order);
1214 out:
1215 	return rc;
1216 }
1217 
1218 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1219 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1220 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1221 				 char *virt, int *bytes_read,
1222 				 int validate_header_size)
1223 {
1224 	int rc = 0;
1225 	u32 header_extent_size;
1226 	u16 num_header_extents_at_front;
1227 
1228 	header_extent_size = get_unaligned_be32(virt);
1229 	virt += sizeof(__be32);
1230 	num_header_extents_at_front = get_unaligned_be16(virt);
1231 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1232 				     * (size_t)header_extent_size));
1233 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1234 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1235 	    && (crypt_stat->metadata_size
1236 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1237 		rc = -EINVAL;
1238 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1239 		       crypt_stat->metadata_size);
1240 	}
1241 	return rc;
1242 }
1243 
1244 /**
1245  * set_default_header_data
1246  * @crypt_stat: The cryptographic context
1247  *
1248  * For version 0 file format; this function is only for backwards
1249  * compatibility for files created with the prior versions of
1250  * eCryptfs.
1251  */
1252 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1253 {
1254 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1255 }
1256 
1257 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1258 {
1259 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1260 	struct ecryptfs_crypt_stat *crypt_stat;
1261 	u64 file_size;
1262 
1263 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1264 	mount_crypt_stat =
1265 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1266 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1267 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1268 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1269 			file_size += crypt_stat->metadata_size;
1270 	} else
1271 		file_size = get_unaligned_be64(page_virt);
1272 	i_size_write(inode, (loff_t)file_size);
1273 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1274 }
1275 
1276 /**
1277  * ecryptfs_read_headers_virt
1278  * @page_virt: The virtual address into which to read the headers
1279  * @crypt_stat: The cryptographic context
1280  * @ecryptfs_dentry: The eCryptfs dentry
1281  * @validate_header_size: Whether to validate the header size while reading
1282  *
1283  * Read/parse the header data. The header format is detailed in the
1284  * comment block for the ecryptfs_write_headers_virt() function.
1285  *
1286  * Returns zero on success
1287  */
1288 static int ecryptfs_read_headers_virt(char *page_virt,
1289 				      struct ecryptfs_crypt_stat *crypt_stat,
1290 				      struct dentry *ecryptfs_dentry,
1291 				      int validate_header_size)
1292 {
1293 	int rc = 0;
1294 	int offset;
1295 	int bytes_read;
1296 
1297 	ecryptfs_set_default_sizes(crypt_stat);
1298 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1299 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1300 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1301 	rc = ecryptfs_validate_marker(page_virt + offset);
1302 	if (rc)
1303 		goto out;
1304 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1305 		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1306 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1307 	ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1308 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1309 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1310 				"file version [%d] is supported by this "
1311 				"version of eCryptfs\n",
1312 				crypt_stat->file_version,
1313 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1314 		rc = -EINVAL;
1315 		goto out;
1316 	}
1317 	offset += bytes_read;
1318 	if (crypt_stat->file_version >= 1) {
1319 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1320 					   &bytes_read, validate_header_size);
1321 		if (rc) {
1322 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1323 					"metadata; rc = [%d]\n", rc);
1324 		}
1325 		offset += bytes_read;
1326 	} else
1327 		set_default_header_data(crypt_stat);
1328 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1329 				       ecryptfs_dentry);
1330 out:
1331 	return rc;
1332 }
1333 
1334 /**
1335  * ecryptfs_read_xattr_region
1336  * @page_virt: The vitual address into which to read the xattr data
1337  * @ecryptfs_inode: The eCryptfs inode
1338  *
1339  * Attempts to read the crypto metadata from the extended attribute
1340  * region of the lower file.
