xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision a1e58bbd)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include "ecryptfs_kernel.h"
37 
38 static int
39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40 			     struct page *dst_page, int dst_offset,
41 			     struct page *src_page, int src_offset, int size,
42 			     unsigned char *iv);
43 static int
44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45 			     struct page *dst_page, int dst_offset,
46 			     struct page *src_page, int src_offset, int size,
47 			     unsigned char *iv);
48 
49 /**
50  * ecryptfs_to_hex
51  * @dst: Buffer to take hex character representation of contents of
52  *       src; must be at least of size (src_size * 2)
53  * @src: Buffer to be converted to a hex string respresentation
54  * @src_size: number of bytes to convert
55  */
56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
57 {
58 	int x;
59 
60 	for (x = 0; x < src_size; x++)
61 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
62 }
63 
64 /**
65  * ecryptfs_from_hex
66  * @dst: Buffer to take the bytes from src hex; must be at least of
67  *       size (src_size / 2)
68  * @src: Buffer to be converted from a hex string respresentation to raw value
69  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
70  */
71 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
72 {
73 	int x;
74 	char tmp[3] = { 0, };
75 
76 	for (x = 0; x < dst_size; x++) {
77 		tmp[0] = src[x * 2];
78 		tmp[1] = src[x * 2 + 1];
79 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
80 	}
81 }
82 
83 /**
84  * ecryptfs_calculate_md5 - calculates the md5 of @src
85  * @dst: Pointer to 16 bytes of allocated memory
86  * @crypt_stat: Pointer to crypt_stat struct for the current inode
87  * @src: Data to be md5'd
88  * @len: Length of @src
89  *
90  * Uses the allocated crypto context that crypt_stat references to
91  * generate the MD5 sum of the contents of src.
92  */
93 static int ecryptfs_calculate_md5(char *dst,
94 				  struct ecryptfs_crypt_stat *crypt_stat,
95 				  char *src, int len)
96 {
97 	struct scatterlist sg;
98 	struct hash_desc desc = {
99 		.tfm = crypt_stat->hash_tfm,
100 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
101 	};
102 	int rc = 0;
103 
104 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105 	sg_init_one(&sg, (u8 *)src, len);
106 	if (!desc.tfm) {
107 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108 					     CRYPTO_ALG_ASYNC);
109 		if (IS_ERR(desc.tfm)) {
110 			rc = PTR_ERR(desc.tfm);
111 			ecryptfs_printk(KERN_ERR, "Error attempting to "
112 					"allocate crypto context; rc = [%d]\n",
113 					rc);
114 			goto out;
115 		}
116 		crypt_stat->hash_tfm = desc.tfm;
117 	}
118 	rc = crypto_hash_init(&desc);
119 	if (rc) {
120 		printk(KERN_ERR
121 		       "%s: Error initializing crypto hash; rc = [%d]\n",
122 		       __FUNCTION__, rc);
123 		goto out;
124 	}
125 	rc = crypto_hash_update(&desc, &sg, len);
126 	if (rc) {
127 		printk(KERN_ERR
128 		       "%s: Error updating crypto hash; rc = [%d]\n",
129 		       __FUNCTION__, rc);
130 		goto out;
131 	}
132 	rc = crypto_hash_final(&desc, dst);
133 	if (rc) {
134 		printk(KERN_ERR
135 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
136 		       __FUNCTION__, rc);
137 		goto out;
138 	}
139 out:
140 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
141 	return rc;
142 }
143 
144 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
145 						  char *cipher_name,
146 						  char *chaining_modifier)
147 {
148 	int cipher_name_len = strlen(cipher_name);
149 	int chaining_modifier_len = strlen(chaining_modifier);
150 	int algified_name_len;
151 	int rc;
152 
153 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
154 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
155 	if (!(*algified_name)) {
156 		rc = -ENOMEM;
157 		goto out;
158 	}
159 	snprintf((*algified_name), algified_name_len, "%s(%s)",
160 		 chaining_modifier, cipher_name);
161 	rc = 0;
162 out:
163 	return rc;
164 }
165 
166 /**
167  * ecryptfs_derive_iv
168  * @iv: destination for the derived iv vale
169  * @crypt_stat: Pointer to crypt_stat struct for the current inode
170  * @offset: Offset of the extent whose IV we are to derive
171  *
172  * Generate the initialization vector from the given root IV and page
173  * offset.
174  *
175  * Returns zero on success; non-zero on error.
176  */
177 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
178 			      loff_t offset)
179 {
180 	int rc = 0;
181 	char dst[MD5_DIGEST_SIZE];
182 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
183 
184 	if (unlikely(ecryptfs_verbosity > 0)) {
185 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
186 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
187 	}
188 	/* TODO: It is probably secure to just cast the least
189 	 * significant bits of the root IV into an unsigned long and
190 	 * add the offset to that rather than go through all this
191 	 * hashing business. -Halcrow */
192 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
193 	memset((src + crypt_stat->iv_bytes), 0, 16);
194 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
195 	if (unlikely(ecryptfs_verbosity > 0)) {
196 		ecryptfs_printk(KERN_DEBUG, "source:\n");
197 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
198 	}
199 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
200 				    (crypt_stat->iv_bytes + 16));
201 	if (rc) {
202 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
203 				"MD5 while generating IV for a page\n");
204 		goto out;
205 	}
206 	memcpy(iv, dst, crypt_stat->iv_bytes);
207 	if (unlikely(ecryptfs_verbosity > 0)) {
208 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
209 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
210 	}
211 out:
212 	return rc;
213 }
214 
215 /**
216  * ecryptfs_init_crypt_stat
217  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
218  *
219  * Initialize the crypt_stat structure.
220  */
221 void
222 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
223 {
224 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
225 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
226 	mutex_init(&crypt_stat->keysig_list_mutex);
227 	mutex_init(&crypt_stat->cs_mutex);
228 	mutex_init(&crypt_stat->cs_tfm_mutex);
229 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
230 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
231 }
232 
233 /**
234  * ecryptfs_destroy_crypt_stat
235  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
236  *
237  * Releases all memory associated with a crypt_stat struct.
238  */
239 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
240 {
241 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
242 
243 	if (crypt_stat->tfm)
244 		crypto_free_blkcipher(crypt_stat->tfm);
245 	if (crypt_stat->hash_tfm)
246 		crypto_free_hash(crypt_stat->hash_tfm);
247 	mutex_lock(&crypt_stat->keysig_list_mutex);
248 	list_for_each_entry_safe(key_sig, key_sig_tmp,
249 				 &crypt_stat->keysig_list, crypt_stat_list) {
250 		list_del(&key_sig->crypt_stat_list);
251 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
252 	}
253 	mutex_unlock(&crypt_stat->keysig_list_mutex);
254 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255 }
256 
257 void ecryptfs_destroy_mount_crypt_stat(
258 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259 {
260 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261 
262 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 		return;
264 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 				 &mount_crypt_stat->global_auth_tok_list,
267 				 mount_crypt_stat_list) {
268 		list_del(&auth_tok->mount_crypt_stat_list);
269 		mount_crypt_stat->num_global_auth_toks--;
270 		if (auth_tok->global_auth_tok_key
271 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
272 			key_put(auth_tok->global_auth_tok_key);
273 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
274 	}
275 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
276 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
277 }
278 
279 /**
280  * virt_to_scatterlist
281  * @addr: Virtual address
282  * @size: Size of data; should be an even multiple of the block size
283  * @sg: Pointer to scatterlist array; set to NULL to obtain only
284  *      the number of scatterlist structs required in array
285  * @sg_size: Max array size
286  *
287  * Fills in a scatterlist array with page references for a passed
288  * virtual address.
