xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision a09d2831)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
38 
39 static int
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
41 			     struct page *dst_page, int dst_offset,
42 			     struct page *src_page, int src_offset, int size,
43 			     unsigned char *iv);
44 static int
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46 			     struct page *dst_page, int dst_offset,
47 			     struct page *src_page, int src_offset, int size,
48 			     unsigned char *iv);
49 
50 /**
51  * ecryptfs_to_hex
52  * @dst: Buffer to take hex character representation of contents of
53  *       src; must be at least of size (src_size * 2)
54  * @src: Buffer to be converted to a hex string respresentation
55  * @src_size: number of bytes to convert
56  */
57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
58 {
59 	int x;
60 
61 	for (x = 0; x < src_size; x++)
62 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
63 }
64 
65 /**
66  * ecryptfs_from_hex
67  * @dst: Buffer to take the bytes from src hex; must be at least of
68  *       size (src_size / 2)
69  * @src: Buffer to be converted from a hex string respresentation to raw value
70  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71  */
72 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
73 {
74 	int x;
75 	char tmp[3] = { 0, };
76 
77 	for (x = 0; x < dst_size; x++) {
78 		tmp[0] = src[x * 2];
79 		tmp[1] = src[x * 2 + 1];
80 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
81 	}
82 }
83 
84 /**
85  * ecryptfs_calculate_md5 - calculates the md5 of @src
86  * @dst: Pointer to 16 bytes of allocated memory
87  * @crypt_stat: Pointer to crypt_stat struct for the current inode
88  * @src: Data to be md5'd
89  * @len: Length of @src
90  *
91  * Uses the allocated crypto context that crypt_stat references to
92  * generate the MD5 sum of the contents of src.
93  */
94 static int ecryptfs_calculate_md5(char *dst,
95 				  struct ecryptfs_crypt_stat *crypt_stat,
96 				  char *src, int len)
97 {
98 	struct scatterlist sg;
99 	struct hash_desc desc = {
100 		.tfm = crypt_stat->hash_tfm,
101 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
102 	};
103 	int rc = 0;
104 
105 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
106 	sg_init_one(&sg, (u8 *)src, len);
107 	if (!desc.tfm) {
108 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109 					     CRYPTO_ALG_ASYNC);
110 		if (IS_ERR(desc.tfm)) {
111 			rc = PTR_ERR(desc.tfm);
112 			ecryptfs_printk(KERN_ERR, "Error attempting to "
113 					"allocate crypto context; rc = [%d]\n",
114 					rc);
115 			goto out;
116 		}
117 		crypt_stat->hash_tfm = desc.tfm;
118 	}
119 	rc = crypto_hash_init(&desc);
120 	if (rc) {
121 		printk(KERN_ERR
122 		       "%s: Error initializing crypto hash; rc = [%d]\n",
123 		       __func__, rc);
124 		goto out;
125 	}
126 	rc = crypto_hash_update(&desc, &sg, len);
127 	if (rc) {
128 		printk(KERN_ERR
129 		       "%s: Error updating crypto hash; rc = [%d]\n",
130 		       __func__, rc);
131 		goto out;
132 	}
133 	rc = crypto_hash_final(&desc, dst);
134 	if (rc) {
135 		printk(KERN_ERR
136 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
137 		       __func__, rc);
138 		goto out;
139 	}
140 out:
141 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
142 	return rc;
143 }
144 
145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
146 						  char *cipher_name,
147 						  char *chaining_modifier)
148 {
149 	int cipher_name_len = strlen(cipher_name);
150 	int chaining_modifier_len = strlen(chaining_modifier);
151 	int algified_name_len;
152 	int rc;
153 
154 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
155 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
156 	if (!(*algified_name)) {
157 		rc = -ENOMEM;
158 		goto out;
159 	}
160 	snprintf((*algified_name), algified_name_len, "%s(%s)",
161 		 chaining_modifier, cipher_name);
162 	rc = 0;
163 out:
164 	return rc;
165 }
166 
167 /**
168  * ecryptfs_derive_iv
169  * @iv: destination for the derived iv vale
170  * @crypt_stat: Pointer to crypt_stat struct for the current inode
171  * @offset: Offset of the extent whose IV we are to derive
172  *
173  * Generate the initialization vector from the given root IV and page
174  * offset.
175  *
176  * Returns zero on success; non-zero on error.