1341  *
1342  * Returns zero on success; non-zero on error
1343  */
1344 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1345 {
1346 	struct dentry *lower_dentry =
1347 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1348 	ssize_t size;
1349 	int rc = 0;
1350 
1351 	size = ecryptfs_getxattr_lower(lower_dentry,
1352 				       ecryptfs_inode_to_lower(ecryptfs_inode),
1353 				       ECRYPTFS_XATTR_NAME,
1354 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1355 	if (size < 0) {
1356 		if (unlikely(ecryptfs_verbosity > 0))
1357 			printk(KERN_INFO "Error attempting to read the [%s] "
1358 			       "xattr from the lower file; return value = "
1359 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1360 		rc = -EINVAL;
1361 		goto out;
1362 	}
1363 out:
1364 	return rc;
1365 }
1366 
1367 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1368 					    struct inode *inode)
1369 {
1370 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1371 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1372 	int rc;
1373 
1374 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1375 				     ecryptfs_inode_to_lower(inode),
1376 				     ECRYPTFS_XATTR_NAME, file_size,
1377 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1378 	if (rc < 0)
1379 		return rc;
1380 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1381 		return -EINVAL;
1382 	rc = ecryptfs_validate_marker(marker);
1383 	if (!rc)
1384 		ecryptfs_i_size_init(file_size, inode);
1385 	return rc;
1386 }
1387 
1388 /**
1389  * ecryptfs_read_metadata
1390  *
1391  * Common entry point for reading file metadata. From here, we could
1392  * retrieve the header information from the header region of the file,
1393  * the xattr region of the file, or some other repository that is
1394  * stored separately from the file itself. The current implementation
1395  * supports retrieving the metadata information from the file contents
1396  * and from the xattr region.
1397  *
1398  * Returns zero if valid headers found and parsed; non-zero otherwise
1399  */
1400 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1401 {
1402 	int rc;
1403 	char *page_virt;
1404 	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1405 	struct ecryptfs_crypt_stat *crypt_stat =
1406 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1407 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1408 		&ecryptfs_superblock_to_private(
1409 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1410 
1411 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1412 						      mount_crypt_stat);
1413 	/* Read the first page from the underlying file */
1414 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1415 	if (!page_virt) {
1416 		rc = -ENOMEM;
1417 		goto out;
1418 	}
1419 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1420 				 ecryptfs_inode);
1421 	if (rc >= 0)
1422 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1423 						ecryptfs_dentry,
1424 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1425 	if (rc) {
1426 		/* metadata is not in the file header, so try xattrs */
1427 		memset(page_virt, 0, PAGE_SIZE);
1428 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1429 		if (rc) {
1430 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1431 			       "file header region or xattr region, inode %lu\n",
1432 				ecryptfs_inode->i_ino);
1433 			rc = -EINVAL;
1434 			goto out;
1435 		}
1436 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1437 						ecryptfs_dentry,
1438 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1439 		if (rc) {
1440 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1441 			       "file xattr region either, inode %lu\n",
1442 				ecryptfs_inode->i_ino);
1443 			rc = -EINVAL;
1444 		}
1445 		if (crypt_stat->mount_crypt_stat->flags
1446 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1447 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1448 		} else {
1449 			printk(KERN_WARNING "Attempt to access file with "
1450 			       "crypto metadata only in the extended attribute "
1451 			       "region, but eCryptfs was mounted without "
1452 			       "xattr support enabled. eCryptfs will not treat "
1453 			       "this like an encrypted file, inode %lu\n",
1454 				ecryptfs_inode->i_ino);
1455 			rc = -EINVAL;
1456 		}
1457 	}
1458 out:
1459 	if (page_virt) {
1460 		memset(page_virt, 0, PAGE_SIZE);
1461 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1462 	}
1463 	return rc;
1464 }
1465 
1466 /**
1467  * ecryptfs_encrypt_filename - encrypt filename
1468  *
1469  * CBC-encrypts the filename. We do not want to encrypt the same
1470  * filename with the same key and IV, which may happen with hard
1471  * links, so we prepend random bits to each filename.