289  *
290  * Returns the number of scatterlist structs in array used
291  */
292 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
293 			int sg_size)
294 {
295 	int i = 0;
296 	struct page *pg;
297 	int offset;
298 	int remainder_of_page;
299 
300 	sg_init_table(sg, sg_size);
301 
302 	while (size > 0 && i < sg_size) {
303 		pg = virt_to_page(addr);
304 		offset = offset_in_page(addr);
305 		if (sg)
306 			sg_set_page(&sg[i], pg, 0, offset);
307 		remainder_of_page = PAGE_CACHE_SIZE - offset;
308 		if (size >= remainder_of_page) {
309 			if (sg)
310 				sg[i].length = remainder_of_page;
311 			addr += remainder_of_page;
312 			size -= remainder_of_page;
313 		} else {
314 			if (sg)
315 				sg[i].length = size;
316 			addr += size;
317 			size = 0;
318 		}
319 		i++;
320 	}
321 	if (size > 0)
322 		return -ENOMEM;
323 	return i;
324 }
325 
326 /**
327  * encrypt_scatterlist
328  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
329  * @dest_sg: Destination of encrypted data
330  * @src_sg: Data to be encrypted
331  * @size: Length of data to be encrypted
332  * @iv: iv to use during encryption
333  *
334  * Returns the number of bytes encrypted; negative value on error
335  */
336 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
337 			       struct scatterlist *dest_sg,
338 			       struct scatterlist *src_sg, int size,
339 			       unsigned char *iv)
340 {
341 	struct blkcipher_desc desc = {
342 		.tfm = crypt_stat->tfm,
343 		.info = iv,
344 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
345 	};
346 	int rc = 0;
347 
348 	BUG_ON(!crypt_stat || !crypt_stat->tfm
349 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
350 	if (unlikely(ecryptfs_verbosity > 0)) {
351 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
352 				crypt_stat->key_size);
353 		ecryptfs_dump_hex(crypt_stat->key,
354 				  crypt_stat->key_size);
355 	}
356 	/* Consider doing this once, when the file is opened */
357 	mutex_lock(&crypt_stat->cs_tfm_mutex);
358 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
359 		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
360 					     crypt_stat->key_size);
361 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
362 	}
363 	if (rc) {
364 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
365 				rc);
366 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
367 		rc = -EINVAL;
368 		goto out;
369 	}
370 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
371 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
372 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
373 out:
374 	return rc;
375 }
376 
377 /**
378  * ecryptfs_lower_offset_for_extent
379  *
380  * Convert an eCryptfs page index into a lower byte offset
381  */
382 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
383 					     struct ecryptfs_crypt_stat *crypt_stat)
384 {
385 	(*offset) = (crypt_stat->num_header_bytes_at_front
386 		     + (crypt_stat->extent_size * extent_num));
387 }
388 
389 /**
390  * ecryptfs_encrypt_extent
391  * @enc_extent_page: Allocated page into which to encrypt the data in
392  *                   @page
393  * @crypt_stat: crypt_stat containing cryptographic context for the
394  *              encryption operation
395  * @page: Page containing plaintext data extent to encrypt
396  * @extent_offset: Page extent offset for use in generating IV
397  *
398  * Encrypts one extent of data.
399  *
400  * Return zero on success; non-zero otherwise
401  */
402 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
403 				   struct ecryptfs_crypt_stat *crypt_stat,
404 				   struct page *page,
405 				   unsigned long extent_offset)
406 {
407 	loff_t extent_base;
408 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
409 	int rc;
410 
411 	extent_base = (((loff_t)page->index)
412 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
413 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
414 				(extent_base + extent_offset));
415 	if (rc) {
416 		ecryptfs_printk(KERN_ERR, "Error attempting to "
417 				"derive IV for extent [0x%.16x]; "
418 				"rc = [%d]\n", (extent_base + extent_offset),
419 				rc);
420 		goto out;
421 	}
422 	if (unlikely(ecryptfs_verbosity > 0)) {
423 		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
424 				"with iv:\n");
425 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
426 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
427 				"encryption:\n");
428 		ecryptfs_dump_hex((char *)
429 				  (page_address(page)
430 				   + (extent_offset * crypt_stat->extent_size)),
431 				  8);
432 	}
433 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
434 					  page, (extent_offset
435 						 * crypt_stat->extent_size),
436 					  crypt_stat->extent_size, extent_iv);
437 	if (rc < 0) {
438 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
439 		       "page->index = [%ld], extent_offset = [%ld]; "
440 		       "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
441 		       rc);
442 		goto out;
443 	}
444 	rc = 0;
445 	if (unlikely(ecryptfs_verbosity > 0)) {
446 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
447 				"rc = [%d]\n", (extent_base + extent_offset),
448 				rc);
449 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
450 				"encryption:\n");
451 		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
452 	}
453 out:
454 	return rc;
455 }
456 
457 /**
458  * ecryptfs_encrypt_page
459  * @page: Page mapped from the eCryptfs inode for the file; contains
460  *        decrypted content that needs to be encrypted (to a temporary
461  *        page; not in place) and written out to the lower file
462  *
463  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
464  * that eCryptfs pages may straddle the lower pages -- for instance,
465  * if the file was created on a machine with an 8K page size
466  * (resulting in an 8K header), and then the file is copied onto a
467  * host with a 32K page size, then when reading page 0 of the eCryptfs
468  * file, 24K of page 0 of the lower file will be read and decrypted,
469  * and then 8K of page 1 of the lower file will be read and decrypted.