177  */
178 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
179 		       loff_t offset)
180 {
181 	int rc = 0;
182 	char dst[MD5_DIGEST_SIZE];
183 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
184 
185 	if (unlikely(ecryptfs_verbosity > 0)) {
186 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
187 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
188 	}
189 	/* TODO: It is probably secure to just cast the least
190 	 * significant bits of the root IV into an unsigned long and
191 	 * add the offset to that rather than go through all this
192 	 * hashing business. -Halcrow */
193 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
194 	memset((src + crypt_stat->iv_bytes), 0, 16);
195 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
196 	if (unlikely(ecryptfs_verbosity > 0)) {
197 		ecryptfs_printk(KERN_DEBUG, "source:\n");
198 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
199 	}
200 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
201 				    (crypt_stat->iv_bytes + 16));
202 	if (rc) {
203 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
204 				"MD5 while generating IV for a page\n");
205 		goto out;
206 	}
207 	memcpy(iv, dst, crypt_stat->iv_bytes);
208 	if (unlikely(ecryptfs_verbosity > 0)) {
209 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
210 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
211 	}
212 out:
213 	return rc;
214 }
215 
216 /**
217  * ecryptfs_init_crypt_stat
218  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
219  *
220  * Initialize the crypt_stat structure.
221  */
222 void
223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
224 {
225 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
227 	mutex_init(&crypt_stat->keysig_list_mutex);
228 	mutex_init(&crypt_stat->cs_mutex);
229 	mutex_init(&crypt_stat->cs_tfm_mutex);
230 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
231 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
232 }
233 
234 /**
235  * ecryptfs_destroy_crypt_stat
236  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
237  *
238  * Releases all memory associated with a crypt_stat struct.
239  */
240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
241 {
242 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
243 
244 	if (crypt_stat->tfm)
245 		crypto_free_blkcipher(crypt_stat->tfm);
246 	if (crypt_stat->hash_tfm)
247 		crypto_free_hash(crypt_stat->hash_tfm);
248 	list_for_each_entry_safe(key_sig, key_sig_tmp,
249 				 &crypt_stat->keysig_list, crypt_stat_list) {
250 		list_del(&key_sig->crypt_stat_list);
251 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
252 	}
253 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
254 }
255 
256 void ecryptfs_destroy_mount_crypt_stat(
257 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
258 {
259 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
260 
261 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
262 		return;
263 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
264 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
265 				 &mount_crypt_stat->global_auth_tok_list,
266 				 mount_crypt_stat_list) {
267 		list_del(&auth_tok->mount_crypt_stat_list);
268 		mount_crypt_stat->num_global_auth_toks--;
269 		if (auth_tok->global_auth_tok_key
270 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 			key_put(auth_tok->global_auth_tok_key);
272 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 	}
274 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276 }
277 
278 /**
279  * virt_to_scatterlist
280  * @addr: Virtual address
281  * @size: Size of data; should be an even multiple of the block size
282  * @sg: Pointer to scatterlist array; set to NULL to obtain only
283  *      the number of scatterlist structs required in array
284  * @sg_size: Max array size
285  *
286  * Fills in a scatterlist array with page references for a passed
287  * virtual address.
288  *
289  * Returns the number of scatterlist structs in array used
290  */
291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 			int sg_size)
293 {
294 	int i = 0;
295 	struct page *pg;
296 	int offset;
297 	int remainder_of_page;
298 
299 	sg_init_table(sg, sg_size);
300 
301 	while (size > 0 && i < sg_size) {
302 		pg = virt_to_page(addr);
303 		offset = offset_in_page(addr);
304 		if (sg)
305 			sg_set_page(&sg[i], pg, 0, offset);
306 		remainder_of_page = PAGE_CACHE_SIZE - offset;
307 		if (size >= remainder_of_page) {
308 			if (sg)
309 				sg[i].length = remainder_of_page;
310 			addr += remainder_of_page;
311 			size -= remainder_of_page;
312 		} else {
313 			if (sg)
314 				sg[i].length = size;
315 			addr += size;
316 			size = 0;
317 		}
318 		i++;
319 	}
320 	if (size > 0)
321 		return -ENOMEM;
322 	return i;
323 }
324 
325 /**
326  * encrypt_scatterlist
327  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328  * @dest_sg: Destination of encrypted data
329  * @src_sg: Data to be encrypted
330  * @size: Length of data to be encrypted
