xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision b802fb99)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39 
40 #define DECRYPT		0
41 #define ENCRYPT		1
42 
43 /**
44  * ecryptfs_to_hex
45  * @dst: Buffer to take hex character representation of contents of
46  *       src; must be at least of size (src_size * 2)
47  * @src: Buffer to be converted to a hex string respresentation
48  * @src_size: number of bytes to convert
49  */
50 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
51 {
52 	int x;
53 
54 	for (x = 0; x < src_size; x++)
55 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
56 }
57 
58 /**
59  * ecryptfs_from_hex
60  * @dst: Buffer to take the bytes from src hex; must be at least of
61  *       size (src_size / 2)
62  * @src: Buffer to be converted from a hex string respresentation to raw value
63  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
64  */
65 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
66 {
67 	int x;
68 	char tmp[3] = { 0, };
69 
70 	for (x = 0; x < dst_size; x++) {
71 		tmp[0] = src[x * 2];
72 		tmp[1] = src[x * 2 + 1];
73 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
74 	}
75 }
76 
77 /**
78  * ecryptfs_calculate_md5 - calculates the md5 of @src
79  * @dst: Pointer to 16 bytes of allocated memory
80  * @crypt_stat: Pointer to crypt_stat struct for the current inode
81  * @src: Data to be md5'd
82  * @len: Length of @src
83  *
84  * Uses the allocated crypto context that crypt_stat references to
85  * generate the MD5 sum of the contents of src.
86  */
87 static int ecryptfs_calculate_md5(char *dst,
88 				  struct ecryptfs_crypt_stat *crypt_stat,
89 				  char *src, int len)
90 {
91 	struct scatterlist sg;
92 	struct hash_desc desc = {
93 		.tfm = crypt_stat->hash_tfm,
94 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
95 	};
96 	int rc = 0;
97 
98 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
99 	sg_init_one(&sg, (u8 *)src, len);
100 	if (!desc.tfm) {
101 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
102 					     CRYPTO_ALG_ASYNC);
103 		if (IS_ERR(desc.tfm)) {
104 			rc = PTR_ERR(desc.tfm);
105 			ecryptfs_printk(KERN_ERR, "Error attempting to "
106 					"allocate crypto context; rc = [%d]\n",
107 					rc);
108 			goto out;
109 		}
110 		crypt_stat->hash_tfm = desc.tfm;
111 	}
112 	rc = crypto_hash_init(&desc);
113 	if (rc) {
114 		printk(KERN_ERR
115 		       "%s: Error initializing crypto hash; rc = [%d]\n",
116 		       __func__, rc);
117 		goto out;
118 	}
119 	rc = crypto_hash_update(&desc, &sg, len);
120 	if (rc) {
121 		printk(KERN_ERR
122 		       "%s: Error updating crypto hash; rc = [%d]\n",
123 		       __func__, rc);
124 		goto out;
125 	}
126 	rc = crypto_hash_final(&desc, dst);
127 	if (rc) {
128 		printk(KERN_ERR
129 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
130 		       __func__, rc);
131 		goto out;
132 	}
133 out:
134 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
135 	return rc;
136 }
137 
138 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
139 						  char *cipher_name,
140 						  char *chaining_modifier)
141 {
142 	int cipher_name_len = strlen(cipher_name);
143 	int chaining_modifier_len = strlen(chaining_modifier);
144 	int algified_name_len;
145 	int rc;
146 
147 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
148 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
149 	if (!(*algified_name)) {
150 		rc = -ENOMEM;
151 		goto out;
152 	}
153 	snprintf((*algified_name), algified_name_len, "%s(%s)",
154 		 chaining_modifier, cipher_name);
155 	rc = 0;
156 out:
157 	return rc;
158 }
159 
160 /**
161  * ecryptfs_derive_iv
162  * @iv: destination for the derived iv vale
163  * @crypt_stat: Pointer to crypt_stat struct for the current inode
164  * @offset: Offset of the extent whose IV we are to derive
165  *
166  * Generate the initialization vector from the given root IV and page
167  * offset.
168  *
169  * Returns zero on success; non-zero on error.
170  */
171 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
172 		       loff_t offset)
173 {
174 	int rc = 0;
175 	char dst[MD5_DIGEST_SIZE];
176 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
177 
178 	if (unlikely(ecryptfs_verbosity > 0)) {
179 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
180 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
181 	}
182 	/* TODO: It is probably secure to just cast the least
183 	 * significant bits of the root IV into an unsigned long and
184 	 * add the offset to that rather than go through all this
185 	 * hashing business. -Halcrow */
186 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
187 	memset((src + crypt_stat->iv_bytes), 0, 16);
188 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
189 	if (unlikely(ecryptfs_verbosity > 0)) {
190 		ecryptfs_printk(KERN_DEBUG, "source:\n");
191 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
192 	}
193 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
194 				    (crypt_stat->iv_bytes + 16));
195 	if (rc) {
196 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
197 				"MD5 while generating IV for a page\n");
198 		goto out;
199 	}
200 	memcpy(iv, dst, crypt_stat->iv_bytes);
201 	if (unlikely(ecryptfs_verbosity > 0)) {
202 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
203 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
204 	}
205 out:
206 	return rc;
207 }
208 
209 /**
210  * ecryptfs_init_crypt_stat
211  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
212  *
213  * Initialize the crypt_stat structure.
214  */
215 void
216 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
217 {
218 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
219 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
220 	mutex_init(&crypt_stat->keysig_list_mutex);
221 	mutex_init(&crypt_stat->cs_mutex);
222 	mutex_init(&crypt_stat->cs_tfm_mutex);
223 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
224 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
225 }
226 
227 /**
228  * ecryptfs_destroy_crypt_stat
229  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
230  *
231  * Releases all memory associated with a crypt_stat struct.
232  */
233 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
234 {
235 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
236 
237 	if (crypt_stat->tfm)
238 		crypto_free_ablkcipher(crypt_stat->tfm);
239 	if (crypt_stat->hash_tfm)
240 		crypto_free_hash(crypt_stat->hash_tfm);
241 	list_for_each_entry_safe(key_sig, key_sig_tmp,
242 				 &crypt_stat->keysig_list, crypt_stat_list) {
243 		list_del(&key_sig->crypt_stat_list);
244 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
245 	}
246 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
247 }
248 
249 void ecryptfs_destroy_mount_crypt_stat(
250 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
251 {
252 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
253 
254 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
255 		return;
256 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
257 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
258 				 &mount_crypt_stat->global_auth_tok_list,
259 				 mount_crypt_stat_list) {
260 		list_del(&auth_tok->mount_crypt_stat_list);
261 		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
262 			key_put(auth_tok->global_auth_tok_key);
263 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
264 	}
265 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
266 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
267 }
268 
269 /**
270  * virt_to_scatterlist
271  * @addr: Virtual address
272  * @size: Size of data; should be an even multiple of the block size
273  * @sg: Pointer to scatterlist array; set to NULL to obtain only
274  *      the number of scatterlist structs required in array
275  * @sg_size: Max array size
276  *
277  * Fills in a scatterlist array with page references for a passed
278  * virtual address.
