1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include <asm/unaligned.h> 37 #include "ecryptfs_kernel.h" 38 39 static int 40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 41 struct page *dst_page, int dst_offset, 42 struct page *src_page, int src_offset, int size, 43 unsigned char *iv); 44 static int 45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 46 struct page *dst_page, int dst_offset, 47 struct page *src_page, int src_offset, int size, 48 unsigned char *iv); 49 50 /** 51 * ecryptfs_to_hex 52 * @dst: Buffer to take hex character representation of contents of 53 * src; must be at least of size (src_size * 2) 54 * @src: Buffer to be converted to a hex string respresentation 55 * @src_size: number of bytes to convert 56 */ 57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 58 { 59 int x; 60 61 for (x = 0; x < src_size; x++) 62 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 63 } 64 65 /** 66 * ecryptfs_from_hex 67 * @dst: Buffer to take the bytes from src hex; must be at least of 68 * size (src_size / 2) 69 * @src: Buffer to be converted from a hex string respresentation to raw value 70 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 71 */ 72 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 73 { 74 int x; 75 char tmp[3] = { 0, }; 76 77 for (x = 0; x < dst_size; x++) { 78 tmp[0] = src[x * 2]; 79 tmp[1] = src[x * 2 + 1]; 80 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 81 } 82 } 83 84 /** 85 * ecryptfs_calculate_md5 - calculates the md5 of @src 86 * @dst: Pointer to 16 bytes of allocated memory 87 * @crypt_stat: Pointer to crypt_stat struct for the current inode 88 * @src: Data to be md5'd 89 * @len: Length of @src 90 * 91 * Uses the allocated crypto context that crypt_stat references to 92 * generate the MD5 sum of the contents of src. 93 */ 94 static int ecryptfs_calculate_md5(char *dst, 95 struct ecryptfs_crypt_stat *crypt_stat, 96 char *src, int len) 97 { 98 struct scatterlist sg; 99 struct hash_desc desc = { 100 .tfm = crypt_stat->hash_tfm, 101 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 102 }; 103 int rc = 0; 104 105 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 106 sg_init_one(&sg, (u8 *)src, len); 107 if (!desc.tfm) { 108 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 109 CRYPTO_ALG_ASYNC); 110 if (IS_ERR(desc.tfm)) { 111 rc = PTR_ERR(desc.tfm); 112 ecryptfs_printk(KERN_ERR, "Error attempting to " 113 "allocate crypto context; rc = [%d]\n", 114 rc); 115 goto out; 116 } 117 crypt_stat->hash_tfm = desc.tfm; 118 } 119 rc = crypto_hash_init(&desc); 120 if (rc) { 121 printk(KERN_ERR 122 "%s: Error initializing crypto hash; rc = [%d]\n", 123 __func__, rc); 124 goto out; 125 } 126 rc = crypto_hash_update(&desc, &sg, len); 127 if (rc) { 128 printk(KERN_ERR 129 "%s: Error updating crypto hash; rc = [%d]\n", 130 __func__, rc); 131 goto out; 132 } 133 rc = crypto_hash_final(&desc, dst); 134 if (rc) { 135 printk(KERN_ERR 136 "%s: Error finalizing crypto hash; rc = [%d]\n", 137 __func__, rc); 138 goto out; 139 } 140 out: 141 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 142 return rc; 143 } 144 145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 146 char *cipher_name, 147 char *chaining_modifier) 148 { 149 int cipher_name_len = strlen(cipher_name); 150 int chaining_modifier_len = strlen(chaining_modifier); 151 int algified_name_len; 152 int rc; 153 154 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 155 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 156 if (!(*algified_name)) { 157 rc = -ENOMEM; 158 goto out; 159 } 160 snprintf((*algified_name), algified_name_len, "%s(%s)", 161 chaining_modifier, cipher_name); 162 rc = 0; 163 out: 164 return rc; 165 } 166 167 /** 168 * ecryptfs_derive_iv 169 * @iv: destination for the derived iv vale 170 * @crypt_stat: Pointer to crypt_stat struct for the current inode 171 * @offset: Offset of the extent whose IV we are to derive 172 * 173 * Generate the initialization vector from the given root IV and page 174 * offset. 175 * 176 * Returns zero on success; non-zero on error. 177 */ 178 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 179 loff_t offset) 180 { 181 int rc = 0; 182 char dst[MD5_DIGEST_SIZE]; 183 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 184 185 if (unlikely(ecryptfs_verbosity > 0)) { 186 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 187 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 188 } 189 /* TODO: It is probably secure to just cast the least 190 * significant bits of the root IV into an unsigned long and 191 * add the offset to that rather than go through all this 192 * hashing business. -Halcrow */ 193 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 194 memset((src + crypt_stat->iv_bytes), 0, 16); 195 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 196 if (unlikely(ecryptfs_verbosity > 0)) { 197 ecryptfs_printk(KERN_DEBUG, "source:\n"); 198 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 199 } 200 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 201 (crypt_stat->iv_bytes + 16)); 202 if (rc) { 203 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 204 "MD5 while generating IV for a page\n"); 205 goto out; 206 } 207 memcpy(iv, dst, crypt_stat->iv_bytes); 208 if (unlikely(ecryptfs_verbosity > 0)) { 209 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 210 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 211 } 212 out: 213 return rc; 214 } 215 216 /** 217 * ecryptfs_init_crypt_stat 218 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 219 * 220 * Initialize the crypt_stat structure. 221 */ 222 void 223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 224 { 225 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 226 INIT_LIST_HEAD(&crypt_stat->keysig_list); 227 mutex_init(&crypt_stat->keysig_list_mutex); 228 mutex_init(&crypt_stat->cs_mutex); 229 mutex_init(&crypt_stat->cs_tfm_mutex); 230 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 231 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 232 } 233 234 /** 235 * ecryptfs_destroy_crypt_stat 236 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 237 * 238 * Releases all memory associated with a crypt_stat struct. 239 */ 240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 241 { 242 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 243 244 if (crypt_stat->tfm) 245 crypto_free_blkcipher(crypt_stat->tfm); 246 if (crypt_stat->hash_tfm) 247 crypto_free_hash(crypt_stat->hash_tfm); 248 mutex_lock(&crypt_stat->keysig_list_mutex); 249 list_for_each_entry_safe(key_sig, key_sig_tmp, 250 &crypt_stat->keysig_list, crypt_stat_list) { 251 list_del(&key_sig->crypt_stat_list); 252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 253 } 254 mutex_unlock(&crypt_stat->keysig_list_mutex); 255 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 256 } 257 258 void ecryptfs_destroy_mount_crypt_stat( 259 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 260 { 261 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 262 263 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 264 return; 265 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 266 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 267 &mount_crypt_stat->global_auth_tok_list, 268 mount_crypt_stat_list) { 269 list_del(&auth_tok->mount_crypt_stat_list); 270 mount_crypt_stat->num_global_auth_toks--; 271 if (auth_tok->global_auth_tok_key 272 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 273 key_put(auth_tok->global_auth_tok_key); 274 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 275 } 276 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 277 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 278 } 279 280 /** 281 * virt_to_scatterlist 282 * @addr: Virtual address 283 * @size: Size of data; should be an even multiple of the block size 284 * @sg: Pointer to scatterlist array; set to NULL to obtain only 285 * the number of scatterlist structs required in array 286 * @sg_size: Max array size 287 * 288 * Fills in a scatterlist array with page references for a passed 289 * virtual address. 