331  * @iv: iv to use during encryption
332  *
333  * Returns the number of bytes encrypted; negative value on error
334  */
335 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
336 			       struct scatterlist *dest_sg,
337 			       struct scatterlist *src_sg, int size,
338 			       unsigned char *iv)
339 {
340 	struct blkcipher_desc desc = {
341 		.tfm = crypt_stat->tfm,
342 		.info = iv,
343 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
344 	};
345 	int rc = 0;
346 
347 	BUG_ON(!crypt_stat || !crypt_stat->tfm
348 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
349 	if (unlikely(ecryptfs_verbosity > 0)) {
350 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
351 				crypt_stat->key_size);
352 		ecryptfs_dump_hex(crypt_stat->key,
353 				  crypt_stat->key_size);
354 	}
355 	/* Consider doing this once, when the file is opened */
356 	mutex_lock(&crypt_stat->cs_tfm_mutex);
357 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
358 		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359 					     crypt_stat->key_size);
360 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
361 	}
362 	if (rc) {
363 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
364 				rc);
365 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
366 		rc = -EINVAL;
367 		goto out;
368 	}
369 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
370 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
371 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
372 out:
373 	return rc;
374 }
375 
376 /**
377  * ecryptfs_lower_offset_for_extent
378  *
379  * Convert an eCryptfs page index into a lower byte offset
380  */
381 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
382 					     struct ecryptfs_crypt_stat *crypt_stat)
383 {
384 	(*offset) = (crypt_stat->num_header_bytes_at_front
385 		     + (crypt_stat->extent_size * extent_num));
386 }
387 
388 /**
389  * ecryptfs_encrypt_extent
390  * @enc_extent_page: Allocated page into which to encrypt the data in
391  *                   @page
392  * @crypt_stat: crypt_stat containing cryptographic context for the
393  *              encryption operation
394  * @page: Page containing plaintext data extent to encrypt
395  * @extent_offset: Page extent offset for use in generating IV
396  *
397  * Encrypts one extent of data.
398  *
399  * Return zero on success; non-zero otherwise
400  */
401 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
402 				   struct ecryptfs_crypt_stat *crypt_stat,
403 				   struct page *page,
404 				   unsigned long extent_offset)
405 {
406 	loff_t extent_base;
407 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
408 	int rc;
409 
410 	extent_base = (((loff_t)page->index)
411 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
412 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
413 				(extent_base + extent_offset));
414 	if (rc) {
415 		ecryptfs_printk(KERN_ERR, "Error attempting to "
416 				"derive IV for extent [0x%.16x]; "
417 				"rc = [%d]\n", (extent_base + extent_offset),
418 				rc);
419 		goto out;
420 	}
421 	if (unlikely(ecryptfs_verbosity > 0)) {
422 		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
423 				"with iv:\n");
424 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
425 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
426 				"encryption:\n");
427 		ecryptfs_dump_hex((char *)
428 				  (page_address(page)
429 				   + (extent_offset * crypt_stat->extent_size)),
430 				  8);
431 	}
432 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
433 					  page, (extent_offset
434 						 * crypt_stat->extent_size),
435 					  crypt_stat->extent_size, extent_iv);
436 	if (rc < 0) {
437 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
438 		       "page->index = [%ld], extent_offset = [%ld]; "
439 		       "rc = [%d]\n", __func__, page->index, extent_offset,
440 		       rc);
441 		goto out;
442 	}
443 	rc = 0;
444 	if (unlikely(ecryptfs_verbosity > 0)) {
445 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
446 				"rc = [%d]\n", (extent_base + extent_offset),
447 				rc);
448 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
449 				"encryption:\n");
450 		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
451 	}
452 out:
453 	return rc;
454 }
455 
456 /**
457  * ecryptfs_encrypt_page
458  * @page: Page mapped from the eCryptfs inode for the file; contains
459  *        decrypted content that needs to be encrypted (to a temporary
460  *        page; not in place) and written out to the lower file
461  *
462  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
463  * that eCryptfs pages may straddle the lower pages -- for instance,
464  * if the file was created on a machine with an 8K page size
465  * (resulting in an 8K header), and then the file is copied onto a
466  * host with a 32K page size, then when reading page 0 of the eCryptfs
467  * file, 24K of page 0 of the lower file will be read and decrypted,
468  * and then 8K of page 1 of the lower file will be read and decrypted.
