1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * eCryptfs: Linux filesystem encryption layer 4 * 5 * Copyright (C) 1997-2004 Erez Zadok 6 * Copyright (C) 2001-2004 Stony Brook University 7 * Copyright (C) 2004-2007 International Business Machines Corp. 8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 9 * Michael C. Thompson <mcthomps@us.ibm.com> 10 */ 11 12 #include <crypto/hash.h> 13 #include <crypto/skcipher.h> 14 #include <linux/fs.h> 15 #include <linux/mount.h> 16 #include <linux/pagemap.h> 17 #include <linux/random.h> 18 #include <linux/compiler.h> 19 #include <linux/key.h> 20 #include <linux/namei.h> 21 #include <linux/file.h> 22 #include <linux/scatterlist.h> 23 #include <linux/slab.h> 24 #include <asm/unaligned.h> 25 #include <linux/kernel.h> 26 #include <linux/xattr.h> 27 #include "ecryptfs_kernel.h" 28 29 #define DECRYPT 0 30 #define ENCRYPT 1 31 32 /** 33 * ecryptfs_from_hex 34 * @dst: Buffer to take the bytes from src hex; must be at least of 35 * size (src_size / 2) 36 * @src: Buffer to be converted from a hex string representation to raw value 37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 38 */ 39 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 40 { 41 int x; 42 char tmp[3] = { 0, }; 43 44 for (x = 0; x < dst_size; x++) { 45 tmp[0] = src[x * 2]; 46 tmp[1] = src[x * 2 + 1]; 47 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 48 } 49 } 50 51 /** 52 * ecryptfs_calculate_md5 - calculates the md5 of @src 53 * @dst: Pointer to 16 bytes of allocated memory 54 * @crypt_stat: Pointer to crypt_stat struct for the current inode 55 * @src: Data to be md5'd 56 * @len: Length of @src 57 * 58 * Uses the allocated crypto context that crypt_stat references to 59 * generate the MD5 sum of the contents of src. 60 */ 61 static int ecryptfs_calculate_md5(char *dst, 62 struct ecryptfs_crypt_stat *crypt_stat, 63 char *src, int len) 64 { 65 int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst); 66 67 if (rc) { 68 printk(KERN_ERR 69 "%s: Error computing crypto hash; rc = [%d]\n", 70 __func__, rc); 71 goto out; 72 } 73 out: 74 return rc; 75 } 76 77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 78 char *cipher_name, 79 char *chaining_modifier) 80 { 81 int cipher_name_len = strlen(cipher_name); 82 int chaining_modifier_len = strlen(chaining_modifier); 83 int algified_name_len; 84 int rc; 85 86 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 87 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 88 if (!(*algified_name)) { 89 rc = -ENOMEM; 90 goto out; 91 } 92 snprintf((*algified_name), algified_name_len, "%s(%s)", 93 chaining_modifier, cipher_name); 94 rc = 0; 95 out: 96 return rc; 97 } 98 99 /** 100 * ecryptfs_derive_iv 101 * @iv: destination for the derived iv vale 102 * @crypt_stat: Pointer to crypt_stat struct for the current inode 103 * @offset: Offset of the extent whose IV we are to derive 104 * 105 * Generate the initialization vector from the given root IV and page 106 * offset. 107 * 108 * Returns zero on success; non-zero on error. 109 */ 110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 111 loff_t offset) 112 { 113 int rc = 0; 114 char dst[MD5_DIGEST_SIZE]; 115 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 116 117 if (unlikely(ecryptfs_verbosity > 0)) { 118 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 119 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 120 } 121 /* TODO: It is probably secure to just cast the least 122 * significant bits of the root IV into an unsigned long and 123 * add the offset to that rather than go through all this 124 * hashing business. -Halcrow */ 125 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 126 memset((src + crypt_stat->iv_bytes), 0, 16); 127 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 128 if (unlikely(ecryptfs_verbosity > 0)) { 129 ecryptfs_printk(KERN_DEBUG, "source:\n"); 130 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 131 } 132 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 133 (crypt_stat->iv_bytes + 16)); 134 if (rc) { 135 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 136 "MD5 while generating IV for a page\n"); 137 goto out; 138 } 139 memcpy(iv, dst, crypt_stat->iv_bytes); 140 if (unlikely(ecryptfs_verbosity > 0)) { 141 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 142 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 143 } 144 out: 145 return rc; 146 } 147 148 /** 149 * ecryptfs_init_crypt_stat 150 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 151 * 152 * Initialize the crypt_stat structure. 153 */ 154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 155 { 156 struct crypto_shash *tfm; 157 int rc; 158 159 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0); 160 if (IS_ERR(tfm)) { 161 rc = PTR_ERR(tfm); 162 ecryptfs_printk(KERN_ERR, "Error attempting to " 163 "allocate crypto context; rc = [%d]\n", 164 rc); 165 return rc; 166 } 167 168 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 169 INIT_LIST_HEAD(&crypt_stat->keysig_list); 170 mutex_init(&crypt_stat->keysig_list_mutex); 171 mutex_init(&crypt_stat->cs_mutex); 172 mutex_init(&crypt_stat->cs_tfm_mutex); 173 crypt_stat->hash_tfm = tfm; 174 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 175 176 return 0; 177 } 178 179 /** 180 * ecryptfs_destroy_crypt_stat 181 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 182 * 183 * Releases all memory associated with a crypt_stat struct. 184 */ 185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 186 { 187 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 188 189 crypto_free_skcipher(crypt_stat->tfm); 190 crypto_free_shash(crypt_stat->hash_tfm); 191 list_for_each_entry_safe(key_sig, key_sig_tmp, 192 &crypt_stat->keysig_list, crypt_stat_list) { 193 list_del(&key_sig->crypt_stat_list); 194 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 195 } 196 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 197 } 198 199 void ecryptfs_destroy_mount_crypt_stat( 200 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 201 { 202 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 203 204 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 205 return; 206 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 207 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 208 &mount_crypt_stat->global_auth_tok_list, 209 mount_crypt_stat_list) { 210 list_del(&auth_tok->mount_crypt_stat_list); 211 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 212 key_put(auth_tok->global_auth_tok_key); 213 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 214 } 215 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 216 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 217 } 218 219 /** 220 * virt_to_scatterlist 221 * @addr: Virtual address 222 * @size: Size of data; should be an even multiple of the block size 223 * @sg: Pointer to scatterlist array; set to NULL to obtain only 224 * the number of scatterlist structs required in array 225 * @sg_size: Max array size 226 * 227 * Fills in a scatterlist array with page references for a passed 228 * virtual address. 