290 * 291 * Returns the number of scatterlist structs in array used 292 */ 293 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 294 int sg_size) 295 { 296 int i = 0; 297 struct page *pg; 298 int offset; 299 int remainder_of_page; 300 301 sg_init_table(sg, sg_size); 302 303 while (size > 0 && i < sg_size) { 304 pg = virt_to_page(addr); 305 offset = offset_in_page(addr); 306 if (sg) 307 sg_set_page(&sg[i], pg, 0, offset); 308 remainder_of_page = PAGE_CACHE_SIZE - offset; 309 if (size >= remainder_of_page) { 310 if (sg) 311 sg[i].length = remainder_of_page; 312 addr += remainder_of_page; 313 size -= remainder_of_page; 314 } else { 315 if (sg) 316 sg[i].length = size; 317 addr += size; 318 size = 0; 319 } 320 i++; 321 } 322 if (size > 0) 323 return -ENOMEM; 324 return i; 325 } 326 327 /** 328 * encrypt_scatterlist 329 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 330 * @dest_sg: Destination of encrypted data 331 * @src_sg: Data to be encrypted 332 * @size: Length of data to be encrypted 333 * @iv: iv to use during encryption 334 * 335 * Returns the number of bytes encrypted; negative value on error 336 */ 337 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 338 struct scatterlist *dest_sg, 339 struct scatterlist *src_sg, int size, 340 unsigned char *iv) 341 { 342 struct blkcipher_desc desc = { 343 .tfm = crypt_stat->tfm, 344 .info = iv, 345 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 346 }; 347 int rc = 0; 348 349 BUG_ON(!crypt_stat || !crypt_stat->tfm 350 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 351 if (unlikely(ecryptfs_verbosity > 0)) { 352 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n", 353 crypt_stat->key_size); 354 ecryptfs_dump_hex(crypt_stat->key, 355 crypt_stat->key_size); 356 } 357 /* Consider doing this once, when the file is opened */ 358 mutex_lock(&crypt_stat->cs_tfm_mutex); 359 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 360 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 361 crypt_stat->key_size); 362 crypt_stat->flags |= ECRYPTFS_KEY_SET; 363 } 364 if (rc) { 365 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 366 rc); 367 mutex_unlock(&crypt_stat->cs_tfm_mutex); 368 rc = -EINVAL; 369 goto out; 370 } 371 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); 372 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); 373 mutex_unlock(&crypt_stat->cs_tfm_mutex); 374 out: 375 return rc; 376 } 377 378 /** 379 * ecryptfs_lower_offset_for_extent 380 * 381 * Convert an eCryptfs page index into a lower byte offset 382 */ 383 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num, 384 struct ecryptfs_crypt_stat *crypt_stat) 385 { 386 (*offset) = (crypt_stat->num_header_bytes_at_front 387 + (crypt_stat->extent_size * extent_num)); 388 } 389 390 /** 391 * ecryptfs_encrypt_extent 392 * @enc_extent_page: Allocated page into which to encrypt the data in 393 * @page 394 * @crypt_stat: crypt_stat containing cryptographic context for the 395 * encryption operation 396 * @page: Page containing plaintext data extent to encrypt 397 * @extent_offset: Page extent offset for use in generating IV 398 * 399 * Encrypts one extent of data. 400 * 401 * Return zero on success; non-zero otherwise 402 */ 403 static int ecryptfs_encrypt_extent(struct page *enc_extent_page, 404 struct ecryptfs_crypt_stat *crypt_stat, 405 struct page *page, 406 unsigned long extent_offset) 407 { 408 loff_t extent_base; 409 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 410 int rc; 411 412 extent_base = (((loff_t)page->index) 413 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 414 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 415 (extent_base + extent_offset)); 416 if (rc) { 417 ecryptfs_printk(KERN_ERR, "Error attempting to " 418 "derive IV for extent [0x%.16x]; " 419 "rc = [%d]\n", (extent_base + extent_offset), 420 rc); 421 goto out; 422 } 423 if (unlikely(ecryptfs_verbosity > 0)) { 424 ecryptfs_printk(KERN_DEBUG, "Encrypting extent " 425 "with iv:\n"); 426 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 427 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 428 "encryption:\n"); 429 ecryptfs_dump_hex((char *) 430 (page_address(page) 431 + (extent_offset * crypt_stat->extent_size)), 432 8); 433 } 434 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0, 435 page, (extent_offset 436 * crypt_stat->extent_size), 437 crypt_stat->extent_size, extent_iv); 438 if (rc < 0) { 439 printk(KERN_ERR "%s: Error attempting to encrypt page with " 440 "page->index = [%ld], extent_offset = [%ld]; " 441 "rc = [%d]\n", __func__, page->index, extent_offset, 442 rc); 443 goto out; 444 } 445 rc = 0; 446 if (unlikely(ecryptfs_verbosity > 0)) { 447 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; " 448 "rc = [%d]\n", (extent_base + extent_offset), 449 rc); 450 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 451 "encryption:\n"); 452 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8); 453 } 454 out: 455 return rc; 456 } 457 458 /** 459 * ecryptfs_encrypt_page 460 * @page: Page mapped from the eCryptfs inode for the file; contains 461 * decrypted content that needs to be encrypted (to a temporary 462 * page; not in place) and written out to the lower file 463 * 464 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 465 * that eCryptfs pages may straddle the lower pages -- for instance, 466 * if the file was created on a machine with an 8K page size 467 * (resulting in an 8K header), and then the file is copied onto a 468 * host with a 32K page size, then when reading page 0 of the eCryptfs 469 * file, 24K of page 0 of the lower file will be read and decrypted, 470 * and then 8K of page 1 of the lower file will be read and decrypted. 471 * 472 * Returns zero on success; negative on error 473 */ 474 int ecryptfs_encrypt_page(struct page *page) 475 { 476 struct inode *ecryptfs_inode; 477 struct ecryptfs_crypt_stat *crypt_stat; 478 char *enc_extent_virt; 479 struct page *enc_extent_page = NULL; 480 loff_t extent_offset; 481 int rc = 0; 482 483 ecryptfs_inode = page->mapping->host; 484 crypt_stat = 485 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 486 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 487 rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page, 488 0, PAGE_CACHE_SIZE); 489 if (rc) 490 printk(KERN_ERR "%s: Error attempting to copy " 491 "page at index [%ld]\n", __func__, 492 page->index); 493 goto out; 494 } 495 enc_extent_page = alloc_page(GFP_USER); 496 if (!enc_extent_page) { 497 rc = -ENOMEM; 498 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 499 "encrypted extent\n"); 500 goto out; 501 } 502 enc_extent_virt = kmap(enc_extent_page); 503 for (extent_offset = 0; 504 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 505 extent_offset++) { 506 loff_t offset; 507 508 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page, 509 extent_offset); 510 if (rc) { 511 printk(KERN_ERR "%s: Error encrypting extent; " 512 "rc = [%d]\n", __func__, rc); 513 goto out; 514 } 515 ecryptfs_lower_offset_for_extent( 516 &offset, ((((loff_t)page->index) 517 * (PAGE_CACHE_SIZE 518 / crypt_stat->extent_size)) 519 + extent_offset), crypt_stat); 520 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, 521 offset, crypt_stat->extent_size); 522 if (rc) { 523 ecryptfs_printk(KERN_ERR, "Error attempting " 524 "to write lower page; rc = [%d]" 525 "\n", rc); 526 goto out; 527 } 528 } 529 out: 530 if (enc_extent_page) { 531 kunmap(enc_extent_page); 532 __free_page(enc_extent_page); 533 } 534 return rc; 535 } 536 537 static int ecryptfs_decrypt_extent(struct page *page, 538 struct ecryptfs_crypt_stat *crypt_stat, 539 struct page *enc_extent_page, 540 unsigned long extent_offset) 541 { 542 loff_t extent_base; 543 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 544 int rc; 545 546 extent_base = (((loff_t)page->index) 547 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 548 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 549 (extent_base + extent_offset)); 550 if (rc) { 551 ecryptfs_printk(KERN_ERR, "Error attempting to " 552 "derive IV for extent [0x%.16x]; " 553 "rc = [%d]\n", (extent_base + extent_offset), 554 rc); 555 goto out; 556 } 557 if (unlikely(ecryptfs_verbosity > 0)) { 558 ecryptfs_printk(KERN_DEBUG, "Decrypting extent " 559 "with iv:\n"); 560 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 561 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 562 "decryption:\n"); 563 ecryptfs_dump_hex((char *) 564 (page_address(enc_extent_page) 565 + (extent_offset * crypt_stat->extent_size)), 566 8); 567 } 568 rc = ecryptfs_decrypt_page_offset(crypt_stat, page, 569 (extent_offset 570 * crypt_stat->extent_size), 571 enc_extent_page, 0, 572 crypt_stat->extent_size, extent_iv); 573 if (rc < 0) { 574 printk(KERN_ERR "%s: Error attempting to decrypt to page with " 575 "page->index = [%ld], extent_offset = [%ld]; " 576 "rc = [%d]\n", __func__, page->index, extent_offset, 577 rc); 578 goto out; 579 } 580 rc = 0; 581 if (unlikely(ecryptfs_verbosity > 0)) { 582 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; " 583 "rc = [%d]\n", (extent_base + extent_offset), 584 rc); 585 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 586 "decryption:\n"); 587 ecryptfs_dump_hex((char *)(page_address(page) 588 + (extent_offset 589 * crypt_stat->extent_size)), 8); 590 } 591 out: 592 return rc; 593 } 594 595 /** 596 * ecryptfs_decrypt_page 597 * @page: Page mapped from the eCryptfs inode for the file; data read 598 * and decrypted from the lower file will be written into this 599 * page 600 * 601 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 602 * that eCryptfs pages may straddle the lower pages -- for instance, 603 * if the file was created on a machine with an 8K page size 604 * (resulting in an 8K header), and then the file is copied onto a 605 * host with a 32K page size, then when reading page 0 of the eCryptfs 606 * file, 24K of page 0 of the lower file will be read and decrypted, 607 * and then 8K of page 1 of the lower file will be read and decrypted. 