469  *
470  * Returns zero on success; negative on error
471  */
472 int ecryptfs_encrypt_page(struct page *page)
473 {
474 	struct inode *ecryptfs_inode;
475 	struct ecryptfs_crypt_stat *crypt_stat;
476 	char *enc_extent_virt;
477 	struct page *enc_extent_page = NULL;
478 	loff_t extent_offset;
479 	int rc = 0;
480 
481 	ecryptfs_inode = page->mapping->host;
482 	crypt_stat =
483 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
484 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
485 	enc_extent_page = alloc_page(GFP_USER);
486 	if (!enc_extent_page) {
487 		rc = -ENOMEM;
488 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
489 				"encrypted extent\n");
490 		goto out;
491 	}
492 	enc_extent_virt = kmap(enc_extent_page);
493 	for (extent_offset = 0;
494 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
495 	     extent_offset++) {
496 		loff_t offset;
497 
498 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
499 					     extent_offset);
500 		if (rc) {
501 			printk(KERN_ERR "%s: Error encrypting extent; "
502 			       "rc = [%d]\n", __func__, rc);
503 			goto out;
504 		}
505 		ecryptfs_lower_offset_for_extent(
506 			&offset, ((((loff_t)page->index)
507 				   * (PAGE_CACHE_SIZE
508 				      / crypt_stat->extent_size))
509 				  + extent_offset), crypt_stat);
510 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
511 					  offset, crypt_stat->extent_size);
512 		if (rc < 0) {
513 			ecryptfs_printk(KERN_ERR, "Error attempting "
514 					"to write lower page; rc = [%d]"
515 					"\n", rc);
516 			goto out;
517 		}
518 	}
519 	rc = 0;
520 out:
521 	if (enc_extent_page) {
522 		kunmap(enc_extent_page);
523 		__free_page(enc_extent_page);
524 	}
525 	return rc;
526 }
527 
528 static int ecryptfs_decrypt_extent(struct page *page,
529 				   struct ecryptfs_crypt_stat *crypt_stat,
530 				   struct page *enc_extent_page,
531 				   unsigned long extent_offset)
532 {
533 	loff_t extent_base;
534 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
535 	int rc;
536 
537 	extent_base = (((loff_t)page->index)
538 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
539 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
540 				(extent_base + extent_offset));
541 	if (rc) {
542 		ecryptfs_printk(KERN_ERR, "Error attempting to "
543 				"derive IV for extent [0x%.16x]; "
544 				"rc = [%d]\n", (extent_base + extent_offset),
545 				rc);
546 		goto out;
547 	}
548 	if (unlikely(ecryptfs_verbosity > 0)) {
549 		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
550 				"with iv:\n");
551 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
552 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
553 				"decryption:\n");
554 		ecryptfs_dump_hex((char *)
555 				  (page_address(enc_extent_page)
556 				   + (extent_offset * crypt_stat->extent_size)),
557 				  8);
558 	}
559 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
560 					  (extent_offset
561 					   * crypt_stat->extent_size),
562 					  enc_extent_page, 0,
563 					  crypt_stat->extent_size, extent_iv);
564 	if (rc < 0) {
565 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
566 		       "page->index = [%ld], extent_offset = [%ld]; "
567 		       "rc = [%d]\n", __func__, page->index, extent_offset,
568 		       rc);
569 		goto out;
570 	}
571 	rc = 0;
572 	if (unlikely(ecryptfs_verbosity > 0)) {
573 		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
574 				"rc = [%d]\n", (extent_base + extent_offset),
575 				rc);
576 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
577 				"decryption:\n");
578 		ecryptfs_dump_hex((char *)(page_address(page)
579 					   + (extent_offset
580 					      * crypt_stat->extent_size)), 8);
581 	}
582 out:
583 	return rc;
584 }
585 
586 /**
587  * ecryptfs_decrypt_page
588  * @page: Page mapped from the eCryptfs inode for the file; data read
589  *        and decrypted from the lower file will be written into this
590  *        page
591  *
592  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
593  * that eCryptfs pages may straddle the lower pages -- for instance,
594  * if the file was created on a machine with an 8K page size
595  * (resulting in an 8K header), and then the file is copied onto a
596  * host with a 32K page size, then when reading page 0 of the eCryptfs
597  * file, 24K of page 0 of the lower file will be read and decrypted,
598  * and then 8K of page 1 of the lower file will be read and decrypted.
