1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include <asm/unaligned.h> 37 #include "ecryptfs_kernel.h" 38 39 static int 40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 41 struct page *dst_page, int dst_offset, 42 struct page *src_page, int src_offset, int size, 43 unsigned char *iv); 44 static int 45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 46 struct page *dst_page, int dst_offset, 47 struct page *src_page, int src_offset, int size, 48 unsigned char *iv); 49 50 /** 51 * ecryptfs_to_hex 52 * @dst: Buffer to take hex character representation of contents of 53 * src; must be at least of size (src_size * 2) 54 * @src: Buffer to be converted to a hex string respresentation 55 * @src_size: number of bytes to convert 56 */ 57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 58 { 59 int x; 60 61 for (x = 0; x < src_size; x++) 62 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 63 } 64 65 /** 66 * ecryptfs_from_hex 67 * @dst: Buffer to take the bytes from src hex; must be at least of 68 * size (src_size / 2) 69 * @src: Buffer to be converted from a hex string respresentation to raw value 70 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 71 */ 72 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 73 { 74 int x; 75 char tmp[3] = { 0, }; 76 77 for (x = 0; x < dst_size; x++) { 78 tmp[0] = src[x * 2]; 79 tmp[1] = src[x * 2 + 1]; 80 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 81 } 82 } 83 84 /** 85 * ecryptfs_calculate_md5 - calculates the md5 of @src 86 * @dst: Pointer to 16 bytes of allocated memory 87 * @crypt_stat: Pointer to crypt_stat struct for the current inode 88 * @src: Data to be md5'd 89 * @len: Length of @src 90 * 91 * Uses the allocated crypto context that crypt_stat references to 92 * generate the MD5 sum of the contents of src. 93 */ 94 static int ecryptfs_calculate_md5(char *dst, 95 struct ecryptfs_crypt_stat *crypt_stat, 96 char *src, int len) 97 { 98 struct scatterlist sg; 99 struct hash_desc desc = { 100 .tfm = crypt_stat->hash_tfm, 101 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 102 }; 103 int rc = 0; 104 105 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 106 sg_init_one(&sg, (u8 *)src, len); 107 if (!desc.tfm) { 108 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 109 CRYPTO_ALG_ASYNC); 110 if (IS_ERR(desc.tfm)) { 111 rc = PTR_ERR(desc.tfm); 112 ecryptfs_printk(KERN_ERR, "Error attempting to " 113 "allocate crypto context; rc = [%d]\n", 114 rc); 115 goto out; 116 } 117 crypt_stat->hash_tfm = desc.tfm; 118 } 119 rc = crypto_hash_init(&desc); 120 if (rc) { 121 printk(KERN_ERR 122 "%s: Error initializing crypto hash; rc = [%d]\n", 123 __func__, rc); 124 goto out; 125 } 126 rc = crypto_hash_update(&desc, &sg, len); 127 if (rc) { 128 printk(KERN_ERR 129 "%s: Error updating crypto hash; rc = [%d]\n", 130 __func__, rc); 131 goto out; 132 } 133 rc = crypto_hash_final(&desc, dst); 134 if (rc) { 135 printk(KERN_ERR 136 "%s: Error finalizing crypto hash; rc = [%d]\n", 137 __func__, rc); 138 goto out; 139 } 140 out: 141 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 142 return rc; 143 } 144 145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 146 char *cipher_name, 147 char *chaining_modifier) 148 { 149 int cipher_name_len = strlen(cipher_name); 150 int chaining_modifier_len = strlen(chaining_modifier); 151 int algified_name_len; 152 int rc; 153 154 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 155 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 156 if (!(*algified_name)) { 157 rc = -ENOMEM; 158 goto out; 159 } 160 snprintf((*algified_name), algified_name_len, "%s(%s)", 161 chaining_modifier, cipher_name); 162 rc = 0; 163 out: 164 return rc; 165 } 166 167 /** 168 * ecryptfs_derive_iv 169 * @iv: destination for the derived iv vale 170 * @crypt_stat: Pointer to crypt_stat struct for the current inode 171 * @offset: Offset of the extent whose IV we are to derive 172 * 173 * Generate the initialization vector from the given root IV and page 174 * offset. 175 * 176 * Returns zero on success; non-zero on error. 177 */ 178 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 179 loff_t offset) 180 { 181 int rc = 0; 182 char dst[MD5_DIGEST_SIZE]; 183 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 184 185 if (unlikely(ecryptfs_verbosity > 0)) { 186 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 187 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 188 } 189 /* TODO: It is probably secure to just cast the least 190 * significant bits of the root IV into an unsigned long and 191 * add the offset to that rather than go through all this 192 * hashing business. -Halcrow */ 193 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 194 memset((src + crypt_stat->iv_bytes), 0, 16); 195 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 196 if (unlikely(ecryptfs_verbosity > 0)) { 197 ecryptfs_printk(KERN_DEBUG, "source:\n"); 198 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 199 } 200 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 201 (crypt_stat->iv_bytes + 16)); 202 if (rc) { 203 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 204 "MD5 while generating IV for a page\n"); 205 goto out; 206 } 207 memcpy(iv, dst, crypt_stat->iv_bytes); 208 if (unlikely(ecryptfs_verbosity > 0)) { 209 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 210 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 211 } 212 out: 213 return rc; 214 } 215 216 /** 217 * ecryptfs_init_crypt_stat 218 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 219 * 220 * Initialize the crypt_stat structure. 221 */ 222 void 223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 224 { 225 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 226 INIT_LIST_HEAD(&crypt_stat->keysig_list); 227 mutex_init(&crypt_stat->keysig_list_mutex); 228 mutex_init(&crypt_stat->cs_mutex); 229 mutex_init(&crypt_stat->cs_tfm_mutex); 230 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 231 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 232 } 233 234 /** 235 * ecryptfs_destroy_crypt_stat 236 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 237 * 238 * Releases all memory associated with a crypt_stat struct. 239 */ 240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 241 { 242 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 243 244 if (crypt_stat->tfm) 245 crypto_free_blkcipher(crypt_stat->tfm); 246 if (crypt_stat->hash_tfm) 247 crypto_free_hash(crypt_stat->hash_tfm); 248 list_for_each_entry_safe(key_sig, key_sig_tmp, 249 &crypt_stat->keysig_list, crypt_stat_list) { 250 list_del(&key_sig->crypt_stat_list); 251 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 252 } 253 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 254 } 255 256 void ecryptfs_destroy_mount_crypt_stat( 257 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 258 { 259 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 260 261 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 262 return; 263 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 264 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 265 &mount_crypt_stat->global_auth_tok_list, 266 mount_crypt_stat_list) { 267 list_del(&auth_tok->mount_crypt_stat_list); 268 mount_crypt_stat->num_global_auth_toks--; 269 if (auth_tok->global_auth_tok_key 270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 271 key_put(auth_tok->global_auth_tok_key); 272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 273 } 274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 276 } 277 278 /** 279 * virt_to_scatterlist 280 * @addr: Virtual address 281 * @size: Size of data; should be an even multiple of the block size 282 * @sg: Pointer to scatterlist array; set to NULL to obtain only 283 * the number of scatterlist structs required in array 284 * @sg_size: Max array size 285 * 286 * Fills in a scatterlist array with page references for a passed 287 * virtual address. 