1472  *
1473  * Returns zero on success; non-zero otherwise
1474  */
1475 static int
1476 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1477 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1478 {
1479 	int rc = 0;
1480 
1481 	filename->encrypted_filename = NULL;
1482 	filename->encrypted_filename_size = 0;
1483 	if (mount_crypt_stat && (mount_crypt_stat->flags
1484 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1485 		size_t packet_size;
1486 		size_t remaining_bytes;
1487 
1488 		rc = ecryptfs_write_tag_70_packet(
1489 			NULL, NULL,
1490 			&filename->encrypted_filename_size,
1491 			mount_crypt_stat, NULL,
1492 			filename->filename_size);
1493 		if (rc) {
1494 			printk(KERN_ERR "%s: Error attempting to get packet "
1495 			       "size for tag 72; rc = [%d]\n", __func__,
1496 			       rc);
1497 			filename->encrypted_filename_size = 0;
1498 			goto out;
1499 		}
1500 		filename->encrypted_filename =
1501 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1502 		if (!filename->encrypted_filename) {
1503 			rc = -ENOMEM;
1504 			goto out;
1505 		}
1506 		remaining_bytes = filename->encrypted_filename_size;
1507 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1508 						  &remaining_bytes,
1509 						  &packet_size,
1510 						  mount_crypt_stat,
1511 						  filename->filename,
1512 						  filename->filename_size);
1513 		if (rc) {
1514 			printk(KERN_ERR "%s: Error attempting to generate "
1515 			       "tag 70 packet; rc = [%d]\n", __func__,
1516 			       rc);
1517 			kfree(filename->encrypted_filename);
1518 			filename->encrypted_filename = NULL;
1519 			filename->encrypted_filename_size = 0;
1520 			goto out;
1521 		}
1522 		filename->encrypted_filename_size = packet_size;
1523 	} else {
1524 		printk(KERN_ERR "%s: No support for requested filename "
1525 		       "encryption method in this release\n", __func__);
1526 		rc = -EOPNOTSUPP;
1527 		goto out;
1528 	}
1529 out:
1530 	return rc;
1531 }
1532 
1533 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1534 				  const char *name, size_t name_size)
1535 {
1536 	int rc = 0;
1537 
1538 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1539 	if (!(*copied_name)) {
1540 		rc = -ENOMEM;
1541 		goto out;
1542 	}
1543 	memcpy((void *)(*copied_name), (void *)name, name_size);
1544 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1545 						 * in printing out the
1546 						 * string in debug
1547 						 * messages */
1548 	(*copied_name_size) = name_size;
1549 out:
1550 	return rc;
1551 }
1552 
1553 /**
1554  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1555  * @key_tfm: Crypto context for key material, set by this function
1556  * @cipher_name: Name of the cipher
1557  * @key_size: Size of the key in bytes
1558  *
1559  * Returns zero on success. Any crypto_tfm structs allocated here
1560  * should be released by other functions, such as on a superblock put
1561  * event, regardless of whether this function succeeds for fails.
1562  */
1563 static int
1564 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1565 			    char *cipher_name, size_t *key_size)
1566 {
1567 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1568 	char *full_alg_name = NULL;
1569 	int rc;
1570 
1571 	*key_tfm = NULL;
1572 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1573 		rc = -EINVAL;
1574 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1575 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1576 		goto out;
1577 	}
1578 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1579 						    "ecb");
1580 	if (rc)
1581 		goto out;
1582 	*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1583 	if (IS_ERR(*key_tfm)) {
1584 		rc = PTR_ERR(*key_tfm);
1585 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1586 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1587 		goto out;