229 * 230 * Returns the number of scatterlist structs in array used 231 */ 232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 233 int sg_size) 234 { 235 int i = 0; 236 struct page *pg; 237 int offset; 238 int remainder_of_page; 239 240 sg_init_table(sg, sg_size); 241 242 while (size > 0 && i < sg_size) { 243 pg = virt_to_page(addr); 244 offset = offset_in_page(addr); 245 sg_set_page(&sg[i], pg, 0, offset); 246 remainder_of_page = PAGE_SIZE - offset; 247 if (size >= remainder_of_page) { 248 sg[i].length = remainder_of_page; 249 addr += remainder_of_page; 250 size -= remainder_of_page; 251 } else { 252 sg[i].length = size; 253 addr += size; 254 size = 0; 255 } 256 i++; 257 } 258 if (size > 0) 259 return -ENOMEM; 260 return i; 261 } 262 263 struct extent_crypt_result { 264 struct completion completion; 265 int rc; 266 }; 267 268 static void extent_crypt_complete(struct crypto_async_request *req, int rc) 269 { 270 struct extent_crypt_result *ecr = req->data; 271 272 if (rc == -EINPROGRESS) 273 return; 274 275 ecr->rc = rc; 276 complete(&ecr->completion); 277 } 278 279 /** 280 * crypt_scatterlist 281 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 282 * @dst_sg: Destination of the data after performing the crypto operation 283 * @src_sg: Data to be encrypted or decrypted 284 * @size: Length of data 285 * @iv: IV to use 286 * @op: ENCRYPT or DECRYPT to indicate the desired operation 287 * 288 * Returns the number of bytes encrypted or decrypted; negative value on error 289 */ 290 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 291 struct scatterlist *dst_sg, 292 struct scatterlist *src_sg, int size, 293 unsigned char *iv, int op) 294 { 295 struct skcipher_request *req = NULL; 296 struct extent_crypt_result ecr; 297 int rc = 0; 298 299 if (!crypt_stat || !crypt_stat->tfm 300 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)) 301 return -EINVAL; 302 303 if (unlikely(ecryptfs_verbosity > 0)) { 304 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 305 crypt_stat->key_size); 306 ecryptfs_dump_hex(crypt_stat->key, 307 crypt_stat->key_size); 308 } 309 310 init_completion(&ecr.completion); 311 312 mutex_lock(&crypt_stat->cs_tfm_mutex); 313 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 314 if (!req) { 315 mutex_unlock(&crypt_stat->cs_tfm_mutex); 316 rc = -ENOMEM; 317 goto out; 318 } 319 320 skcipher_request_set_callback(req, 321 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 322 extent_crypt_complete, &ecr); 323 /* Consider doing this once, when the file is opened */ 324 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 325 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key, 326 crypt_stat->key_size); 327 if (rc) { 328 ecryptfs_printk(KERN_ERR, 329 "Error setting key; rc = [%d]\n", 330 rc); 331 mutex_unlock(&crypt_stat->cs_tfm_mutex); 332 rc = -EINVAL; 333 goto out; 334 } 335 crypt_stat->flags |= ECRYPTFS_KEY_SET; 336 } 337 mutex_unlock(&crypt_stat->cs_tfm_mutex); 338 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); 339 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) : 340 crypto_skcipher_decrypt(req); 341 if (rc == -EINPROGRESS || rc == -EBUSY) { 342 struct extent_crypt_result *ecr = req->base.data; 343 344 wait_for_completion(&ecr->completion); 345 rc = ecr->rc; 346 reinit_completion(&ecr->completion); 347 } 348 out: 349 skcipher_request_free(req); 350 return rc; 351 } 352 353 /* 354 * lower_offset_for_page 355 * 356 * Convert an eCryptfs page index into a lower byte offset 357 */ 358 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, 359 struct page *page) 360 { 361 return ecryptfs_lower_header_size(crypt_stat) + 362 ((loff_t)page->index << PAGE_SHIFT); 363 } 364 365 /** 366 * crypt_extent 367 * @crypt_stat: crypt_stat containing cryptographic context for the 368 * encryption operation 369 * @dst_page: The page to write the result into 370 * @src_page: The page to read from 371 * @extent_offset: Page extent offset for use in generating IV 372 * @op: ENCRYPT or DECRYPT to indicate the desired operation 373 * 374 * Encrypts or decrypts one extent of data. 375 * 376 * Return zero on success; non-zero otherwise 377 */ 378 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, 379 struct page *dst_page, 380 struct page *src_page, 381 unsigned long extent_offset, int op) 382 { 383 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index; 384 loff_t extent_base; 385 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 386 struct scatterlist src_sg, dst_sg; 387 size_t extent_size = crypt_stat->extent_size; 388 int rc; 389 390 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size)); 391 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 392 (extent_base + extent_offset)); 393 if (rc) { 394 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 395 "extent [0x%.16llx]; rc = [%d]\n", 396 (unsigned long long)(extent_base + extent_offset), rc); 397 goto out; 398 } 399 400 sg_init_table(&src_sg, 1); 401 sg_init_table(&dst_sg, 1); 402 403 sg_set_page(&src_sg, src_page, extent_size, 404 extent_offset * extent_size); 405 sg_set_page(&dst_sg, dst_page, extent_size, 406 extent_offset * extent_size); 407 408 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, 409 extent_iv, op); 410 if (rc < 0) { 411 printk(KERN_ERR "%s: Error attempting to crypt page with " 412 "page_index = [%ld], extent_offset = [%ld]; " 413 "rc = [%d]\n", __func__, page_index, extent_offset, rc); 414 goto out; 415 } 416 rc = 0; 417 out: 418 return rc; 419 } 420 421 /** 422 * ecryptfs_encrypt_page 423 * @page: Page mapped from the eCryptfs inode for the file; contains 424 * decrypted content that needs to be encrypted (to a temporary 425 * page; not in place) and written out to the lower file 426 * 427 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 428 * that eCryptfs pages may straddle the lower pages -- for instance, 429 * if the file was created on a machine with an 8K page size 430 * (resulting in an 8K header), and then the file is copied onto a 431 * host with a 32K page size, then when reading page 0 of the eCryptfs 432 * file, 24K of page 0 of the lower file will be read and decrypted, 433 * and then 8K of page 1 of the lower file will be read and decrypted. 434 * 435 * Returns zero on success; negative on error 436 */ 437 int ecryptfs_encrypt_page(struct page *page) 438 { 439 struct inode *ecryptfs_inode; 440 struct ecryptfs_crypt_stat *crypt_stat; 441 char *enc_extent_virt; 442 struct page *enc_extent_page = NULL; 443 loff_t extent_offset; 444 loff_t lower_offset; 445 int rc = 0; 446 447 ecryptfs_inode = page->mapping->host; 448 crypt_stat = 449 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 450 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 451 enc_extent_page = alloc_page(GFP_USER); 452 if (!enc_extent_page) { 453 rc = -ENOMEM; 454 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 455 "encrypted extent\n"); 456 goto out; 457 } 458 459 for (extent_offset = 0; 460 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 461 extent_offset++) { 462 rc = crypt_extent(crypt_stat, enc_extent_page, page, 463 extent_offset, ENCRYPT); 464 if (rc) { 465 printk(KERN_ERR "%s: Error encrypting extent; " 466 "rc = [%d]\n", __func__, rc); 467 goto out; 468 } 469 } 470 471 lower_offset = lower_offset_for_page(crypt_stat, page); 472 enc_extent_virt = kmap(enc_extent_page); 473 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, 474 PAGE_SIZE); 475 kunmap(enc_extent_page); 476 if (rc < 0) { 477 ecryptfs_printk(KERN_ERR, 478 "Error attempting to write lower page; rc = [%d]\n", 479 rc); 480 goto out; 481 } 482 rc = 0; 483 out: 484 if (enc_extent_page) { 485 __free_page(enc_extent_page); 486 } 487 return rc; 488 } 489 490 /** 491 * ecryptfs_decrypt_page 492 * @page: Page mapped from the eCryptfs inode for the file; data read 493 * and decrypted from the lower file will be written into this 494 * page 495 * 496 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 497 * that eCryptfs pages may straddle the lower pages -- for instance, 498 * if the file was created on a machine with an 8K page size 499 * (resulting in an 8K header), and then the file is copied onto a 500 * host with a 32K page size, then when reading page 0 of the eCryptfs 501 * file, 24K of page 0 of the lower file will be read and decrypted, 502 * and then 8K of page 1 of the lower file will be read and decrypted. 503 * 504 * Returns zero on success; negative on error 505 */ 506 int ecryptfs_decrypt_page(struct page *page) 507 { 508 struct inode *ecryptfs_inode; 509 struct ecryptfs_crypt_stat *crypt_stat; 510 char *page_virt; 511 unsigned long extent_offset; 512 loff_t lower_offset; 513 int rc = 0; 514 515 ecryptfs_inode = page->mapping->host; 516 crypt_stat = 517 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 518 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 519 520 lower_offset = lower_offset_for_page(crypt_stat, page); 521 page_virt = kmap(page); 522 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE, 523 ecryptfs_inode); 524 kunmap(page); 525 if (rc < 0) { 526 ecryptfs_printk(KERN_ERR, 527 "Error attempting to read lower page; rc = [%d]\n", 528 rc); 529 goto out; 530 } 531 532 for (extent_offset = 0; 533 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 534 extent_offset++) { 535 rc = crypt_extent(crypt_stat, page, page, 536 extent_offset, DECRYPT); 537 if (rc) { 538 printk(KERN_ERR "%s: Error decrypting extent; " 539 "rc = [%d]\n", __func__, rc); 540 goto out; 541 } 542 } 543 out: 544 return rc; 545 } 546 547 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 548 549 /** 550 * ecryptfs_init_crypt_ctx 551 * @crypt_stat: Uninitialized crypt stats structure 552 * 553 * Initialize the crypto context. 