599  *
600  * Returns zero on success; negative on error
601  */
602 int ecryptfs_decrypt_page(struct page *page)
603 {
604 	struct inode *ecryptfs_inode;
605 	struct ecryptfs_crypt_stat *crypt_stat;
606 	char *enc_extent_virt;
607 	struct page *enc_extent_page = NULL;
608 	unsigned long extent_offset;
609 	int rc = 0;
610 
611 	ecryptfs_inode = page->mapping->host;
612 	crypt_stat =
613 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
614 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
615 	enc_extent_page = alloc_page(GFP_USER);
616 	if (!enc_extent_page) {
617 		rc = -ENOMEM;
618 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
619 				"encrypted extent\n");
620 		goto out;
621 	}
622 	enc_extent_virt = kmap(enc_extent_page);
623 	for (extent_offset = 0;
624 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
625 	     extent_offset++) {
626 		loff_t offset;
627 
628 		ecryptfs_lower_offset_for_extent(
629 			&offset, ((page->index * (PAGE_CACHE_SIZE
630 						  / crypt_stat->extent_size))
631 				  + extent_offset), crypt_stat);
632 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
633 					 crypt_stat->extent_size,
634 					 ecryptfs_inode);
635 		if (rc < 0) {
636 			ecryptfs_printk(KERN_ERR, "Error attempting "
637 					"to read lower page; rc = [%d]"
638 					"\n", rc);
639 			goto out;
640 		}
641 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
642 					     extent_offset);
643 		if (rc) {
644 			printk(KERN_ERR "%s: Error encrypting extent; "
645 			       "rc = [%d]\n", __func__, rc);
646 			goto out;
647 		}
648 	}
649 out:
650 	if (enc_extent_page) {
651 		kunmap(enc_extent_page);
652 		__free_page(enc_extent_page);
653 	}
654 	return rc;
655 }
656 
657 /**
658  * decrypt_scatterlist
659  * @crypt_stat: Cryptographic context
660  * @dest_sg: The destination scatterlist to decrypt into
661  * @src_sg: The source scatterlist to decrypt from
662  * @size: The number of bytes to decrypt
663  * @iv: The initialization vector to use for the decryption
664  *
665  * Returns the number of bytes decrypted; negative value on error
666  */
667 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
668 			       struct scatterlist *dest_sg,
669 			       struct scatterlist *src_sg, int size,
670 			       unsigned char *iv)
671 {
672 	struct blkcipher_desc desc = {
673 		.tfm = crypt_stat->tfm,
674 		.info = iv,
675 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
676 	};
677 	int rc = 0;
678 
679 	/* Consider doing this once, when the file is opened */
680 	mutex_lock(&crypt_stat->cs_tfm_mutex);
681 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
682 				     crypt_stat->key_size);
683 	if (rc) {
684 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
685 				rc);
686 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
687 		rc = -EINVAL;
688 		goto out;
689 	}
690 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
691 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
692 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
693 	if (rc) {
694 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
695 				rc);
696 		goto out;
697 	}
698 	rc = size;
699 out:
700 	return rc;
701 }
702 
703 /**
704  * ecryptfs_encrypt_page_offset
705  * @crypt_stat: The cryptographic context
706  * @dst_page: The page to encrypt into
707  * @dst_offset: The offset in the page to encrypt into
708  * @src_page: The page to encrypt from
709  * @src_offset: The offset in the page to encrypt from
710  * @size: The number of bytes to encrypt
711  * @iv: The initialization vector to use for the encryption
712  *
713  * Returns the number of bytes encrypted
714  */
715 static int
716 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
717 			     struct page *dst_page, int dst_offset,
718 			     struct page *src_page, int src_offset, int size,
719 			     unsigned char *iv)
720 {
721 	struct scatterlist src_sg, dst_sg;
722 
723 	sg_init_table(&src_sg, 1);
724 	sg_init_table(&dst_sg, 1);
725 
726 	sg_set_page(&src_sg, src_page, size, src_offset);
727 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
728 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
729 }
730 
731 /**
732  * ecryptfs_decrypt_page_offset
733  * @crypt_stat: The cryptographic context
734  * @dst_page: The page to decrypt into
735  * @dst_offset: The offset in the page to decrypt into
736  * @src_page: The page to decrypt from
737  * @src_offset: The offset in the page to decrypt from
738  * @size: The number of bytes to decrypt
739  * @iv: The initialization vector to use for the decryption
740  *
741  * Returns the number of bytes decrypted
742  */
743 static int
744 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
745 			     struct page *dst_page, int dst_offset,
746 			     struct page *src_page, int src_offset, int size,
747 			     unsigned char *iv)
748 {
749 	struct scatterlist src_sg, dst_sg;
750 
751 	sg_init_table(&src_sg, 1);
752 	sg_set_page(&src_sg, src_page, size, src_offset);
753 
754 	sg_init_table(&dst_sg, 1);
755 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
756 
757 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
758 }
759 
760 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
761 
762 /**
763  * ecryptfs_init_crypt_ctx
764  * @crypt_stat: Uninitilized crypt stats structure
765  *
766  * Initialize the crypto context.