470  *
471  * Returns zero on success; negative on error
472  */
473 int ecryptfs_encrypt_page(struct page *page)
474 {
475 	struct inode *ecryptfs_inode;
476 	struct ecryptfs_crypt_stat *crypt_stat;
477 	char *enc_extent_virt = NULL;
478 	struct page *enc_extent_page;
479 	loff_t extent_offset;
480 	int rc = 0;
481 
482 	ecryptfs_inode = page->mapping->host;
483 	crypt_stat =
484 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
485 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
486 		rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
487 						       0, PAGE_CACHE_SIZE);
488 		if (rc)
489 			printk(KERN_ERR "%s: Error attempting to copy "
490 			       "page at index [%ld]\n", __FUNCTION__,
491 			       page->index);
492 		goto out;
493 	}
494 	enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
495 	if (!enc_extent_virt) {
496 		rc = -ENOMEM;
497 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
498 				"encrypted extent\n");
499 		goto out;
500 	}
501 	enc_extent_page = virt_to_page(enc_extent_virt);
502 	for (extent_offset = 0;
503 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
504 	     extent_offset++) {
505 		loff_t offset;
506 
507 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
508 					     extent_offset);
509 		if (rc) {
510 			printk(KERN_ERR "%s: Error encrypting extent; "
511 			       "rc = [%d]\n", __FUNCTION__, rc);
512 			goto out;
513 		}
514 		ecryptfs_lower_offset_for_extent(
515 			&offset, ((((loff_t)page->index)
516 				   * (PAGE_CACHE_SIZE
517 				      / crypt_stat->extent_size))
518 				  + extent_offset), crypt_stat);
519 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
520 					  offset, crypt_stat->extent_size);
521 		if (rc) {
522 			ecryptfs_printk(KERN_ERR, "Error attempting "
523 					"to write lower page; rc = [%d]"
524 					"\n", rc);
525 			goto out;
526 		}
527 	}
528 out:
529 	kfree(enc_extent_virt);
530 	return rc;
531 }
532 
533 static int ecryptfs_decrypt_extent(struct page *page,
534 				   struct ecryptfs_crypt_stat *crypt_stat,
535 				   struct page *enc_extent_page,
536 				   unsigned long extent_offset)
537 {
538 	loff_t extent_base;
539 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
540 	int rc;
541 
542 	extent_base = (((loff_t)page->index)
543 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
544 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
545 				(extent_base + extent_offset));
546 	if (rc) {
547 		ecryptfs_printk(KERN_ERR, "Error attempting to "
548 				"derive IV for extent [0x%.16x]; "
549 				"rc = [%d]\n", (extent_base + extent_offset),
550 				rc);
551 		goto out;
552 	}
553 	if (unlikely(ecryptfs_verbosity > 0)) {
554 		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
555 				"with iv:\n");
556 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
557 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
558 				"decryption:\n");
559 		ecryptfs_dump_hex((char *)
560 				  (page_address(enc_extent_page)
561 				   + (extent_offset * crypt_stat->extent_size)),
562 				  8);
563 	}
564 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
565 					  (extent_offset
566 					   * crypt_stat->extent_size),
567 					  enc_extent_page, 0,
568 					  crypt_stat->extent_size, extent_iv);
569 	if (rc < 0) {
570 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
571 		       "page->index = [%ld], extent_offset = [%ld]; "
572 		       "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
573 		       rc);
574 		goto out;
575 	}
576 	rc = 0;
577 	if (unlikely(ecryptfs_verbosity > 0)) {
578 		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
579 				"rc = [%d]\n", (extent_base + extent_offset),
580 				rc);
581 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
582 				"decryption:\n");
583 		ecryptfs_dump_hex((char *)(page_address(page)
584 					   + (extent_offset
585 					      * crypt_stat->extent_size)), 8);
586 	}
587 out:
588 	return rc;
589 }
590 
591 /**
592  * ecryptfs_decrypt_page
593  * @page: Page mapped from the eCryptfs inode for the file; data read
594  *        and decrypted from the lower file will be written into this
595  *        page
596  *
597  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
598  * that eCryptfs pages may straddle the lower pages -- for instance,
599  * if the file was created on a machine with an 8K page size
600  * (resulting in an 8K header), and then the file is copied onto a
601  * host with a 32K page size, then when reading page 0 of the eCryptfs
602  * file, 24K of page 0 of the lower file will be read and decrypted,
603  * and then 8K of page 1 of the lower file will be read and decrypted.
604  *
605  * Returns zero on success; negative on error
606  */
607 int ecryptfs_decrypt_page(struct page *page)
608 {
609 	struct inode *ecryptfs_inode;
610 	struct ecryptfs_crypt_stat *crypt_stat;
611 	char *enc_extent_virt = NULL;
612 	struct page *enc_extent_page;
613 	unsigned long extent_offset;
614 	int rc = 0;
615 
616 	ecryptfs_inode = page->mapping->host;
617 	crypt_stat =
618 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
619 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
620 		rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
621 						      PAGE_CACHE_SIZE,
622 						      ecryptfs_inode);
623 		if (rc)
624 			printk(KERN_ERR "%s: Error attempting to copy "
625 			       "page at index [%ld]\n", __FUNCTION__,
626 			       page->index);
627 		goto out;
628 	}
629 	enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
630 	if (!enc_extent_virt) {
631 		rc = -ENOMEM;
632 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
633 				"encrypted extent\n");
634 		goto out;
635 	}
636 	enc_extent_page = virt_to_page(enc_extent_virt);
637 	for (extent_offset = 0;
638 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
639 	     extent_offset++) {
640 		loff_t offset;
641 
642 		ecryptfs_lower_offset_for_extent(
643 			&offset, ((page->index * (PAGE_CACHE_SIZE
644 						  / crypt_stat->extent_size))
645 				  + extent_offset), crypt_stat);
646 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
647 					 crypt_stat->extent_size,
648 					 ecryptfs_inode);
649 		if (rc) {
650 			ecryptfs_printk(KERN_ERR, "Error attempting "
651 					"to read lower page; rc = [%d]"
652 					"\n", rc);
653 			goto out;
654 		}
655 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
656 					     extent_offset);
657 		if (rc) {
658 			printk(KERN_ERR "%s: Error encrypting extent; "
659 			       "rc = [%d]\n", __FUNCTION__, rc);
660 			goto out;
661 		}
662 	}
663 out:
664 	kfree(enc_extent_virt);
665 	return rc;
666 }
667 
668 /**
669  * decrypt_scatterlist
670  * @crypt_stat: Cryptographic context
671  * @dest_sg: The destination scatterlist to decrypt into
672  * @src_sg: The source scatterlist to decrypt from
673  * @size: The number of bytes to decrypt
674  * @iv: The initialization vector to use for the decryption
675  *
676  * Returns the number of bytes decrypted; negative value on error
677  */
678 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
679 			       struct scatterlist *dest_sg,
680 			       struct scatterlist *src_sg, int size,
681 			       unsigned char *iv)
682 {
683 	struct blkcipher_desc desc = {
684 		.tfm = crypt_stat->tfm,
685 		.info = iv,
686 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
687 	};
688 	int rc = 0;
689 
690 	/* Consider doing this once, when the file is opened */
691 	mutex_lock(&crypt_stat->cs_tfm_mutex);
692 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
693 				     crypt_stat->key_size);
694 	if (rc) {
695 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
696 				rc);
697 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
698 		rc = -EINVAL;
699 		goto out;
700 	}
701 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
702 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
703 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
704 	if (rc) {
705 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
706 				rc);
707 		goto out;
708 	}
709 	rc = size;
710 out:
711 	return rc;
712 }
713 
714 /**
715  * ecryptfs_encrypt_page_offset
716  * @crypt_stat: The cryptographic context
717  * @dst_page: The page to encrypt into
718  * @dst_offset: The offset in the page to encrypt into
719  * @src_page: The page to encrypt from
720  * @src_offset: The offset in the page to encrypt from
721  * @size: The number of bytes to encrypt
722  * @iv: The initialization vector to use for the encryption
723  *
724  * Returns the number of bytes encrypted
725  */
726 static int
727 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
728 			     struct page *dst_page, int dst_offset,
729 			     struct page *src_page, int src_offset, int size,
730 			     unsigned char *iv)
731 {
732 	struct scatterlist src_sg, dst_sg;
733 
734 	sg_init_table(&src_sg, 1);
735 	sg_init_table(&dst_sg, 1);
736 
737 	sg_set_page(&src_sg, src_page, size, src_offset);
738 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
739 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
740 }
741 
742 /**
743  * ecryptfs_decrypt_page_offset
744  * @crypt_stat: The cryptographic context
745  * @dst_page: The page to decrypt into
746  * @dst_offset: The offset in the page to decrypt into
747  * @src_page: The page to decrypt from
748  * @src_offset: The offset in the page to decrypt from
749  * @size: The number of bytes to decrypt
750  * @iv: The initialization vector to use for the decryption
751  *
752  * Returns the number of bytes decrypted
753  */
754 static int
755 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
756 			     struct page *dst_page, int dst_offset,
757 			     struct page *src_page, int src_offset, int size,
758 			     unsigned char *iv)
759 {
760 	struct scatterlist src_sg, dst_sg;
761 
762 	sg_init_table(&src_sg, 1);
763 	sg_set_page(&src_sg, src_page, size, src_offset);
764 
765 	sg_init_table(&dst_sg, 1);
766 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
767 
768 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
769 }
770 
771 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
772 
773 /**
774  * ecryptfs_init_crypt_ctx
775  * @crypt_stat: Uninitilized crypt stats structure
776  *
777  * Initialize the crypto context.