279  *
280  * Returns the number of scatterlist structs in array used
281  */
282 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
283 			int sg_size)
284 {
285 	int i = 0;
286 	struct page *pg;
287 	int offset;
288 	int remainder_of_page;
289 
290 	sg_init_table(sg, sg_size);
291 
292 	while (size > 0 && i < sg_size) {
293 		pg = virt_to_page(addr);
294 		offset = offset_in_page(addr);
295 		sg_set_page(&sg[i], pg, 0, offset);
296 		remainder_of_page = PAGE_CACHE_SIZE - offset;
297 		if (size >= remainder_of_page) {
298 			sg[i].length = remainder_of_page;
299 			addr += remainder_of_page;
300 			size -= remainder_of_page;
301 		} else {
302 			sg[i].length = size;
303 			addr += size;
304 			size = 0;
305 		}
306 		i++;
307 	}
308 	if (size > 0)
309 		return -ENOMEM;
310 	return i;
311 }
312 
313 struct extent_crypt_result {
314 	struct completion completion;
315 	int rc;
316 };
317 
318 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
319 {
320 	struct extent_crypt_result *ecr = req->data;
321 
322 	if (rc == -EINPROGRESS)
323 		return;
324 
325 	ecr->rc = rc;
326 	complete(&ecr->completion);
327 }
328 
329 /**
330  * crypt_scatterlist
331  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
332  * @dst_sg: Destination of the data after performing the crypto operation
333  * @src_sg: Data to be encrypted or decrypted
334  * @size: Length of data
335  * @iv: IV to use
336  * @op: ENCRYPT or DECRYPT to indicate the desired operation
337  *
338  * Returns the number of bytes encrypted or decrypted; negative value on error
339  */
340 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
341 			     struct scatterlist *dst_sg,
342 			     struct scatterlist *src_sg, int size,
343 			     unsigned char *iv, int op)
344 {
345 	struct ablkcipher_request *req = NULL;
346 	struct extent_crypt_result ecr;
347 	int rc = 0;
348 
349 	BUG_ON(!crypt_stat || !crypt_stat->tfm
350 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
351 	if (unlikely(ecryptfs_verbosity > 0)) {
352 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
353 				crypt_stat->key_size);
354 		ecryptfs_dump_hex(crypt_stat->key,
355 				  crypt_stat->key_size);
356 	}
357 
358 	init_completion(&ecr.completion);
359 
360 	mutex_lock(&crypt_stat->cs_tfm_mutex);
361 	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
362 	if (!req) {
363 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
364 		rc = -ENOMEM;
365 		goto out;
366 	}
367 
368 	ablkcipher_request_set_callback(req,
369 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
370 			extent_crypt_complete, &ecr);
371 	/* Consider doing this once, when the file is opened */
372 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
373 		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
374 					      crypt_stat->key_size);
375 		if (rc) {
376 			ecryptfs_printk(KERN_ERR,
377 					"Error setting key; rc = [%d]\n",
378 					rc);
379 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
380 			rc = -EINVAL;
381 			goto out;
382 		}
383 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
384 	}
385 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
386 	ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
387 	rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
388 			     crypto_ablkcipher_decrypt(req);
389 	if (rc == -EINPROGRESS || rc == -EBUSY) {
390 		struct extent_crypt_result *ecr = req->base.data;
391 
392 		wait_for_completion(&ecr->completion);
393 		rc = ecr->rc;
394 		reinit_completion(&ecr->completion);
395 	}
396 out:
397 	ablkcipher_request_free(req);
398 	return rc;
399 }
400 
401 /**
402  * lower_offset_for_page
403  *
404  * Convert an eCryptfs page index into a lower byte offset
405  */
406 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
407 				    struct page *page)
408 {
409 	return ecryptfs_lower_header_size(crypt_stat) +
410 	       ((loff_t)page->index << PAGE_CACHE_SHIFT);
411 }
412 
413 /**
414  * crypt_extent
415  * @crypt_stat: crypt_stat containing cryptographic context for the
416  *              encryption operation
417  * @dst_page: The page to write the result into
418  * @src_page: The page to read from
419  * @extent_offset: Page extent offset for use in generating IV
420  * @op: ENCRYPT or DECRYPT to indicate the desired operation
421  *
422  * Encrypts or decrypts one extent of data.
423  *
424  * Return zero on success; non-zero otherwise
425  */
426 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
427 			struct page *dst_page,
428 			struct page *src_page,
429 			unsigned long extent_offset, int op)
430 {
431 	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
432 	loff_t extent_base;
433 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
434 	struct scatterlist src_sg, dst_sg;
435 	size_t extent_size = crypt_stat->extent_size;
436 	int rc;
437 
438 	extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size));
439 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
440 				(extent_base + extent_offset));
441 	if (rc) {
442 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
443 			"extent [0x%.16llx]; rc = [%d]\n",
444 			(unsigned long long)(extent_base + extent_offset), rc);
445 		goto out;
446 	}
447 
448 	sg_init_table(&src_sg, 1);
449 	sg_init_table(&dst_sg, 1);
450 
451 	sg_set_page(&src_sg, src_page, extent_size,
452 		    extent_offset * extent_size);
453 	sg_set_page(&dst_sg, dst_page, extent_size,
454 		    extent_offset * extent_size);
455 
456 	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
457 			       extent_iv, op);
458 	if (rc < 0) {
459 		printk(KERN_ERR "%s: Error attempting to crypt page with "
460 		       "page_index = [%ld], extent_offset = [%ld]; "
461 		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
462 		goto out;
463 	}
464 	rc = 0;
465 out:
466 	return rc;
467 }
468 
469 /**
470  * ecryptfs_encrypt_page
471  * @page: Page mapped from the eCryptfs inode for the file; contains
472  *        decrypted content that needs to be encrypted (to a temporary
473  *        page; not in place) and written out to the lower file
474  *
475  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
476  * that eCryptfs pages may straddle the lower pages -- for instance,
477  * if the file was created on a machine with an 8K page size
478  * (resulting in an 8K header), and then the file is copied onto a
479  * host with a 32K page size, then when reading page 0 of the eCryptfs
480  * file, 24K of page 0 of the lower file will be read and decrypted,
481  * and then 8K of page 1 of the lower file will be read and decrypted.
482  *
483  * Returns zero on success; negative on error
484  */
485 int ecryptfs_encrypt_page(struct page *page)
486 {
487 	struct inode *ecryptfs_inode;
488 	struct ecryptfs_crypt_stat *crypt_stat;
489 	char *enc_extent_virt;
490 	struct page *enc_extent_page = NULL;
491 	loff_t extent_offset;
492 	loff_t lower_offset;
493 	int rc = 0;
494 
495 	ecryptfs_inode = page->mapping->host;
496 	crypt_stat =
497 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
498 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
499 	enc_extent_page = alloc_page(GFP_USER);
500 	if (!enc_extent_page) {
501 		rc = -ENOMEM;
502 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
503 				"encrypted extent\n");
504 		goto out;
505 	}
506 
507 	for (extent_offset = 0;
508 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
509 	     extent_offset++) {
510 		rc = crypt_extent(crypt_stat, enc_extent_page, page,
511 				  extent_offset, ENCRYPT);
512 		if (rc) {
513 			printk(KERN_ERR "%s: Error encrypting extent; "
514 			       "rc = [%d]\n", __func__, rc);
515 			goto out;
516 		}
517 	}
518 
519 	lower_offset = lower_offset_for_page(crypt_stat, page);
520 	enc_extent_virt = kmap(enc_extent_page);
521 	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
522 				  PAGE_CACHE_SIZE);
523 	kunmap(enc_extent_page);
524 	if (rc < 0) {
525 		ecryptfs_printk(KERN_ERR,
526 			"Error attempting to write lower page; rc = [%d]\n",
527 			rc);
528 		goto out;
529 	}
530 	rc = 0;
531 out:
532 	if (enc_extent_page) {
533 		__free_page(enc_extent_page);
534 	}
535 	return rc;
536 }
537 
538 /**
539  * ecryptfs_decrypt_page
540  * @page: Page mapped from the eCryptfs inode for the file; data read
541  *        and decrypted from the lower file will be written into this
542  *        page
543  *
544  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
545  * that eCryptfs pages may straddle the lower pages -- for instance,
546  * if the file was created on a machine with an 8K page size
547  * (resulting in an 8K header), and then the file is copied onto a
548  * host with a 32K page size, then when reading page 0 of the eCryptfs
549  * file, 24K of page 0 of the lower file will be read and decrypted,
550  * and then 8K of page 1 of the lower file will be read and decrypted.