1588 	}
1589 	crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1590 	if (*key_size == 0)
1591 		*key_size = crypto_skcipher_max_keysize(*key_tfm);
1592 	get_random_bytes(dummy_key, *key_size);
1593 	rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1594 	if (rc) {
1595 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1596 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1597 		       rc);
1598 		rc = -EINVAL;
1599 		goto out;
1600 	}
1601 out:
1602 	kfree(full_alg_name);
1603 	return rc;
1604 }
1605 
1606 struct kmem_cache *ecryptfs_key_tfm_cache;
1607 static struct list_head key_tfm_list;
1608 struct mutex key_tfm_list_mutex;
1609 
1610 int __init ecryptfs_init_crypto(void)
1611 {
1612 	mutex_init(&key_tfm_list_mutex);
1613 	INIT_LIST_HEAD(&key_tfm_list);
1614 	return 0;
1615 }
1616 
1617 /**
1618  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1619  *
1620  * Called only at module unload time
1621  */
1622 int ecryptfs_destroy_crypto(void)
1623 {
1624 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1625 
1626 	mutex_lock(&key_tfm_list_mutex);
1627 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1628 				 key_tfm_list) {
1629 		list_del(&key_tfm->key_tfm_list);
1630 		crypto_free_skcipher(key_tfm->key_tfm);
1631 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1632 	}
1633 	mutex_unlock(&key_tfm_list_mutex);
1634 	return 0;
1635 }
1636 
1637 int
1638 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1639 			 size_t key_size)
1640 {
1641 	struct ecryptfs_key_tfm *tmp_tfm;
1642 	int rc = 0;
1643 
1644 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1645 
1646 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1647 	if (key_tfm)
1648 		(*key_tfm) = tmp_tfm;
1649 	if (!tmp_tfm) {
1650 		rc = -ENOMEM;
1651 		goto out;
1652 	}
1653 	mutex_init(&tmp_tfm->key_tfm_mutex);
1654 	strncpy(tmp_tfm->cipher_name, cipher_name,
1655 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1656 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1657 	tmp_tfm->key_size = key_size;
1658 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1659 					 tmp_tfm->cipher_name,
1660 					 &tmp_tfm->key_size);
1661 	if (rc) {
1662 		printk(KERN_ERR "Error attempting to initialize key TFM "
1663 		       "cipher with name = [%s]; rc = [%d]\n",
1664 		       tmp_tfm->cipher_name, rc);
1665 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1666 		if (key_tfm)
1667 			(*key_tfm) = NULL;
1668 		goto out;
1669 	}
1670 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1671 out:
1672 	return rc;
1673 }
1674 
1675 /**
1676  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1677  * @cipher_name: the name of the cipher to search for
1678  * @key_tfm: set to corresponding tfm if found
1679  *
1680  * Searches for cached key_tfm matching @cipher_name
1681  * Must be called with &key_tfm_list_mutex held
1682  * Returns 1 if found, with @key_tfm set
1683  * Returns 0 if not found, with @key_tfm set to NULL
1684  */
1685 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1686 {
1687 	struct ecryptfs_key_tfm *tmp_key_tfm;
1688 
1689 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1690 
1691 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1692 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1693 			if (key_tfm)
1694 				(*key_tfm) = tmp_key_tfm;
1695 			return 1;
1696 		}
1697 	}
1698 	if (key_tfm)
1699 		(*key_tfm) = NULL;
1700 	return 0;
1701 }
1702 
1703 /**
1704  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1705  *
1706  * @tfm: set to cached tfm found, or new tfm created
1707  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1708  * @cipher_name: the name of the cipher to search for and/or add
1709  *
1710  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1711  * Searches for cached item first, and creates new if not found.