288 * 289 * Returns the number of scatterlist structs in array used 290 */ 291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 292 int sg_size) 293 { 294 int i = 0; 295 struct page *pg; 296 int offset; 297 int remainder_of_page; 298 299 sg_init_table(sg, sg_size); 300 301 while (size > 0 && i < sg_size) { 302 pg = virt_to_page(addr); 303 offset = offset_in_page(addr); 304 if (sg) 305 sg_set_page(&sg[i], pg, 0, offset); 306 remainder_of_page = PAGE_CACHE_SIZE - offset; 307 if (size >= remainder_of_page) { 308 if (sg) 309 sg[i].length = remainder_of_page; 310 addr += remainder_of_page; 311 size -= remainder_of_page; 312 } else { 313 if (sg) 314 sg[i].length = size; 315 addr += size; 316 size = 0; 317 } 318 i++; 319 } 320 if (size > 0) 321 return -ENOMEM; 322 return i; 323 } 324 325 /** 326 * encrypt_scatterlist 327 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 328 * @dest_sg: Destination of encrypted data 329 * @src_sg: Data to be encrypted 330 * @size: Length of data to be encrypted 331 * @iv: iv to use during encryption 332 * 333 * Returns the number of bytes encrypted; negative value on error 334 */ 335 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 336 struct scatterlist *dest_sg, 337 struct scatterlist *src_sg, int size, 338 unsigned char *iv) 339 { 340 struct blkcipher_desc desc = { 341 .tfm = crypt_stat->tfm, 342 .info = iv, 343 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 344 }; 345 int rc = 0; 346 347 BUG_ON(!crypt_stat || !crypt_stat->tfm 348 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 349 if (unlikely(ecryptfs_verbosity > 0)) { 350 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n", 351 crypt_stat->key_size); 352 ecryptfs_dump_hex(crypt_stat->key, 353 crypt_stat->key_size); 354 } 355 /* Consider doing this once, when the file is opened */ 356 mutex_lock(&crypt_stat->cs_tfm_mutex); 357 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 359 crypt_stat->key_size); 360 crypt_stat->flags |= ECRYPTFS_KEY_SET; 361 } 362 if (rc) { 363 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 364 rc); 365 mutex_unlock(&crypt_stat->cs_tfm_mutex); 366 rc = -EINVAL; 367 goto out; 368 } 369 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); 370 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); 371 mutex_unlock(&crypt_stat->cs_tfm_mutex); 372 out: 373 return rc; 374 } 375 376 /** 377 * ecryptfs_lower_offset_for_extent 378 * 379 * Convert an eCryptfs page index into a lower byte offset 380 */ 381 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num, 382 struct ecryptfs_crypt_stat *crypt_stat) 383 { 384 (*offset) = (crypt_stat->num_header_bytes_at_front 385 + (crypt_stat->extent_size * extent_num)); 386 } 387 388 /** 389 * ecryptfs_encrypt_extent 390 * @enc_extent_page: Allocated page into which to encrypt the data in 391 * @page 392 * @crypt_stat: crypt_stat containing cryptographic context for the 393 * encryption operation 394 * @page: Page containing plaintext data extent to encrypt 395 * @extent_offset: Page extent offset for use in generating IV 396 * 397 * Encrypts one extent of data. 398 * 399 * Return zero on success; non-zero otherwise 400 */ 401 static int ecryptfs_encrypt_extent(struct page *enc_extent_page, 402 struct ecryptfs_crypt_stat *crypt_stat, 403 struct page *page, 404 unsigned long extent_offset) 405 { 406 loff_t extent_base; 407 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 408 int rc; 409 410 extent_base = (((loff_t)page->index) 411 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 412 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 413 (extent_base + extent_offset)); 414 if (rc) { 415 ecryptfs_printk(KERN_ERR, "Error attempting to " 416 "derive IV for extent [0x%.16x]; " 417 "rc = [%d]\n", (extent_base + extent_offset), 418 rc); 419 goto out; 420 } 421 if (unlikely(ecryptfs_verbosity > 0)) { 422 ecryptfs_printk(KERN_DEBUG, "Encrypting extent " 423 "with iv:\n"); 424 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 425 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 426 "encryption:\n"); 427 ecryptfs_dump_hex((char *) 428 (page_address(page) 429 + (extent_offset * crypt_stat->extent_size)), 430 8); 431 } 432 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0, 433 page, (extent_offset 434 * crypt_stat->extent_size), 435 crypt_stat->extent_size, extent_iv); 436 if (rc < 0) { 437 printk(KERN_ERR "%s: Error attempting to encrypt page with " 438 "page->index = [%ld], extent_offset = [%ld]; " 439 "rc = [%d]\n", __func__, page->index, extent_offset, 440 rc); 441 goto out; 442 } 443 rc = 0; 444 if (unlikely(ecryptfs_verbosity > 0)) { 445 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; " 446 "rc = [%d]\n", (extent_base + extent_offset), 447 rc); 448 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 449 "encryption:\n"); 450 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8); 451 } 452 out: 453 return rc; 454 } 455 456 /** 457 * ecryptfs_encrypt_page 458 * @page: Page mapped from the eCryptfs inode for the file; contains 459 * decrypted content that needs to be encrypted (to a temporary 460 * page; not in place) and written out to the lower file 461 * 462 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 463 * that eCryptfs pages may straddle the lower pages -- for instance, 464 * if the file was created on a machine with an 8K page size 465 * (resulting in an 8K header), and then the file is copied onto a 466 * host with a 32K page size, then when reading page 0 of the eCryptfs 467 * file, 24K of page 0 of the lower file will be read and decrypted, 468 * and then 8K of page 1 of the lower file will be read and decrypted. 469 * 470 * Returns zero on success; negative on error 471 */ 472 int ecryptfs_encrypt_page(struct page *page) 473 { 474 struct inode *ecryptfs_inode; 475 struct ecryptfs_crypt_stat *crypt_stat; 476 char *enc_extent_virt; 477 struct page *enc_extent_page = NULL; 478 loff_t extent_offset; 479 int rc = 0; 480 481 ecryptfs_inode = page->mapping->host; 482 crypt_stat = 483 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 484 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 485 enc_extent_page = alloc_page(GFP_USER); 486 if (!enc_extent_page) { 487 rc = -ENOMEM; 488 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 489 "encrypted extent\n"); 490 goto out; 491 } 492 enc_extent_virt = kmap(enc_extent_page); 493 for (extent_offset = 0; 494 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 495 extent_offset++) { 496 loff_t offset; 497 498 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page, 499 extent_offset); 500 if (rc) { 501 printk(KERN_ERR "%s: Error encrypting extent; " 502 "rc = [%d]\n", __func__, rc); 503 goto out; 504 } 505 ecryptfs_lower_offset_for_extent( 506 &offset, ((((loff_t)page->index) 507 * (PAGE_CACHE_SIZE 508 / crypt_stat->extent_size)) 509 + extent_offset), crypt_stat); 510 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, 511 offset, crypt_stat->extent_size); 512 if (rc < 0) { 513 ecryptfs_printk(KERN_ERR, "Error attempting " 514 "to write lower page; rc = [%d]" 515 "\n", rc); 516 goto out; 517 } 518 } 519 rc = 0; 520 out: 521 if (enc_extent_page) { 522 kunmap(enc_extent_page); 523 __free_page(enc_extent_page); 524 } 525 return rc; 526 } 527 528 static int ecryptfs_decrypt_extent(struct page *page, 529 struct ecryptfs_crypt_stat *crypt_stat, 530 struct page *enc_extent_page, 531 unsigned long extent_offset) 532 { 533 loff_t extent_base; 534 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 535 int rc; 536 537 extent_base = (((loff_t)page->index) 538 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 539 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 540 (extent_base + extent_offset)); 541 if (rc) { 542 ecryptfs_printk(KERN_ERR, "Error attempting to " 543 "derive IV for extent [0x%.16x]; " 544 "rc = [%d]\n", (extent_base + extent_offset), 545 rc); 546 goto out; 547 } 548 if (unlikely(ecryptfs_verbosity > 0)) { 549 ecryptfs_printk(KERN_DEBUG, "Decrypting extent " 550 "with iv:\n"); 551 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 552 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 553 "decryption:\n"); 554 ecryptfs_dump_hex((char *) 555 (page_address(enc_extent_page) 556 + (extent_offset * crypt_stat->extent_size)), 557 8); 558 } 559 rc = ecryptfs_decrypt_page_offset(crypt_stat, page, 560 (extent_offset 561 * crypt_stat->extent_size), 562 enc_extent_page, 0, 563 crypt_stat->extent_size, extent_iv); 564 if (rc < 0) { 565 printk(KERN_ERR "%s: Error attempting to decrypt to page with " 566 "page->index = [%ld], extent_offset = [%ld]; " 567 "rc = [%d]\n", __func__, page->index, extent_offset, 568 rc); 569 goto out; 570 } 571 rc = 0; 572 if (unlikely(ecryptfs_verbosity > 0)) { 573 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; " 574 "rc = [%d]\n", (extent_base + extent_offset), 575 rc); 576 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 577 "decryption:\n"); 578 ecryptfs_dump_hex((char *)(page_address(page) 579 + (extent_offset 580 * crypt_stat->extent_size)), 8); 581 } 582 out: 583 return rc; 584 } 585 586 /** 587 * ecryptfs_decrypt_page 588 * @page: Page mapped from the eCryptfs inode for the file; data read 589 * and decrypted from the lower file will be written into this 590 * page 591 * 592 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 593 * that eCryptfs pages may straddle the lower pages -- for instance, 594 * if the file was created on a machine with an 8K page size 595 * (resulting in an 8K header), and then the file is copied onto a 596 * host with a 32K page size, then when reading page 0 of the eCryptfs 597 * file, 24K of page 0 of the lower file will be read and decrypted, 598 * and then 8K of page 1 of the lower file will be read and decrypted. 