551  *
552  * Returns zero on success; negative on error
553  */
554 int ecryptfs_decrypt_page(struct page *page)
555 {
556 	struct inode *ecryptfs_inode;
557 	struct ecryptfs_crypt_stat *crypt_stat;
558 	char *page_virt;
559 	unsigned long extent_offset;
560 	loff_t lower_offset;
561 	int rc = 0;
562 
563 	ecryptfs_inode = page->mapping->host;
564 	crypt_stat =
565 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
566 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
567 
568 	lower_offset = lower_offset_for_page(crypt_stat, page);
569 	page_virt = kmap(page);
570 	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
571 				 ecryptfs_inode);
572 	kunmap(page);
573 	if (rc < 0) {
574 		ecryptfs_printk(KERN_ERR,
575 			"Error attempting to read lower page; rc = [%d]\n",
576 			rc);
577 		goto out;
578 	}
579 
580 	for (extent_offset = 0;
581 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
582 	     extent_offset++) {
583 		rc = crypt_extent(crypt_stat, page, page,
584 				  extent_offset, DECRYPT);
585 		if (rc) {
586 			printk(KERN_ERR "%s: Error encrypting extent; "
587 			       "rc = [%d]\n", __func__, rc);
588 			goto out;
589 		}
590 	}
591 out:
592 	return rc;
593 }
594 
595 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
596 
597 /**
598  * ecryptfs_init_crypt_ctx
599  * @crypt_stat: Uninitialized crypt stats structure
600  *
601  * Initialize the crypto context.
602  *
603  * TODO: Performance: Keep a cache of initialized cipher contexts;
604  * only init if needed
605  */
606 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
607 {
608 	char *full_alg_name;
609 	int rc = -EINVAL;
610 
611 	ecryptfs_printk(KERN_DEBUG,
612 			"Initializing cipher [%s]; strlen = [%d]; "
613 			"key_size_bits = [%zd]\n",
614 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
615 			crypt_stat->key_size << 3);
616 	mutex_lock(&crypt_stat->cs_tfm_mutex);
617 	if (crypt_stat->tfm) {
618 		rc = 0;
619 		goto out_unlock;
620 	}
621 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
622 						    crypt_stat->cipher, "cbc");
623 	if (rc)
624 		goto out_unlock;
625 	crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
626 	if (IS_ERR(crypt_stat->tfm)) {
627 		rc = PTR_ERR(crypt_stat->tfm);
628 		crypt_stat->tfm = NULL;
629 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
630 				"Error initializing cipher [%s]\n",
631 				full_alg_name);
632 		goto out_free;
633 	}
634 	crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
635 	rc = 0;
636 out_free:
637 	kfree(full_alg_name);
638 out_unlock:
639 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
640 	return rc;
641 }
642 
643 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
644 {
645 	int extent_size_tmp;
646 
647 	crypt_stat->extent_mask = 0xFFFFFFFF;
648 	crypt_stat->extent_shift = 0;
649 	if (crypt_stat->extent_size == 0)
650 		return;
651 	extent_size_tmp = crypt_stat->extent_size;
652 	while ((extent_size_tmp & 0x01) == 0) {
653 		extent_size_tmp >>= 1;
654 		crypt_stat->extent_mask <<= 1;
655 		crypt_stat->extent_shift++;
656 	}
657 }
658 
659 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
660 {
661 	/* Default values; may be overwritten as we are parsing the
662 	 * packets. */
663 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
664 	set_extent_mask_and_shift(crypt_stat);
665 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
666 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
667 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
668 	else {
669 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
670 			crypt_stat->metadata_size =
671 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
672 		else
673 			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
674 	}
675 }
676 
677 /**
678  * ecryptfs_compute_root_iv
679  * @crypt_stats
680  *
681  * On error, sets the root IV to all 0's.
682  */
683 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
684 {
685 	int rc = 0;
686 	char dst[MD5_DIGEST_SIZE];
687 
688 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
689 	BUG_ON(crypt_stat->iv_bytes <= 0);
690 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
691 		rc = -EINVAL;
692 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
693 				"cannot generate root IV\n");
694 		goto out;
695 	}
696 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
697 				    crypt_stat->key_size);
698 	if (rc) {
699 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
700 				"MD5 while generating root IV\n");
701 		goto out;
702 	}
703 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
704 out:
705 	if (rc) {
706 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
707 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
708 	}
709 	return rc;
710 }
711 
712 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
713 {
714 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
715 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
716 	ecryptfs_compute_root_iv(crypt_stat);
717 	if (unlikely(ecryptfs_verbosity > 0)) {
718 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
719 		ecryptfs_dump_hex(crypt_stat->key,
720 				  crypt_stat->key_size);
721 	}
722 }
723 
724 /**
725  * ecryptfs_copy_mount_wide_flags_to_inode_flags
726  * @crypt_stat: The inode's cryptographic context
727  * @mount_crypt_stat: The mount point's cryptographic context
728  *
729  * This function propagates the mount-wide flags to individual inode
730  * flags.
731  */
732 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
733 	struct ecryptfs_crypt_stat *crypt_stat,
734 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
735 {
736 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
737 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
738 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
739 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
740 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
741 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
742 		if (mount_crypt_stat->flags
743 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
744 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
745 		else if (mount_crypt_stat->flags
746 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
747 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
748 	}
749 }
750 
751 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
752 	struct ecryptfs_crypt_stat *crypt_stat,
753 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
754 {
755 	struct ecryptfs_global_auth_tok *global_auth_tok;
756 	int rc = 0;
757 
758 	mutex_lock(&crypt_stat->keysig_list_mutex);
759 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
760 
761 	list_for_each_entry(global_auth_tok,
762 			    &mount_crypt_stat->global_auth_tok_list,
763 			    mount_crypt_stat_list) {
764 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
765 			continue;
766 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
767 		if (rc) {
768 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
769 			goto out;
770 		}
771 	}
772 
773 out:
774 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
775 	mutex_unlock(&crypt_stat->keysig_list_mutex);
776 	return rc;
777 }
778 
779 /**
780  * ecryptfs_set_default_crypt_stat_vals
781  * @crypt_stat: The inode's cryptographic context
782  * @mount_crypt_stat: The mount point's cryptographic context
783  *
784  * Default values in the event that policy does not override them.
785  */
786 static void ecryptfs_set_default_crypt_stat_vals(
787 	struct ecryptfs_crypt_stat *crypt_stat,
788 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
789 {
790 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
791 						      mount_crypt_stat);
792 	ecryptfs_set_default_sizes(crypt_stat);
793 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
794 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
795 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
796 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
797 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
798 }
799 
800 /**
801  * ecryptfs_new_file_context
802  * @ecryptfs_inode: The eCryptfs inode
803  *
804  * If the crypto context for the file has not yet been established,
805  * this is where we do that.  Establishing a new crypto context
806  * involves the following decisions:
807  *  - What cipher to use?
808  *  - What set of authentication tokens to use?
809  * Here we just worry about getting enough information into the
810  * authentication tokens so that we know that they are available.
811  * We associate the available authentication tokens with the new file
812  * via the set of signatures in the crypt_stat struct.  Later, when
813  * the headers are actually written out, we may again defer to
814  * userspace to perform the encryption of the session key; for the
815  * foreseeable future, this will be the case with public key packets.