608 * 609 * Returns zero on success; negative on error 610 */ 611 int ecryptfs_decrypt_page(struct page *page) 612 { 613 struct inode *ecryptfs_inode; 614 struct ecryptfs_crypt_stat *crypt_stat; 615 char *enc_extent_virt; 616 struct page *enc_extent_page = NULL; 617 unsigned long extent_offset; 618 int rc = 0; 619 620 ecryptfs_inode = page->mapping->host; 621 crypt_stat = 622 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 623 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 624 rc = ecryptfs_read_lower_page_segment(page, page->index, 0, 625 PAGE_CACHE_SIZE, 626 ecryptfs_inode); 627 if (rc) 628 printk(KERN_ERR "%s: Error attempting to copy " 629 "page at index [%ld]\n", __func__, 630 page->index); 631 goto out; 632 } 633 enc_extent_page = alloc_page(GFP_USER); 634 if (!enc_extent_page) { 635 rc = -ENOMEM; 636 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 637 "encrypted extent\n"); 638 goto out; 639 } 640 enc_extent_virt = kmap(enc_extent_page); 641 for (extent_offset = 0; 642 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 643 extent_offset++) { 644 loff_t offset; 645 646 ecryptfs_lower_offset_for_extent( 647 &offset, ((page->index * (PAGE_CACHE_SIZE 648 / crypt_stat->extent_size)) 649 + extent_offset), crypt_stat); 650 rc = ecryptfs_read_lower(enc_extent_virt, offset, 651 crypt_stat->extent_size, 652 ecryptfs_inode); 653 if (rc) { 654 ecryptfs_printk(KERN_ERR, "Error attempting " 655 "to read lower page; rc = [%d]" 656 "\n", rc); 657 goto out; 658 } 659 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page, 660 extent_offset); 661 if (rc) { 662 printk(KERN_ERR "%s: Error encrypting extent; " 663 "rc = [%d]\n", __func__, rc); 664 goto out; 665 } 666 } 667 out: 668 if (enc_extent_page) { 669 kunmap(enc_extent_page); 670 __free_page(enc_extent_page); 671 } 672 return rc; 673 } 674 675 /** 676 * decrypt_scatterlist 677 * @crypt_stat: Cryptographic context 678 * @dest_sg: The destination scatterlist to decrypt into 679 * @src_sg: The source scatterlist to decrypt from 680 * @size: The number of bytes to decrypt 681 * @iv: The initialization vector to use for the decryption 682 * 683 * Returns the number of bytes decrypted; negative value on error 684 */ 685 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 686 struct scatterlist *dest_sg, 687 struct scatterlist *src_sg, int size, 688 unsigned char *iv) 689 { 690 struct blkcipher_desc desc = { 691 .tfm = crypt_stat->tfm, 692 .info = iv, 693 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 694 }; 695 int rc = 0; 696 697 /* Consider doing this once, when the file is opened */ 698 mutex_lock(&crypt_stat->cs_tfm_mutex); 699 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 700 crypt_stat->key_size); 701 if (rc) { 702 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 703 rc); 704 mutex_unlock(&crypt_stat->cs_tfm_mutex); 705 rc = -EINVAL; 706 goto out; 707 } 708 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); 709 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); 710 mutex_unlock(&crypt_stat->cs_tfm_mutex); 711 if (rc) { 712 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", 713 rc); 714 goto out; 715 } 716 rc = size; 717 out: 718 return rc; 719 } 720 721 /** 722 * ecryptfs_encrypt_page_offset 723 * @crypt_stat: The cryptographic context 724 * @dst_page: The page to encrypt into 725 * @dst_offset: The offset in the page to encrypt into 726 * @src_page: The page to encrypt from 727 * @src_offset: The offset in the page to encrypt from 728 * @size: The number of bytes to encrypt 729 * @iv: The initialization vector to use for the encryption 730 * 731 * Returns the number of bytes encrypted 732 */ 733 static int 734 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 735 struct page *dst_page, int dst_offset, 736 struct page *src_page, int src_offset, int size, 737 unsigned char *iv) 738 { 739 struct scatterlist src_sg, dst_sg; 740 741 sg_init_table(&src_sg, 1); 742 sg_init_table(&dst_sg, 1); 743 744 sg_set_page(&src_sg, src_page, size, src_offset); 745 sg_set_page(&dst_sg, dst_page, size, dst_offset); 746 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 747 } 748 749 /** 750 * ecryptfs_decrypt_page_offset 751 * @crypt_stat: The cryptographic context 752 * @dst_page: The page to decrypt into 753 * @dst_offset: The offset in the page to decrypt into 754 * @src_page: The page to decrypt from 755 * @src_offset: The offset in the page to decrypt from 756 * @size: The number of bytes to decrypt 757 * @iv: The initialization vector to use for the decryption 758 * 759 * Returns the number of bytes decrypted 760 */ 761 static int 762 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 763 struct page *dst_page, int dst_offset, 764 struct page *src_page, int src_offset, int size, 765 unsigned char *iv) 766 { 767 struct scatterlist src_sg, dst_sg; 768 769 sg_init_table(&src_sg, 1); 770 sg_set_page(&src_sg, src_page, size, src_offset); 771 772 sg_init_table(&dst_sg, 1); 773 sg_set_page(&dst_sg, dst_page, size, dst_offset); 774 775 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 776 } 777 778 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 779 780 /** 781 * ecryptfs_init_crypt_ctx 782 * @crypt_stat: Uninitilized crypt stats structure 783 * 784 * Initialize the crypto context. 785 * 786 * TODO: Performance: Keep a cache of initialized cipher contexts; 787 * only init if needed 788 */ 789 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 790 { 791 char *full_alg_name; 792 int rc = -EINVAL; 793 794 if (!crypt_stat->cipher) { 795 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 796 goto out; 797 } 798 ecryptfs_printk(KERN_DEBUG, 799 "Initializing cipher [%s]; strlen = [%d]; " 800 "key_size_bits = [%d]\n", 801 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 802 crypt_stat->key_size << 3); 803 if (crypt_stat->tfm) { 804 rc = 0; 805 goto out; 806 } 807 mutex_lock(&crypt_stat->cs_tfm_mutex); 808 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 809 crypt_stat->cipher, "cbc"); 810 if (rc) 811 goto out_unlock; 812 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, 813 CRYPTO_ALG_ASYNC); 814 kfree(full_alg_name); 815 if (IS_ERR(crypt_stat->tfm)) { 816 rc = PTR_ERR(crypt_stat->tfm); 817 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 818 "Error initializing cipher [%s]\n", 819 crypt_stat->cipher); 820 goto out_unlock; 821 } 822 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 823 rc = 0; 824 out_unlock: 825 mutex_unlock(&crypt_stat->cs_tfm_mutex); 826 out: 827 return rc; 828 } 829 830 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 831 { 832 int extent_size_tmp; 833 834 crypt_stat->extent_mask = 0xFFFFFFFF; 835 crypt_stat->extent_shift = 0; 836 if (crypt_stat->extent_size == 0) 837 return; 838 extent_size_tmp = crypt_stat->extent_size; 839 while ((extent_size_tmp & 0x01) == 0) { 840 extent_size_tmp >>= 1; 841 crypt_stat->extent_mask <<= 1; 842 crypt_stat->extent_shift++; 843 } 844 } 845 846 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 847 { 848 /* Default values; may be overwritten as we are parsing the 849 * packets. */ 850 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 851 set_extent_mask_and_shift(crypt_stat); 852 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 853 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 854 crypt_stat->num_header_bytes_at_front = 0; 855 else { 856 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 857 crypt_stat->num_header_bytes_at_front = 858 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 859 else 860 crypt_stat->num_header_bytes_at_front = PAGE_CACHE_SIZE; 861 } 862 } 863 864 /** 865 * ecryptfs_compute_root_iv 866 * @crypt_stats 867 * 868 * On error, sets the root IV to all 0's. 869 */ 870 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 871 { 872 int rc = 0; 873 char dst[MD5_DIGEST_SIZE]; 874 875 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 876 BUG_ON(crypt_stat->iv_bytes <= 0); 877 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 878 rc = -EINVAL; 879 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 880 "cannot generate root IV\n"); 881 goto out; 882 } 883 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 884 crypt_stat->key_size); 885 if (rc) { 886 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 887 "MD5 while generating root IV\n"); 888 goto out; 889 } 890 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 891 out: 892 if (rc) { 893 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 894 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 895 } 896 return rc; 897 } 898 899 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 900 { 901 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 902 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 903 ecryptfs_compute_root_iv(crypt_stat); 904 if (unlikely(ecryptfs_verbosity > 0)) { 905 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 906 ecryptfs_dump_hex(crypt_stat->key, 907 crypt_stat->key_size); 908 } 909 } 910 911 /** 912 * ecryptfs_copy_mount_wide_flags_to_inode_flags 913 * @crypt_stat: The inode's cryptographic context 914 * @mount_crypt_stat: The mount point's cryptographic context 915 * 916 * This function propagates the mount-wide flags to individual inode 917 * flags. 