599 * 600 * Returns zero on success; negative on error 601 */ 602 int ecryptfs_decrypt_page(struct page *page) 603 { 604 struct inode *ecryptfs_inode; 605 struct ecryptfs_crypt_stat *crypt_stat; 606 char *enc_extent_virt; 607 struct page *enc_extent_page = NULL; 608 unsigned long extent_offset; 609 int rc = 0; 610 611 ecryptfs_inode = page->mapping->host; 612 crypt_stat = 613 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 614 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 615 enc_extent_page = alloc_page(GFP_USER); 616 if (!enc_extent_page) { 617 rc = -ENOMEM; 618 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 619 "encrypted extent\n"); 620 goto out; 621 } 622 enc_extent_virt = kmap(enc_extent_page); 623 for (extent_offset = 0; 624 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 625 extent_offset++) { 626 loff_t offset; 627 628 ecryptfs_lower_offset_for_extent( 629 &offset, ((page->index * (PAGE_CACHE_SIZE 630 / crypt_stat->extent_size)) 631 + extent_offset), crypt_stat); 632 rc = ecryptfs_read_lower(enc_extent_virt, offset, 633 crypt_stat->extent_size, 634 ecryptfs_inode); 635 if (rc < 0) { 636 ecryptfs_printk(KERN_ERR, "Error attempting " 637 "to read lower page; rc = [%d]" 638 "\n", rc); 639 goto out; 640 } 641 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page, 642 extent_offset); 643 if (rc) { 644 printk(KERN_ERR "%s: Error encrypting extent; " 645 "rc = [%d]\n", __func__, rc); 646 goto out; 647 } 648 } 649 out: 650 if (enc_extent_page) { 651 kunmap(enc_extent_page); 652 __free_page(enc_extent_page); 653 } 654 return rc; 655 } 656 657 /** 658 * decrypt_scatterlist 659 * @crypt_stat: Cryptographic context 660 * @dest_sg: The destination scatterlist to decrypt into 661 * @src_sg: The source scatterlist to decrypt from 662 * @size: The number of bytes to decrypt 663 * @iv: The initialization vector to use for the decryption 664 * 665 * Returns the number of bytes decrypted; negative value on error 666 */ 667 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 668 struct scatterlist *dest_sg, 669 struct scatterlist *src_sg, int size, 670 unsigned char *iv) 671 { 672 struct blkcipher_desc desc = { 673 .tfm = crypt_stat->tfm, 674 .info = iv, 675 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 676 }; 677 int rc = 0; 678 679 /* Consider doing this once, when the file is opened */ 680 mutex_lock(&crypt_stat->cs_tfm_mutex); 681 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 682 crypt_stat->key_size); 683 if (rc) { 684 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 685 rc); 686 mutex_unlock(&crypt_stat->cs_tfm_mutex); 687 rc = -EINVAL; 688 goto out; 689 } 690 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); 691 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); 692 mutex_unlock(&crypt_stat->cs_tfm_mutex); 693 if (rc) { 694 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", 695 rc); 696 goto out; 697 } 698 rc = size; 699 out: 700 return rc; 701 } 702 703 /** 704 * ecryptfs_encrypt_page_offset 705 * @crypt_stat: The cryptographic context 706 * @dst_page: The page to encrypt into 707 * @dst_offset: The offset in the page to encrypt into 708 * @src_page: The page to encrypt from 709 * @src_offset: The offset in the page to encrypt from 710 * @size: The number of bytes to encrypt 711 * @iv: The initialization vector to use for the encryption 712 * 713 * Returns the number of bytes encrypted 714 */ 715 static int 716 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 717 struct page *dst_page, int dst_offset, 718 struct page *src_page, int src_offset, int size, 719 unsigned char *iv) 720 { 721 struct scatterlist src_sg, dst_sg; 722 723 sg_init_table(&src_sg, 1); 724 sg_init_table(&dst_sg, 1); 725 726 sg_set_page(&src_sg, src_page, size, src_offset); 727 sg_set_page(&dst_sg, dst_page, size, dst_offset); 728 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 729 } 730 731 /** 732 * ecryptfs_decrypt_page_offset 733 * @crypt_stat: The cryptographic context 734 * @dst_page: The page to decrypt into 735 * @dst_offset: The offset in the page to decrypt into 736 * @src_page: The page to decrypt from 737 * @src_offset: The offset in the page to decrypt from 738 * @size: The number of bytes to decrypt 739 * @iv: The initialization vector to use for the decryption 740 * 741 * Returns the number of bytes decrypted 742 */ 743 static int 744 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 745 struct page *dst_page, int dst_offset, 746 struct page *src_page, int src_offset, int size, 747 unsigned char *iv) 748 { 749 struct scatterlist src_sg, dst_sg; 750 751 sg_init_table(&src_sg, 1); 752 sg_set_page(&src_sg, src_page, size, src_offset); 753 754 sg_init_table(&dst_sg, 1); 755 sg_set_page(&dst_sg, dst_page, size, dst_offset); 756 757 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 758 } 759 760 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 761 762 /** 763 * ecryptfs_init_crypt_ctx 764 * @crypt_stat: Uninitilized crypt stats structure 765 * 766 * Initialize the crypto context. 767 * 768 * TODO: Performance: Keep a cache of initialized cipher contexts; 769 * only init if needed 770 */ 771 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 772 { 773 char *full_alg_name; 774 int rc = -EINVAL; 775 776 if (!crypt_stat->cipher) { 777 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 778 goto out; 779 } 780 ecryptfs_printk(KERN_DEBUG, 781 "Initializing cipher [%s]; strlen = [%d]; " 782 "key_size_bits = [%d]\n", 783 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 784 crypt_stat->key_size << 3); 785 if (crypt_stat->tfm) { 786 rc = 0; 787 goto out; 788 } 789 mutex_lock(&crypt_stat->cs_tfm_mutex); 790 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 791 crypt_stat->cipher, "cbc"); 792 if (rc) 793 goto out_unlock; 794 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, 795 CRYPTO_ALG_ASYNC); 796 kfree(full_alg_name); 797 if (IS_ERR(crypt_stat->tfm)) { 798 rc = PTR_ERR(crypt_stat->tfm); 799 crypt_stat->tfm = NULL; 800 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 801 "Error initializing cipher [%s]\n", 802 crypt_stat->cipher); 803 goto out_unlock; 804 } 805 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 806 rc = 0; 807 out_unlock: 808 mutex_unlock(&crypt_stat->cs_tfm_mutex); 809 out: 810 return rc; 811 } 812 813 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 814 { 815 int extent_size_tmp; 816 817 crypt_stat->extent_mask = 0xFFFFFFFF; 818 crypt_stat->extent_shift = 0; 819 if (crypt_stat->extent_size == 0) 820 return; 821 extent_size_tmp = crypt_stat->extent_size; 822 while ((extent_size_tmp & 0x01) == 0) { 823 extent_size_tmp >>= 1; 824 crypt_stat->extent_mask <<= 1; 825 crypt_stat->extent_shift++; 826 } 827 } 828 829 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 830 { 831 /* Default values; may be overwritten as we are parsing the 832 * packets. */ 833 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 834 set_extent_mask_and_shift(crypt_stat); 835 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 836 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 837 crypt_stat->num_header_bytes_at_front = 0; 838 else { 839 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 840 crypt_stat->num_header_bytes_at_front = 841 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 842 else 843 crypt_stat->num_header_bytes_at_front = PAGE_CACHE_SIZE; 844 } 845 } 846 847 /** 848 * ecryptfs_compute_root_iv 849 * @crypt_stats 850 * 851 * On error, sets the root IV to all 0's. 852 */ 853 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 854 { 855 int rc = 0; 856 char dst[MD5_DIGEST_SIZE]; 857 858 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 859 BUG_ON(crypt_stat->iv_bytes <= 0); 860 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 861 rc = -EINVAL; 862 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 863 "cannot generate root IV\n"); 864 goto out; 865 } 866 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 867 crypt_stat->key_size); 868 if (rc) { 869 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 870 "MD5 while generating root IV\n"); 871 goto out; 872 } 873 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 874 out: 875 if (rc) { 876 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 877 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 878 } 879 return rc; 880 } 881 882 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 883 { 884 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 885 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 886 ecryptfs_compute_root_iv(crypt_stat); 887 if (unlikely(ecryptfs_verbosity > 0)) { 888 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 889 ecryptfs_dump_hex(crypt_stat->key, 890 crypt_stat->key_size); 891 } 892 } 893 894 /** 895 * ecryptfs_copy_mount_wide_flags_to_inode_flags 896 * @crypt_stat: The inode's cryptographic context 897 * @mount_crypt_stat: The mount point's cryptographic context 898 * 899 * This function propagates the mount-wide flags to individual inode 900 * flags. 