816  *
817  * Returns zero on success; non-zero otherwise
818  */
819 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
820 {
821 	struct ecryptfs_crypt_stat *crypt_stat =
822 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
823 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
824 	    &ecryptfs_superblock_to_private(
825 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
826 	int cipher_name_len;
827 	int rc = 0;
828 
829 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
830 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
831 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
832 						      mount_crypt_stat);
833 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
834 							 mount_crypt_stat);
835 	if (rc) {
836 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
837 		       "to the inode key sigs; rc = [%d]\n", rc);
838 		goto out;
839 	}
840 	cipher_name_len =
841 		strlen(mount_crypt_stat->global_default_cipher_name);
842 	memcpy(crypt_stat->cipher,
843 	       mount_crypt_stat->global_default_cipher_name,
844 	       cipher_name_len);
845 	crypt_stat->cipher[cipher_name_len] = '\0';
846 	crypt_stat->key_size =
847 		mount_crypt_stat->global_default_cipher_key_size;
848 	ecryptfs_generate_new_key(crypt_stat);
849 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
850 	if (rc)
851 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
852 				"context for cipher [%s]: rc = [%d]\n",
853 				crypt_stat->cipher, rc);
854 out:
855 	return rc;
856 }
857 
858 /**
859  * ecryptfs_validate_marker - check for the ecryptfs marker
860  * @data: The data block in which to check
861  *
862  * Returns zero if marker found; -EINVAL if not found
863  */
864 static int ecryptfs_validate_marker(char *data)
865 {
866 	u32 m_1, m_2;
867 
868 	m_1 = get_unaligned_be32(data);
869 	m_2 = get_unaligned_be32(data + 4);
870 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
871 		return 0;
872 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
873 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
874 			MAGIC_ECRYPTFS_MARKER);
875 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
876 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
877 	return -EINVAL;
878 }
879 
880 struct ecryptfs_flag_map_elem {
881 	u32 file_flag;
882 	u32 local_flag;
883 };
884 
885 /* Add support for additional flags by adding elements here. */
886 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
887 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
888 	{0x00000002, ECRYPTFS_ENCRYPTED},
889 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
890 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
891 };
892 
893 /**
894  * ecryptfs_process_flags
895  * @crypt_stat: The cryptographic context
896  * @page_virt: Source data to be parsed
897  * @bytes_read: Updated with the number of bytes read
898  *
899  * Returns zero on success; non-zero if the flag set is invalid
900  */
901 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
902 				  char *page_virt, int *bytes_read)
903 {
904 	int rc = 0;
905 	int i;
906 	u32 flags;
907 
908 	flags = get_unaligned_be32(page_virt);
909 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
910 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
911 		if (flags & ecryptfs_flag_map[i].file_flag) {
912 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
913 		} else
914 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
915 	/* Version is in top 8 bits of the 32-bit flag vector */
916 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
917 	(*bytes_read) = 4;
918 	return rc;
919 }
920 
921 /**
922  * write_ecryptfs_marker
923  * @page_virt: The pointer to in a page to begin writing the marker
924  * @written: Number of bytes written
925  *
926  * Marker = 0x3c81b7f5
927  */
928 static void write_ecryptfs_marker(char *page_virt, size_t *written)
929 {
930 	u32 m_1, m_2;
931 
932 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
933 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
934 	put_unaligned_be32(m_1, page_virt);
935 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
936 	put_unaligned_be32(m_2, page_virt);
937 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
938 }
939 
940 void ecryptfs_write_crypt_stat_flags(char *page_virt,
941 				     struct ecryptfs_crypt_stat *crypt_stat,
942 				     size_t *written)
943 {
944 	u32 flags = 0;
945 	int i;
946 
947 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
948 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
949 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
950 			flags |= ecryptfs_flag_map[i].file_flag;
951 	/* Version is in top 8 bits of the 32-bit flag vector */
952 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
953 	put_unaligned_be32(flags, page_virt);
954 	(*written) = 4;
955 }
956 
957 struct ecryptfs_cipher_code_str_map_elem {
958 	char cipher_str[16];
959 	u8 cipher_code;
960 };
961 
962 /* Add support for additional ciphers by adding elements here. The
963  * cipher_code is whatever OpenPGP applicatoins use to identify the
964  * ciphers. List in order of probability. */
965 static struct ecryptfs_cipher_code_str_map_elem
966 ecryptfs_cipher_code_str_map[] = {
967 	{"aes",RFC2440_CIPHER_AES_128 },
968 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
969 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
970 	{"cast5", RFC2440_CIPHER_CAST_5},
971 	{"twofish", RFC2440_CIPHER_TWOFISH},
972 	{"cast6", RFC2440_CIPHER_CAST_6},
973 	{"aes", RFC2440_CIPHER_AES_192},
974 	{"aes", RFC2440_CIPHER_AES_256}
975 };
976 
977 /**
978  * ecryptfs_code_for_cipher_string
979  * @cipher_name: The string alias for the cipher
980  * @key_bytes: Length of key in bytes; used for AES code selection
981  *
982  * Returns zero on no match, or the cipher code on match
983  */
984 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
985 {
986 	int i;
987 	u8 code = 0;
988 	struct ecryptfs_cipher_code_str_map_elem *map =
989 		ecryptfs_cipher_code_str_map;
990 
991 	if (strcmp(cipher_name, "aes") == 0) {
992 		switch (key_bytes) {
993 		case 16:
994 			code = RFC2440_CIPHER_AES_128;
995 			break;
996 		case 24:
997 			code = RFC2440_CIPHER_AES_192;
998 			break;
999 		case 32:
1000 			code = RFC2440_CIPHER_AES_256;
1001 		}
1002 	} else {
1003 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1004 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1005 				code = map[i].cipher_code;
1006 				break;
1007 			}
1008 	}
1009 	return code;
1010 }
1011 
1012 /**
1013  * ecryptfs_cipher_code_to_string
1014  * @str: Destination to write out the cipher name
1015  * @cipher_code: The code to convert to cipher name string
1016  *
1017  * Returns zero on success
1018  */
1019 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1020 {
1021 	int rc = 0;
1022 	int i;
1023 
1024 	str[0] = '\0';
1025 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1026 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1027 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1028 	if (str[0] == '\0') {
1029 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1030 				"[%d]\n", cipher_code);
1031 		rc = -EINVAL;
1032 	}
1033 	return rc;
1034 }
1035 
1036 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1037 {
1038 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1039 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1040 	int rc;
1041 
1042 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1043 				 inode);
1044 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1045 		return rc >= 0 ? -EINVAL : rc;
1046 	rc = ecryptfs_validate_marker(marker);
1047 	if (!rc)
1048 		ecryptfs_i_size_init(file_size, inode);
1049 	return rc;
1050 }
1051 
1052 void
1053 ecryptfs_write_header_metadata(char *virt,
1054 			       struct ecryptfs_crypt_stat *crypt_stat,
1055 			       size_t *written)
1056 {
1057 	u32 header_extent_size;
1058 	u16 num_header_extents_at_front;
1059 
1060 	header_extent_size = (u32)crypt_stat->extent_size;
1061 	num_header_extents_at_front =
1062 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1063 	put_unaligned_be32(header_extent_size, virt);
1064 	virt += 4;
1065 	put_unaligned_be16(num_header_extents_at_front, virt);
1066 	(*written) = 6;
1067 }
1068 
1069 struct kmem_cache *ecryptfs_header_cache;
1070 
1071 /**
1072  * ecryptfs_write_headers_virt
1073  * @page_virt: The virtual address to write the headers to
1074  * @max: The size of memory allocated at page_virt
1075  * @size: Set to the number of bytes written by this function
1076  * @crypt_stat: The cryptographic context
1077  * @ecryptfs_dentry: The eCryptfs dentry
1078  *
1079  * Format version: 1
1080  *
1081  *   Header Extent:
1082  *     Octets 0-7:        Unencrypted file size (big-endian)
1083  *     Octets 8-15:       eCryptfs special marker
1084  *     Octets 16-19:      Flags
1085  *      Octet 16:         File format version number (between 0 and 255)
1086  *      Octets 17-18:     Reserved
1087  *      Octet 19:         Bit 1 (lsb): Reserved
1088  *                        Bit 2: Encrypted?
1089  *                        Bits 3-8: Reserved
1090  *     Octets 20-23:      Header extent size (big-endian)
1091  *     Octets 24-25:      Number of header extents at front of file
1092  *                        (big-endian)
1093  *     Octet  26:         Begin RFC 2440 authentication token packet set
1094  *   Data Extent 0:
1095  *     Lower data (CBC encrypted)
1096  *   Data Extent 1:
1097  *     Lower data (CBC encrypted)
1098  *   ...