918 */ 919 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 920 struct ecryptfs_crypt_stat *crypt_stat, 921 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 922 { 923 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 924 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 925 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 926 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 927 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 928 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 929 if (mount_crypt_stat->flags 930 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 931 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 932 else if (mount_crypt_stat->flags 933 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 934 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 935 } 936 } 937 938 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 939 struct ecryptfs_crypt_stat *crypt_stat, 940 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 941 { 942 struct ecryptfs_global_auth_tok *global_auth_tok; 943 int rc = 0; 944 945 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 946 list_for_each_entry(global_auth_tok, 947 &mount_crypt_stat->global_auth_tok_list, 948 mount_crypt_stat_list) { 949 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 950 continue; 951 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 952 if (rc) { 953 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 954 mutex_unlock( 955 &mount_crypt_stat->global_auth_tok_list_mutex); 956 goto out; 957 } 958 } 959 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 960 out: 961 return rc; 962 } 963 964 /** 965 * ecryptfs_set_default_crypt_stat_vals 966 * @crypt_stat: The inode's cryptographic context 967 * @mount_crypt_stat: The mount point's cryptographic context 968 * 969 * Default values in the event that policy does not override them. 970 */ 971 static void ecryptfs_set_default_crypt_stat_vals( 972 struct ecryptfs_crypt_stat *crypt_stat, 973 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 974 { 975 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 976 mount_crypt_stat); 977 ecryptfs_set_default_sizes(crypt_stat); 978 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 979 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 980 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 981 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 982 crypt_stat->mount_crypt_stat = mount_crypt_stat; 983 } 984 985 /** 986 * ecryptfs_new_file_context 987 * @ecryptfs_dentry: The eCryptfs dentry 988 * 989 * If the crypto context for the file has not yet been established, 990 * this is where we do that. Establishing a new crypto context 991 * involves the following decisions: 992 * - What cipher to use? 993 * - What set of authentication tokens to use? 994 * Here we just worry about getting enough information into the 995 * authentication tokens so that we know that they are available. 996 * We associate the available authentication tokens with the new file 997 * via the set of signatures in the crypt_stat struct. Later, when 998 * the headers are actually written out, we may again defer to 999 * userspace to perform the encryption of the session key; for the 1000 * foreseeable future, this will be the case with public key packets. 1001 * 1002 * Returns zero on success; non-zero otherwise 1003 */ 1004 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry) 1005 { 1006 struct ecryptfs_crypt_stat *crypt_stat = 1007 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 1008 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1009 &ecryptfs_superblock_to_private( 1010 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1011 int cipher_name_len; 1012 int rc = 0; 1013 1014 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 1015 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 1016 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1017 mount_crypt_stat); 1018 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 1019 mount_crypt_stat); 1020 if (rc) { 1021 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 1022 "to the inode key sigs; rc = [%d]\n", rc); 1023 goto out; 1024 } 1025 cipher_name_len = 1026 strlen(mount_crypt_stat->global_default_cipher_name); 1027 memcpy(crypt_stat->cipher, 1028 mount_crypt_stat->global_default_cipher_name, 1029 cipher_name_len); 1030 crypt_stat->cipher[cipher_name_len] = '\0'; 1031 crypt_stat->key_size = 1032 mount_crypt_stat->global_default_cipher_key_size; 1033 ecryptfs_generate_new_key(crypt_stat); 1034 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1035 if (rc) 1036 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 1037 "context for cipher [%s]: rc = [%d]\n", 1038 crypt_stat->cipher, rc); 1039 out: 1040 return rc; 1041 } 1042 1043 /** 1044 * contains_ecryptfs_marker - check for the ecryptfs marker 1045 * @data: The data block in which to check 1046 * 1047 * Returns one if marker found; zero if not found 1048 */ 1049 static int contains_ecryptfs_marker(char *data) 1050 { 1051 u32 m_1, m_2; 1052 1053 m_1 = get_unaligned_be32(data); 1054 m_2 = get_unaligned_be32(data + 4); 1055 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 1056 return 1; 1057 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 1058 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 1059 MAGIC_ECRYPTFS_MARKER); 1060 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 1061 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 1062 return 0; 1063 } 1064 1065 struct ecryptfs_flag_map_elem { 1066 u32 file_flag; 1067 u32 local_flag; 1068 }; 1069 1070 /* Add support for additional flags by adding elements here. */ 1071 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 1072 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 1073 {0x00000002, ECRYPTFS_ENCRYPTED}, 1074 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 1075 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 1076 }; 1077 1078 /** 1079 * ecryptfs_process_flags 1080 * @crypt_stat: The cryptographic context 1081 * @page_virt: Source data to be parsed 1082 * @bytes_read: Updated with the number of bytes read 1083 * 1084 * Returns zero on success; non-zero if the flag set is invalid 1085 */ 1086 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 1087 char *page_virt, int *bytes_read) 1088 { 1089 int rc = 0; 1090 int i; 1091 u32 flags; 1092 1093 flags = get_unaligned_be32(page_virt); 1094 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1095 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1096 if (flags & ecryptfs_flag_map[i].file_flag) { 1097 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 1098 } else 1099 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 1100 /* Version is in top 8 bits of the 32-bit flag vector */ 1101 crypt_stat->file_version = ((flags >> 24) & 0xFF); 1102 (*bytes_read) = 4; 1103 return rc; 1104 } 1105 1106 /** 1107 * write_ecryptfs_marker 1108 * @page_virt: The pointer to in a page to begin writing the marker 1109 * @written: Number of bytes written 1110 * 1111 * Marker = 0x3c81b7f5 1112 */ 1113 static void write_ecryptfs_marker(char *page_virt, size_t *written) 1114 { 1115 u32 m_1, m_2; 1116 1117 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1118 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 1119 put_unaligned_be32(m_1, page_virt); 1120 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 1121 put_unaligned_be32(m_2, page_virt); 1122 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1123 } 1124 1125 static void 1126 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat, 1127 size_t *written) 1128 { 1129 u32 flags = 0; 1130 int i; 1131 1132 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1133 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1134 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 1135 flags |= ecryptfs_flag_map[i].file_flag; 1136 /* Version is in top 8 bits of the 32-bit flag vector */ 1137 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 1138 put_unaligned_be32(flags, page_virt); 1139 (*written) = 4; 1140 } 1141 1142 struct ecryptfs_cipher_code_str_map_elem { 1143 char cipher_str[16]; 1144 u8 cipher_code; 1145 }; 1146 1147 /* Add support for additional ciphers by adding elements here. The 1148 * cipher_code is whatever OpenPGP applicatoins use to identify the 1149 * ciphers. List in order of probability. */ 