901 */ 902 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 903 struct ecryptfs_crypt_stat *crypt_stat, 904 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 905 { 906 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 907 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 908 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 909 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 910 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 911 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 912 if (mount_crypt_stat->flags 913 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 914 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 915 else if (mount_crypt_stat->flags 916 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 917 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 918 } 919 } 920 921 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 922 struct ecryptfs_crypt_stat *crypt_stat, 923 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 924 { 925 struct ecryptfs_global_auth_tok *global_auth_tok; 926 int rc = 0; 927 928 mutex_lock(&crypt_stat->keysig_list_mutex); 929 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 930 931 list_for_each_entry(global_auth_tok, 932 &mount_crypt_stat->global_auth_tok_list, 933 mount_crypt_stat_list) { 934 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 935 continue; 936 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 937 if (rc) { 938 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 939 goto out; 940 } 941 } 942 943 out: 944 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 945 mutex_unlock(&crypt_stat->keysig_list_mutex); 946 return rc; 947 } 948 949 /** 950 * ecryptfs_set_default_crypt_stat_vals 951 * @crypt_stat: The inode's cryptographic context 952 * @mount_crypt_stat: The mount point's cryptographic context 953 * 954 * Default values in the event that policy does not override them. 955 */ 956 static void ecryptfs_set_default_crypt_stat_vals( 957 struct ecryptfs_crypt_stat *crypt_stat, 958 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 959 { 960 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 961 mount_crypt_stat); 962 ecryptfs_set_default_sizes(crypt_stat); 963 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 964 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 965 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 966 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 967 crypt_stat->mount_crypt_stat = mount_crypt_stat; 968 } 969 970 /** 971 * ecryptfs_new_file_context 972 * @ecryptfs_dentry: The eCryptfs dentry 973 * 974 * If the crypto context for the file has not yet been established, 975 * this is where we do that. Establishing a new crypto context 976 * involves the following decisions: 977 * - What cipher to use? 978 * - What set of authentication tokens to use? 979 * Here we just worry about getting enough information into the 980 * authentication tokens so that we know that they are available. 981 * We associate the available authentication tokens with the new file 982 * via the set of signatures in the crypt_stat struct. Later, when 983 * the headers are actually written out, we may again defer to 984 * userspace to perform the encryption of the session key; for the 985 * foreseeable future, this will be the case with public key packets. 986 * 987 * Returns zero on success; non-zero otherwise 988 */ 989 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry) 990 { 991 struct ecryptfs_crypt_stat *crypt_stat = 992 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 993 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 994 &ecryptfs_superblock_to_private( 995 ecryptfs_dentry->d_sb)->mount_crypt_stat; 996 int cipher_name_len; 997 int rc = 0; 998 999 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 1000 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 1001 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1002 mount_crypt_stat); 1003 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 1004 mount_crypt_stat); 1005 if (rc) { 1006 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 1007 "to the inode key sigs; rc = [%d]\n", rc); 1008 goto out; 1009 } 1010 cipher_name_len = 1011 strlen(mount_crypt_stat->global_default_cipher_name); 1012 memcpy(crypt_stat->cipher, 1013 mount_crypt_stat->global_default_cipher_name, 1014 cipher_name_len); 1015 crypt_stat->cipher[cipher_name_len] = '\0'; 1016 crypt_stat->key_size = 1017 mount_crypt_stat->global_default_cipher_key_size; 1018 ecryptfs_generate_new_key(crypt_stat); 1019 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1020 if (rc) 1021 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 1022 "context for cipher [%s]: rc = [%d]\n", 1023 crypt_stat->cipher, rc); 1024 out: 1025 return rc; 1026 } 1027 1028 /** 1029 * contains_ecryptfs_marker - check for the ecryptfs marker 1030 * @data: The data block in which to check 1031 * 1032 * Returns one if marker found; zero if not found 1033 */ 1034 static int contains_ecryptfs_marker(char *data) 1035 { 1036 u32 m_1, m_2; 1037 1038 m_1 = get_unaligned_be32(data); 1039 m_2 = get_unaligned_be32(data + 4); 1040 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 1041 return 1; 1042 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 1043 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 1044 MAGIC_ECRYPTFS_MARKER); 1045 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 1046 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 1047 return 0; 1048 } 1049 1050 struct ecryptfs_flag_map_elem { 1051 u32 file_flag; 1052 u32 local_flag; 1053 }; 1054 1055 /* Add support for additional flags by adding elements here. */ 1056 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 1057 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 1058 {0x00000002, ECRYPTFS_ENCRYPTED}, 1059 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 1060 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 1061 }; 1062 1063 /** 1064 * ecryptfs_process_flags 1065 * @crypt_stat: The cryptographic context 1066 * @page_virt: Source data to be parsed 1067 * @bytes_read: Updated with the number of bytes read 1068 * 1069 * Returns zero on success; non-zero if the flag set is invalid 1070 */ 1071 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 1072 char *page_virt, int *bytes_read) 1073 { 1074 int rc = 0; 1075 int i; 1076 u32 flags; 1077 1078 flags = get_unaligned_be32(page_virt); 1079 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1080 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1081 if (flags & ecryptfs_flag_map[i].file_flag) { 1082 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 1083 } else 1084 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 1085 /* Version is in top 8 bits of the 32-bit flag vector */ 1086 crypt_stat->file_version = ((flags >> 24) & 0xFF); 1087 (*bytes_read) = 4; 1088 return rc; 1089 } 1090 1091 /** 1092 * write_ecryptfs_marker 1093 * @page_virt: The pointer to in a page to begin writing the marker 1094 * @written: Number of bytes written 1095 * 1096 * Marker = 0x3c81b7f5 1097 */ 1098 static void write_ecryptfs_marker(char *page_virt, size_t *written) 1099 { 1100 u32 m_1, m_2; 1101 1102 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1103 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 1104 put_unaligned_be32(m_1, page_virt); 1105 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 1106 put_unaligned_be32(m_2, page_virt); 1107 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1108 } 1109 1110 static void 1111 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat, 1112 size_t *written) 1113 { 1114 u32 flags = 0; 1115 int i; 1116 1117 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1118 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1119 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 1120 flags |= ecryptfs_flag_map[i].file_flag; 1121 /* Version is in top 8 bits of the 32-bit flag vector */ 1122 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 1123 put_unaligned_be32(flags, page_virt); 1124 (*written) = 4; 1125 } 1126 1127 struct ecryptfs_cipher_code_str_map_elem { 1128 char cipher_str[16]; 1129 u8 cipher_code; 1130 }; 1131 1132 /* Add support for additional ciphers by adding elements here. The 1133 * cipher_code is whatever OpenPGP applicatoins use to identify the 1134 * ciphers. List in order of probability. */ 1135 static struct ecryptfs_cipher_code_str_map_elem 1136 ecryptfs_cipher_code_str_map[] = { 1137 {"aes",RFC2440_CIPHER_AES_128 }, 1138 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 1139 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 1140 {"cast5", RFC2440_CIPHER_CAST_5}, 1141 {"twofish", RFC2440_CIPHER_TWOFISH}, 1142 {"cast6", RFC2440_CIPHER_CAST_6}, 1143 {"aes", RFC2440_CIPHER_AES_192}, 1144 {"aes", RFC2440_CIPHER_AES_256} 1145 }; 1146 1147 /** 1148 * ecryptfs_code_for_cipher_string 1149 * @cipher_name: The string alias for the cipher 1150 * @key_bytes: Length of key in bytes; used for AES code selection 1151 * 1152 * Returns zero on no match, or the cipher code on match 1153 */ 1154 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 1155 { 1156 int i; 1157 u8 code = 0; 1158 struct ecryptfs_cipher_code_str_map_elem *map = 1159 ecryptfs_cipher_code_str_map; 1160 1161 if (strcmp(cipher_name, "aes") == 0) { 1162 switch (key_bytes) { 1163 case 16: 1164 code = RFC2440_CIPHER_AES_128; 1165 break; 1166 case 24: 1167 code = RFC2440_CIPHER_AES_192; 1168 break; 1169 case 32: 1170 code = RFC2440_CIPHER_AES_256; 1171 } 1172 } else { 1173 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1174 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 1175 code = map[i].cipher_code; 1176 break; 1177 } 1178 } 1179 return code; 1180 } 1181 1182 /** 1183 * ecryptfs_cipher_code_to_string 1184 * @str: Destination to write out the cipher name 1185 * @cipher_code: The code to convert to cipher name string 1186 * 1187 * Returns zero on success 1188 */ 1189 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 1190 { 1191 int rc = 0; 1192 int i; 1193 1194 str[0] = '\0'; 1195 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1196 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1197 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1198 if (str[0] == '\0') { 1199 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1200 "[%d]\n", cipher_code); 1201 rc = -EINVAL; 1202 } 1203 return rc; 1204 } 1205 1206 int ecryptfs_read_and_validate_header_region(char *data, 1207 struct inode *ecryptfs_inode) 1208 { 1209 struct ecryptfs_crypt_stat *crypt_stat = 1210 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 1211 int rc; 1212 1213 if (crypt_stat->extent_size == 0) 1214 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 1215 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size, 1216 ecryptfs_inode); 1217 if (rc < 0) { 1218 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n", 1219 __func__, rc); 1220 goto out; 1221 } 1222 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) { 1223 rc = -EINVAL; 1224 } else 1225 rc = 0; 1226 out: 1227 return rc; 1228 } 1229 1230 void 1231 ecryptfs_write_header_metadata(char *virt, 1232 struct ecryptfs_crypt_stat *crypt_stat, 1233 size_t *written) 1234 { 1235 u32 header_extent_size; 1236 u16 num_header_extents_at_front; 1237 1238 header_extent_size = (u32)crypt_stat->extent_size; 1239 num_header_extents_at_front = 1240 (u16)(crypt_stat->num_header_bytes_at_front 1241 / crypt_stat->extent_size); 1242 put_unaligned_be32(header_extent_size, virt); 1243 virt += 4; 1244 put_unaligned_be16(num_header_extents_at_front, virt); 1245 (*written) = 6; 1246 } 1247 1248 struct kmem_cache *ecryptfs_header_cache_1; 1249 struct kmem_cache *ecryptfs_header_cache_2; 1250 1251 /** 1252 * ecryptfs_write_headers_virt 1253 * @page_virt: The virtual address to write the headers to 1254 * @max: The size of memory allocated at page_virt 1255 * @size: Set to the number of bytes written by this function 1256 * @crypt_stat: The cryptographic context 1257 * @ecryptfs_dentry: The eCryptfs dentry 1258 * 1259 * Format version: 1 1260 * 1261 * Header Extent: 1262 * Octets 0-7: Unencrypted file size (big-endian) 1263 * Octets 8-15: eCryptfs special marker 1264 * Octets 16-19: Flags 1265 * Octet 16: File format version number (between 0 and 255) 1266 * Octets 17-18: Reserved 1267 * Octet 19: Bit 1 (lsb): Reserved 1268 * Bit 2: Encrypted? 1269 * Bits 3-8: Reserved 1270 * Octets 20-23: Header extent size (big-endian) 1271 * Octets 24-25: Number of header extents at front of file 1272 * (big-endian) 1273 * Octet 26: Begin RFC 2440 authentication token packet set 1274 * Data Extent 0: 1275 * Lower data (CBC encrypted) 1276 * Data Extent 1: 1277 * Lower data (CBC encrypted) 1278 * ... 1279 * 1280 * Returns zero on success 1281 */ 1282 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1283 size_t *size, 1284 struct ecryptfs_crypt_stat *crypt_stat, 1285 struct dentry *ecryptfs_dentry) 1286 { 1287 int rc; 1288 size_t written; 1289 size_t offset; 1290 1291 offset = ECRYPTFS_FILE_SIZE_BYTES; 1292 write_ecryptfs_marker((page_virt + offset), &written); 1293 offset += written; 1294 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written); 1295 offset += written; 1296 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1297 &written); 1298 offset += written; 1299 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1300 ecryptfs_dentry, &written, 1301 max - offset); 1302 if (rc) 1303 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1304 "set; rc = [%d]\n", rc); 1305 if (size) { 1306 offset += written; 1307 *size = offset; 1308 } 1309 return rc; 1310 } 1311 1312 static int 1313 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry, 1314 char *virt, size_t virt_len) 1315 { 1316 int rc; 1317 1318 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt, 1319 0, virt_len); 1320 if (rc < 0) 1321 printk(KERN_ERR "%s: Error attempting to write header " 1322 "information to lower file; rc = [%d]\n", __func__, rc); 1323 else 1324 rc = 0; 1325 return rc; 1326 } 1327 1328 static int 1329 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1330 char *page_virt, size_t size) 1331 { 1332 int rc; 1333 1334 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1335 size, 0); 1336 return rc; 1337 } 1338 1339 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1340 unsigned int order) 1341 { 1342 struct page *page; 1343 1344 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1345 if (page) 1346 return (unsigned long) page_address(page); 1347 return 0; 1348 } 1349 1350 /** 1351 * ecryptfs_write_metadata 1352 * @ecryptfs_dentry: The eCryptfs dentry 1353 * 1354 * Write the file headers out. This will likely involve a userspace 1355 * callout, in which the session key is encrypted with one or more 1356 * public keys and/or the passphrase necessary to do the encryption is 1357 * retrieved via a prompt. Exactly what happens at this point should 1358 * be policy-dependent. 1359 * 1360 * Returns zero on success; non-zero on error 1361 */ 1362 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry) 1363 { 1364 struct ecryptfs_crypt_stat *crypt_stat = 1365 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 1366 unsigned int order; 1367 char *virt; 1368 size_t virt_len; 1369 size_t size = 0; 1370 int rc = 0; 1371 1372 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1373 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1374 printk(KERN_ERR "Key is invalid; bailing out\n"); 1375 rc = -EINVAL; 1376 goto out; 1377 } 1378 } else { 1379 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1380 __func__); 1381 rc = -EINVAL; 1382 goto out; 1383 } 1384 virt_len = crypt_stat->num_header_bytes_at_front; 1385 order = get_order(virt_len); 1386 /* Released in this function */ 1387 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1388 if (!virt) { 1389 printk(KERN_ERR "%s: Out of memory\n", __func__); 1390 rc = -ENOMEM; 1391 goto out; 1392 } 1393 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1394 ecryptfs_dentry); 1395 if (unlikely(rc)) { 1396 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1397 __func__, rc); 1398 goto out_free; 1399 } 1400 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1401 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt, 1402 size); 1403 else 1404 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt, 1405 virt_len); 1406 if (rc) { 1407 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1408 "rc = [%d]\n", __func__, rc); 1409 goto out_free; 1410 } 1411 out_free: 1412 free_pages((unsigned long)virt, order); 1413 out: 1414 return rc; 1415 } 1416 1417 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1418 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1419 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1420 char *virt, int *bytes_read, 1421 int validate_header_size) 1422 { 1423 int rc = 0; 1424 u32 header_extent_size; 1425 u16 num_header_extents_at_front; 1426 1427 header_extent_size = get_unaligned_be32(virt); 1428 virt += sizeof(__be32); 1429 num_header_extents_at_front = get_unaligned_be16(virt); 1430 crypt_stat->num_header_bytes_at_front = 1431 (((size_t)num_header_extents_at_front 1432 * (size_t)header_extent_size)); 1433 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1434 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1435 && (crypt_stat->num_header_bytes_at_front 1436 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1437 rc = -EINVAL; 1438 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1439 crypt_stat->num_header_bytes_at_front); 1440 } 1441 return rc; 1442 } 1443 1444 /** 1445 * set_default_header_data 1446 * @crypt_stat: The cryptographic context 1447 * 1448 * For version 0 file format; this function is only for backwards 1449 * compatibility for files created with the prior versions of 1450 * eCryptfs. 