778  *
779  * TODO: Performance: Keep a cache of initialized cipher contexts;
780  * only init if needed
781  */
782 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
783 {
784 	char *full_alg_name;
785 	int rc = -EINVAL;
786 
787 	if (!crypt_stat->cipher) {
788 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
789 		goto out;
790 	}
791 	ecryptfs_printk(KERN_DEBUG,
792 			"Initializing cipher [%s]; strlen = [%d]; "
793 			"key_size_bits = [%d]\n",
794 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
795 			crypt_stat->key_size << 3);
796 	if (crypt_stat->tfm) {
797 		rc = 0;
798 		goto out;
799 	}
800 	mutex_lock(&crypt_stat->cs_tfm_mutex);
801 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
802 						    crypt_stat->cipher, "cbc");
803 	if (rc)
804 		goto out_unlock;
805 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
806 						 CRYPTO_ALG_ASYNC);
807 	kfree(full_alg_name);
808 	if (IS_ERR(crypt_stat->tfm)) {
809 		rc = PTR_ERR(crypt_stat->tfm);
810 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
811 				"Error initializing cipher [%s]\n",
812 				crypt_stat->cipher);
813 		goto out_unlock;
814 	}
815 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
816 	rc = 0;
817 out_unlock:
818 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
819 out:
820 	return rc;
821 }
822 
823 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
824 {
825 	int extent_size_tmp;
826 
827 	crypt_stat->extent_mask = 0xFFFFFFFF;
828 	crypt_stat->extent_shift = 0;
829 	if (crypt_stat->extent_size == 0)
830 		return;
831 	extent_size_tmp = crypt_stat->extent_size;
832 	while ((extent_size_tmp & 0x01) == 0) {
833 		extent_size_tmp >>= 1;
834 		crypt_stat->extent_mask <<= 1;
835 		crypt_stat->extent_shift++;
836 	}
837 }
838 
839 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
840 {
841 	/* Default values; may be overwritten as we are parsing the
842 	 * packets. */
843 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
844 	set_extent_mask_and_shift(crypt_stat);
845 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
846 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
847 		crypt_stat->num_header_bytes_at_front = 0;
848 	else {
849 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
850 			crypt_stat->num_header_bytes_at_front =
851 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
852 		else
853 			crypt_stat->num_header_bytes_at_front =	PAGE_CACHE_SIZE;
854 	}
855 }
856 
857 /**
858  * ecryptfs_compute_root_iv
859  * @crypt_stats
860  *
861  * On error, sets the root IV to all 0's.
862  */
863 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
864 {
865 	int rc = 0;
866 	char dst[MD5_DIGEST_SIZE];
867 
868 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
869 	BUG_ON(crypt_stat->iv_bytes <= 0);
870 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
871 		rc = -EINVAL;
872 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
873 				"cannot generate root IV\n");
874 		goto out;
875 	}
876 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
877 				    crypt_stat->key_size);
878 	if (rc) {
879 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
880 				"MD5 while generating root IV\n");
881 		goto out;
882 	}
883 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
884 out:
885 	if (rc) {
886 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
887 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
888 	}
889 	return rc;
890 }
891 
892 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
893 {
894 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
895 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
896 	ecryptfs_compute_root_iv(crypt_stat);
897 	if (unlikely(ecryptfs_verbosity > 0)) {
898 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
899 		ecryptfs_dump_hex(crypt_stat->key,
900 				  crypt_stat->key_size);
901 	}
902 }
903 
904 /**
905  * ecryptfs_copy_mount_wide_flags_to_inode_flags
906  * @crypt_stat: The inode's cryptographic context
907  * @mount_crypt_stat: The mount point's cryptographic context
908  *
909  * This function propagates the mount-wide flags to individual inode
910  * flags.
911  */
912 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
913 	struct ecryptfs_crypt_stat *crypt_stat,
914 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
915 {
916 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
917 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
918 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
919 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
920 }
921 
922 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
923 	struct ecryptfs_crypt_stat *crypt_stat,
924 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
925 {
926 	struct ecryptfs_global_auth_tok *global_auth_tok;
927 	int rc = 0;
928 
929 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
930 	list_for_each_entry(global_auth_tok,
931 			    &mount_crypt_stat->global_auth_tok_list,
932 			    mount_crypt_stat_list) {
933 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
934 		if (rc) {
935 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
936 			mutex_unlock(
937 				&mount_crypt_stat->global_auth_tok_list_mutex);
938 			goto out;
939 		}
940 	}
941 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
942 out:
943 	return rc;
944 }
945 
946 /**
947  * ecryptfs_set_default_crypt_stat_vals
948  * @crypt_stat: The inode's cryptographic context
949  * @mount_crypt_stat: The mount point's cryptographic context
950  *
951  * Default values in the event that policy does not override them.
952  */
953 static void ecryptfs_set_default_crypt_stat_vals(
954 	struct ecryptfs_crypt_stat *crypt_stat,
955 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
956 {
957 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
958 						      mount_crypt_stat);
959 	ecryptfs_set_default_sizes(crypt_stat);
960 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
961 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
962 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
963 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
964 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
965 }
966 
967 /**
968  * ecryptfs_new_file_context
969  * @ecryptfs_dentry: The eCryptfs dentry
970  *
971  * If the crypto context for the file has not yet been established,
972  * this is where we do that.  Establishing a new crypto context
973  * involves the following decisions:
974  *  - What cipher to use?
975  *  - What set of authentication tokens to use?
976  * Here we just worry about getting enough information into the
977  * authentication tokens so that we know that they are available.
978  * We associate the available authentication tokens with the new file
979  * via the set of signatures in the crypt_stat struct.  Later, when
980  * the headers are actually written out, we may again defer to
981  * userspace to perform the encryption of the session key; for the
982  * foreseeable future, this will be the case with public key packets.