554 * 555 * TODO: Performance: Keep a cache of initialized cipher contexts; 556 * only init if needed 557 */ 558 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 559 { 560 char *full_alg_name; 561 int rc = -EINVAL; 562 563 ecryptfs_printk(KERN_DEBUG, 564 "Initializing cipher [%s]; strlen = [%d]; " 565 "key_size_bits = [%zd]\n", 566 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 567 crypt_stat->key_size << 3); 568 mutex_lock(&crypt_stat->cs_tfm_mutex); 569 if (crypt_stat->tfm) { 570 rc = 0; 571 goto out_unlock; 572 } 573 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 574 crypt_stat->cipher, "cbc"); 575 if (rc) 576 goto out_unlock; 577 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0); 578 if (IS_ERR(crypt_stat->tfm)) { 579 rc = PTR_ERR(crypt_stat->tfm); 580 crypt_stat->tfm = NULL; 581 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 582 "Error initializing cipher [%s]\n", 583 full_alg_name); 584 goto out_free; 585 } 586 crypto_skcipher_set_flags(crypt_stat->tfm, 587 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 588 rc = 0; 589 out_free: 590 kfree(full_alg_name); 591 out_unlock: 592 mutex_unlock(&crypt_stat->cs_tfm_mutex); 593 return rc; 594 } 595 596 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 597 { 598 int extent_size_tmp; 599 600 crypt_stat->extent_mask = 0xFFFFFFFF; 601 crypt_stat->extent_shift = 0; 602 if (crypt_stat->extent_size == 0) 603 return; 604 extent_size_tmp = crypt_stat->extent_size; 605 while ((extent_size_tmp & 0x01) == 0) { 606 extent_size_tmp >>= 1; 607 crypt_stat->extent_mask <<= 1; 608 crypt_stat->extent_shift++; 609 } 610 } 611 612 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 613 { 614 /* Default values; may be overwritten as we are parsing the 615 * packets. */ 616 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 617 set_extent_mask_and_shift(crypt_stat); 618 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 619 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 620 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 621 else { 622 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 623 crypt_stat->metadata_size = 624 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 625 else 626 crypt_stat->metadata_size = PAGE_SIZE; 627 } 628 } 629 630 /* 631 * ecryptfs_compute_root_iv 632 * 633 * On error, sets the root IV to all 0's. 634 */ 635 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 636 { 637 int rc = 0; 638 char dst[MD5_DIGEST_SIZE]; 639 640 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 641 BUG_ON(crypt_stat->iv_bytes <= 0); 642 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 643 rc = -EINVAL; 644 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 645 "cannot generate root IV\n"); 646 goto out; 647 } 648 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 649 crypt_stat->key_size); 650 if (rc) { 651 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 652 "MD5 while generating root IV\n"); 653 goto out; 654 } 655 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 656 out: 657 if (rc) { 658 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 659 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 660 } 661 return rc; 662 } 663 664 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 665 { 666 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 667 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 668 ecryptfs_compute_root_iv(crypt_stat); 669 if (unlikely(ecryptfs_verbosity > 0)) { 670 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 671 ecryptfs_dump_hex(crypt_stat->key, 672 crypt_stat->key_size); 673 } 674 } 675 676 /** 677 * ecryptfs_copy_mount_wide_flags_to_inode_flags 678 * @crypt_stat: The inode's cryptographic context 679 * @mount_crypt_stat: The mount point's cryptographic context 680 * 681 * This function propagates the mount-wide flags to individual inode 682 * flags. 683 */ 684 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 685 struct ecryptfs_crypt_stat *crypt_stat, 686 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 687 { 688 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 689 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 690 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 691 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 692 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 693 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 694 if (mount_crypt_stat->flags 695 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 696 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 697 else if (mount_crypt_stat->flags 698 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 699 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 700 } 701 } 702 703 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 704 struct ecryptfs_crypt_stat *crypt_stat, 705 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 706 { 707 struct ecryptfs_global_auth_tok *global_auth_tok; 708 int rc = 0; 709 710 mutex_lock(&crypt_stat->keysig_list_mutex); 711 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 712 713 list_for_each_entry(global_auth_tok, 714 &mount_crypt_stat->global_auth_tok_list, 715 mount_crypt_stat_list) { 716 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 717 continue; 718 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 719 if (rc) { 720 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 721 goto out; 722 } 723 } 724 725 out: 726 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 727 mutex_unlock(&crypt_stat->keysig_list_mutex); 728 return rc; 729 } 730 731 /** 732 * ecryptfs_set_default_crypt_stat_vals 733 * @crypt_stat: The inode's cryptographic context 734 * @mount_crypt_stat: The mount point's cryptographic context 735 * 736 * Default values in the event that policy does not override them. 737 */ 738 static void ecryptfs_set_default_crypt_stat_vals( 739 struct ecryptfs_crypt_stat *crypt_stat, 740 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 741 { 742 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 743 mount_crypt_stat); 744 ecryptfs_set_default_sizes(crypt_stat); 745 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 746 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 747 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 748 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 749 crypt_stat->mount_crypt_stat = mount_crypt_stat; 750 } 751 752 /** 753 * ecryptfs_new_file_context 754 * @ecryptfs_inode: The eCryptfs inode 755 * 756 * If the crypto context for the file has not yet been established, 757 * this is where we do that. Establishing a new crypto context 758 * involves the following decisions: 759 * - What cipher to use? 760 * - What set of authentication tokens to use? 761 * Here we just worry about getting enough information into the 762 * authentication tokens so that we know that they are available. 763 * We associate the available authentication tokens with the new file 764 * via the set of signatures in the crypt_stat struct. Later, when 765 * the headers are actually written out, we may again defer to 766 * userspace to perform the encryption of the session key; for the 767 * foreseeable future, this will be the case with public key packets. 