1712  * Returns 0 on success, non-zero if adding new cipher failed
1713  */
1714 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1715 					       struct mutex **tfm_mutex,
1716 					       char *cipher_name)
1717 {
1718 	struct ecryptfs_key_tfm *key_tfm;
1719 	int rc = 0;
1720 
1721 	(*tfm) = NULL;
1722 	(*tfm_mutex) = NULL;
1723 
1724 	mutex_lock(&key_tfm_list_mutex);
1725 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1726 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1727 		if (rc) {
1728 			printk(KERN_ERR "Error adding new key_tfm to list; "
1729 					"rc = [%d]\n", rc);
1730 			goto out;
1731 		}
1732 	}
1733 	(*tfm) = key_tfm->key_tfm;
1734 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1735 out:
1736 	mutex_unlock(&key_tfm_list_mutex);
1737 	return rc;
1738 }
1739 
1740 /* 64 characters forming a 6-bit target field */
1741 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1742 						 "EFGHIJKLMNOPQRST"
1743 						 "UVWXYZabcdefghij"
1744 						 "klmnopqrstuvwxyz");
1745 
1746 /* We could either offset on every reverse map or just pad some 0x00's
1747  * at the front here */
1748 static const unsigned char filename_rev_map[256] = {
1749 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1750 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1751 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1752 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1753 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1754 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1755 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1756 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1757 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1758 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1759 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1760 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1761 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1762 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1763 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1764 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1765 };
1766 
1767 /**
1768  * ecryptfs_encode_for_filename
1769  * @dst: Destination location for encoded filename
1770  * @dst_size: Size of the encoded filename in bytes
1771  * @src: Source location for the filename to encode
1772  * @src_size: Size of the source in bytes
1773  */
1774 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1775 				  unsigned char *src, size_t src_size)
1776 {
1777 	size_t num_blocks;
1778 	size_t block_num = 0;
1779 	size_t dst_offset = 0;
1780 	unsigned char last_block[3];
1781 
1782 	if (src_size == 0) {
1783 		(*dst_size) = 0;
1784 		goto out;
1785 	}
1786 	num_blocks = (src_size / 3);
1787 	if ((src_size % 3) == 0) {
1788 		memcpy(last_block, (&src[src_size - 3]), 3);
1789 	} else {
1790 		num_blocks++;
1791 		last_block[2] = 0x00;
1792 		switch (src_size % 3) {
1793 		case 1:
1794 			last_block[0] = src[src_size - 1];
1795 			last_block[1] = 0x00;
1796 			break;
1797 		case 2:
1798 			last_block[0] = src[src_size - 2];
1799 			last_block[1] = src[src_size - 1];
1800 		}
1801 	}
1802 	(*dst_size) = (num_blocks * 4);
1803 	if (!dst)
1804 		goto out;
1805 	while (block_num < num_blocks) {
1806 		unsigned char *src_block;
1807 		unsigned char dst_block[4];
1808 
1809 		if (block_num == (num_blocks - 1))
1810 			src_block = last_block;
1811 		else
1812 			src_block = &src[block_num * 3];
1813 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1814 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1815 				| ((src_block[1] >> 4) & 0x0F));
1816 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1817 				| ((src_block[2] >> 6) & 0x03));
1818 		dst_block[3] = (src_block[2] & 0x3F);
1819 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1820 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1821 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1822 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1823 		block_num++;
1824 	}
1825 out:
1826 	return;
1827 }
1828 
1829 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1830 {
1831 	/* Not exact; conservatively long. Every block of 4
1832 	 * encoded characters decodes into a block of 3
1833 	 * decoded characters. This segment of code provides
1834 	 * the caller with the maximum amount of allocated
1835 	 * space that @dst will need to point to in a
1836 	 * subsequent call. */
1837 	return ((encoded_size + 1) * 3) / 4;
1838 }
1839 
1840 /**
1841  * ecryptfs_decode_from_filename
1842  * @dst: If NULL, this function only sets @dst_size and returns. If
1843  *       non-NULL, this function decodes the encoded octets in @src
1844  *       into the memory that @dst points to.
1845  * @dst_size: Set to the size of the decoded string.
1846  * @src: The encoded set of octets to decode.
1847  * @src_size: The size of the encoded set of octets to decode.