983  *
984  * Returns zero on success; non-zero otherwise
985  */
986 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
987 {
988 	struct ecryptfs_crypt_stat *crypt_stat =
989 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
990 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
991 	    &ecryptfs_superblock_to_private(
992 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
993 	int cipher_name_len;
994 	int rc = 0;
995 
996 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
997 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
998 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
999 						      mount_crypt_stat);
1000 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1001 							 mount_crypt_stat);
1002 	if (rc) {
1003 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1004 		       "to the inode key sigs; rc = [%d]\n", rc);
1005 		goto out;
1006 	}
1007 	cipher_name_len =
1008 		strlen(mount_crypt_stat->global_default_cipher_name);
1009 	memcpy(crypt_stat->cipher,
1010 	       mount_crypt_stat->global_default_cipher_name,
1011 	       cipher_name_len);
1012 	crypt_stat->cipher[cipher_name_len] = '\0';
1013 	crypt_stat->key_size =
1014 		mount_crypt_stat->global_default_cipher_key_size;
1015 	ecryptfs_generate_new_key(crypt_stat);
1016 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1017 	if (rc)
1018 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1019 				"context for cipher [%s]: rc = [%d]\n",
1020 				crypt_stat->cipher, rc);
1021 out:
1022 	return rc;
1023 }
1024 
1025 /**
1026  * contains_ecryptfs_marker - check for the ecryptfs marker
1027  * @data: The data block in which to check
1028  *
1029  * Returns one if marker found; zero if not found
1030  */
1031 static int contains_ecryptfs_marker(char *data)
1032 {
1033 	u32 m_1, m_2;
1034 
1035 	memcpy(&m_1, data, 4);
1036 	m_1 = be32_to_cpu(m_1);
1037 	memcpy(&m_2, (data + 4), 4);
1038 	m_2 = be32_to_cpu(m_2);
1039 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1040 		return 1;
1041 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1042 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1043 			MAGIC_ECRYPTFS_MARKER);
1044 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1045 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1046 	return 0;
1047 }
1048 
1049 struct ecryptfs_flag_map_elem {
1050 	u32 file_flag;
1051 	u32 local_flag;
1052 };
1053 
1054 /* Add support for additional flags by adding elements here. */
1055 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1056 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1057 	{0x00000002, ECRYPTFS_ENCRYPTED},
1058 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR}
1059 };
1060 
1061 /**
1062  * ecryptfs_process_flags
1063  * @crypt_stat: The cryptographic context
1064  * @page_virt: Source data to be parsed
1065  * @bytes_read: Updated with the number of bytes read
1066  *
1067  * Returns zero on success; non-zero if the flag set is invalid
1068  */
1069 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1070 				  char *page_virt, int *bytes_read)
1071 {
1072 	int rc = 0;
1073 	int i;
1074 	u32 flags;
1075 
1076 	memcpy(&flags, page_virt, 4);
1077 	flags = be32_to_cpu(flags);
1078 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1079 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1080 		if (flags & ecryptfs_flag_map[i].file_flag) {
1081 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1082 		} else
1083 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1084 	/* Version is in top 8 bits of the 32-bit flag vector */
1085 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1086 	(*bytes_read) = 4;
1087 	return rc;
1088 }
1089 
1090 /**
1091  * write_ecryptfs_marker
1092  * @page_virt: The pointer to in a page to begin writing the marker
1093  * @written: Number of bytes written
1094  *
1095  * Marker = 0x3c81b7f5
1096  */
1097 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1098 {
1099 	u32 m_1, m_2;
1100 
1101 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1102 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1103 	m_1 = cpu_to_be32(m_1);
1104 	memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1105 	m_2 = cpu_to_be32(m_2);
1106 	memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1107 	       (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1108 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1109 }
1110 
1111 static void
1112 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1113 		     size_t *written)
1114 {
1115 	u32 flags = 0;
1116 	int i;
1117 
1118 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1119 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1120 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1121 			flags |= ecryptfs_flag_map[i].file_flag;
1122 	/* Version is in top 8 bits of the 32-bit flag vector */
1123 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1124 	flags = cpu_to_be32(flags);
1125 	memcpy(page_virt, &flags, 4);
1126 	(*written) = 4;
1127 }
1128 
1129 struct ecryptfs_cipher_code_str_map_elem {
1130 	char cipher_str[16];
1131 	u8 cipher_code;
1132 };
1133 
1134 /* Add support for additional ciphers by adding elements here. The
1135  * cipher_code is whatever OpenPGP applicatoins use to identify the
1136  * ciphers. List in order of probability. */
1137 static struct ecryptfs_cipher_code_str_map_elem
1138 ecryptfs_cipher_code_str_map[] = {
1139 	{"aes",RFC2440_CIPHER_AES_128 },
1140 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1141 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1142 	{"cast5", RFC2440_CIPHER_CAST_5},
1143 	{"twofish", RFC2440_CIPHER_TWOFISH},
1144 	{"cast6", RFC2440_CIPHER_CAST_6},
1145 	{"aes", RFC2440_CIPHER_AES_192},
1146 	{"aes", RFC2440_CIPHER_AES_256}
1147 };
1148 
1149 /**
1150  * ecryptfs_code_for_cipher_string
1151  * @crypt_stat: The cryptographic context
1152  *
1153  * Returns zero on no match, or the cipher code on match
1154  */
1155 u8 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1156 {
1157 	int i;
1158 	u8 code = 0;
1159 	struct ecryptfs_cipher_code_str_map_elem *map =
1160 		ecryptfs_cipher_code_str_map;
1161 
1162 	if (strcmp(crypt_stat->cipher, "aes") == 0) {
1163 		switch (crypt_stat->key_size) {
1164 		case 16:
1165 			code = RFC2440_CIPHER_AES_128;
1166 			break;
1167 		case 24:
1168 			code = RFC2440_CIPHER_AES_192;
1169 			break;
1170 		case 32:
1171 			code = RFC2440_CIPHER_AES_256;
1172 		}
1173 	} else {
1174 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1175 			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1176 				code = map[i].cipher_code;
1177 				break;
1178 			}
1179 	}
1180 	return code;
1181 }
1182 
1183 /**
1184  * ecryptfs_cipher_code_to_string
1185  * @str: Destination to write out the cipher name
1186  * @cipher_code: The code to convert to cipher name string
1187  *
1188  * Returns zero on success
1189  */
1190 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1191 {
1192 	int rc = 0;
1193 	int i;
1194 
1195 	str[0] = '\0';
1196 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1197 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1198 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1199 	if (str[0] == '\0') {
1200 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1201 				"[%d]\n", cipher_code);
1202 		rc = -EINVAL;
1203 	}
1204 	return rc;
1205 }
1206 
1207 int ecryptfs_read_and_validate_header_region(char *data,
1208 					     struct inode *ecryptfs_inode)
1209 {
1210 	struct ecryptfs_crypt_stat *crypt_stat =
1211 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1212 	int rc;
1213 
1214 	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1215 				 ecryptfs_inode);
1216 	if (rc) {
1217 		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1218 		       __FUNCTION__, rc);
1219 		goto out;
1220 	}
1221 	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1222 		rc = -EINVAL;
1223 		ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n");
1224 	}
1225 out:
1226 	return rc;
1227 }
1228 
1229 void
1230 ecryptfs_write_header_metadata(char *virt,
1231 			       struct ecryptfs_crypt_stat *crypt_stat,
1232 			       size_t *written)
1233 {
1234 	u32 header_extent_size;
1235 	u16 num_header_extents_at_front;
1236 
1237 	header_extent_size = (u32)crypt_stat->extent_size;
1238 	num_header_extents_at_front =
1239 		(u16)(crypt_stat->num_header_bytes_at_front
1240 		      / crypt_stat->extent_size);
1241 	header_extent_size = cpu_to_be32(header_extent_size);
1242 	memcpy(virt, &header_extent_size, 4);
1243 	virt += 4;
1244 	num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1245 	memcpy(virt, &num_header_extents_at_front, 2);
1246 	(*written) = 6;
1247 }
1248 
1249 struct kmem_cache *ecryptfs_header_cache_0;
1250 struct kmem_cache *ecryptfs_header_cache_1;
1251 struct kmem_cache *ecryptfs_header_cache_2;
1252 
1253 /**
1254  * ecryptfs_write_headers_virt
1255  * @page_virt: The virtual address to write the headers to
1256  * @size: Set to the number of bytes written by this function
1257  * @crypt_stat: The cryptographic context
1258  * @ecryptfs_dentry: The eCryptfs dentry
1259  *
1260  * Format version: 1
1261  *
1262  *   Header Extent:
1263  *     Octets 0-7:        Unencrypted file size (big-endian)
1264  *     Octets 8-15:       eCryptfs special marker
1265  *     Octets 16-19:      Flags
1266  *      Octet 16:         File format version number (between 0 and 255)
1267  *      Octets 17-18:     Reserved
1268  *      Octet 19:         Bit 1 (lsb): Reserved
1269  *                        Bit 2: Encrypted?