767  *
768  * TODO: Performance: Keep a cache of initialized cipher contexts;
769  * only init if needed
770  */
771 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
772 {
773 	char *full_alg_name;
774 	int rc = -EINVAL;
775 
776 	if (!crypt_stat->cipher) {
777 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
778 		goto out;
779 	}
780 	ecryptfs_printk(KERN_DEBUG,
781 			"Initializing cipher [%s]; strlen = [%d]; "
782 			"key_size_bits = [%d]\n",
783 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
784 			crypt_stat->key_size << 3);
785 	if (crypt_stat->tfm) {
786 		rc = 0;
787 		goto out;
788 	}
789 	mutex_lock(&crypt_stat->cs_tfm_mutex);
790 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
791 						    crypt_stat->cipher, "cbc");
792 	if (rc)
793 		goto out_unlock;
794 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
795 						 CRYPTO_ALG_ASYNC);
796 	kfree(full_alg_name);
797 	if (IS_ERR(crypt_stat->tfm)) {
798 		rc = PTR_ERR(crypt_stat->tfm);
799 		crypt_stat->tfm = NULL;
800 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
801 				"Error initializing cipher [%s]\n",
802 				crypt_stat->cipher);
803 		goto out_unlock;
804 	}
805 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
806 	rc = 0;
807 out_unlock:
808 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
809 out:
810 	return rc;
811 }
812 
813 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
814 {
815 	int extent_size_tmp;
816 
817 	crypt_stat->extent_mask = 0xFFFFFFFF;
818 	crypt_stat->extent_shift = 0;
819 	if (crypt_stat->extent_size == 0)
820 		return;
821 	extent_size_tmp = crypt_stat->extent_size;
822 	while ((extent_size_tmp & 0x01) == 0) {
823 		extent_size_tmp >>= 1;
824 		crypt_stat->extent_mask <<= 1;
825 		crypt_stat->extent_shift++;
826 	}
827 }
828 
829 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
830 {
831 	/* Default values; may be overwritten as we are parsing the
832 	 * packets. */
833 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
834 	set_extent_mask_and_shift(crypt_stat);
835 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
836 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
837 		crypt_stat->num_header_bytes_at_front = 0;
838 	else {
839 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
840 			crypt_stat->num_header_bytes_at_front =
841 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
842 		else
843 			crypt_stat->num_header_bytes_at_front =	PAGE_CACHE_SIZE;
844 	}
845 }
846 
847 /**
848  * ecryptfs_compute_root_iv
849  * @crypt_stats
850  *
851  * On error, sets the root IV to all 0's.
852  */
853 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
854 {
855 	int rc = 0;
856 	char dst[MD5_DIGEST_SIZE];
857 
858 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
859 	BUG_ON(crypt_stat->iv_bytes <= 0);
860 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
861 		rc = -EINVAL;
862 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
863 				"cannot generate root IV\n");
864 		goto out;
865 	}
866 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
867 				    crypt_stat->key_size);
868 	if (rc) {
869 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
870 				"MD5 while generating root IV\n");
871 		goto out;
872 	}
873 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
874 out:
875 	if (rc) {
876 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
877 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
878 	}
879 	return rc;
880 }
881 
882 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
883 {
884 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
885 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
886 	ecryptfs_compute_root_iv(crypt_stat);
887 	if (unlikely(ecryptfs_verbosity > 0)) {
888 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
889 		ecryptfs_dump_hex(crypt_stat->key,
890 				  crypt_stat->key_size);
891 	}
892 }
893 
894 /**
895  * ecryptfs_copy_mount_wide_flags_to_inode_flags
896  * @crypt_stat: The inode's cryptographic context
897  * @mount_crypt_stat: The mount point's cryptographic context
898  *
899  * This function propagates the mount-wide flags to individual inode
900  * flags.
901  */
902 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
903 	struct ecryptfs_crypt_stat *crypt_stat,
904 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
905 {
906 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
907 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
908 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
909 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
910 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
911 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
912 		if (mount_crypt_stat->flags
913 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
914 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
915 		else if (mount_crypt_stat->flags
916 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
917 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
918 	}
919 }
920 
921 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
922 	struct ecryptfs_crypt_stat *crypt_stat,
923 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
924 {
925 	struct ecryptfs_global_auth_tok *global_auth_tok;
926 	int rc = 0;
927 
928 	mutex_lock(&crypt_stat->keysig_list_mutex);
929 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
930 
931 	list_for_each_entry(global_auth_tok,
932 			    &mount_crypt_stat->global_auth_tok_list,
933 			    mount_crypt_stat_list) {
934 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
935 			continue;
936 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
937 		if (rc) {
938 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
939 			goto out;
940 		}
941 	}
942 
943 out:
944 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
945 	mutex_unlock(&crypt_stat->keysig_list_mutex);
946 	return rc;
947 }
948 
949 /**
950  * ecryptfs_set_default_crypt_stat_vals
951  * @crypt_stat: The inode's cryptographic context
952  * @mount_crypt_stat: The mount point's cryptographic context
953  *
954  * Default values in the event that policy does not override them.