1150 static struct ecryptfs_cipher_code_str_map_elem 1151 ecryptfs_cipher_code_str_map[] = { 1152 {"aes",RFC2440_CIPHER_AES_128 }, 1153 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 1154 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 1155 {"cast5", RFC2440_CIPHER_CAST_5}, 1156 {"twofish", RFC2440_CIPHER_TWOFISH}, 1157 {"cast6", RFC2440_CIPHER_CAST_6}, 1158 {"aes", RFC2440_CIPHER_AES_192}, 1159 {"aes", RFC2440_CIPHER_AES_256} 1160 }; 1161 1162 /** 1163 * ecryptfs_code_for_cipher_string 1164 * @cipher_name: The string alias for the cipher 1165 * @key_bytes: Length of key in bytes; used for AES code selection 1166 * 1167 * Returns zero on no match, or the cipher code on match 1168 */ 1169 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 1170 { 1171 int i; 1172 u8 code = 0; 1173 struct ecryptfs_cipher_code_str_map_elem *map = 1174 ecryptfs_cipher_code_str_map; 1175 1176 if (strcmp(cipher_name, "aes") == 0) { 1177 switch (key_bytes) { 1178 case 16: 1179 code = RFC2440_CIPHER_AES_128; 1180 break; 1181 case 24: 1182 code = RFC2440_CIPHER_AES_192; 1183 break; 1184 case 32: 1185 code = RFC2440_CIPHER_AES_256; 1186 } 1187 } else { 1188 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1189 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 1190 code = map[i].cipher_code; 1191 break; 1192 } 1193 } 1194 return code; 1195 } 1196 1197 /** 1198 * ecryptfs_cipher_code_to_string 1199 * @str: Destination to write out the cipher name 1200 * @cipher_code: The code to convert to cipher name string 1201 * 1202 * Returns zero on success 1203 */ 1204 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 1205 { 1206 int rc = 0; 1207 int i; 1208 1209 str[0] = '\0'; 1210 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1211 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1212 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1213 if (str[0] == '\0') { 1214 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1215 "[%d]\n", cipher_code); 1216 rc = -EINVAL; 1217 } 1218 return rc; 1219 } 1220 1221 int ecryptfs_read_and_validate_header_region(char *data, 1222 struct inode *ecryptfs_inode) 1223 { 1224 struct ecryptfs_crypt_stat *crypt_stat = 1225 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 1226 int rc; 1227 1228 if (crypt_stat->extent_size == 0) 1229 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 1230 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size, 1231 ecryptfs_inode); 1232 if (rc) { 1233 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n", 1234 __func__, rc); 1235 goto out; 1236 } 1237 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) { 1238 rc = -EINVAL; 1239 } 1240 out: 1241 return rc; 1242 } 1243 1244 void 1245 ecryptfs_write_header_metadata(char *virt, 1246 struct ecryptfs_crypt_stat *crypt_stat, 1247 size_t *written) 1248 { 1249 u32 header_extent_size; 1250 u16 num_header_extents_at_front; 1251 1252 header_extent_size = (u32)crypt_stat->extent_size; 1253 num_header_extents_at_front = 1254 (u16)(crypt_stat->num_header_bytes_at_front 1255 / crypt_stat->extent_size); 1256 put_unaligned_be32(header_extent_size, virt); 1257 virt += 4; 1258 put_unaligned_be16(num_header_extents_at_front, virt); 1259 (*written) = 6; 1260 } 1261 1262 struct kmem_cache *ecryptfs_header_cache_1; 1263 struct kmem_cache *ecryptfs_header_cache_2; 1264 1265 /** 1266 * ecryptfs_write_headers_virt 1267 * @page_virt: The virtual address to write the headers to 1268 * @max: The size of memory allocated at page_virt 1269 * @size: Set to the number of bytes written by this function 1270 * @crypt_stat: The cryptographic context 1271 * @ecryptfs_dentry: The eCryptfs dentry 1272 * 1273 * Format version: 1 1274 * 1275 * Header Extent: 1276 * Octets 0-7: Unencrypted file size (big-endian) 1277 * Octets 8-15: eCryptfs special marker 1278 * Octets 16-19: Flags 1279 * Octet 16: File format version number (between 0 and 255) 1280 * Octets 17-18: Reserved 1281 * Octet 19: Bit 1 (lsb): Reserved 1282 * Bit 2: Encrypted? 1283 * Bits 3-8: Reserved 1284 * Octets 20-23: Header extent size (big-endian) 1285 * Octets 24-25: Number of header extents at front of file 1286 * (big-endian) 1287 * Octet 26: Begin RFC 2440 authentication token packet set 1288 * Data Extent 0: 1289 * Lower data (CBC encrypted) 1290 * Data Extent 1: 1291 * Lower data (CBC encrypted) 1292 * ... 1293 * 1294 * Returns zero on success 1295 */ 1296 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1297 size_t *size, 1298 struct ecryptfs_crypt_stat *crypt_stat, 1299 struct dentry *ecryptfs_dentry) 1300 { 1301 int rc; 1302 size_t written; 1303 size_t offset; 1304 1305 offset = ECRYPTFS_FILE_SIZE_BYTES; 1306 write_ecryptfs_marker((page_virt + offset), &written); 1307 offset += written; 1308 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written); 1309 offset += written; 1310 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1311 &written); 1312 offset += written; 1313 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1314 ecryptfs_dentry, &written, 1315 max - offset); 1316 if (rc) 1317 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1318 "set; rc = [%d]\n", rc); 1319 if (size) { 1320 offset += written; 1321 *size = offset; 1322 } 1323 return rc; 1324 } 1325 1326 static int 1327 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry, 1328 char *virt, size_t virt_len) 1329 { 1330 int rc; 1331 1332 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt, 1333 0, virt_len); 1334 if (rc) 1335 printk(KERN_ERR "%s: Error attempting to write header " 1336 "information to lower file; rc = [%d]\n", __func__, 1337 rc); 1338 return rc; 1339 } 1340 1341 static int 1342 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1343 char *page_virt, size_t size) 1344 { 1345 int rc; 1346 1347 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1348 size, 0); 1349 return rc; 1350 } 1351 1352 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1353 unsigned int order) 1354 { 1355 struct page *page; 1356 1357 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1358 if (page) 1359 return (unsigned long) page_address(page); 1360 return 0; 1361 } 1362 1363 /** 1364 * ecryptfs_write_metadata 1365 * @ecryptfs_dentry: The eCryptfs dentry 1366 * 1367 * Write the file headers out. This will likely involve a userspace 1368 * callout, in which the session key is encrypted with one or more 1369 * public keys and/or the passphrase necessary to do the encryption is 1370 * retrieved via a prompt. Exactly what happens at this point should 1371 * be policy-dependent. 1372 * 1373 * Returns zero on success; non-zero on error 1374 */ 1375 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry) 1376 { 1377 struct ecryptfs_crypt_stat *crypt_stat = 1378 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 1379 unsigned int order; 1380 char *virt; 1381 size_t virt_len; 1382 size_t size = 0; 1383 int rc = 0; 1384 1385 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1386 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1387 printk(KERN_ERR "Key is invalid; bailing out\n"); 1388 rc = -EINVAL; 1389 goto out; 1390 } 1391 } else { 1392 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1393 __func__); 1394 rc = -EINVAL; 1395 goto out; 1396 } 1397 virt_len = crypt_stat->num_header_bytes_at_front; 1398 order = get_order(virt_len); 1399 /* Released in this function */ 1400 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1401 if (!virt) { 1402 printk(KERN_ERR "%s: Out of memory\n", __func__); 1403 rc = -ENOMEM; 1404 goto out; 1405 } 1406 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1407 ecryptfs_dentry); 1408 if (unlikely(rc)) { 1409 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1410 __func__, rc); 1411 goto out_free; 1412 } 1413 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1414 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt, 1415 size); 1416 else 1417 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt, 1418 virt_len); 1419 if (rc) { 1420 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1421 "rc = [%d]\n", __func__, rc); 1422 goto out_free; 1423 } 1424 out_free: 1425 free_pages((unsigned long)virt, order); 1426 out: 1427 return rc; 1428 } 1429 1430 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1431 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1432 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1433 char *virt, int *bytes_read, 1434 int validate_header_size) 1435 { 1436 int rc = 0; 1437 u32 header_extent_size; 1438 u16 num_header_extents_at_front; 1439 1440 header_extent_size = get_unaligned_be32(virt); 1441 virt += sizeof(__be32); 1442 num_header_extents_at_front = get_unaligned_be16(virt); 1443 crypt_stat->num_header_bytes_at_front = 1444 (((size_t)num_header_extents_at_front 1445 * (size_t)header_extent_size)); 1446 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1447 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1448 && (crypt_stat->num_header_bytes_at_front 1449 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1450 rc = -EINVAL; 1451 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1452 crypt_stat->num_header_bytes_at_front); 1453 } 1454 return rc; 1455 } 1456 1457 /** 1458 * set_default_header_data 1459 * @crypt_stat: The cryptographic context 1460 * 1461 * For version 0 file format; this function is only for backwards 1462 * compatibility for files created with the prior versions of 1463 * eCryptfs. 