1270  *                        Bits 3-8: Reserved
1271  *     Octets 20-23:      Header extent size (big-endian)
1272  *     Octets 24-25:      Number of header extents at front of file
1273  *                        (big-endian)
1274  *     Octet  26:         Begin RFC 2440 authentication token packet set
1275  *   Data Extent 0:
1276  *     Lower data (CBC encrypted)
1277  *   Data Extent 1:
1278  *     Lower data (CBC encrypted)
1279  *   ...
1280  *
1281  * Returns zero on success
1282  */
1283 static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
1284 				       struct ecryptfs_crypt_stat *crypt_stat,
1285 				       struct dentry *ecryptfs_dentry)
1286 {
1287 	int rc;
1288 	size_t written;
1289 	size_t offset;
1290 
1291 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1292 	write_ecryptfs_marker((page_virt + offset), &written);
1293 	offset += written;
1294 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1295 	offset += written;
1296 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1297 				       &written);
1298 	offset += written;
1299 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1300 					      ecryptfs_dentry, &written,
1301 					      PAGE_CACHE_SIZE - offset);
1302 	if (rc)
1303 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1304 				"set; rc = [%d]\n", rc);
1305 	if (size) {
1306 		offset += written;
1307 		*size = offset;
1308 	}
1309 	return rc;
1310 }
1311 
1312 static int
1313 ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1314 				    struct dentry *ecryptfs_dentry,
1315 				    char *virt)
1316 {
1317 	int rc;
1318 
1319 	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1320 				  0, crypt_stat->num_header_bytes_at_front);
1321 	if (rc)
1322 		printk(KERN_ERR "%s: Error attempting to write header "
1323 		       "information to lower file; rc = [%d]\n", __FUNCTION__,
1324 		       rc);
1325 	return rc;
1326 }
1327 
1328 static int
1329 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1330 				 struct ecryptfs_crypt_stat *crypt_stat,
1331 				 char *page_virt, size_t size)
1332 {
1333 	int rc;
1334 
1335 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1336 			       size, 0);
1337 	return rc;
1338 }
1339 
1340 /**
1341  * ecryptfs_write_metadata
1342  * @ecryptfs_dentry: The eCryptfs dentry
1343  *
1344  * Write the file headers out.  This will likely involve a userspace
1345  * callout, in which the session key is encrypted with one or more
1346  * public keys and/or the passphrase necessary to do the encryption is
1347  * retrieved via a prompt.  Exactly what happens at this point should
1348  * be policy-dependent.
1349  *
1350  * Returns zero on success; non-zero on error
1351  */
1352 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1353 {
1354 	struct ecryptfs_crypt_stat *crypt_stat =
1355 		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1356 	char *virt;
1357 	size_t size = 0;
1358 	int rc = 0;
1359 
1360 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1361 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1362 			printk(KERN_ERR "Key is invalid; bailing out\n");
1363 			rc = -EINVAL;
1364 			goto out;
1365 		}
1366 	} else {
1367 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1368 		       __FUNCTION__);
1369 		rc = -EINVAL;
1370 		goto out;
1371 	}
1372 	/* Released in this function */
1373 	virt = kzalloc(crypt_stat->num_header_bytes_at_front, GFP_KERNEL);
1374 	if (!virt) {
1375 		printk(KERN_ERR "%s: Out of memory\n", __FUNCTION__);
1376 		rc = -ENOMEM;
1377 		goto out;
1378 	}
1379 	rc = ecryptfs_write_headers_virt(virt, &size, crypt_stat,
1380 					 ecryptfs_dentry);
1381 	if (unlikely(rc)) {
1382 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1383 		       __FUNCTION__, rc);
1384 		goto out_free;
1385 	}
1386 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1387 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1388 						      crypt_stat, virt, size);
1389 	else
1390 		rc = ecryptfs_write_metadata_to_contents(crypt_stat,
1391 							 ecryptfs_dentry, virt);
1392 	if (rc) {
1393 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1394 		       "rc = [%d]\n", __FUNCTION__, rc);
1395 		goto out_free;
1396 	}
1397 out_free:
1398 	memset(virt, 0, crypt_stat->num_header_bytes_at_front);
1399 	kfree(virt);
1400 out:
1401 	return rc;
1402 }
1403 
1404 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1405 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1406 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1407 				 char *virt, int *bytes_read,
1408 				 int validate_header_size)
1409 {
1410 	int rc = 0;
1411 	u32 header_extent_size;
1412 	u16 num_header_extents_at_front;
1413 
1414 	memcpy(&header_extent_size, virt, sizeof(u32));
1415 	header_extent_size = be32_to_cpu(header_extent_size);
1416 	virt += sizeof(u32);
1417 	memcpy(&num_header_extents_at_front, virt, sizeof(u16));
1418 	num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
1419 	crypt_stat->num_header_bytes_at_front =
1420 		(((size_t)num_header_extents_at_front
1421 		  * (size_t)header_extent_size));
1422 	(*bytes_read) = (sizeof(u32) + sizeof(u16));
1423 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1424 	    && (crypt_stat->num_header_bytes_at_front
1425 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1426 		rc = -EINVAL;
1427 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1428 		       crypt_stat->num_header_bytes_at_front);
1429 	}
1430 	return rc;
1431 }
1432 
1433 /**
1434  * set_default_header_data
1435  * @crypt_stat: The cryptographic context
1436  *
1437  * For version 0 file format; this function is only for backwards
1438  * compatibility for files created with the prior versions of
1439  * eCryptfs.