955  */
956 static void ecryptfs_set_default_crypt_stat_vals(
957 	struct ecryptfs_crypt_stat *crypt_stat,
958 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
959 {
960 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
961 						      mount_crypt_stat);
962 	ecryptfs_set_default_sizes(crypt_stat);
963 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
964 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
965 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
966 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
967 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
968 }
969 
970 /**
971  * ecryptfs_new_file_context
972  * @ecryptfs_dentry: The eCryptfs dentry
973  *
974  * If the crypto context for the file has not yet been established,
975  * this is where we do that.  Establishing a new crypto context
976  * involves the following decisions:
977  *  - What cipher to use?
978  *  - What set of authentication tokens to use?
979  * Here we just worry about getting enough information into the
980  * authentication tokens so that we know that they are available.
981  * We associate the available authentication tokens with the new file
982  * via the set of signatures in the crypt_stat struct.  Later, when
983  * the headers are actually written out, we may again defer to
984  * userspace to perform the encryption of the session key; for the
985  * foreseeable future, this will be the case with public key packets.
986  *
987  * Returns zero on success; non-zero otherwise
988  */
989 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
990 {
991 	struct ecryptfs_crypt_stat *crypt_stat =
992 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
993 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
994 	    &ecryptfs_superblock_to_private(
995 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
996 	int cipher_name_len;
997 	int rc = 0;
998 
999 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1000 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1001 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1002 						      mount_crypt_stat);
1003 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1004 							 mount_crypt_stat);
1005 	if (rc) {
1006 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1007 		       "to the inode key sigs; rc = [%d]\n", rc);
1008 		goto out;
1009 	}
1010 	cipher_name_len =
1011 		strlen(mount_crypt_stat->global_default_cipher_name);
1012 	memcpy(crypt_stat->cipher,
1013 	       mount_crypt_stat->global_default_cipher_name,
1014 	       cipher_name_len);
1015 	crypt_stat->cipher[cipher_name_len] = '\0';
1016 	crypt_stat->key_size =
1017 		mount_crypt_stat->global_default_cipher_key_size;
1018 	ecryptfs_generate_new_key(crypt_stat);
1019 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1020 	if (rc)
1021 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1022 				"context for cipher [%s]: rc = [%d]\n",
1023 				crypt_stat->cipher, rc);
1024 out:
1025 	return rc;
1026 }
1027 
1028 /**
1029  * contains_ecryptfs_marker - check for the ecryptfs marker
1030  * @data: The data block in which to check
1031  *
1032  * Returns one if marker found; zero if not found
1033  */
1034 static int contains_ecryptfs_marker(char *data)
1035 {
1036 	u32 m_1, m_2;
1037 
1038 	m_1 = get_unaligned_be32(data);
1039 	m_2 = get_unaligned_be32(data + 4);
1040 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1041 		return 1;
1042 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1043 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1044 			MAGIC_ECRYPTFS_MARKER);
1045 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1046 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1047 	return 0;
1048 }
1049 
1050 struct ecryptfs_flag_map_elem {
1051 	u32 file_flag;
1052 	u32 local_flag;
1053 };
1054 
1055 /* Add support for additional flags by adding elements here. */
1056 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1057 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1058 	{0x00000002, ECRYPTFS_ENCRYPTED},
1059 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1060 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1061 };
1062 
1063 /**
1064  * ecryptfs_process_flags
1065  * @crypt_stat: The cryptographic context
1066  * @page_virt: Source data to be parsed
1067  * @bytes_read: Updated with the number of bytes read
1068  *
1069  * Returns zero on success; non-zero if the flag set is invalid
1070  */
1071 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1072 				  char *page_virt, int *bytes_read)
1073 {
1074 	int rc = 0;
1075 	int i;
1076 	u32 flags;
1077 
1078 	flags = get_unaligned_be32(page_virt);
1079 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1080 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1081 		if (flags & ecryptfs_flag_map[i].file_flag) {
1082 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1083 		} else
1084 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1085 	/* Version is in top 8 bits of the 32-bit flag vector */
1086 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1087 	(*bytes_read) = 4;
1088 	return rc;
1089 }
1090 
1091 /**