1099  *
1100  * Returns zero on success
1101  */
1102 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1103 				       size_t *size,
1104 				       struct ecryptfs_crypt_stat *crypt_stat,
1105 				       struct dentry *ecryptfs_dentry)
1106 {
1107 	int rc;
1108 	size_t written;
1109 	size_t offset;
1110 
1111 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1112 	write_ecryptfs_marker((page_virt + offset), &written);
1113 	offset += written;
1114 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1115 					&written);
1116 	offset += written;
1117 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1118 				       &written);
1119 	offset += written;
1120 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1121 					      ecryptfs_dentry, &written,
1122 					      max - offset);
1123 	if (rc)
1124 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1125 				"set; rc = [%d]\n", rc);
1126 	if (size) {
1127 		offset += written;
1128 		*size = offset;
1129 	}
1130 	return rc;
1131 }
1132 
1133 static int
1134 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1135 				    char *virt, size_t virt_len)
1136 {
1137 	int rc;
1138 
1139 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1140 				  0, virt_len);
1141 	if (rc < 0)
1142 		printk(KERN_ERR "%s: Error attempting to write header "
1143 		       "information to lower file; rc = [%d]\n", __func__, rc);
1144 	else
1145 		rc = 0;
1146 	return rc;
1147 }
1148 
1149 static int
1150 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1151 				 char *page_virt, size_t size)
1152 {
1153 	int rc;
1154 
1155 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1156 			       size, 0);
1157 	return rc;
1158 }
1159 
1160 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1161 					       unsigned int order)
1162 {
1163 	struct page *page;
1164 
1165 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1166 	if (page)
1167 		return (unsigned long) page_address(page);
1168 	return 0;
1169 }
1170 
1171 /**
1172  * ecryptfs_write_metadata
1173  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1174  * @ecryptfs_inode: The newly created eCryptfs inode
1175  *
1176  * Write the file headers out.  This will likely involve a userspace
1177  * callout, in which the session key is encrypted with one or more
1178  * public keys and/or the passphrase necessary to do the encryption is
1179  * retrieved via a prompt.  Exactly what happens at this point should
1180  * be policy-dependent.
1181  *
1182  * Returns zero on success; non-zero on error
1183  */
1184 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1185 			    struct inode *ecryptfs_inode)
1186 {
1187 	struct ecryptfs_crypt_stat *crypt_stat =
1188 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1189 	unsigned int order;
1190 	char *virt;
1191 	size_t virt_len;
1192 	size_t size = 0;
1193 	int rc = 0;
1194 
1195 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1196 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1197 			printk(KERN_ERR "Key is invalid; bailing out\n");
1198 			rc = -EINVAL;
1199 			goto out;
1200 		}
1201 	} else {
1202 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1203 		       __func__);
1204 		rc = -EINVAL;
1205 		goto out;
1206 	}
1207 	virt_len = crypt_stat->metadata_size;
1208 	order = get_order(virt_len);
1209 	/* Released in this function */
1210 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1211 	if (!virt) {
1212 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1213 		rc = -ENOMEM;
1214 		goto out;
1215 	}
1216 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1217 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1218 					 ecryptfs_dentry);
1219 	if (unlikely(rc)) {
1220 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1221 		       __func__, rc);
1222 		goto out_free;
1223 	}
1224 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1225 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1226 						      size);
1227 	else
1228 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1229 							 virt_len);
1230 	if (rc) {
1231 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1232 		       "rc = [%d]\n", __func__, rc);
1233 		goto out_free;
1234 	}
1235 out_free:
1236 	free_pages((unsigned long)virt, order);
1237 out:
1238 	return rc;
1239 }
1240 
1241 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1242 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1243 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1244 				 char *virt, int *bytes_read,
1245 				 int validate_header_size)
1246 {
1247 	int rc = 0;
1248 	u32 header_extent_size;
1249 	u16 num_header_extents_at_front;
1250 
1251 	header_extent_size = get_unaligned_be32(virt);
1252 	virt += sizeof(__be32);
1253 	num_header_extents_at_front = get_unaligned_be16(virt);
1254 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1255 				     * (size_t)header_extent_size));
1256 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1257 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1258 	    && (crypt_stat->metadata_size
1259 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1260 		rc = -EINVAL;
1261 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1262 		       crypt_stat->metadata_size);
1263 	}
1264 	return rc;
1265 }
1266 
1267 /**
1268  * set_default_header_data
1269  * @crypt_stat: The cryptographic context
1270  *
1271  * For version 0 file format; this function is only for backwards
1272  * compatibility for files created with the prior versions of
1273  * eCryptfs.
1274  */
1275 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1276 {
1277 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1278 }
1279 
1280 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1281 {
1282 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1283 	struct ecryptfs_crypt_stat *crypt_stat;
1284 	u64 file_size;
1285 
1286 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1287 	mount_crypt_stat =
1288 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1289 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1290 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1291 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1292 			file_size += crypt_stat->metadata_size;
1293 	} else
1294 		file_size = get_unaligned_be64(page_virt);
1295 	i_size_write(inode, (loff_t)file_size);
1296 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1297 }
1298 
1299 /**
1300  * ecryptfs_read_headers_virt
1301  * @page_virt: The virtual address into which to read the headers
1302  * @crypt_stat: The cryptographic context
1303  * @ecryptfs_dentry: The eCryptfs dentry
1304  * @validate_header_size: Whether to validate the header size while reading
1305  *
1306  * Read/parse the header data. The header format is detailed in the
1307  * comment block for the ecryptfs_write_headers_virt() function.
1308  *
1309  * Returns zero on success
1310  */
1311 static int ecryptfs_read_headers_virt(char *page_virt,
1312 				      struct ecryptfs_crypt_stat *crypt_stat,
1313 				      struct dentry *ecryptfs_dentry,
1314 				      int validate_header_size)
1315 {
1316 	int rc = 0;
1317 	int offset;
1318 	int bytes_read;
1319 
1320 	ecryptfs_set_default_sizes(crypt_stat);
1321 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1322 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1323 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1324 	rc = ecryptfs_validate_marker(page_virt + offset);
1325 	if (rc)
1326 		goto out;
1327 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1328 		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1329 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1330 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1331 				    &bytes_read);
1332 	if (rc) {
1333 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1334 		goto out;
1335 	}
1336 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1337 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1338 				"file version [%d] is supported by this "
1339 				"version of eCryptfs\n",
1340 				crypt_stat->file_version,
1341 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1342 		rc = -EINVAL;
1343 		goto out;
1344 	}
1345 	offset += bytes_read;
1346 	if (crypt_stat->file_version >= 1) {
1347 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1348 					   &bytes_read, validate_header_size);
1349 		if (rc) {
1350 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1351 					"metadata; rc = [%d]\n", rc);
1352 		}
1353 		offset += bytes_read;
1354 	} else
1355 		set_default_header_data(crypt_stat);
1356 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1357 				       ecryptfs_dentry);
1358 out:
1359 	return rc;
1360 }
1361 
1362 /**
1363  * ecryptfs_read_xattr_region
1364  * @page_virt: The vitual address into which to read the xattr data
1365  * @ecryptfs_inode: The eCryptfs inode
1366  *
1367  * Attempts to read the crypto metadata from the extended attribute
1368  * region of the lower file.