1440  */
1441 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1442 {
1443 	crypt_stat->num_header_bytes_at_front =
1444 		ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1445 }
1446 
1447 /**
1448  * ecryptfs_read_headers_virt
1449  * @page_virt: The virtual address into which to read the headers
1450  * @crypt_stat: The cryptographic context
1451  * @ecryptfs_dentry: The eCryptfs dentry
1452  * @validate_header_size: Whether to validate the header size while reading
1453  *
1454  * Read/parse the header data. The header format is detailed in the
1455  * comment block for the ecryptfs_write_headers_virt() function.
1456  *
1457  * Returns zero on success
1458  */
1459 static int ecryptfs_read_headers_virt(char *page_virt,
1460 				      struct ecryptfs_crypt_stat *crypt_stat,
1461 				      struct dentry *ecryptfs_dentry,
1462 				      int validate_header_size)
1463 {
1464 	int rc = 0;
1465 	int offset;
1466 	int bytes_read;
1467 
1468 	ecryptfs_set_default_sizes(crypt_stat);
1469 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1470 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1471 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1472 	rc = contains_ecryptfs_marker(page_virt + offset);
1473 	if (rc == 0) {
1474 		rc = -EINVAL;
1475 		goto out;
1476 	}
1477 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1478 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1479 				    &bytes_read);
1480 	if (rc) {
1481 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1482 		goto out;
1483 	}
1484 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1485 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1486 				"file version [%d] is supported by this "
1487 				"version of eCryptfs\n",
1488 				crypt_stat->file_version,
1489 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1490 		rc = -EINVAL;
1491 		goto out;
1492 	}
1493 	offset += bytes_read;
1494 	if (crypt_stat->file_version >= 1) {
1495 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1496 					   &bytes_read, validate_header_size);
1497 		if (rc) {
1498 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1499 					"metadata; rc = [%d]\n", rc);
1500 		}
1501 		offset += bytes_read;
1502 	} else
1503 		set_default_header_data(crypt_stat);
1504 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1505 				       ecryptfs_dentry);
1506 out:
1507 	return rc;
1508 }
1509 
1510 /**
1511  * ecryptfs_read_xattr_region
1512  * @page_virt: The vitual address into which to read the xattr data
1513  * @ecryptfs_inode: The eCryptfs inode
1514  *
1515  * Attempts to read the crypto metadata from the extended attribute
1516  * region of the lower file.
1517  *
1518  * Returns zero on success; non-zero on error
1519  */
1520 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1521 {
1522 	struct dentry *lower_dentry =
1523 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1524 	ssize_t size;
1525 	int rc = 0;
1526 
1527 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1528 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1529 	if (size < 0) {
1530 		if (unlikely(ecryptfs_verbosity > 0))
1531 			printk(KERN_INFO "Error attempting to read the [%s] "
1532 			       "xattr from the lower file; return value = "
1533 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1534 		rc = -EINVAL;
1535 		goto out;
1536 	}
1537 out:
1538 	return rc;
1539 }
1540 
1541 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1542 					    struct dentry *ecryptfs_dentry)
1543 {
1544 	int rc;
1545 
1546 	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1547 	if (rc)
1548 		goto out;
1549 	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
1550 		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1551 			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1552 		rc = -EINVAL;
1553 	}
1554 out:
1555 	return rc;
1556 }
1557 
1558 /**
1559  * ecryptfs_read_metadata
1560  *
1561  * Common entry point for reading file metadata. From here, we could
1562  * retrieve the header information from the header region of the file,
1563  * the xattr region of the file, or some other repostory that is
1564  * stored separately from the file itself. The current implementation
1565  * supports retrieving the metadata information from the file contents
1566  * and from the xattr region.
1567  *
1568  * Returns zero if valid headers found and parsed; non-zero otherwise
1569  */
1570 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1571 {
1572 	int rc = 0;
1573 	char *page_virt = NULL;
1574 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1575 	struct ecryptfs_crypt_stat *crypt_stat =
1576 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1577 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1578 		&ecryptfs_superblock_to_private(
1579 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1580 
1581 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1582 						      mount_crypt_stat);
1583 	/* Read the first page from the underlying file */
1584 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1585 	if (!page_virt) {
1586 		rc = -ENOMEM;
1587 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1588 		       __FUNCTION__);
1589 		goto out;
1590 	}
1591 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1592 				 ecryptfs_inode);
1593 	if (!rc)
1594 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1595 						ecryptfs_dentry,
1596 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1597 	if (rc) {
1598 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1599 		if (rc) {
1600 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1601 			       "file header region or xattr region\n");
1602 			rc = -EINVAL;
1603 			goto out;
1604 		}
1605 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1606 						ecryptfs_dentry,
1607 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1608 		if (rc) {
1609 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1610 			       "file xattr region either\n");
1611 			rc = -EINVAL;
1612 		}
1613 		if (crypt_stat->mount_crypt_stat->flags
1614 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1615 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1616 		} else {
1617 			printk(KERN_WARNING "Attempt to access file with "
1618 			       "crypto metadata only in the extended attribute "
1619 			       "region, but eCryptfs was mounted without "
1620 			       "xattr support enabled. eCryptfs will not treat "
1621 			       "this like an encrypted file.\n");
1622 			rc = -EINVAL;
1623 		}
1624 	}
1625 out:
1626 	if (page_virt) {
1627 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1628 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1629 	}
1630 	return rc;
1631 }
1632 
1633 /**
1634  * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1635  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1636  * @name: The plaintext name
1637  * @length: The length of the plaintext
1638  * @encoded_name: The encypted name
1639  *
1640  * Encrypts and encodes a filename into something that constitutes a
1641  * valid filename for a filesystem, with printable characters.
1642  *
1643  * We assume that we have a properly initialized crypto context,
1644  * pointed to by crypt_stat->tfm.
1645  *
1646  * TODO: Implement filename decoding and decryption here, in place of
1647  * memcpy. We are keeping the framework around for now to (1)
1648  * facilitate testing of the components needed to implement filename
1649  * encryption and (2) to provide a code base from which other
1650  * developers in the community can easily implement this feature.
1651  *
1652  * Returns the length of encoded filename; negative if error
1653  */
1654 int
1655 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1656 			 const char *name, int length, char **encoded_name)
1657 {
1658 	int error = 0;
1659 
1660 	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1661 	if (!(*encoded_name)) {
1662 		error = -ENOMEM;
1663 		goto out;
1664 	}
1665 	/* TODO: Filename encryption is a scheduled feature for a
1666 	 * future version of eCryptfs. This function is here only for
1667 	 * the purpose of providing a framework for other developers
1668 	 * to easily implement filename encryption. Hint: Replace this
1669 	 * memcpy() with a call to encrypt and encode the
1670 	 * filename, the set the length accordingly. */
1671 	memcpy((void *)(*encoded_name), (void *)name, length);
1672 	(*encoded_name)[length] = '\0';
1673 	error = length + 1;
1674 out:
1675 	return error;
1676 }
1677 
1678 /**
1679  * ecryptfs_decode_filename - converts the cipher text name to plaintext
1680  * @crypt_stat: The crypt_stat struct associated with the file
1681  * @name: The filename in cipher text
1682  * @length: The length of the cipher text name
1683  * @decrypted_name: The plaintext name
1684  *
1685  * Decodes and decrypts the filename.