1464 */ 1465 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1466 { 1467 crypt_stat->num_header_bytes_at_front = 1468 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1469 } 1470 1471 /** 1472 * ecryptfs_read_headers_virt 1473 * @page_virt: The virtual address into which to read the headers 1474 * @crypt_stat: The cryptographic context 1475 * @ecryptfs_dentry: The eCryptfs dentry 1476 * @validate_header_size: Whether to validate the header size while reading 1477 * 1478 * Read/parse the header data. The header format is detailed in the 1479 * comment block for the ecryptfs_write_headers_virt() function. 1480 * 1481 * Returns zero on success 1482 */ 1483 static int ecryptfs_read_headers_virt(char *page_virt, 1484 struct ecryptfs_crypt_stat *crypt_stat, 1485 struct dentry *ecryptfs_dentry, 1486 int validate_header_size) 1487 { 1488 int rc = 0; 1489 int offset; 1490 int bytes_read; 1491 1492 ecryptfs_set_default_sizes(crypt_stat); 1493 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1494 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1495 offset = ECRYPTFS_FILE_SIZE_BYTES; 1496 rc = contains_ecryptfs_marker(page_virt + offset); 1497 if (rc == 0) { 1498 rc = -EINVAL; 1499 goto out; 1500 } 1501 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1502 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1503 &bytes_read); 1504 if (rc) { 1505 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1506 goto out; 1507 } 1508 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1509 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1510 "file version [%d] is supported by this " 1511 "version of eCryptfs\n", 1512 crypt_stat->file_version, 1513 ECRYPTFS_SUPPORTED_FILE_VERSION); 1514 rc = -EINVAL; 1515 goto out; 1516 } 1517 offset += bytes_read; 1518 if (crypt_stat->file_version >= 1) { 1519 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1520 &bytes_read, validate_header_size); 1521 if (rc) { 1522 ecryptfs_printk(KERN_WARNING, "Error reading header " 1523 "metadata; rc = [%d]\n", rc); 1524 } 1525 offset += bytes_read; 1526 } else 1527 set_default_header_data(crypt_stat); 1528 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1529 ecryptfs_dentry); 1530 out: 1531 return rc; 1532 } 1533 1534 /** 1535 * ecryptfs_read_xattr_region 1536 * @page_virt: The vitual address into which to read the xattr data 1537 * @ecryptfs_inode: The eCryptfs inode 1538 * 1539 * Attempts to read the crypto metadata from the extended attribute 1540 * region of the lower file. 1541 * 1542 * Returns zero on success; non-zero on error 1543 */ 1544 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1545 { 1546 struct dentry *lower_dentry = 1547 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1548 ssize_t size; 1549 int rc = 0; 1550 1551 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1552 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1553 if (size < 0) { 1554 if (unlikely(ecryptfs_verbosity > 0)) 1555 printk(KERN_INFO "Error attempting to read the [%s] " 1556 "xattr from the lower file; return value = " 1557 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1558 rc = -EINVAL; 1559 goto out; 1560 } 1561 out: 1562 return rc; 1563 } 1564 1565 int ecryptfs_read_and_validate_xattr_region(char *page_virt, 1566 struct dentry *ecryptfs_dentry) 1567 { 1568 int rc; 1569 1570 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode); 1571 if (rc) 1572 goto out; 1573 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) { 1574 printk(KERN_WARNING "Valid data found in [%s] xattr, but " 1575 "the marker is invalid\n", ECRYPTFS_XATTR_NAME); 1576 rc = -EINVAL; 1577 } 1578 out: 1579 return rc; 1580 } 1581 1582 /** 1583 * ecryptfs_read_metadata 1584 * 1585 * Common entry point for reading file metadata. From here, we could 1586 * retrieve the header information from the header region of the file, 1587 * the xattr region of the file, or some other repostory that is 1588 * stored separately from the file itself. The current implementation 1589 * supports retrieving the metadata information from the file contents 1590 * and from the xattr region. 1591 * 1592 * Returns zero if valid headers found and parsed; non-zero otherwise 1593 */ 1594 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1595 { 1596 int rc = 0; 1597 char *page_virt = NULL; 1598 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1599 struct ecryptfs_crypt_stat *crypt_stat = 1600 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1601 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1602 &ecryptfs_superblock_to_private( 1603 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1604 1605 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1606 mount_crypt_stat); 1607 /* Read the first page from the underlying file */ 1608 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER); 1609 if (!page_virt) { 1610 rc = -ENOMEM; 1611 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1612 __func__); 1613 goto out; 1614 } 1615 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1616 ecryptfs_inode); 1617 if (!rc) 1618 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1619 ecryptfs_dentry, 1620 ECRYPTFS_VALIDATE_HEADER_SIZE); 1621 if (rc) { 1622 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1623 if (rc) { 1624 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1625 "file header region or xattr region\n"); 1626 rc = -EINVAL; 1627 goto out; 1628 } 1629 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1630 ecryptfs_dentry, 1631 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1632 if (rc) { 1633 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1634 "file xattr region either\n"); 1635 rc = -EINVAL; 1636 } 1637 if (crypt_stat->mount_crypt_stat->flags 1638 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1639 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1640 } else { 1641 printk(KERN_WARNING "Attempt to access file with " 1642 "crypto metadata only in the extended attribute " 1643 "region, but eCryptfs was mounted without " 1644 "xattr support enabled. eCryptfs will not treat " 1645 "this like an encrypted file.\n"); 1646 rc = -EINVAL; 1647 } 1648 } 1649 out: 1650 if (page_virt) { 1651 memset(page_virt, 0, PAGE_CACHE_SIZE); 1652 kmem_cache_free(ecryptfs_header_cache_1, page_virt); 1653 } 1654 return rc; 1655 } 1656 1657 /** 1658 * ecryptfs_encrypt_filename - encrypt filename 1659 * 1660 * CBC-encrypts the filename. We do not want to encrypt the same 1661 * filename with the same key and IV, which may happen with hard 1662 * links, so we prepend random bits to each filename. 1663 * 1664 * Returns zero on success; non-zero otherwise 1665 */ 1666 static int 1667 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1668 struct ecryptfs_crypt_stat *crypt_stat, 1669 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1670 { 1671 int rc = 0; 1672 1673 filename->encrypted_filename = NULL; 1674 filename->encrypted_filename_size = 0; 1675 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1676 || (mount_crypt_stat && (mount_crypt_stat->flags 1677 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 1678 size_t packet_size; 1679 size_t remaining_bytes; 1680 1681 rc = ecryptfs_write_tag_70_packet( 1682 NULL, NULL, 1683 &filename->encrypted_filename_size, 1684 mount_crypt_stat, NULL, 1685 filename->filename_size); 1686 if (rc) { 1687 printk(KERN_ERR "%s: Error attempting to get packet " 1688 "size for tag 72; rc = [%d]\n", __func__, 1689 rc); 1690 filename->encrypted_filename_size = 0; 1691 goto out; 1692 } 1693 filename->encrypted_filename = 1694 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1695 if (!filename->encrypted_filename) { 1696 printk(KERN_ERR "%s: Out of memory whilst attempting " 1697 "to kmalloc [%zd] bytes\n", __func__, 1698 filename->encrypted_filename_size); 1699 rc = -ENOMEM; 1700 goto out; 1701 } 1702 remaining_bytes = filename->encrypted_filename_size; 1703 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1704 &remaining_bytes, 1705 &packet_size, 1706 mount_crypt_stat, 1707 filename->filename, 1708 filename->filename_size); 1709 if (rc) { 1710 printk(KERN_ERR "%s: Error attempting to generate " 1711 "tag 70 packet; rc = [%d]\n", __func__, 1712 rc); 1713 kfree(filename->encrypted_filename); 1714 filename->encrypted_filename = NULL; 1715 filename->encrypted_filename_size = 0; 1716 goto out; 1717 } 1718 filename->encrypted_filename_size = packet_size; 1719 } else { 1720 printk(KERN_ERR "%s: No support for requested filename " 1721 "encryption method in this release\n", __func__); 1722 rc = -ENOTSUPP; 1723 goto out; 1724 } 1725 out: 1726 return rc; 1727 } 1728 1729 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1730 const char *name, size_t name_size) 1731 { 1732 int rc = 0; 1733 1734 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1735 if (!