1451 */ 1452 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1453 { 1454 crypt_stat->num_header_bytes_at_front = 1455 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1456 } 1457 1458 /** 1459 * ecryptfs_read_headers_virt 1460 * @page_virt: The virtual address into which to read the headers 1461 * @crypt_stat: The cryptographic context 1462 * @ecryptfs_dentry: The eCryptfs dentry 1463 * @validate_header_size: Whether to validate the header size while reading 1464 * 1465 * Read/parse the header data. The header format is detailed in the 1466 * comment block for the ecryptfs_write_headers_virt() function. 1467 * 1468 * Returns zero on success 1469 */ 1470 static int ecryptfs_read_headers_virt(char *page_virt, 1471 struct ecryptfs_crypt_stat *crypt_stat, 1472 struct dentry *ecryptfs_dentry, 1473 int validate_header_size) 1474 { 1475 int rc = 0; 1476 int offset; 1477 int bytes_read; 1478 1479 ecryptfs_set_default_sizes(crypt_stat); 1480 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1481 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1482 offset = ECRYPTFS_FILE_SIZE_BYTES; 1483 rc = contains_ecryptfs_marker(page_virt + offset); 1484 if (rc == 0) { 1485 rc = -EINVAL; 1486 goto out; 1487 } 1488 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1489 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1490 &bytes_read); 1491 if (rc) { 1492 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1493 goto out; 1494 } 1495 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1496 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1497 "file version [%d] is supported by this " 1498 "version of eCryptfs\n", 1499 crypt_stat->file_version, 1500 ECRYPTFS_SUPPORTED_FILE_VERSION); 1501 rc = -EINVAL; 1502 goto out; 1503 } 1504 offset += bytes_read; 1505 if (crypt_stat->file_version >= 1) { 1506 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1507 &bytes_read, validate_header_size); 1508 if (rc) { 1509 ecryptfs_printk(KERN_WARNING, "Error reading header " 1510 "metadata; rc = [%d]\n", rc); 1511 } 1512 offset += bytes_read; 1513 } else 1514 set_default_header_data(crypt_stat); 1515 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1516 ecryptfs_dentry); 1517 out: 1518 return rc; 1519 } 1520 1521 /** 1522 * ecryptfs_read_xattr_region 1523 * @page_virt: The vitual address into which to read the xattr data 1524 * @ecryptfs_inode: The eCryptfs inode 1525 * 1526 * Attempts to read the crypto metadata from the extended attribute 1527 * region of the lower file. 1528 * 1529 * Returns zero on success; non-zero on error 1530 */ 1531 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1532 { 1533 struct dentry *lower_dentry = 1534 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1535 ssize_t size; 1536 int rc = 0; 1537 1538 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1539 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1540 if (size < 0) { 1541 if (unlikely(ecryptfs_verbosity > 0)) 1542 printk(KERN_INFO "Error attempting to read the [%s] " 1543 "xattr from the lower file; return value = " 1544 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1545 rc = -EINVAL; 1546 goto out; 1547 } 1548 out: 1549 return rc; 1550 } 1551 1552 int ecryptfs_read_and_validate_xattr_region(char *page_virt, 1553 struct dentry *ecryptfs_dentry) 1554 { 1555 int rc; 1556 1557 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode); 1558 if (rc) 1559 goto out; 1560 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) { 1561 printk(KERN_WARNING "Valid data found in [%s] xattr, but " 1562 "the marker is invalid\n", ECRYPTFS_XATTR_NAME); 1563 rc = -EINVAL; 1564 } 1565 out: 1566 return rc; 1567 } 1568 1569 /** 1570 * ecryptfs_read_metadata 1571 * 1572 * Common entry point for reading file metadata. From here, we could 1573 * retrieve the header information from the header region of the file, 1574 * the xattr region of the file, or some other repostory that is 1575 * stored separately from the file itself. The current implementation 1576 * supports retrieving the metadata information from the file contents 1577 * and from the xattr region. 1578 * 1579 * Returns zero if valid headers found and parsed; non-zero otherwise 1580 */ 1581 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1582 { 1583 int rc = 0; 1584 char *page_virt = NULL; 1585 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1586 struct ecryptfs_crypt_stat *crypt_stat = 1587 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1588 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1589 &ecryptfs_superblock_to_private( 1590 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1591 1592 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1593 mount_crypt_stat); 1594 /* Read the first page from the underlying file */ 1595 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER); 1596 if (!page_virt) { 1597 rc = -ENOMEM; 1598 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1599 __func__); 1600 goto out; 1601 } 1602 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1603 ecryptfs_inode); 1604 if (rc >= 0) 1605 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1606 ecryptfs_dentry, 1607 ECRYPTFS_VALIDATE_HEADER_SIZE); 1608 if (rc) { 1609 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1610 if (rc) { 1611 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1612 "file header region or xattr region\n"); 1613 rc = -EINVAL; 1614 goto out; 1615 } 1616 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1617 ecryptfs_dentry, 1618 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1619 if (rc) { 1620 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1621 "file xattr region either\n"); 1622 rc = -EINVAL; 1623 } 1624 if (crypt_stat->mount_crypt_stat->flags 1625 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1626 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1627 } else { 1628 printk(KERN_WARNING "Attempt to access file with " 1629 "crypto metadata only in the extended attribute " 1630 "region, but eCryptfs was mounted without " 1631 "xattr support enabled. eCryptfs will not treat " 1632 "this like an encrypted file.\n"); 1633 rc = -EINVAL; 1634 } 1635 } 1636 out: 1637 if (page_virt) { 1638 memset(page_virt, 0, PAGE_CACHE_SIZE); 1639 kmem_cache_free(ecryptfs_header_cache_1, page_virt); 1640 } 1641 return rc; 1642 } 1643 1644 /** 1645 * ecryptfs_encrypt_filename - encrypt filename 1646 * 1647 * CBC-encrypts the filename. We do not want to encrypt the same 1648 * filename with the same key and IV, which may happen with hard 1649 * links, so we prepend random bits to each filename. 1650 * 1651 * Returns zero on success; non-zero otherwise 1652 */ 1653 static int 1654 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1655 struct ecryptfs_crypt_stat *crypt_stat, 1656 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1657 { 1658 int rc = 0; 1659 1660 filename->encrypted_filename = NULL; 1661 filename->encrypted_filename_size = 0; 1662 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1663 || (mount_crypt_stat && (mount_crypt_stat->flags 1664 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 1665 size_t packet_size; 1666 size_t remaining_bytes; 1667 1668 rc = ecryptfs_write_tag_70_packet( 1669 NULL, NULL, 1670 &filename->encrypted_filename_size, 1671 mount_crypt_stat, NULL, 1672 filename->filename_size); 1673 if (rc) { 1674 printk(KERN_ERR "%s: Error attempting to get packet " 1675 "size for tag 72; rc = [%d]\n", __func__, 1676 rc); 1677 filename->encrypted_filename_size = 0; 1678 goto out; 1679 } 1680 filename->encrypted_filename = 1681 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1682 if (!filename->encrypted_filename) { 1683 printk(KERN_ERR "%s: Out of memory whilst attempting " 1684 "to kmalloc [%zd] bytes\n", __func__, 1685 filename->encrypted_filename_size); 1686 rc = -ENOMEM; 1687 goto out; 1688 } 1689 remaining_bytes = filename->encrypted_filename_size; 1690 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1691 &remaining_bytes, 1692 &packet_size, 1693 mount_crypt_stat, 1694 filename->filename, 1695 filename->filename_size); 1696 if (rc) { 1697 printk(KERN_ERR "%s: Error attempting to generate " 1698 "tag 70 packet; rc = [%d]\n", __func__, 1699 rc); 1700 kfree(filename->encrypted_filename); 1701 filename->encrypted_filename = NULL; 1702 filename->encrypted_filename_size = 0; 1703 goto out; 1704 } 1705 filename->encrypted_filename_size = packet_size; 1706 } else { 1707 printk(KERN_ERR "%s: No support for requested filename " 1708 "encryption method in this release\n", __func__); 1709 rc = -EOPNOTSUPP; 1710 goto out; 1711 } 1712 out: 1713 return rc; 1714 } 1715 1716 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1717 const char *name, size_t name_size) 1718 { 1719 int rc = 0; 1720 1721 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1722 if (!