1686  *
1687  * We assume that we have a properly initialized crypto context,
1688  * pointed to by crypt_stat->tfm.
1689  *
1690  * TODO: Implement filename decoding and decryption here, in place of
1691  * memcpy. We are keeping the framework around for now to (1)
1692  * facilitate testing of the components needed to implement filename
1693  * encryption and (2) to provide a code base from which other
1694  * developers in the community can easily implement this feature.
1695  *
1696  * Returns the length of decoded filename; negative if error
1697  */
1698 int
1699 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1700 			 const char *name, int length, char **decrypted_name)
1701 {
1702 	int error = 0;
1703 
1704 	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1705 	if (!(*decrypted_name)) {
1706 		error = -ENOMEM;
1707 		goto out;
1708 	}
1709 	/* TODO: Filename encryption is a scheduled feature for a
1710 	 * future version of eCryptfs. This function is here only for
1711 	 * the purpose of providing a framework for other developers
1712 	 * to easily implement filename encryption. Hint: Replace this
1713 	 * memcpy() with a call to decode and decrypt the
1714 	 * filename, the set the length accordingly. */
1715 	memcpy((void *)(*decrypted_name), (void *)name, length);
1716 	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
1717 						 * in printing out the
1718 						 * string in debug
1719 						 * messages */
1720 	error = length;
1721 out:
1722 	return error;
1723 }
1724 
1725 /**
1726  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1727  * @key_tfm: Crypto context for key material, set by this function
1728  * @cipher_name: Name of the cipher
1729  * @key_size: Size of the key in bytes
1730  *
1731  * Returns zero on success. Any crypto_tfm structs allocated here
1732  * should be released by other functions, such as on a superblock put
1733  * event, regardless of whether this function succeeds for fails.
1734  */
1735 static int
1736 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1737 			    char *cipher_name, size_t *key_size)
1738 {
1739 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1740 	char *full_alg_name;
1741 	int rc;
1742 
1743 	*key_tfm = NULL;
1744 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1745 		rc = -EINVAL;
1746 		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1747 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1748 		goto out;
1749 	}
1750 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1751 						    "ecb");
1752 	if (rc)
1753 		goto out;
1754 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1755 	kfree(full_alg_name);
1756 	if (IS_ERR(*key_tfm)) {
1757 		rc = PTR_ERR(*key_tfm);
1758 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1759 		       "[%s]; rc = [%d]\n", cipher_name, rc);
1760 		goto out;
1761 	}
1762 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1763 	if (*key_size == 0) {
1764 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1765 
1766 		*key_size = alg->max_keysize;
1767 	}
1768 	get_random_bytes(dummy_key, *key_size);
1769 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1770 	if (rc) {
1771 		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1772 		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1773 		rc = -EINVAL;
1774 		goto out;
1775 	}
1776 out:
1777 	return rc;
1778 }
1779 
1780 struct kmem_cache *ecryptfs_key_tfm_cache;
1781 static struct list_head key_tfm_list;
1782 struct mutex key_tfm_list_mutex;
1783 
1784 int ecryptfs_init_crypto(void)
1785 {
1786 	mutex_init(&key_tfm_list_mutex);
1787 	INIT_LIST_HEAD(&key_tfm_list);
1788 	return 0;
1789 }
1790 
1791 /**
1792  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1793  *
1794  * Called only at module unload time
1795  */
1796 int ecryptfs_destroy_crypto(void)
1797 {
1798 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1799 
1800 	mutex_lock(&key_tfm_list_mutex);
1801 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1802 				 key_tfm_list) {
1803 		list_del(&key_tfm->key_tfm_list);
1804 		if (key_tfm->key_tfm)
1805 			crypto_free_blkcipher(key_tfm->key_tfm);
1806 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1807 	}
1808 	mutex_unlock(&key_tfm_list_mutex);
1809 	return 0;
1810 }
1811 
1812 int
1813 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1814 			 size_t key_size)
1815 {
1816 	struct ecryptfs_key_tfm *tmp_tfm;
1817 	int rc = 0;
1818 
1819 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1820 
1821 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1822 	if (key_tfm != NULL)
1823 		(*key_tfm) = tmp_tfm;
1824 	if (!tmp_tfm) {
1825 		rc = -ENOMEM;
1826 		printk(KERN_ERR "Error attempting to allocate from "
1827 		       "ecryptfs_key_tfm_cache\n");
1828 		goto out;
1829 	}
1830 	mutex_init(&tmp_tfm->key_tfm_mutex);
1831 	strncpy(tmp_tfm->cipher_name, cipher_name,
1832 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1833 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1834 	tmp_tfm->key_size = key_size;
1835 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1836 					 tmp_tfm->cipher_name,
1837 					 &tmp_tfm->key_size);
1838 	if (rc) {
1839 		printk(KERN_ERR "Error attempting to initialize key TFM "
1840 		       "cipher with name = [%s]; rc = [%d]\n",
1841 		       tmp_tfm->cipher_name, rc);
1842 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1843 		if (key_tfm != NULL)
1844 			(*key_tfm) = NULL;
1845 		goto out;
1846 	}
1847 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1848 out:
1849 	return rc;
1850 }
1851 
1852 /**
1853  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1854  * @cipher_name: the name of the cipher to search for
1855  * @key_tfm: set to corresponding tfm if found
1856  *
1857  * Searches for cached key_tfm matching @cipher_name
1858  * Must be called with &key_tfm_list_mutex held
1859  * Returns 1 if found, with @key_tfm set
1860  * Returns 0 if not found, with @key_tfm set to NULL
1861  */
1862 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1863 {
1864 	struct ecryptfs_key_tfm *tmp_key_tfm;
1865 
1866 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1867 
1868 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1869 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1870 			if (key_tfm)
1871 				(*key_tfm) = tmp_key_tfm;
1872 			return 1;
1873 		}
1874 	}
1875 	if (key_tfm)
1876 		(*key_tfm) = NULL;
1877 	return 0;
1878 }
1879 
1880 /**
1881  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1882  *
1883  * @tfm: set to cached tfm found, or new tfm created
1884  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1885  * @cipher_name: the name of the cipher to search for and/or add
1886  *
1887  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1888  * Searches for cached item first, and creates new if not found.
1889  * Returns 0 on success, non-zero if adding new cipher failed
1890  */
1891 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1892 					       struct mutex **tfm_mutex,
1893 					       char *cipher_name)
1894 {
1895 	struct ecryptfs_key_tfm *key_tfm;
1896 	int rc = 0;
1897 
1898 	(*tfm) = NULL;
1899 	(*tfm_mutex) = NULL;
1900 
1901 	mutex_lock(&key_tfm_list_mutex);
1902 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1903 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1904 		if (rc) {
1905 			printk(KERN_ERR "Error adding new key_tfm to list; "
1906 					"rc = [%d]\n", rc);
1907 			goto out;
1908 		}
1909 	}
1910 	mutex_unlock(&key_tfm_list_mutex);
1911 	(*tfm) = key_tfm->key_tfm;
1912 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1913 out:
1914 	return rc;
1915 }
1916