(*copied_name)) { 1736 rc = -ENOMEM; 1737 goto out; 1738 } 1739 memcpy((void *)(*copied_name), (void *)name, name_size); 1740 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1741 * in printing out the 1742 * string in debug 1743 * messages */ 1744 (*copied_name_size) = name_size; 1745 out: 1746 return rc; 1747 } 1748 1749 /** 1750 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1751 * @key_tfm: Crypto context for key material, set by this function 1752 * @cipher_name: Name of the cipher 1753 * @key_size: Size of the key in bytes 1754 * 1755 * Returns zero on success. Any crypto_tfm structs allocated here 1756 * should be released by other functions, such as on a superblock put 1757 * event, regardless of whether this function succeeds for fails. 1758 */ 1759 static int 1760 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1761 char *cipher_name, size_t *key_size) 1762 { 1763 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1764 char *full_alg_name; 1765 int rc; 1766 1767 *key_tfm = NULL; 1768 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1769 rc = -EINVAL; 1770 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1771 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1772 goto out; 1773 } 1774 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1775 "ecb"); 1776 if (rc) 1777 goto out; 1778 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1779 kfree(full_alg_name); 1780 if (IS_ERR(*key_tfm)) { 1781 rc = PTR_ERR(*key_tfm); 1782 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1783 "[%s]; rc = [%d]\n", cipher_name, rc); 1784 goto out; 1785 } 1786 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1787 if (*key_size == 0) { 1788 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1789 1790 *key_size = alg->max_keysize; 1791 } 1792 get_random_bytes(dummy_key, *key_size); 1793 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1794 if (rc) { 1795 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1796 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc); 1797 rc = -EINVAL; 1798 goto out; 1799 } 1800 out: 1801 return rc; 1802 } 1803 1804 struct kmem_cache *ecryptfs_key_tfm_cache; 1805 static struct list_head key_tfm_list; 1806 struct mutex key_tfm_list_mutex; 1807 1808 int ecryptfs_init_crypto(void) 1809 { 1810 mutex_init(&key_tfm_list_mutex); 1811 INIT_LIST_HEAD(&key_tfm_list); 1812 return 0; 1813 } 1814 1815 /** 1816 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1817 * 1818 * Called only at module unload time 1819 */ 1820 int ecryptfs_destroy_crypto(void) 1821 { 1822 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1823 1824 mutex_lock(&key_tfm_list_mutex); 1825 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1826 key_tfm_list) { 1827 list_del(&key_tfm->key_tfm_list); 1828 if (key_tfm->key_tfm) 1829 crypto_free_blkcipher(key_tfm->key_tfm); 1830 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1831 } 1832 mutex_unlock(&key_tfm_list_mutex); 1833 return 0; 1834 } 1835 1836 int 1837 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1838 size_t key_size) 1839 { 1840 struct ecryptfs_key_tfm *tmp_tfm; 1841 int rc = 0; 1842 1843 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1844 1845 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1846 if (key_tfm != NULL) 1847 (*key_tfm) = tmp_tfm; 1848 if (!tmp_tfm) { 1849 rc = -ENOMEM; 1850 printk(KERN_ERR "Error attempting to allocate from " 1851 "ecryptfs_key_tfm_cache\n"); 1852 goto out; 1853 } 1854 mutex_init(&tmp_tfm->key_tfm_mutex); 1855 strncpy(tmp_tfm->cipher_name, cipher_name, 1856 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1857 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1858 tmp_tfm->key_size = key_size; 1859 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1860 tmp_tfm->cipher_name, 1861 &tmp_tfm->key_size); 1862 if (rc) { 1863 printk(KERN_ERR "Error attempting to initialize key TFM " 1864 "cipher with name = [%s]; rc = [%d]\n", 1865 tmp_tfm->cipher_name, rc); 1866 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1867 if (key_tfm != NULL) 1868 (*key_tfm) = NULL; 1869 goto out; 1870 } 1871 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1872 out: 1873 return rc; 1874 } 1875 1876 /** 1877 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1878 * @cipher_name: the name of the cipher to search for 1879 * @key_tfm: set to corresponding tfm if found 1880 * 1881 * Searches for cached key_tfm matching @cipher_name 1882 * Must be called with &key_tfm_list_mutex held 1883 * Returns 1 if found, with @key_tfm set 1884 * Returns 0 if not found, with @key_tfm set to NULL 1885 */ 1886 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1887 { 1888 struct ecryptfs_key_tfm *tmp_key_tfm; 1889 1890 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1891 1892 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1893 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1894 if (key_tfm) 1895 (*key_tfm) = tmp_key_tfm; 1896 return 1; 1897 } 1898 } 1899 if (key_tfm) 1900 (*key_tfm) = NULL; 1901 return 0; 1902 } 1903 1904 /** 1905 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1906 * 1907 * @tfm: set to cached tfm found, or new tfm created 1908 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1909 * @cipher_name: the name of the cipher to search for and/or add 1910 * 1911 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1912 * Searches for cached item first, and creates new if not found. 1913 * Returns 0 on success, non-zero if adding new cipher failed 1914 */ 1915 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1916 struct mutex **tfm_mutex, 1917 char *cipher_name) 1918 { 1919 struct ecryptfs_key_tfm *key_tfm; 1920 int rc = 0; 1921 1922 (*tfm) = NULL; 1923 (*tfm_mutex) = NULL; 1924 1925 mutex_lock(&key_tfm_list_mutex); 1926 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1927 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1928 if (rc) { 1929 printk(KERN_ERR "Error adding new key_tfm to list; " 1930 "rc = [%d]\n", rc); 1931 goto out; 1932 } 1933 } 1934 (*tfm) = key_tfm->key_tfm; 1935 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1936 out: 1937 mutex_unlock(&key_tfm_list_mutex); 1938 return rc; 1939 } 1940 1941 /* 64 characters forming a 6-bit target field */ 1942 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1943 "EFGHIJKLMNOPQRST" 1944 "UVWXYZabcdefghij" 1945 "klmnopqrstuvwxyz"); 1946 1947 /* We could either offset on every reverse map or just pad some 0x00's 1948 * at the front here */ 1949 static const unsigned char filename_rev_map[] = { 1950 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1951 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1952 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1953 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1954 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1955 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1956 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1957 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1958 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1959 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1960 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1961 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1962 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1963 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1964 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1965 0x3D, 0x3E, 0x3F 1966 }; 1967 1968 /** 1969 * ecryptfs_encode_for_filename 1970 * @dst: Destination location for encoded filename 1971 * @dst_size: Size of the encoded filename in bytes 1972 * @src: Source location for the filename to encode 1973 * @src_size: Size of the source in bytes 1974 */ 1975 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1976 unsigned char *src, size_t src_size) 1977 { 1978 size_t num_blocks; 1979 size_t block_num = 0; 1980 size_t dst_offset = 0; 1981 unsigned char last_block[3]; 1982 1983 if (src_size == 0) { 1984 (*dst_size) = 0; 1985 goto out; 1986 } 1987 num_blocks = (src_size / 3); 1988 if ((src_size % 3) == 0) { 1989 memcpy(last_block, (&src[src_size - 3]), 3); 1990 } else { 1991 num_blocks++; 1992 last_block[2] = 0x00; 1993 switch (src_size % 3) { 1994 case 1: 1995 last_block[0] = src[src_size - 1]; 1996 last_block[1] = 0x00; 1997 break; 1998 case 2: 1999 last_block[0] = src[src_size - 2]; 2000 last_block[1] = src[src_size - 1]; 2001 } 2002 } 2003 (*dst_size) = (num_blocks * 4); 2004 if (!dst) 2005 goto out; 2006 while (block_num < num_blocks) { 2007 unsigned char *src_block; 2008 unsigned char dst_block[4]; 2009 2010 if (block_num == (num_blocks - 1)) 2011 src_block = last_block; 2012 else 2013 src_block = &src[block_num * 3]; 2014 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 2015 dst_block[1] = (((src_block[0] << 4) & 0x30) 2016 | ((src_block[1] >> 4) & 0x0F)); 2017 dst_block[2] = (((src_block[1] << 2) & 0x3C) 2018 | ((src_block[2] >> 6) & 0x03)); 2019 dst_block[3] = (src_block[2] & 0x3F); 2020 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 2021 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 2022 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 2023 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 2024 block_num++; 2025 } 2026 out: 2027 return; 2028 } 2029 2030 /** 2031 * ecryptfs_decode_from_filename 2032 * @dst: If NULL, this function only sets @dst_size and returns. If 2033 * non-NULL, this function decodes the encoded octets in @src 2034 * into the memory that @dst points to. 2035 * @dst_size: Set to the size of the decoded string. 