1848  */
1849 static void
1850 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1851 			      const unsigned char *src, size_t src_size)
1852 {
1853 	u8 current_bit_offset = 0;
1854 	size_t src_byte_offset = 0;
1855 	size_t dst_byte_offset = 0;
1856 
1857 	if (!dst) {
1858 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1859 		goto out;
1860 	}
1861 	while (src_byte_offset < src_size) {
1862 		unsigned char src_byte =
1863 				filename_rev_map[(int)src[src_byte_offset]];
1864 
1865 		switch (current_bit_offset) {
1866 		case 0:
1867 			dst[dst_byte_offset] = (src_byte << 2);
1868 			current_bit_offset = 6;
1869 			break;
1870 		case 6:
1871 			dst[dst_byte_offset++] |= (src_byte >> 4);
1872 			dst[dst_byte_offset] = ((src_byte & 0xF)
1873 						 << 4);
1874 			current_bit_offset = 4;
1875 			break;
1876 		case 4:
1877 			dst[dst_byte_offset++] |= (src_byte >> 2);
1878 			dst[dst_byte_offset] = (src_byte << 6);
1879 			current_bit_offset = 2;
1880 			break;
1881 		case 2:
1882 			dst[dst_byte_offset++] |= (src_byte);
1883 			current_bit_offset = 0;
1884 			break;
1885 		}
1886 		src_byte_offset++;
1887 	}
1888 	(*dst_size) = dst_byte_offset;
1889 out:
1890 	return;
1891 }
1892 
1893 /**
1894  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1895  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1896  * @name: The plaintext name
1897  * @length: The length of the plaintext
1898  * @encoded_name: The encypted name
1899  *
1900  * Encrypts and encodes a filename into something that constitutes a
1901  * valid filename for a filesystem, with printable characters.
1902  *
1903  * We assume that we have a properly initialized crypto context,
1904  * pointed to by crypt_stat->tfm.
1905  *
1906  * Returns zero on success; non-zero on otherwise
1907  */
1908 int ecryptfs_encrypt_and_encode_filename(
1909 	char **encoded_name,
1910 	size_t *encoded_name_size,
1911 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1912 	const char *name, size_t name_size)
1913 {
1914 	size_t encoded_name_no_prefix_size;
1915 	int rc = 0;
1916 
1917 	(*encoded_name) = NULL;
1918 	(*encoded_name_size) = 0;
1919 	if (mount_crypt_stat && (mount_crypt_stat->flags
1920 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1921 		struct ecryptfs_filename *filename;
1922 
1923 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1924 		if (!filename) {
1925 			rc = -ENOMEM;
1926 			goto out;
1927 		}
1928 		filename->filename = (char *)name;
1929 		filename->filename_size = name_size;
1930 		rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1931 		if (rc) {
1932 			printk(KERN_ERR "%s: Error attempting to encrypt "
1933 			       "filename; rc = [%d]\n", __func__, rc);
1934 			kfree(filename);
1935 			goto out;
1936 		}
1937 		ecryptfs_encode_for_filename(
1938 			NULL, &encoded_name_no_prefix_size,
1939 			filename->encrypted_filename,
1940 			filename->encrypted_filename_size);
1941 		if (mount_crypt_stat
1942 			&& (mount_crypt_stat->flags
1943 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1944 			(*encoded_name_size) =
1945 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1946 				 + encoded_name_no_prefix_size);
1947 		else
1948 			(*encoded_name_size) =
1949 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1950 				 + encoded_name_no_prefix_size);
1951 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1952 		if (!(*encoded_name)) {
1953 			rc = -ENOMEM;
1954 			kfree(filename->encrypted_filename);
1955 			kfree(filename);
1956 			goto out;
1957 		}
1958 		if (mount_crypt_stat
1959 			&& (mount_crypt_stat->flags
1960 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1961 			memcpy((*encoded_name),
1962 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1963 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1964 			ecryptfs_encode_for_filename(
1965 			    ((*encoded_name)
1966 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1967 			    &encoded_name_no_prefix_size,
1968 			    filename->encrypted_filename,
1969 			    filename->encrypted_filename_size);
1970 			(*encoded_name_size) =
1971 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1972 				 + encoded_name_no_prefix_size);
1973 			(*encoded_name)[(*encoded_name_size)] = '\0';
1974 		} else {
1975 			rc = -EOPNOTSUPP;
1976 		}
1977 		if (rc) {
1978 			printk(KERN_ERR "%s: Error attempting to encode "
1979 			       "encrypted filename; rc = [%d]\n", __func__,
1980 			       rc);
1981 			kfree((*encoded_name));
1982 			(*encoded_name) = NULL;
1983 			(*encoded_name_size) = 0;
1984 		}
1985 		kfree(filename->encrypted_filename);
1986 		kfree(filename);
1987 	} else {
1988 		rc = ecryptfs_copy_filename(encoded_name,
1989 					    encoded_name_size,
1990 					    name, name_size);
1991 	}
1992 out:
1993 	return rc;
1994 }
1995 
1996 static bool is_dot_dotdot(const char *name, size_t name_size)
1997 {
1998 	if (name_size == 1 && name[0] == '.')