(*copied_name)) { 1723 rc = -ENOMEM; 1724 goto out; 1725 } 1726 memcpy((void *)(*copied_name), (void *)name, name_size); 1727 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1728 * in printing out the 1729 * string in debug 1730 * messages */ 1731 (*copied_name_size) = name_size; 1732 out: 1733 return rc; 1734 } 1735 1736 /** 1737 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1738 * @key_tfm: Crypto context for key material, set by this function 1739 * @cipher_name: Name of the cipher 1740 * @key_size: Size of the key in bytes 1741 * 1742 * Returns zero on success. Any crypto_tfm structs allocated here 1743 * should be released by other functions, such as on a superblock put 1744 * event, regardless of whether this function succeeds for fails. 1745 */ 1746 static int 1747 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1748 char *cipher_name, size_t *key_size) 1749 { 1750 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1751 char *full_alg_name; 1752 int rc; 1753 1754 *key_tfm = NULL; 1755 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1756 rc = -EINVAL; 1757 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1758 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1759 goto out; 1760 } 1761 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1762 "ecb"); 1763 if (rc) 1764 goto out; 1765 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1766 kfree(full_alg_name); 1767 if (IS_ERR(*key_tfm)) { 1768 rc = PTR_ERR(*key_tfm); 1769 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1770 "[%s]; rc = [%d]\n", full_alg_name, rc); 1771 goto out; 1772 } 1773 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1774 if (*key_size == 0) { 1775 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1776 1777 *key_size = alg->max_keysize; 1778 } 1779 get_random_bytes(dummy_key, *key_size); 1780 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1781 if (rc) { 1782 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1783 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1784 rc); 1785 rc = -EINVAL; 1786 goto out; 1787 } 1788 out: 1789 return rc; 1790 } 1791 1792 struct kmem_cache *ecryptfs_key_tfm_cache; 1793 static struct list_head key_tfm_list; 1794 struct mutex key_tfm_list_mutex; 1795 1796 int ecryptfs_init_crypto(void) 1797 { 1798 mutex_init(&key_tfm_list_mutex); 1799 INIT_LIST_HEAD(&key_tfm_list); 1800 return 0; 1801 } 1802 1803 /** 1804 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1805 * 1806 * Called only at module unload time 1807 */ 1808 int ecryptfs_destroy_crypto(void) 1809 { 1810 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1811 1812 mutex_lock(&key_tfm_list_mutex); 1813 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1814 key_tfm_list) { 1815 list_del(&key_tfm->key_tfm_list); 1816 if (key_tfm->key_tfm) 1817 crypto_free_blkcipher(key_tfm->key_tfm); 1818 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1819 } 1820 mutex_unlock(&key_tfm_list_mutex); 1821 return 0; 1822 } 1823 1824 int 1825 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1826 size_t key_size) 1827 { 1828 struct ecryptfs_key_tfm *tmp_tfm; 1829 int rc = 0; 1830 1831 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1832 1833 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1834 if (key_tfm != NULL) 1835 (*key_tfm) = tmp_tfm; 1836 if (!tmp_tfm) { 1837 rc = -ENOMEM; 1838 printk(KERN_ERR "Error attempting to allocate from " 1839 "ecryptfs_key_tfm_cache\n"); 1840 goto out; 1841 } 1842 mutex_init(&tmp_tfm->key_tfm_mutex); 1843 strncpy(tmp_tfm->cipher_name, cipher_name, 1844 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1845 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1846 tmp_tfm->key_size = key_size; 1847 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1848 tmp_tfm->cipher_name, 1849 &tmp_tfm->key_size); 1850 if (rc) { 1851 printk(KERN_ERR "Error attempting to initialize key TFM " 1852 "cipher with name = [%s]; rc = [%d]\n", 1853 tmp_tfm->cipher_name, rc); 1854 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1855 if (key_tfm != NULL) 1856 (*key_tfm) = NULL; 1857 goto out; 1858 } 1859 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1860 out: 1861 return rc; 1862 } 1863 1864 /** 1865 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1866 * @cipher_name: the name of the cipher to search for 1867 * @key_tfm: set to corresponding tfm if found 1868 * 1869 * Searches for cached key_tfm matching @cipher_name 1870 * Must be called with &key_tfm_list_mutex held 1871 * Returns 1 if found, with @key_tfm set 1872 * Returns 0 if not found, with @key_tfm set to NULL 1873 */ 1874 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1875 { 1876 struct ecryptfs_key_tfm *tmp_key_tfm; 1877 1878 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1879 1880 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1881 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1882 if (key_tfm) 1883 (*key_tfm) = tmp_key_tfm; 1884 return 1; 1885 } 1886 } 1887 if (key_tfm) 1888 (*key_tfm) = NULL; 1889 return 0; 1890 } 1891 1892 /** 1893 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1894 * 1895 * @tfm: set to cached tfm found, or new tfm created 1896 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1897 * @cipher_name: the name of the cipher to search for and/or add 1898 * 1899 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1900 * Searches for cached item first, and creates new if not found. 1901 * Returns 0 on success, non-zero if adding new cipher failed 1902 */ 1903 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1904 struct mutex **tfm_mutex, 1905 char *cipher_name) 1906 { 1907 struct ecryptfs_key_tfm *key_tfm; 1908 int rc = 0; 1909 1910 (*tfm) = NULL; 1911 (*tfm_mutex) = NULL; 1912 1913 mutex_lock(&key_tfm_list_mutex); 1914 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1915 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1916 if (rc) { 1917 printk(KERN_ERR "Error adding new key_tfm to list; " 1918 "rc = [%d]\n", rc); 1919 goto out; 1920 } 1921 } 1922 (*tfm) = key_tfm->key_tfm; 1923 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1924 out: 1925 mutex_unlock(&key_tfm_list_mutex); 1926 return rc; 1927 } 1928 1929 /* 64 characters forming a 6-bit target field */ 1930 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1931 "EFGHIJKLMNOPQRST" 1932 "UVWXYZabcdefghij" 1933 "klmnopqrstuvwxyz"); 1934 1935 /* We could either offset on every reverse map or just pad some 0x00's 1936 * at the front here */ 1937 static const unsigned char filename_rev_map[] = { 1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1939 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1940 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1941 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1942 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1943 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1944 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1945 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1946 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1947 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1948 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1949 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1950 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1951 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1952 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1953 0x3D, 0x3E, 0x3F 1954 }; 1955 1956 /** 1957 * ecryptfs_encode_for_filename 1958 * @dst: Destination location for encoded filename 1959 * @dst_size: Size of the encoded filename in bytes 1960 * @src: Source location for the filename to encode 1961 * @src_size: Size of the source in bytes 1962 */ 1963 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1964 unsigned char *src, size_t src_size) 1965 { 1966 size_t num_blocks; 1967 size_t block_num = 0; 1968 size_t dst_offset = 0; 1969 unsigned char last_block[3]; 1970 1971 if (src_size == 0) { 1972 (*dst_size) = 0; 1973 goto out; 1974 } 1975 num_blocks = (src_size / 3); 1976 if ((src_size % 3) == 0) { 1977 memcpy(last_block, (&src[src_size - 3]), 3); 1978 } else { 1979 num_blocks++; 1980 last_block[2] = 0x00; 1981 switch (src_size % 3) { 1982 case 1: 1983 last_block[0] = src[src_size - 1]; 1984 last_block[1] = 0x00; 1985 break; 1986 case 2: 1987 last_block[0] = src[src_size - 2]; 1988 last_block[1] = src[src_size - 1]; 1989 } 1990 } 1991 (*dst_size) = (num_blocks * 4); 1992 if (!dst) 1993 goto out; 1994 while (block_num < num_blocks) { 1995 unsigned char *src_block; 1996 unsigned char dst_block[4]; 1997 1998 if (block_num == (num_blocks - 1)) 1999 src_block = last_block; 2000 else 2001 src_block = &src[block_num * 3]; 2002 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 2003 dst_block[1] = (((src_block[0] << 4) & 0x30) 2004 | ((src_block[1] >> 4) & 0x0F)); 2005 dst_block[2] = (((src_block[1] << 2) & 0x3C) 2006 | ((src_block[2] >> 6) & 0x03)); 2007 dst_block[3] = (src_block[2] & 0x3F); 2008 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 2009 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 2010 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 2011 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 2012 block_num++; 2013 } 2014 out: 2015 return; 2016 } 2017 2018 /** 2019 * ecryptfs_decode_from_filename 2020 * @dst: If NULL, this function only sets @dst_size and returns. If 2021 * non-NULL, this function decodes the encoded octets in @src 2022 * into the memory that @dst points to. 2023 * @dst_size: Set to the size of the decoded string. 