2036 * @src: The encoded set of octets to decode. 2037 * @src_size: The size of the encoded set of octets to decode. 2038 */ 2039 static void 2040 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 2041 const unsigned char *src, size_t src_size) 2042 { 2043 u8 current_bit_offset = 0; 2044 size_t src_byte_offset = 0; 2045 size_t dst_byte_offset = 0; 2046 2047 if (dst == NULL) { 2048 /* Not exact; conservatively long. Every block of 4 2049 * encoded characters decodes into a block of 3 2050 * decoded characters. This segment of code provides 2051 * the caller with the maximum amount of allocated 2052 * space that @dst will need to point to in a 2053 * subsequent call. */ 2054 (*dst_size) = (((src_size + 1) * 3) / 4); 2055 goto out; 2056 } 2057 while (src_byte_offset < src_size) { 2058 unsigned char src_byte = 2059 filename_rev_map[(int)src[src_byte_offset]]; 2060 2061 switch (current_bit_offset) { 2062 case 0: 2063 dst[dst_byte_offset] = (src_byte << 2); 2064 current_bit_offset = 6; 2065 break; 2066 case 6: 2067 dst[dst_byte_offset++] |= (src_byte >> 4); 2068 dst[dst_byte_offset] = ((src_byte & 0xF) 2069 << 4); 2070 current_bit_offset = 4; 2071 break; 2072 case 4: 2073 dst[dst_byte_offset++] |= (src_byte >> 2); 2074 dst[dst_byte_offset] = (src_byte << 6); 2075 current_bit_offset = 2; 2076 break; 2077 case 2: 2078 dst[dst_byte_offset++] |= (src_byte); 2079 dst[dst_byte_offset] = 0; 2080 current_bit_offset = 0; 2081 break; 2082 } 2083 src_byte_offset++; 2084 } 2085 (*dst_size) = dst_byte_offset; 2086 out: 2087 return; 2088 } 2089 2090 /** 2091 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 2092 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 2093 * @name: The plaintext name 2094 * @length: The length of the plaintext 2095 * @encoded_name: The encypted name 2096 * 2097 * Encrypts and encodes a filename into something that constitutes a 2098 * valid filename for a filesystem, with printable characters. 2099 * 2100 * We assume that we have a properly initialized crypto context, 2101 * pointed to by crypt_stat->tfm. 2102 * 2103 * Returns zero on success; non-zero on otherwise 2104 */ 2105 int ecryptfs_encrypt_and_encode_filename( 2106 char **encoded_name, 2107 size_t *encoded_name_size, 2108 struct ecryptfs_crypt_stat *crypt_stat, 2109 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 2110 const char *name, size_t name_size) 2111 { 2112 size_t encoded_name_no_prefix_size; 2113 int rc = 0; 2114 2115 (*encoded_name) = NULL; 2116 (*encoded_name_size) = 0; 2117 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES)) 2118 || (mount_crypt_stat && (mount_crypt_stat->flags 2119 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) { 2120 struct ecryptfs_filename *filename; 2121 2122 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 2123 if (!filename) { 2124 printk(KERN_ERR "%s: Out of memory whilst attempting " 2125 "to kzalloc [%zd] bytes\n", __func__, 2126 sizeof(*filename)); 2127 rc = -ENOMEM; 2128 goto out; 2129 } 2130 filename->filename = (char *)name; 2131 filename->filename_size = name_size; 2132 rc = ecryptfs_encrypt_filename(filename, crypt_stat, 2133 mount_crypt_stat); 2134 if (rc) { 2135 printk(KERN_ERR "%s: Error attempting to encrypt " 2136 "filename; rc = [%d]\n", __func__, rc); 2137 kfree(filename); 2138 goto out; 2139 } 2140 ecryptfs_encode_for_filename( 2141 NULL, &encoded_name_no_prefix_size, 2142 filename->encrypted_filename, 2143 filename->encrypted_filename_size); 2144 if ((crypt_stat && (crypt_stat->flags 2145 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2146 || (mount_crypt_stat 2147 && (mount_crypt_stat->flags 2148 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) 2149 (*encoded_name_size) = 2150 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2151 + encoded_name_no_prefix_size); 2152 else 2153 (*encoded_name_size) = 2154 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2155 + encoded_name_no_prefix_size); 2156 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 2157 if (!(*encoded_name)) { 2158 printk(KERN_ERR "%s: Out of memory whilst attempting " 2159 "to kzalloc [%zd] bytes\n", __func__, 2160 (*encoded_name_size)); 2161 rc = -ENOMEM; 2162 kfree(filename->encrypted_filename); 2163 kfree(filename); 2164 goto out; 2165 } 2166 if ((crypt_stat && (crypt_stat->flags 2167 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2168 || (mount_crypt_stat 2169 && (mount_crypt_stat->flags 2170 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 2171 memcpy((*encoded_name), 2172 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2173 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 2174 ecryptfs_encode_for_filename( 2175 ((*encoded_name) 2176 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 2177 &encoded_name_no_prefix_size, 2178 filename->encrypted_filename, 2179 filename->encrypted_filename_size); 2180 (*encoded_name_size) = 2181 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2182 + encoded_name_no_prefix_size); 2183 (*encoded_name)[(*encoded_name_size)] = '\0'; 2184 (*encoded_name_size)++; 2185 } else { 2186 rc = -ENOTSUPP; 2187 } 2188 if (rc) { 2189 printk(KERN_ERR "%s: Error attempting to encode " 2190 "encrypted filename; rc = [%d]\n", __func__, 2191 rc); 2192 kfree((*encoded_name)); 2193 (*encoded_name) = NULL; 2194 (*encoded_name_size) = 0; 2195 } 2196 kfree(filename->encrypted_filename); 2197 kfree(filename); 2198 } else { 2199 rc = ecryptfs_copy_filename(encoded_name, 2200 encoded_name_size, 2201 name, name_size); 2202 } 2203 out: 2204 return rc; 2205 } 2206 2207 /** 2208 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2209 * @plaintext_name: The plaintext name 2210 * @plaintext_name_size: The plaintext name size 2211 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2212 * @name: The filename in cipher text 2213 * @name_size: The cipher text name size 2214 * 2215 * Decrypts and decodes the filename. 2216 * 2217 * Returns zero on error; non-zero otherwise 2218 */ 2219 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2220 size_t *plaintext_name_size, 2221 struct dentry *ecryptfs_dir_dentry, 2222 const char *name, size_t name_size) 2223 { 2224 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2225 &ecryptfs_superblock_to_private( 2226 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat; 2227 char *decoded_name; 2228 size_t decoded_name_size; 2229 size_t packet_size; 2230 int rc = 0; 2231 2232 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 2233 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 2234 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) 2235 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2236 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) { 2237 const char *orig_name = name; 2238 size_t orig_name_size = name_size; 2239 2240 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2241 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2242 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2243 name, name_size); 2244 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2245 if (!decoded_name) { 2246 printk(KERN_ERR "%s: Out of memory whilst attempting " 2247 "to kmalloc [%zd] bytes\n", __func__, 2248 decoded_name_size); 2249 rc = -ENOMEM; 2250 goto out; 2251 } 2252 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2253 name, name_size); 2254 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2255 plaintext_name_size, 2256 &packet_size, 2257 mount_crypt_stat, 2258 decoded_name, 2259 decoded_name_size); 2260 if (rc) { 2261 printk(KERN_INFO "%s: Could not parse tag 70 packet " 2262 "from filename; copying through filename " 2263 "as-is\n", __func__); 2264 rc = ecryptfs_copy_filename(plaintext_name, 2265 plaintext_name_size, 2266 orig_name, orig_name_size); 2267 goto out_free; 2268 } 2269 } else { 2270 rc = ecryptfs_copy_filename(plaintext_name, 2271 plaintext_name_size, 2272 name, name_size); 2273 goto out; 2274 } 2275 out_free: 2276 kfree(decoded_name); 2277 out: 2278 return rc; 2279 } 2280