1369  *
1370  * Returns zero on success; non-zero on error
1371  */
1372 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1373 {
1374 	struct dentry *lower_dentry =
1375 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1376 	ssize_t size;
1377 	int rc = 0;
1378 
1379 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1380 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1381 	if (size < 0) {
1382 		if (unlikely(ecryptfs_verbosity > 0))
1383 			printk(KERN_INFO "Error attempting to read the [%s] "
1384 			       "xattr from the lower file; return value = "
1385 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1386 		rc = -EINVAL;
1387 		goto out;
1388 	}
1389 out:
1390 	return rc;
1391 }
1392 
1393 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1394 					    struct inode *inode)
1395 {
1396 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1397 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1398 	int rc;
1399 
1400 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1401 				     ECRYPTFS_XATTR_NAME, file_size,
1402 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1403 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1404 		return rc >= 0 ? -EINVAL : rc;
1405 	rc = ecryptfs_validate_marker(marker);
1406 	if (!rc)
1407 		ecryptfs_i_size_init(file_size, inode);
1408 	return rc;
1409 }
1410 
1411 /**
1412  * ecryptfs_read_metadata
1413  *
1414  * Common entry point for reading file metadata. From here, we could
1415  * retrieve the header information from the header region of the file,
1416  * the xattr region of the file, or some other repostory that is
1417  * stored separately from the file itself. The current implementation
1418  * supports retrieving the metadata information from the file contents
1419  * and from the xattr region.
1420  *
1421  * Returns zero if valid headers found and parsed; non-zero otherwise
1422  */
1423 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1424 {
1425 	int rc;
1426 	char *page_virt;
1427 	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1428 	struct ecryptfs_crypt_stat *crypt_stat =
1429 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1430 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1431 		&ecryptfs_superblock_to_private(
1432 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1433 
1434 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1435 						      mount_crypt_stat);
1436 	/* Read the first page from the underlying file */
1437 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1438 	if (!page_virt) {
1439 		rc = -ENOMEM;
1440 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1441 		       __func__);
1442 		goto out;
1443 	}
1444 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1445 				 ecryptfs_inode);
1446 	if (rc >= 0)
1447 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1448 						ecryptfs_dentry,
1449 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1450 	if (rc) {
1451 		/* metadata is not in the file header, so try xattrs */
1452 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1453 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1454 		if (rc) {
1455 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1456 			       "file header region or xattr region, inode %lu\n",
1457 				ecryptfs_inode->i_ino);
1458 			rc = -EINVAL;
1459 			goto out;
1460 		}
1461 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1462 						ecryptfs_dentry,
1463 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1464 		if (rc) {
1465 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1466 			       "file xattr region either, inode %lu\n",
1467 				ecryptfs_inode->i_ino);
1468 			rc = -EINVAL;
1469 		}
1470 		if (crypt_stat->mount_crypt_stat->flags
1471 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1472 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1473 		} else {
1474 			printk(KERN_WARNING "Attempt to access file with "
1475 			       "crypto metadata only in the extended attribute "
1476 			       "region, but eCryptfs was mounted without "
1477 			       "xattr support enabled. eCryptfs will not treat "
1478 			       "this like an encrypted file, inode %lu\n",
1479 				ecryptfs_inode->i_ino);
1480 			rc = -EINVAL;
1481 		}
1482 	}
1483 out:
1484 	if (page_virt) {
1485 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1486 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1487 	}
1488 	return rc;
1489 }
1490 
1491 /**
1492  * ecryptfs_encrypt_filename - encrypt filename
1493  *
1494  * CBC-encrypts the filename. We do not want to encrypt the same
1495  * filename with the same key and IV, which may happen with hard
1496  * links, so we prepend random bits to each filename.
1497  *
1498  * Returns zero on success; non-zero otherwise
1499  */
1500 static int
1501 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1502 			  struct ecryptfs_crypt_stat *crypt_stat,
1503 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1504 {
1505 	int rc = 0;
1506 
1507 	filename->encrypted_filename = NULL;
1508 	filename->encrypted_filename_size = 0;
1509 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1510 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1511 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1512 		size_t packet_size;
1513 		size_t remaining_bytes;
1514 
1515 		rc = ecryptfs_write_tag_70_packet(
1516 			NULL, NULL,
1517 			&filename->encrypted_filename_size,
1518 			mount_crypt_stat, NULL,
1519 			filename->filename_size);
1520 		if (rc) {
1521 			printk(KERN_ERR "%s: Error attempting to get packet "
1522 			       "size for tag 72; rc = [%d]\n", __func__,
1523 			       rc);
1524 			filename->encrypted_filename_size = 0;
1525 			goto out;
1526 		}
1527 		filename->encrypted_filename =
1528 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1529 		if (!filename->encrypted_filename) {
1530 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1531 			       "to kmalloc [%zd] bytes\n", __func__,
1532 			       filename->encrypted_filename_size);
1533 			rc = -ENOMEM;
1534 			goto out;
1535 		}
1536 		remaining_bytes = filename->encrypted_filename_size;
1537 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1538 						  &remaining_bytes,
1539 						  &packet_size,
1540 						  mount_crypt_stat,
1541 						  filename->filename,
1542 						  filename->filename_size);
1543 		if (rc) {
1544 			printk(KERN_ERR "%s: Error attempting to generate "
1545 			       "tag 70 packet; rc = [%d]\n", __func__,
1546 			       rc);
1547 			kfree(filename->encrypted_filename);
1548 			filename->encrypted_filename = NULL;
1549 			filename->encrypted_filename_size = 0;
1550 			goto out;
1551 		}
1552 		filename->encrypted_filename_size = packet_size;
1553 	} else {
1554 		printk(KERN_ERR "%s: No support for requested filename "
1555 		       "encryption method in this release\n", __func__);
1556 		rc = -EOPNOTSUPP;
1557 		goto out;
1558 	}
1559 out:
1560 	return rc;
1561 }
1562 
1563 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1564 				  const char *name, size_t name_size)
1565 {
1566 	int rc = 0;
1567 
1568 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1569 	if (!(*copied_name)) {
1570 		rc = -ENOMEM;
1571 		goto out;
1572 	}
1573 	memcpy((void *)(*copied_name), (void *)name, name_size);
1574 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1575 						 * in printing out the
1576 						 * string in debug
1577 						 * messages */
1578 	(*copied_name_size) = name_size;
1579 out:
1580 	return rc;
1581 }
1582 
1583 /**
1584  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1585  * @key_tfm: Crypto context for key material, set by this function
1586  * @cipher_name: Name of the cipher
1587  * @key_size: Size of the key in bytes
1588  *
1589  * Returns zero on success. Any crypto_tfm structs allocated here
1590  * should be released by other functions, such as on a superblock put
1591  * event, regardless of whether this function succeeds for fails.