1999 		return true;
2000 	else if (name_size == 2 && name[0] == '.' && name[1] == '.')
2001 		return true;
2002 
2003 	return false;
2004 }
2005 
2006 /**
2007  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2008  * @plaintext_name: The plaintext name
2009  * @plaintext_name_size: The plaintext name size
2010  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2011  * @name: The filename in cipher text
2012  * @name_size: The cipher text name size
2013  *
2014  * Decrypts and decodes the filename.
2015  *
2016  * Returns zero on error; non-zero otherwise
2017  */
2018 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2019 					 size_t *plaintext_name_size,
2020 					 struct super_block *sb,
2021 					 const char *name, size_t name_size)
2022 {
2023 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2024 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2025 	char *decoded_name;
2026 	size_t decoded_name_size;
2027 	size_t packet_size;
2028 	int rc = 0;
2029 
2030 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2031 	    !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2032 		if (is_dot_dotdot(name, name_size)) {
2033 			rc = ecryptfs_copy_filename(plaintext_name,
2034 						    plaintext_name_size,
2035 						    name, name_size);
2036 			goto out;
2037 		}
2038 
2039 		if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2040 		    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2041 			    ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2042 			rc = -EINVAL;
2043 			goto out;
2044 		}
2045 
2046 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2047 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2048 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2049 					      name, name_size);
2050 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2051 		if (!decoded_name) {
2052 			rc = -ENOMEM;
2053 			goto out;
2054 		}
2055 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2056 					      name, name_size);
2057 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2058 						  plaintext_name_size,
2059 						  &packet_size,
2060 						  mount_crypt_stat,
2061 						  decoded_name,
2062 						  decoded_name_size);
2063 		if (rc) {
2064 			ecryptfs_printk(KERN_DEBUG,
2065 					"%s: Could not parse tag 70 packet from filename\n",
2066 					__func__);
2067 			goto out_free;
2068 		}
2069 	} else {
2070 		rc = ecryptfs_copy_filename(plaintext_name,
2071 					    plaintext_name_size,
2072 					    name, name_size);
2073 		goto out;
2074 	}
2075 out_free:
2076 	kfree(decoded_name);
2077 out:
2078 	return rc;
2079 }
2080 
2081 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2082 
2083 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2084 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2085 {
2086 	struct crypto_skcipher *tfm;
2087 	struct mutex *tfm_mutex;
2088 	size_t cipher_blocksize;
2089 	int rc;
2090 
2091 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2092 		(*namelen) = lower_namelen;
2093 		return 0;
2094 	}
2095 
2096 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2097 			mount_crypt_stat->global_default_fn_cipher_name);
2098 	if (unlikely(rc)) {
2099 		(*namelen) = 0;
2100 		return rc;
2101 	}
2102 
2103 	mutex_lock(tfm_mutex);
2104 	cipher_blocksize = crypto_skcipher_blocksize(tfm);
2105 	mutex_unlock(tfm_mutex);
2106 
2107 	/* Return an exact amount for the common cases */
2108 	if (lower_namelen == NAME_MAX
2109 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2110 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2111 		return 0;
2112 	}
2113 
2114 	/* Return a safe estimate for the uncommon cases */
2115 	(*namelen) = lower_namelen;
2116 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2117 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2118 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2119 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2120 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2121 	/* Worst case is that the filename is padded nearly a full block size */
2122 	(*namelen) -= cipher_blocksize - 1;
2123 
2124 	if ((*namelen) < 0)
2125 		(*namelen) = 0;
2126 
2127 	return 0;
2128 }
2129