2024 * @src: The encoded set of octets to decode. 2025 * @src_size: The size of the encoded set of octets to decode. 2026 */ 2027 static void 2028 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 2029 const unsigned char *src, size_t src_size) 2030 { 2031 u8 current_bit_offset = 0; 2032 size_t src_byte_offset = 0; 2033 size_t dst_byte_offset = 0; 2034 2035 if (dst == NULL) { 2036 /* Not exact; conservatively long. Every block of 4 2037 * encoded characters decodes into a block of 3 2038 * decoded characters. This segment of code provides 2039 * the caller with the maximum amount of allocated 2040 * space that @dst will need to point to in a 2041 * subsequent call. */ 2042 (*dst_size) = (((src_size + 1) * 3) / 4); 2043 goto out; 2044 } 2045 while (src_byte_offset < src_size) { 2046 unsigned char src_byte = 2047 filename_rev_map[(int)src[src_byte_offset]]; 2048 2049 switch (current_bit_offset) { 2050 case 0: 2051 dst[dst_byte_offset] = (src_byte << 2); 2052 current_bit_offset = 6; 2053 break; 2054 case 6: 2055 dst[dst_byte_offset++] |= (src_byte >> 4); 2056 dst[dst_byte_offset] = ((src_byte & 0xF) 2057 << 4); 2058 current_bit_offset = 4; 2059 break; 2060 case 4: 2061 dst[dst_byte_offset++] |= (src_byte >> 2); 2062 dst[dst_byte_offset] = (src_byte << 6); 2063 current_bit_offset = 2; 2064 break; 2065 case 2: 2066 dst[dst_byte_offset++] |= (src_byte); 2067 dst[dst_byte_offset] = 0; 2068 current_bit_offset = 0; 2069 break; 2070 } 2071 src_byte_offset++; 2072 } 2073 (*dst_size) = dst_byte_offset; 2074 out: 2075 return; 2076 } 2077 2078 /** 2079 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 2080 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 2081 * @name: The plaintext name 2082 * @length: The length of the plaintext 2083 * @encoded_name: The encypted name 2084 * 2085 * Encrypts and encodes a filename into something that constitutes a 2086 * valid filename for a filesystem, with printable characters. 2087 * 2088 * We assume that we have a properly initialized crypto context, 2089 * pointed to by crypt_stat->tfm. 2090 * 2091 * Returns zero on success; non-zero on otherwise 2092 */ 2093 int ecryptfs_encrypt_and_encode_filename( 2094 char **encoded_name, 2095 size_t *encoded_name_size, 2096 struct ecryptfs_crypt_stat *crypt_stat, 2097 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 2098 const char *name, size_t name_size) 2099 { 2100 size_t encoded_name_no_prefix_size; 2101 int rc = 0; 2102 2103 (*encoded_name) = NULL; 2104 (*encoded_name_size) = 0; 2105 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES)) 2106 || (mount_crypt_stat && (mount_crypt_stat->flags 2107 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) { 2108 struct ecryptfs_filename *filename; 2109 2110 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 2111 if (!filename) { 2112 printk(KERN_ERR "%s: Out of memory whilst attempting " 2113 "to kzalloc [%zd] bytes\n", __func__, 2114 sizeof(*filename)); 2115 rc = -ENOMEM; 2116 goto out; 2117 } 2118 filename->filename = (char *)name; 2119 filename->filename_size = name_size; 2120 rc = ecryptfs_encrypt_filename(filename, crypt_stat, 2121 mount_crypt_stat); 2122 if (rc) { 2123 printk(KERN_ERR "%s: Error attempting to encrypt " 2124 "filename; rc = [%d]\n", __func__, rc); 2125 kfree(filename); 2126 goto out; 2127 } 2128 ecryptfs_encode_for_filename( 2129 NULL, &encoded_name_no_prefix_size, 2130 filename->encrypted_filename, 2131 filename->encrypted_filename_size); 2132 if ((crypt_stat && (crypt_stat->flags 2133 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2134 || (mount_crypt_stat 2135 && (mount_crypt_stat->flags 2136 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) 2137 (*encoded_name_size) = 2138 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2139 + encoded_name_no_prefix_size); 2140 else 2141 (*encoded_name_size) = 2142 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2143 + encoded_name_no_prefix_size); 2144 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 2145 if (!(*encoded_name)) { 2146 printk(KERN_ERR "%s: Out of memory whilst attempting " 2147 "to kzalloc [%zd] bytes\n", __func__, 2148 (*encoded_name_size)); 2149 rc = -ENOMEM; 2150 kfree(filename->encrypted_filename); 2151 kfree(filename); 2152 goto out; 2153 } 2154 if ((crypt_stat && (crypt_stat->flags 2155 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2156 || (mount_crypt_stat 2157 && (mount_crypt_stat->flags 2158 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 2159 memcpy((*encoded_name), 2160 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2161 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 2162 ecryptfs_encode_for_filename( 2163 ((*encoded_name) 2164 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 2165 &encoded_name_no_prefix_size, 2166 filename->encrypted_filename, 2167 filename->encrypted_filename_size); 2168 (*encoded_name_size) = 2169 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2170 + encoded_name_no_prefix_size); 2171 (*encoded_name)[(*encoded_name_size)] = '\0'; 2172 (*encoded_name_size)++; 2173 } else { 2174 rc = -EOPNOTSUPP; 2175 } 2176 if (rc) { 2177 printk(KERN_ERR "%s: Error attempting to encode " 2178 "encrypted filename; rc = [%d]\n", __func__, 2179 rc); 2180 kfree((*encoded_name)); 2181 (*encoded_name) = NULL; 2182 (*encoded_name_size) = 0; 2183 } 2184 kfree(filename->encrypted_filename); 2185 kfree(filename); 2186 } else { 2187 rc = ecryptfs_copy_filename(encoded_name, 2188 encoded_name_size, 2189 name, name_size); 2190 } 2191 out: 2192 return rc; 2193 } 2194 2195 /** 2196 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2197 * @plaintext_name: The plaintext name 2198 * @plaintext_name_size: The plaintext name size 2199 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2200 * @name: The filename in cipher text 2201 * @name_size: The cipher text name size 2202 * 2203 * Decrypts and decodes the filename. 2204 * 2205 * Returns zero on error; non-zero otherwise 2206 */ 2207 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2208 size_t *plaintext_name_size, 2209 struct dentry *ecryptfs_dir_dentry, 2210 const char *name, size_t name_size) 2211 { 2212 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2213 &ecryptfs_superblock_to_private( 2214 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat; 2215 char *decoded_name; 2216 size_t decoded_name_size; 2217 size_t packet_size; 2218 int rc = 0; 2219 2220 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 2221 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 2222 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) 2223 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2224 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) { 2225 const char *orig_name = name; 2226 size_t orig_name_size = name_size; 2227 2228 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2229 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2230 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2231 name, name_size); 2232 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2233 if (!decoded_name) { 2234 printk(KERN_ERR "%s: Out of memory whilst attempting " 2235 "to kmalloc [%zd] bytes\n", __func__, 2236 decoded_name_size); 2237 rc = -ENOMEM; 2238 goto out; 2239 } 2240 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2241 name, name_size); 2242 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2243 plaintext_name_size, 2244 &packet_size, 2245 mount_crypt_stat, 2246 decoded_name, 2247 decoded_name_size); 2248 if (rc) { 2249 printk(KERN_INFO "%s: Could not parse tag 70 packet " 2250 "from filename; copying through filename " 2251 "as-is\n", __func__); 2252 rc = ecryptfs_copy_filename(plaintext_name, 2253 plaintext_name_size, 2254 orig_name, orig_name_size); 2255 goto out_free; 2256 } 2257 } else { 2258 rc = ecryptfs_copy_filename(plaintext_name, 2259 plaintext_name_size, 2260 name, name_size); 2261 goto out; 2262 } 2263 out_free: 2264 kfree(decoded_name); 2265 out: 2266 return rc; 2267 } 2268