1592  */
1593 static int
1594 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1595 			    char *cipher_name, size_t *key_size)
1596 {
1597 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1598 	char *full_alg_name = NULL;
1599 	int rc;
1600 
1601 	*key_tfm = NULL;
1602 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1603 		rc = -EINVAL;
1604 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1605 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1606 		goto out;
1607 	}
1608 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1609 						    "ecb");
1610 	if (rc)
1611 		goto out;
1612 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1613 	if (IS_ERR(*key_tfm)) {
1614 		rc = PTR_ERR(*key_tfm);
1615 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1616 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1617 		goto out;
1618 	}
1619 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1620 	if (*key_size == 0) {
1621 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1622 
1623 		*key_size = alg->max_keysize;
1624 	}
1625 	get_random_bytes(dummy_key, *key_size);
1626 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1627 	if (rc) {
1628 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1629 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1630 		       rc);
1631 		rc = -EINVAL;
1632 		goto out;
1633 	}
1634 out:
1635 	kfree(full_alg_name);
1636 	return rc;
1637 }
1638 
1639 struct kmem_cache *ecryptfs_key_tfm_cache;
1640 static struct list_head key_tfm_list;
1641 struct mutex key_tfm_list_mutex;
1642 
1643 int __init ecryptfs_init_crypto(void)
1644 {
1645 	mutex_init(&key_tfm_list_mutex);
1646 	INIT_LIST_HEAD(&key_tfm_list);
1647 	return 0;
1648 }
1649 
1650 /**
1651  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1652  *
1653  * Called only at module unload time
1654  */
1655 int ecryptfs_destroy_crypto(void)
1656 {
1657 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1658 
1659 	mutex_lock(&key_tfm_list_mutex);
1660 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1661 				 key_tfm_list) {
1662 		list_del(&key_tfm->key_tfm_list);
1663 		if (key_tfm->key_tfm)
1664 			crypto_free_blkcipher(key_tfm->key_tfm);
1665 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1666 	}
1667 	mutex_unlock(&key_tfm_list_mutex);
1668 	return 0;
1669 }
1670 
1671 int
1672 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1673 			 size_t key_size)
1674 {
1675 	struct ecryptfs_key_tfm *tmp_tfm;
1676 	int rc = 0;
1677 
1678 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1679 
1680 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1681 	if (key_tfm != NULL)
1682 		(*key_tfm) = tmp_tfm;
1683 	if (!tmp_tfm) {
1684 		rc = -ENOMEM;
1685 		printk(KERN_ERR "Error attempting to allocate from "
1686 		       "ecryptfs_key_tfm_cache\n");
1687 		goto out;
1688 	}
1689 	mutex_init(&tmp_tfm->key_tfm_mutex);
1690 	strncpy(tmp_tfm->cipher_name, cipher_name,
1691 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1692 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1693 	tmp_tfm->key_size = key_size;
1694 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1695 					 tmp_tfm->cipher_name,
1696 					 &tmp_tfm->key_size);
1697 	if (rc) {
1698 		printk(KERN_ERR "Error attempting to initialize key TFM "
1699 		       "cipher with name = [%s]; rc = [%d]\n",
1700 		       tmp_tfm->cipher_name, rc);
1701 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1702 		if (key_tfm != NULL)
1703 			(*key_tfm) = NULL;
1704 		goto out;
1705 	}
1706 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1707 out:
1708 	return rc;
1709 }
1710 
1711 /**
1712  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1713  * @cipher_name: the name of the cipher to search for
1714  * @key_tfm: set to corresponding tfm if found
1715  *
1716  * Searches for cached key_tfm matching @cipher_name
1717  * Must be called with &key_tfm_list_mutex held
1718  * Returns 1 if found, with @key_tfm set
1719  * Returns 0 if not found, with @key_tfm set to NULL
1720  */
1721 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1722 {
1723 	struct ecryptfs_key_tfm *tmp_key_tfm;
1724 
1725 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1726 
1727 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1728 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1729 			if (key_tfm)
1730 				(*key_tfm) = tmp_key_tfm;
1731 			return 1;
1732 		}
1733 	}
1734 	if (key_tfm)
1735 		(*key_tfm) = NULL;
1736 	return 0;
1737 }
1738 
1739 /**
1740  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1741  *
1742  * @tfm: set to cached tfm found, or new tfm created
1743  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1744  * @cipher_name: the name of the cipher to search for and/or add
1745  *
1746  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1747  * Searches for cached item first, and creates new if not found.
1748  * Returns 0 on success, non-zero if adding new cipher failed
1749  */
1750 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1751 					       struct mutex **tfm_mutex,
1752 					       char *cipher_name)
1753 {
1754 	struct ecryptfs_key_tfm *key_tfm;
1755 	int rc = 0;
1756 
1757 	(*tfm) = NULL;
1758 	(*tfm_mutex) = NULL;
1759 
1760 	mutex_lock(&key_tfm_list_mutex);
1761 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1762 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1763 		if (rc) {
1764 			printk(KERN_ERR "Error adding new key_tfm to list; "
1765 					"rc = [%d]\n", rc);
1766 			goto out;
1767 		}
1768 	}
1769 	(*tfm) = key_tfm->key_tfm;
1770 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1771 out:
1772 	mutex_unlock(&key_tfm_list_mutex);
1773 	return rc;
1774 }
1775 
1776 /* 64 characters forming a 6-bit target field */
1777 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1778 						 "EFGHIJKLMNOPQRST"
1779 						 "UVWXYZabcdefghij"
1780 						 "klmnopqrstuvwxyz");
1781 
1782 /* We could either offset on every reverse map or just pad some 0x00's
1783  * at the front here */
1784 static const unsigned char filename_rev_map[256] = {
1785 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1786 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1787 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1788 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1789 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1790 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1791 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1792 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1793 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1794 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1795 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1796 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1797 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1798 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1799 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1800 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1801 };
1802 
1803 /**
1804  * ecryptfs_encode_for_filename
1805  * @dst: Destination location for encoded filename
1806  * @dst_size: Size of the encoded filename in bytes
1807  * @src: Source location for the filename to encode
1808  * @src_size: Size of the source in bytes
1809  */
1810 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1811 				  unsigned char *src, size_t src_size)
1812 {
1813 	size_t num_blocks;
1814 	size_t block_num = 0;
1815 	size_t dst_offset = 0;
1816 	unsigned char last_block[3];
1817 
1818 	if (src_size == 0) {
1819 		(*dst_size) = 0;
1820 		goto out;
1821 	}
1822 	num_blocks = (src_size / 3);
1823 	if ((src_size % 3) == 0) {
1824 		memcpy(last_block, (&src[src_size - 3]), 3);
1825 	} else {
1826 		num_blocks++;
1827 		last_block[2] = 0x00;
1828 		switch (src_size % 3) {
1829 		case 1:
1830 			last_block[0] = src[src_size - 1];
1831 			last_block[1] = 0x00;
1832 			break;
1833 		case 2:
1834 			last_block[0] = src[src_size - 2];
1835 			last_block[1] = src[src_size - 1];
1836 		}
1837 	}
1838 	(*dst_size) = (num_blocks * 4);
1839 	if (!dst)
1840 		goto out;
1841 	while (block_num < num_blocks) {
1842 		unsigned char *src_block;
1843 		unsigned char dst_block[4];
1844 
1845 		if (block_num == (num_blocks - 1))
1846 			src_block = last_block;
1847 		else
1848 			src_block = &src[block_num * 3];
1849 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1850 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1851 				| ((src_block[1] >> 4) & 0x0F));
1852 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1853 				| ((src_block[2] >> 6) & 0x03));
1854 		dst_block[3] = (src_block[2] & 0x3F);
1855 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1856 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1857 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1858 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1859 		block_num++;
1860 	}
1861 out:
1862 	return;
1863 }
1864 
1865 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1866 {
1867 	/* Not exact; conservatively long. Every block of 4
1868 	 * encoded characters decodes into a block of 3
1869 	 * decoded characters. This segment of code provides
1870 	 * the caller with the maximum amount of allocated
1871 	 * space that @dst will need to point to in a
1872 	 * subsequent call. */
1873 	return ((encoded_size + 1) * 3) / 4;
1874 }
1875 
1876 /**
1877  * ecryptfs_decode_from_filename
1878  * @dst: If NULL, this function only sets @dst_size and returns. If
1879  *       non-NULL, this function decodes the encoded octets in @src
1880  *       into the memory that @dst points to.
1881  * @dst_size: Set to the size of the decoded string.
1882  * @src: The encoded set of octets to decode.
1883  * @src_size: The size of the encoded set of octets to decode.