768 * 769 * Returns zero on success; non-zero otherwise 770 */ 771 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 772 { 773 struct ecryptfs_crypt_stat *crypt_stat = 774 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 775 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 776 &ecryptfs_superblock_to_private( 777 ecryptfs_inode->i_sb)->mount_crypt_stat; 778 int cipher_name_len; 779 int rc = 0; 780 781 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 782 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 783 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 784 mount_crypt_stat); 785 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 786 mount_crypt_stat); 787 if (rc) { 788 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 789 "to the inode key sigs; rc = [%d]\n", rc); 790 goto out; 791 } 792 cipher_name_len = 793 strlen(mount_crypt_stat->global_default_cipher_name); 794 memcpy(crypt_stat->cipher, 795 mount_crypt_stat->global_default_cipher_name, 796 cipher_name_len); 797 crypt_stat->cipher[cipher_name_len] = '\0'; 798 crypt_stat->key_size = 799 mount_crypt_stat->global_default_cipher_key_size; 800 ecryptfs_generate_new_key(crypt_stat); 801 rc = ecryptfs_init_crypt_ctx(crypt_stat); 802 if (rc) 803 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 804 "context for cipher [%s]: rc = [%d]\n", 805 crypt_stat->cipher, rc); 806 out: 807 return rc; 808 } 809 810 /** 811 * ecryptfs_validate_marker - check for the ecryptfs marker 812 * @data: The data block in which to check 813 * 814 * Returns zero if marker found; -EINVAL if not found 815 */ 816 static int ecryptfs_validate_marker(char *data) 817 { 818 u32 m_1, m_2; 819 820 m_1 = get_unaligned_be32(data); 821 m_2 = get_unaligned_be32(data + 4); 822 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 823 return 0; 824 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 825 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 826 MAGIC_ECRYPTFS_MARKER); 827 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 828 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 829 return -EINVAL; 830 } 831 832 struct ecryptfs_flag_map_elem { 833 u32 file_flag; 834 u32 local_flag; 835 }; 836 837 /* Add support for additional flags by adding elements here. */ 838 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 839 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 840 {0x00000002, ECRYPTFS_ENCRYPTED}, 841 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 842 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 843 }; 844 845 /** 846 * ecryptfs_process_flags 847 * @crypt_stat: The cryptographic context 848 * @page_virt: Source data to be parsed 849 * @bytes_read: Updated with the number of bytes read 850 */ 851 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 852 char *page_virt, int *bytes_read) 853 { 854 int i; 855 u32 flags; 856 857 flags = get_unaligned_be32(page_virt); 858 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 859 if (flags & ecryptfs_flag_map[i].file_flag) { 860 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 861 } else 862 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 863 /* Version is in top 8 bits of the 32-bit flag vector */ 864 crypt_stat->file_version = ((flags >> 24) & 0xFF); 865 (*bytes_read) = 4; 866 } 867 868 /** 869 * write_ecryptfs_marker 870 * @page_virt: The pointer to in a page to begin writing the marker 871 * @written: Number of bytes written 872 * 873 * Marker = 0x3c81b7f5 874 */ 875 static void write_ecryptfs_marker(char *page_virt, size_t *written) 876 { 877 u32 m_1, m_2; 878 879 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 880 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 881 put_unaligned_be32(m_1, page_virt); 882 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 883 put_unaligned_be32(m_2, page_virt); 884 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 885 } 886 887 void ecryptfs_write_crypt_stat_flags(char *page_virt, 888 struct ecryptfs_crypt_stat *crypt_stat, 889 size_t *written) 890 { 891 u32 flags = 0; 892 int i; 893 894 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 895 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 896 flags |= ecryptfs_flag_map[i].file_flag; 897 /* Version is in top 8 bits of the 32-bit flag vector */ 898 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 899 put_unaligned_be32(flags, page_virt); 900 (*written) = 4; 901 } 902 903 struct ecryptfs_cipher_code_str_map_elem { 904 char cipher_str[16]; 905 u8 cipher_code; 906 }; 907 908 /* Add support for additional ciphers by adding elements here. The 909 * cipher_code is whatever OpenPGP applications use to identify the 910 * ciphers. List in order of probability. */ 911 static struct ecryptfs_cipher_code_str_map_elem 912 ecryptfs_cipher_code_str_map[] = { 913 {"aes",RFC2440_CIPHER_AES_128 }, 914 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 915 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 916 {"cast5", RFC2440_CIPHER_CAST_5}, 917 {"twofish", RFC2440_CIPHER_TWOFISH}, 918 {"cast6", RFC2440_CIPHER_CAST_6}, 919 {"aes", RFC2440_CIPHER_AES_192}, 920 {"aes", RFC2440_CIPHER_AES_256} 921 }; 922 923 /** 924 * ecryptfs_code_for_cipher_string 925 * @cipher_name: The string alias for the cipher 926 * @key_bytes: Length of key in bytes; used for AES code selection 927 * 928 * Returns zero on no match, or the cipher code on match 929 */ 930 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 931 { 932 int i; 933 u8 code = 0; 934 struct ecryptfs_cipher_code_str_map_elem *map = 935 ecryptfs_cipher_code_str_map; 936 937 if (strcmp(cipher_name, "aes") == 0) { 938 switch (key_bytes) { 939 case 16: 940 code = RFC2440_CIPHER_AES_128; 941 break; 942 case 24: 943 code = RFC2440_CIPHER_AES_192; 944 break; 945 case 32: 946 code = RFC2440_CIPHER_AES_256; 947 } 948 } else { 949 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 950 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 951 code = map[i].cipher_code; 952 break; 953 } 954 } 955 return code; 956 } 957 958 /** 959 * ecryptfs_cipher_code_to_string 960 * @str: Destination to write out the cipher name 961 * @cipher_code: The code to convert to cipher name string 962 * 963 * Returns zero on success 964 */ 965 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 966 { 967 int rc = 0; 968 int i; 969 970 str[0] = '\0'; 971 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 972 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 973 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 974 if (str[0] == '\0') { 975 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 976 "[%d]\n", cipher_code); 977 rc = -EINVAL; 978 } 979 return rc; 980 } 981 982 int ecryptfs_read_and_validate_header_region(struct inode *inode) 983 { 984 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 985 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 986 int rc; 987 988 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 989 inode); 990 if (rc < 0) 991 return rc; 992 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 993 return -EINVAL; 994 rc = ecryptfs_validate_marker(marker); 995 if (!rc) 996 ecryptfs_i_size_init(file_size, inode); 997 return rc; 998 } 999 1000 void 1001 ecryptfs_write_header_metadata(char *virt, 1002 struct ecryptfs_crypt_stat *crypt_stat, 1003 size_t *written) 1004 { 1005 u32 header_extent_size; 1006 u16 num_header_extents_at_front; 1007 1008 header_extent_size = (u32)crypt_stat->extent_size; 1009 num_header_extents_at_front = 1010 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1011 put_unaligned_be32(header_extent_size, virt); 1012 virt += 4; 1013 put_unaligned_be16(num_header_extents_at_front, virt); 1014 (*written) = 6; 1015 } 1016 1017 struct kmem_cache *ecryptfs_header_cache; 1018 1019 /** 1020 * ecryptfs_write_headers_virt 1021 * @page_virt: The virtual address to write the headers to 1022 * @max: The size of memory allocated at page_virt 1023 * @size: Set to the number of bytes written by this function 1024 * @crypt_stat: The cryptographic context 1025 * @ecryptfs_dentry: The eCryptfs dentry 1026 * 1027 * Format version: 1 1028 * 1029 * Header Extent: 1030 * Octets 0-7: Unencrypted file size (big-endian) 1031 * Octets 8-15: eCryptfs special marker 1032 * Octets 16-19: Flags 1033 * Octet 16: File format version number (between 0 and 255) 1034 * Octets 17-18: Reserved 1035 * Octet 19: Bit 1 (lsb): Reserved 1036 * Bit 2: Encrypted? 1037 * Bits 3-8: Reserved 1038 * Octets 20-23: Header extent size (big-endian) 1039 * Octets 24-25: Number of header extents at front of file 1040 * (big-endian) 1041 * Octet 26: Begin RFC 2440 authentication token packet set 1042 * Data Extent 0: 1043 * Lower data (CBC encrypted) 1044 * Data Extent 1: 1045 * Lower data (CBC encrypted) 1046 * ... 1047 * 1048 * Returns zero on success 1049 */ 1050 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1051 size_t *size, 1052 struct ecryptfs_crypt_stat *crypt_stat, 1053 struct dentry *ecryptfs_dentry) 1054 { 1055 int rc; 1056 size_t written; 1057 size_t offset; 1058 1059 offset = ECRYPTFS_FILE_SIZE_BYTES; 1060 write_ecryptfs_marker((page_virt + offset), &written); 1061 offset += written; 1062 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1063 &written); 1064 offset += written; 1065 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1066 &written); 1067 offset += written; 1068 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1069 ecryptfs_dentry, &written, 1070 max - offset); 1071 if (rc) 1072 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1073 "set; rc = [%d]\n", rc); 1074 if (size) { 1075 offset += written; 1076 *size = offset; 1077 } 1078 return rc; 1079 } 1080 1081 static int 1082 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1083 char *virt, size_t virt_len) 1084 { 1085 int rc; 1086 1087 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1088 0, virt_len); 1089 if (rc < 0) 1090 printk(KERN_ERR "%s: Error attempting to write header " 1091 "information to lower file; rc = [%d]\n", __func__, rc); 1092 else 1093 rc = 0; 1094 return rc; 1095 } 1096 1097 static int 1098 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1099 struct inode *ecryptfs_inode, 1100 char *page_virt, size_t size) 1101 { 1102 int rc; 1103 struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry); 1104 struct inode *lower_inode = d_inode(lower_dentry); 1105 1106 if (!(lower_inode->i_opflags & IOP_XATTR)) { 1107 rc = -EOPNOTSUPP; 1108 goto out; 1109 } 1110 1111 inode_lock(lower_inode); 1112 rc = __vfs_setxattr(&init_user_ns, lower_dentry, lower_inode, 1113 ECRYPTFS_XATTR_NAME, page_virt, size, 0); 1114 if (!rc && ecryptfs_inode) 1115 fsstack_copy_attr_all(ecryptfs_inode, lower_inode); 1116 inode_unlock(lower_inode); 1117 out: 1118 return rc; 1119 } 1120 1121 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1122 unsigned int order) 1123 { 1124 struct page *page; 1125 1126 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1127 if (page) 1128 return (unsigned long) page_address(page); 1129 return 0; 1130 } 1131 1132 /** 1133 * ecryptfs_write_metadata 1134 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1135 * @ecryptfs_inode: The newly created eCryptfs inode 1136 * 1137 * Write the file headers out. This will likely involve a userspace 1138 * callout, in which the session key is encrypted with one or more 1139 * public keys and/or the passphrase necessary to do the encryption is 1140 * retrieved via a prompt. Exactly what happens at this point should 1141 * be policy-dependent. 1142 * 1143 * Returns zero on success; non-zero on error 1144 */ 1145 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1146 struct inode *ecryptfs_inode) 1147 { 1148 struct ecryptfs_crypt_stat *crypt_stat = 1149 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1150 unsigned int order; 1151 char *virt; 1152 size_t virt_len; 1153 size_t size = 0; 1154 int rc = 0; 1155 1156 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1157 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1158 printk(KERN_ERR "Key is invalid; bailing out\n"); 1159 rc = -EINVAL; 1160 goto out; 1161 } 1162 } else { 1163 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1164 __func__); 1165 rc = -EINVAL; 1166 goto out; 1167 } 1168 virt_len = crypt_stat->metadata_size; 1169 order = get_order(virt_len); 1170 /* Released in this function */ 1171 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1172 if (!virt) { 1173 printk(KERN_ERR "%s: Out of memory\n", __func__); 1174 rc = -ENOMEM; 1175 goto out; 1176 } 1177 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1178 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1179 ecryptfs_dentry); 1180 if (unlikely(rc)) { 1181 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1182 __func__, rc); 1183 goto out_free; 1184 } 1185 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1186 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode, 1187 virt, size); 1188 else 1189 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1190 virt_len); 1191 if (rc) { 1192 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1193 "rc = [%d]\n", __func__, rc); 1194 goto out_free; 1195 } 1196 out_free: 1197 free_pages((unsigned long)virt, order); 1198 out: 1199 return rc; 1200 } 1201 1202 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1203 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1204 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1205 char *virt, int *bytes_read, 1206 int validate_header_size) 1207 { 1208 int rc = 0; 1209 u32 header_extent_size; 1210 u16 num_header_extents_at_front; 1211 1212 header_extent_size = get_unaligned_be32(virt); 1213 virt += sizeof(__be32); 1214 num_header_extents_at_front = get_unaligned_be16(virt); 1215 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1216 * (size_t)header_extent_size)); 1217 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1218 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1219 && (crypt_stat->metadata_size 1220 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1221 rc = -EINVAL; 1222 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1223 crypt_stat->metadata_size); 1224 } 1225 return rc; 1226 } 1227 1228 /** 1229 * set_default_header_data 1230 * @crypt_stat: The cryptographic context 1231 * 1232 * For version 0 file format; this function is only for backwards 1233 * compatibility for files created with the prior versions of 1234 * eCryptfs. 1235 */ 1236 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1237 { 1238 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1239 } 1240 1241 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1242 { 1243 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1244 struct ecryptfs_crypt_stat *crypt_stat; 1245 u64 file_size; 1246 1247 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1248 mount_crypt_stat = 1249 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1250 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1251 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1252 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1253 file_size += crypt_stat->metadata_size; 1254 } else 1255 file_size = get_unaligned_be64(page_virt); 1256 i_size_write(inode, (loff_t)file_size); 1257 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1258 } 1259 1260 /** 1261 * ecryptfs_read_headers_virt 1262 * @page_virt: The virtual address into which to read the headers 1263 * @crypt_stat: The cryptographic context 1264 * @ecryptfs_dentry: The eCryptfs dentry 1265 * @validate_header_size: Whether to validate the header size while reading 1266 * 1267 * Read/parse the header data. The header format is detailed in the 1268 * comment block for the ecryptfs_write_headers_virt() function. 1269 * 1270 * Returns zero on success 1271 */ 1272 static int ecryptfs_read_headers_virt(char *page_virt, 1273 struct ecryptfs_crypt_stat *crypt_stat, 1274 struct dentry *ecryptfs_dentry, 1275 int validate_header_size) 1276 { 1277 int rc = 0; 1278 int offset; 1279 int bytes_read; 1280 1281 ecryptfs_set_default_sizes(crypt_stat); 1282 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1283 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1284 offset = ECRYPTFS_FILE_SIZE_BYTES; 1285 rc = ecryptfs_validate_marker(page_virt + offset); 1286 if (rc) 1287 goto out; 1288 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1289 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry)); 1290 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1291 ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read); 1292 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1293 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1294 "file version [%d] is supported by this " 1295 "version of eCryptfs\n", 1296 crypt_stat->file_version, 1297 ECRYPTFS_SUPPORTED_FILE_VERSION); 1298 rc = -EINVAL; 1299 goto out; 1300 } 1301 offset += bytes_read; 1302 if (crypt_stat->file_version >= 1) { 1303 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1304 &bytes_read, validate_header_size); 1305 if (rc) { 1306 ecryptfs_printk(KERN_WARNING, "Error reading header " 1307 "metadata; rc = [%d]\n", rc); 1308 } 1309 offset += bytes_read; 1310 } else 1311 set_default_header_data(crypt_stat); 1312 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1313 ecryptfs_dentry); 1314 out: 1315 return rc; 1316 } 1317 1318 /** 1319 * ecryptfs_read_xattr_region 1320 * @page_virt: The vitual address into which to read the xattr data 1321 * @ecryptfs_inode: The eCryptfs inode 1322 * 1323 * Attempts to read the crypto metadata from the extended attribute 1324 * region of the lower file. 1325 * 1326 * Returns zero on success; non-zero on error 1327 */ 1328 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1329 { 1330 struct dentry *lower_dentry = 1331 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry; 1332 ssize_t size; 1333 int rc = 0; 1334 1335 size = ecryptfs_getxattr_lower(lower_dentry, 1336 ecryptfs_inode_to_lower(ecryptfs_inode), 1337 ECRYPTFS_XATTR_NAME, 1338 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1339 if (size < 0) { 1340 if (unlikely(ecryptfs_verbosity > 0)) 1341 printk(KERN_INFO "Error attempting to read the [%s] " 1342 "xattr from the lower file; return value = " 1343 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1344 rc = -EINVAL; 1345 goto out; 1346 } 1347 out: 1348 return rc; 1349 } 1350 1351 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1352 struct inode *inode) 1353 { 1354 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1355 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1356 int rc; 1357 1358 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1359 ecryptfs_inode_to_lower(inode), 1360 ECRYPTFS_XATTR_NAME, file_size, 1361 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1362 if (rc < 0) 1363 return rc; 1364 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1365 return -EINVAL; 1366 rc = ecryptfs_validate_marker(marker); 1367 if (!rc) 1368 ecryptfs_i_size_init(file_size, inode); 1369 return rc; 1370 } 1371 1372 /* 1373 * ecryptfs_read_metadata 1374 * 1375 * Common entry point for reading file metadata. From here, we could 1376 * retrieve the header information from the header region of the file, 1377 * the xattr region of the file, or some other repository that is 1378 * stored separately from the file itself. The current implementation 1379 * supports retrieving the metadata information from the file contents 1380 * and from the xattr region. 1381 * 1382 * Returns zero if valid headers found and parsed; non-zero otherwise 1383 */ 1384 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1385 { 1386 int rc; 1387 char *page_virt; 1388 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry); 1389 struct ecryptfs_crypt_stat *crypt_stat = 1390 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1391 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1392 &ecryptfs_superblock_to_private( 1393 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1394 1395 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1396 mount_crypt_stat); 1397 /* Read the first page from the underlying file */ 1398 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1399 if (!page_virt) { 1400 rc = -ENOMEM; 1401 goto out; 1402 } 1403 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1404 ecryptfs_inode); 1405 if (rc >= 0) 1406 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1407 ecryptfs_dentry, 1408 ECRYPTFS_VALIDATE_HEADER_SIZE); 1409 if (rc) { 1410 /* metadata is not in the file header, so try xattrs */ 1411 memset(page_virt, 0, PAGE_SIZE); 1412 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1413 if (rc) { 1414 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1415 "file header region or xattr region, inode %lu\n", 1416 ecryptfs_inode->i_ino); 1417 rc = -EINVAL; 1418 goto out; 1419 } 1420 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1421 ecryptfs_dentry, 1422 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1423 if (rc) { 1424 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1425 "file xattr region either, inode %lu\n", 1426 ecryptfs_inode->i_ino); 1427 rc = -EINVAL; 1428 } 1429 if (crypt_stat->mount_crypt_stat->flags 1430 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1431 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1432 } else { 1433 printk(KERN_WARNING "Attempt to access file with " 1434 "crypto metadata only in the extended attribute " 1435 "region, but eCryptfs was mounted without " 1436 "xattr support enabled. eCryptfs will not treat " 1437 "this like an encrypted file, inode %lu\n", 1438 ecryptfs_inode->i_ino); 1439 rc = -EINVAL; 1440 } 1441 } 1442 out: 1443 if (page_virt) { 1444 memset(page_virt, 0, PAGE_SIZE); 1445 kmem_cache_free(ecryptfs_header_cache, page_virt); 1446 } 1447 return rc; 1448 } 1449 1450 /* 1451 * ecryptfs_encrypt_filename - encrypt filename 1452 * 1453 * CBC-encrypts the filename. We do not want to encrypt the same 1454 * filename with the same key and IV, which may happen with hard 1455 * links, so we prepend random bits to each filename. 1456 * 1457 * Returns zero on success; non-zero otherwise 1458 */ 1459 static int 1460 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1461 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1462 { 1463 int rc = 0; 1464 1465 filename->encrypted_filename = NULL; 1466 filename->encrypted_filename_size = 0; 1467 if (mount_crypt_stat && (mount_crypt_stat->flags 1468 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1469 size_t packet_size; 1470 size_t remaining_bytes; 1471 1472 rc = ecryptfs_write_tag_70_packet( 1473 NULL, NULL, 1474 &filename->encrypted_filename_size, 1475 mount_crypt_stat, NULL, 1476 filename->filename_size); 1477 if (rc) { 1478 printk(KERN_ERR "%s: Error attempting to get packet " 1479 "size for tag 72; rc = [%d]\n", __func__, 1480 rc); 1481 filename->encrypted_filename_size = 0; 1482 goto out; 1483 } 1484 filename->encrypted_filename = 1485 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1486 if (!filename->encrypted_filename) { 1487 rc = -ENOMEM; 1488 goto out; 1489 } 1490 remaining_bytes = filename->encrypted_filename_size; 1491 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1492 &remaining_bytes, 1493 &packet_size, 1494 mount_crypt_stat, 1495 filename->filename, 1496 filename->filename_size); 1497 if (rc) { 1498 printk(KERN_ERR "%s: Error attempting to generate " 1499 "tag 70 packet; rc = [%d]\n", __func__, 1500 rc); 1501 kfree(filename->encrypted_filename); 1502 filename->encrypted_filename = NULL; 1503 filename->encrypted_filename_size = 0; 1504 goto out; 1505 } 1506 filename->encrypted_filename_size = packet_size; 1507 } else { 1508 printk(KERN_ERR "%s: No support for requested filename " 1509 "encryption method in this release\n", __func__); 1510 rc = -EOPNOTSUPP; 1511 goto out; 1512 } 1513 out: 1514 return rc; 1515 } 1516 1517 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1518 const char *name, size_t name_size) 1519 { 1520 int rc = 0; 1521 1522 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1523 if (!(*copied_name)) { 1524 rc = -ENOMEM; 1525 goto out; 1526 } 1527 memcpy((void *)(*copied_name), (void *)name, name_size); 1528 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1529 * in printing out the 1530 * string in debug 1531 * messages */ 1532 (*copied_name_size) = name_size; 1533 out: 1534 return rc; 1535 } 1536 1537 /** 1538 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1539 * @key_tfm: Crypto context for key material, set by this function 1540 * @cipher_name: Name of the cipher 1541 * @key_size: Size of the key in bytes 1542 * 1543 * Returns zero on success. Any crypto_tfm structs allocated here 1544 * should be released by other functions, such as on a superblock put 1545 * event, regardless of whether this function succeeds for fails. 