1884  */
1885 static void
1886 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1887 			      const unsigned char *src, size_t src_size)
1888 {
1889 	u8 current_bit_offset = 0;
1890 	size_t src_byte_offset = 0;
1891 	size_t dst_byte_offset = 0;
1892 
1893 	if (dst == NULL) {
1894 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1895 		goto out;
1896 	}
1897 	while (src_byte_offset < src_size) {
1898 		unsigned char src_byte =
1899 				filename_rev_map[(int)src[src_byte_offset]];
1900 
1901 		switch (current_bit_offset) {
1902 		case 0:
1903 			dst[dst_byte_offset] = (src_byte << 2);
1904 			current_bit_offset = 6;
1905 			break;
1906 		case 6:
1907 			dst[dst_byte_offset++] |= (src_byte >> 4);
1908 			dst[dst_byte_offset] = ((src_byte & 0xF)
1909 						 << 4);
1910 			current_bit_offset = 4;
1911 			break;
1912 		case 4:
1913 			dst[dst_byte_offset++] |= (src_byte >> 2);
1914 			dst[dst_byte_offset] = (src_byte << 6);
1915 			current_bit_offset = 2;
1916 			break;
1917 		case 2:
1918 			dst[dst_byte_offset++] |= (src_byte);
1919 			current_bit_offset = 0;
1920 			break;
1921 		}
1922 		src_byte_offset++;
1923 	}
1924 	(*dst_size) = dst_byte_offset;
1925 out:
1926 	return;
1927 }
1928 
1929 /**
1930  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1931  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1932  * @name: The plaintext name
1933  * @length: The length of the plaintext
1934  * @encoded_name: The encypted name
1935  *
1936  * Encrypts and encodes a filename into something that constitutes a
1937  * valid filename for a filesystem, with printable characters.
1938  *
1939  * We assume that we have a properly initialized crypto context,
1940  * pointed to by crypt_stat->tfm.
1941  *
1942  * Returns zero on success; non-zero on otherwise
1943  */
1944 int ecryptfs_encrypt_and_encode_filename(
1945 	char **encoded_name,
1946 	size_t *encoded_name_size,
1947 	struct ecryptfs_crypt_stat *crypt_stat,
1948 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1949 	const char *name, size_t name_size)
1950 {
1951 	size_t encoded_name_no_prefix_size;
1952 	int rc = 0;
1953 
1954 	(*encoded_name) = NULL;
1955 	(*encoded_name_size) = 0;
1956 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
1957 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1958 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
1959 		struct ecryptfs_filename *filename;
1960 
1961 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1962 		if (!filename) {
1963 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1964 			       "to kzalloc [%zd] bytes\n", __func__,
1965 			       sizeof(*filename));
1966 			rc = -ENOMEM;
1967 			goto out;
1968 		}
1969 		filename->filename = (char *)name;
1970 		filename->filename_size = name_size;
1971 		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
1972 					       mount_crypt_stat);
1973 		if (rc) {
1974 			printk(KERN_ERR "%s: Error attempting to encrypt "
1975 			       "filename; rc = [%d]\n", __func__, rc);
1976 			kfree(filename);
1977 			goto out;
1978 		}
1979 		ecryptfs_encode_for_filename(
1980 			NULL, &encoded_name_no_prefix_size,
1981 			filename->encrypted_filename,
1982 			filename->encrypted_filename_size);
1983 		if ((crypt_stat && (crypt_stat->flags
1984 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1985 		    || (mount_crypt_stat
1986 			&& (mount_crypt_stat->flags
1987 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
1988 			(*encoded_name_size) =
1989 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1990 				 + encoded_name_no_prefix_size);
1991 		else
1992 			(*encoded_name_size) =
1993 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1994 				 + encoded_name_no_prefix_size);
1995 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1996 		if (!(*encoded_name)) {
1997 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1998 			       "to kzalloc [%zd] bytes\n", __func__,
1999 			       (*encoded_name_size));
2000 			rc = -ENOMEM;
2001 			kfree(filename->encrypted_filename);
2002 			kfree(filename);
2003 			goto out;
2004 		}
2005 		if ((crypt_stat && (crypt_stat->flags
2006 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2007 		    || (mount_crypt_stat
2008 			&& (mount_crypt_stat->flags
2009 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2010 			memcpy((*encoded_name),
2011 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2012 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2013 			ecryptfs_encode_for_filename(
2014 			    ((*encoded_name)
2015 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2016 			    &encoded_name_no_prefix_size,
2017 			    filename->encrypted_filename,
2018 			    filename->encrypted_filename_size);
2019 			(*encoded_name_size) =
2020 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2021 				 + encoded_name_no_prefix_size);
2022 			(*encoded_name)[(*encoded_name_size)] = '\0';
2023 		} else {
2024 			rc = -EOPNOTSUPP;
2025 		}
2026 		if (rc) {
2027 			printk(KERN_ERR "%s: Error attempting to encode "
2028 			       "encrypted filename; rc = [%d]\n", __func__,
2029 			       rc);
2030 			kfree((*encoded_name));
2031 			(*encoded_name) = NULL;
2032 			(*encoded_name_size) = 0;
2033 		}
2034 		kfree(filename->encrypted_filename);
2035 		kfree(filename);
2036 	} else {
2037 		rc = ecryptfs_copy_filename(encoded_name,
2038 					    encoded_name_size,
2039 					    name, name_size);
2040 	}
2041 out:
2042 	return rc;
2043 }
2044 
2045 /**
2046  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2047  * @plaintext_name: The plaintext name
2048  * @plaintext_name_size: The plaintext name size
2049  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2050  * @name: The filename in cipher text
2051  * @name_size: The cipher text name size
2052  *
2053  * Decrypts and decodes the filename.
2054  *
2055  * Returns zero on error; non-zero otherwise
2056  */
2057 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2058 					 size_t *plaintext_name_size,
2059 					 struct super_block *sb,
2060 					 const char *name, size_t name_size)
2061 {
2062 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2063 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2064 	char *decoded_name;
2065 	size_t decoded_name_size;
2066 	size_t packet_size;
2067 	int rc = 0;
2068 
2069 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2070 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2071 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2072 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2073 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2074 		const char *orig_name = name;
2075 		size_t orig_name_size = name_size;
2076 
2077 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2078 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2079 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2080 					      name, name_size);
2081 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2082 		if (!decoded_name) {
2083 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2084 			       "to kmalloc [%zd] bytes\n", __func__,
2085 			       decoded_name_size);
2086 			rc = -ENOMEM;
2087 			goto out;
2088 		}
2089 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2090 					      name, name_size);
2091 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2092 						  plaintext_name_size,
2093 						  &packet_size,
2094 						  mount_crypt_stat,
2095 						  decoded_name,
2096 						  decoded_name_size);
2097 		if (rc) {
2098 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2099 			       "from filename; copying through filename "
2100 			       "as-is\n", __func__);
2101 			rc = ecryptfs_copy_filename(plaintext_name,
2102 						    plaintext_name_size,
2103 						    orig_name, orig_name_size);
2104 			goto out_free;
2105 		}
2106 	} else {
2107 		rc = ecryptfs_copy_filename(plaintext_name,
2108 					    plaintext_name_size,
2109 					    name, name_size);
2110 		goto out;
2111 	}
2112 out_free:
2113 	kfree(decoded_name);
2114 out:
2115 	return rc;
2116 }
2117 
2118 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2119 
2120 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2121 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2122 {
2123 	struct blkcipher_desc desc;
2124 	struct mutex *tfm_mutex;
2125 	size_t cipher_blocksize;
2126 	int rc;
2127 
2128 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2129 		(*namelen) = lower_namelen;
2130 		return 0;
2131 	}
2132 
2133 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2134 			mount_crypt_stat->global_default_fn_cipher_name);
2135 	if (unlikely(rc)) {
2136 		(*namelen) = 0;
2137 		return rc;
2138 	}
2139 
2140 	mutex_lock(tfm_mutex);
2141 	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2142 	mutex_unlock(tfm_mutex);
2143 
2144 	/* Return an exact amount for the common cases */
2145 	if (lower_namelen == NAME_MAX
2146 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2147 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2148 		return 0;
2149 	}
2150 
2151 	/* Return a safe estimate for the uncommon cases */
2152 	(*namelen) = lower_namelen;
2153 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2154 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2155 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2156 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2157 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2158 	/* Worst case is that the filename is padded nearly a full block size */
2159 	(*namelen) -= cipher_blocksize - 1;
2160 
2161 	if ((*namelen) < 0)
2162 		(*namelen) = 0;
2163 
2164 	return 0;
2165 }
2166