1546 */ 1547 static int 1548 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, 1549 char *cipher_name, size_t *key_size) 1550 { 1551 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1552 char *full_alg_name = NULL; 1553 int rc; 1554 1555 *key_tfm = NULL; 1556 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1557 rc = -EINVAL; 1558 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1559 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1560 goto out; 1561 } 1562 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1563 "ecb"); 1564 if (rc) 1565 goto out; 1566 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1567 if (IS_ERR(*key_tfm)) { 1568 rc = PTR_ERR(*key_tfm); 1569 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1570 "[%s]; rc = [%d]\n", full_alg_name, rc); 1571 goto out; 1572 } 1573 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 1574 if (*key_size == 0) 1575 *key_size = crypto_skcipher_max_keysize(*key_tfm); 1576 get_random_bytes(dummy_key, *key_size); 1577 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size); 1578 if (rc) { 1579 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1580 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1581 rc); 1582 rc = -EINVAL; 1583 goto out; 1584 } 1585 out: 1586 kfree(full_alg_name); 1587 return rc; 1588 } 1589 1590 struct kmem_cache *ecryptfs_key_tfm_cache; 1591 static struct list_head key_tfm_list; 1592 DEFINE_MUTEX(key_tfm_list_mutex); 1593 1594 int __init ecryptfs_init_crypto(void) 1595 { 1596 INIT_LIST_HEAD(&key_tfm_list); 1597 return 0; 1598 } 1599 1600 /** 1601 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1602 * 1603 * Called only at module unload time 1604 */ 1605 int ecryptfs_destroy_crypto(void) 1606 { 1607 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1608 1609 mutex_lock(&key_tfm_list_mutex); 1610 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1611 key_tfm_list) { 1612 list_del(&key_tfm->key_tfm_list); 1613 crypto_free_skcipher(key_tfm->key_tfm); 1614 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1615 } 1616 mutex_unlock(&key_tfm_list_mutex); 1617 return 0; 1618 } 1619 1620 int 1621 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1622 size_t key_size) 1623 { 1624 struct ecryptfs_key_tfm *tmp_tfm; 1625 int rc = 0; 1626 1627 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1628 1629 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1630 if (key_tfm) 1631 (*key_tfm) = tmp_tfm; 1632 if (!tmp_tfm) { 1633 rc = -ENOMEM; 1634 goto out; 1635 } 1636 mutex_init(&tmp_tfm->key_tfm_mutex); 1637 strncpy(tmp_tfm->cipher_name, cipher_name, 1638 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1639 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1640 tmp_tfm->key_size = key_size; 1641 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1642 tmp_tfm->cipher_name, 1643 &tmp_tfm->key_size); 1644 if (rc) { 1645 printk(KERN_ERR "Error attempting to initialize key TFM " 1646 "cipher with name = [%s]; rc = [%d]\n", 1647 tmp_tfm->cipher_name, rc); 1648 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1649 if (key_tfm) 1650 (*key_tfm) = NULL; 1651 goto out; 1652 } 1653 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1654 out: 1655 return rc; 1656 } 1657 1658 /** 1659 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1660 * @cipher_name: the name of the cipher to search for 1661 * @key_tfm: set to corresponding tfm if found 1662 * 1663 * Searches for cached key_tfm matching @cipher_name 1664 * Must be called with &key_tfm_list_mutex held 1665 * Returns 1 if found, with @key_tfm set 1666 * Returns 0 if not found, with @key_tfm set to NULL 1667 */ 1668 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1669 { 1670 struct ecryptfs_key_tfm *tmp_key_tfm; 1671 1672 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1673 1674 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1675 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1676 if (key_tfm) 1677 (*key_tfm) = tmp_key_tfm; 1678 return 1; 1679 } 1680 } 1681 if (key_tfm) 1682 (*key_tfm) = NULL; 1683 return 0; 1684 } 1685 1686 /** 1687 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1688 * 1689 * @tfm: set to cached tfm found, or new tfm created 1690 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1691 * @cipher_name: the name of the cipher to search for and/or add 1692 * 1693 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1694 * Searches for cached item first, and creates new if not found. 1695 * Returns 0 on success, non-zero if adding new cipher failed 1696 */ 1697 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, 1698 struct mutex **tfm_mutex, 1699 char *cipher_name) 1700 { 1701 struct ecryptfs_key_tfm *key_tfm; 1702 int rc = 0; 1703 1704 (*tfm) = NULL; 1705 (*tfm_mutex) = NULL; 1706 1707 mutex_lock(&key_tfm_list_mutex); 1708 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1709 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1710 if (rc) { 1711 printk(KERN_ERR "Error adding new key_tfm to list; " 1712 "rc = [%d]\n", rc); 1713 goto out; 1714 } 1715 } 1716 (*tfm) = key_tfm->key_tfm; 1717 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1718 out: 1719 mutex_unlock(&key_tfm_list_mutex); 1720 return rc; 1721 } 1722 1723 /* 64 characters forming a 6-bit target field */ 1724 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1725 "EFGHIJKLMNOPQRST" 1726 "UVWXYZabcdefghij" 1727 "klmnopqrstuvwxyz"); 1728 1729 /* We could either offset on every reverse map or just pad some 0x00's 1730 * at the front here */ 1731 static const unsigned char filename_rev_map[256] = { 1732 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1733 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1734 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1735 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1736 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1737 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1738 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1739 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1740 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1741 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1742 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1743 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1744 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1745 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1746 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1747 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1748 }; 1749 1750 /** 1751 * ecryptfs_encode_for_filename 1752 * @dst: Destination location for encoded filename 1753 * @dst_size: Size of the encoded filename in bytes 1754 * @src: Source location for the filename to encode 1755 * @src_size: Size of the source in bytes 1756 */ 1757 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1758 unsigned char *src, size_t src_size) 1759 { 1760 size_t num_blocks; 1761 size_t block_num = 0; 1762 size_t dst_offset = 0; 1763 unsigned char last_block[3]; 1764 1765 if (src_size == 0) { 1766 (*dst_size) = 0; 1767 goto out; 1768 } 1769 num_blocks = (src_size / 3); 1770 if ((src_size % 3) == 0) { 1771 memcpy(last_block, (&src[src_size - 3]), 3); 1772 } else { 1773 num_blocks++; 1774 last_block[2] = 0x00; 1775 switch (src_size % 3) { 1776 case 1: 1777 last_block[0] = src[src_size - 1]; 1778 last_block[1] = 0x00; 1779 break; 1780 case 2: 1781 last_block[0] = src[src_size - 2]; 1782 last_block[1] = src[src_size - 1]; 1783 } 1784 } 1785 (*dst_size) = (num_blocks * 4); 1786 if (!dst) 1787 goto out; 1788 while (block_num < num_blocks) { 1789 unsigned char *src_block; 1790 unsigned char dst_block[4]; 1791 1792 if (block_num == (num_blocks - 1)) 1793 src_block = last_block; 1794 else 1795 src_block = &src[block_num * 3]; 1796 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1797 dst_block[1] = (((src_block[0] << 4) & 0x30) 1798 | ((src_block[1] >> 4) & 0x0F)); 1799 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1800 | ((src_block[2] >> 6) & 0x03)); 1801 dst_block[3] = (src_block[2] & 0x3F); 1802 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1803 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1804 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1805 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1806 block_num++; 1807 } 1808 out: 1809 return; 1810 } 1811 1812 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1813 { 1814 /* Not exact; conservatively long. Every block of 4 1815 * encoded characters decodes into a block of 3 1816 * decoded characters. This segment of code provides 1817 * the caller with the maximum amount of allocated 1818 * space that @dst will need to point to in a 1819 * subsequent call. */ 1820 return ((encoded_size + 1) * 3) / 4; 1821 } 1822 1823 /** 1824 * ecryptfs_decode_from_filename 1825 * @dst: If NULL, this function only sets @dst_size and returns. If 1826 * non-NULL, this function decodes the encoded octets in @src 1827 * into the memory that @dst points to. 1828 * @dst_size: Set to the size of the decoded string. 1829 * @src: The encoded set of octets to decode. 1830 * @src_size: The size of the encoded set of octets to decode. 1831 */ 1832 static void 1833 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 1834 const unsigned char *src, size_t src_size) 1835 { 1836 u8 current_bit_offset = 0; 1837 size_t src_byte_offset = 0; 1838 size_t dst_byte_offset = 0; 1839 1840 if (!dst) { 1841 (*dst_size) = ecryptfs_max_decoded_size(src_size); 1842 goto out; 1843 } 1844 while (src_byte_offset < src_size) { 1845 unsigned char src_byte = 1846 filename_rev_map[(int)src[src_byte_offset]]; 1847 1848 switch (current_bit_offset) { 1849 case 0: 1850 dst[dst_byte_offset] = (src_byte << 2); 1851 current_bit_offset = 6; 1852 break; 1853 case 6: 1854 dst[dst_byte_offset++] |= (src_byte >> 4); 1855 dst[dst_byte_offset] = ((src_byte & 0xF) 1856 << 4); 1857 current_bit_offset = 4; 1858 break; 1859 case 4: 1860 dst[dst_byte_offset++] |= (src_byte >> 2); 1861 dst[dst_byte_offset] = (src_byte << 6); 1862 current_bit_offset = 2; 1863 break; 1864 case 2: 1865 dst[dst_byte_offset++] |= (src_byte); 1866 current_bit_offset = 0; 1867 break; 1868 } 1869 src_byte_offset++; 1870 } 1871 (*dst_size) = dst_byte_offset; 1872 out: 1873 return; 1874 } 1875 1876 /** 1877 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 1878 * @encoded_name: The encrypted name 1879 * @encoded_name_size: Length of the encrypted name 1880 * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode 1881 * @name: The plaintext name 1882 * @name_size: The length of the plaintext name 1883 * 1884 * Encrypts and encodes a filename into something that constitutes a 1885 * valid filename for a filesystem, with printable characters. 1886 * 1887 * We assume that we have a properly initialized crypto context, 1888 * pointed to by crypt_stat->tfm. 1889 * 1890 * Returns zero on success; non-zero on otherwise 1891 */ 1892 int ecryptfs_encrypt_and_encode_filename( 1893 char **encoded_name, 1894 size_t *encoded_name_size, 1895 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 1896 const char *name, size_t name_size) 1897 { 1898 size_t encoded_name_no_prefix_size; 1899 int rc = 0; 1900 1901 (*encoded_name) = NULL; 1902 (*encoded_name_size) = 0; 1903 if (mount_crypt_stat && (mount_crypt_stat->flags 1904 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 1905 struct ecryptfs_filename *filename; 1906 1907 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 1908 if (!filename) { 1909 rc = -ENOMEM; 1910 goto out; 1911 } 1912 filename->filename = (char *)name; 1913 filename->filename_size = name_size; 1914 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat); 1915 if (rc) { 1916 printk(KERN_ERR "%s: Error attempting to encrypt " 1917 "filename; rc = [%d]\n", __func__, rc); 1918 kfree(filename); 1919 goto out; 1920 } 1921 ecryptfs_encode_for_filename( 1922 NULL, &encoded_name_no_prefix_size, 1923 filename->encrypted_filename, 1924 filename->encrypted_filename_size); 1925 if (mount_crypt_stat 1926 && (mount_crypt_stat->flags 1927 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) 1928 (*encoded_name_size) = 1929 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1930 + encoded_name_no_prefix_size); 1931 else 1932 (*encoded_name_size) = 1933 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1934 + encoded_name_no_prefix_size); 1935 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 1936 if (!(*encoded_name)) { 1937 rc = -ENOMEM; 1938 kfree(filename->encrypted_filename); 1939 kfree(filename); 1940 goto out; 1941 } 1942 if (mount_crypt_stat 1943 && (mount_crypt_stat->flags 1944 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1945 memcpy((*encoded_name), 1946 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 1947 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 1948 ecryptfs_encode_for_filename( 1949 ((*encoded_name) 1950 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 1951 &encoded_name_no_prefix_size, 1952 filename->encrypted_filename, 1953 filename->encrypted_filename_size); 1954 (*encoded_name_size) = 1955 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1956 + encoded_name_no_prefix_size); 1957 (*encoded_name)[(*encoded_name_size)] = '\0'; 1958 } else { 1959 rc = -EOPNOTSUPP; 1960 } 1961 if (rc) { 1962 printk(KERN_ERR "%s: Error attempting to encode " 1963 "encrypted filename; rc = [%d]\n", __func__, 1964 rc); 1965 kfree((*encoded_name)); 1966 (*encoded_name) = NULL; 1967 (*encoded_name_size) = 0; 1968 } 1969 kfree(filename->encrypted_filename); 1970 kfree(filename); 1971 } else { 1972 rc = ecryptfs_copy_filename(encoded_name, 1973 encoded_name_size, 1974 name, name_size); 1975 } 1976 out: 1977 return rc; 1978 } 1979 1980 static bool is_dot_dotdot(const char *name, size_t name_size) 1981 { 1982 if (name_size == 1 && name[0] == '.') 1983 return true; 1984 else if (name_size == 2 && name[0] == '.' && name[1] == '.') 1985 return true; 1986 1987 return false; 1988 } 1989 1990 /** 1991 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 1992 * @plaintext_name: The plaintext name 1993 * @plaintext_name_size: The plaintext name size 1994 * @sb: Ecryptfs's super_block 1995 * @name: The filename in cipher text 1996 * @name_size: The cipher text name size 1997 * 1998 * Decrypts and decodes the filename. 1999 * 2000 * Returns zero on error; non-zero otherwise 2001 */ 2002 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2003 size_t *plaintext_name_size, 2004 struct super_block *sb, 2005 const char *name, size_t name_size) 2006 { 2007 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2008 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 2009 char *decoded_name; 2010 size_t decoded_name_size; 2011 size_t packet_size; 2012 int rc = 0; 2013 2014 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) && 2015 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) { 2016 if (is_dot_dotdot(name, name_size)) { 2017 rc = ecryptfs_copy_filename(plaintext_name, 2018 plaintext_name_size, 2019 name, name_size); 2020 goto out; 2021 } 2022 2023 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE || 2024 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2025 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) { 2026 rc = -EINVAL; 2027 goto out; 2028 } 2029 2030 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2031 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2032 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2033 name, name_size); 2034 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2035 if (!decoded_name) { 2036 rc = -ENOMEM; 2037 goto out; 2038 } 2039 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2040 name, name_size); 2041 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2042 plaintext_name_size, 2043 &packet_size, 2044 mount_crypt_stat, 2045 decoded_name, 2046 decoded_name_size); 2047 if (rc) { 2048 ecryptfs_printk(KERN_DEBUG, 2049 "%s: Could not parse tag 70 packet from filename\n", 2050 __func__); 2051 goto out_free; 2052 } 2053 } else { 2054 rc = ecryptfs_copy_filename(plaintext_name, 2055 plaintext_name_size, 2056 name, name_size); 2057 goto out; 2058 } 2059 out_free: 2060 kfree(decoded_name); 2061 out: 2062 return rc; 2063 } 2064 2065 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2066 2067 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2068 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2069 { 2070 struct crypto_skcipher *tfm; 2071 struct mutex *tfm_mutex; 2072 size_t cipher_blocksize; 2073 int rc; 2074 2075 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2076 (*namelen) = lower_namelen; 2077 return 0; 2078 } 2079 2080 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, 2081 mount_crypt_stat->global_default_fn_cipher_name); 2082 if (unlikely(rc)) { 2083 (*namelen) = 0; 2084 return rc; 2085 } 2086 2087 mutex_lock(tfm_mutex); 2088 cipher_blocksize = crypto_skcipher_blocksize(tfm); 2089 mutex_unlock(tfm_mutex); 2090 2091 /* Return an exact amount for the common cases */ 2092 if (lower_namelen == NAME_MAX 2093 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2094 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2095 return 0; 2096 } 2097 2098 /* Return a safe estimate for the uncommon cases */ 2099 (*namelen) = lower_namelen; 2100 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2101 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2102 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2103 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2104 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2105 /* Worst case is that the filename is padded nearly a full block size */ 2106 (*namelen) -= cipher_blocksize - 1; 2107 2108 if ((*namelen) < 0) 2109 (*namelen) = 0; 2110 2111 return 0; 2112 } 2113