1092  * write_ecryptfs_marker
1093  * @page_virt: The pointer to in a page to begin writing the marker
1094  * @written: Number of bytes written
1095  *
1096  * Marker = 0x3c81b7f5
1097  */
1098 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1099 {
1100 	u32 m_1, m_2;
1101 
1102 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1103 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1104 	put_unaligned_be32(m_1, page_virt);
1105 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1106 	put_unaligned_be32(m_2, page_virt);
1107 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1108 }
1109 
1110 static void
1111 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1112 		     size_t *written)
1113 {
1114 	u32 flags = 0;
1115 	int i;
1116 
1117 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1118 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1119 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1120 			flags |= ecryptfs_flag_map[i].file_flag;
1121 	/* Version is in top 8 bits of the 32-bit flag vector */
1122 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1123 	put_unaligned_be32(flags, page_virt);
1124 	(*written) = 4;
1125 }
1126 
1127 struct ecryptfs_cipher_code_str_map_elem {
1128 	char cipher_str[16];
1129 	u8 cipher_code;
1130 };
1131 
1132 /* Add support for additional ciphers by adding elements here. The
1133  * cipher_code is whatever OpenPGP applicatoins use to identify the
1134  * ciphers. List in order of probability. */
1135 static struct ecryptfs_cipher_code_str_map_elem
1136 ecryptfs_cipher_code_str_map[] = {
1137 	{"aes",RFC2440_CIPHER_AES_128 },
1138 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1139 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1140 	{"cast5", RFC2440_CIPHER_CAST_5},
1141 	{"twofish", RFC2440_CIPHER_TWOFISH},
1142 	{"cast6", RFC2440_CIPHER_CAST_6},
1143 	{"aes", RFC2440_CIPHER_AES_192},
1144 	{"aes", RFC2440_CIPHER_AES_256}
1145 };
1146 
1147 /**
1148  * ecryptfs_code_for_cipher_string
1149  * @cipher_name: The string alias for the cipher
1150  * @key_bytes: Length of key in bytes; used for AES code selection
1151  *
1152  * Returns zero on no match, or the cipher code on match
1153  */
1154 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1155 {
1156 	int i;
1157 	u8 code = 0;
1158 	struct ecryptfs_cipher_code_str_map_elem *map =
1159 		ecryptfs_cipher_code_str_map;
1160 
1161 	if (strcmp(cipher_name, "aes") == 0) {
1162 		switch (key_bytes) {
1163 		case 16:
1164 			code = RFC2440_CIPHER_AES_128;
1165 			break;
1166 		case 24:
1167 			code = RFC2440_CIPHER_AES_192;
1168 			break;
1169 		case 32:
1170 			code = RFC2440_CIPHER_AES_256;
1171 		}
1172 	} else {
1173 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1174 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1175 				code = map[i].cipher_code;
1176 				break;
1177 			}
1178 	}
1179 	return code;
1180 }
1181 
1182 /**
1183  * ecryptfs_cipher_code_to_string
1184  * @str: Destination to write out the cipher name
1185  * @cipher_code: The code to convert to cipher name string
1186  *
1187  * Returns zero on success
1188  */
1189 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1190 {
1191 	int rc = 0;
1192 	int i;
1193 
1194 	str[0] = '\0';
1195 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1196 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1197 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1198 	if (str[0] == '\0') {
1199 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1200 				"[%d]\n", cipher_code);
1201 		rc = -EINVAL;
1202 	}
1203 	return rc;
1204 }
1205 
1206 int ecryptfs_read_and_validate_header_region(char *data,
1207 					     struct inode *ecryptfs_inode)
1208 {
1209 	struct ecryptfs_crypt_stat *crypt_stat =
1210 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1211 	int rc;
1212 
1213 	if (crypt_stat->extent_size == 0)
1214 		crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
1215 	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1216 				 ecryptfs_inode);
1217 	if (rc < 0) {
1218 		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1219 		       __func__, rc);
1220 		goto out;
1221 	}
1222 	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1223 		rc = -EINVAL;
1224 	} else
1225 		rc = 0;
1226 out:
1227 	return rc;
1228 }
1229 
1230 void
1231 ecryptfs_write_header_metadata(char *virt,
1232 			       struct ecryptfs_crypt_stat *crypt_stat,
1233 			       size_t *written)
1234 {
1235 	u32 header_extent_size;
1236 	u16 num_header_extents_at_front;
1237 
1238 	header_extent_size = (u32)crypt_stat->extent_size;
1239 	num_header_extents_at_front =
1240 		(u16)(crypt_stat->num_header_bytes_at_front
1241 		      / crypt_stat->extent_size);
1242 	put_unaligned_be32(header_extent_size, virt);
1243 	virt += 4;
1244 	put_unaligned_be16(num_header_extents_at_front, virt);
1245 	(*written) = 6;
1246 }
1247 
1248 struct kmem_cache *ecryptfs_header_cache_1;
1249 struct kmem_cache *ecryptfs_header_cache_2;
1250 
1251 /**
1252  * ecryptfs_write_headers_virt
1253  * @page_virt: The virtual address to write the headers to
1254  * @max: The size of memory allocated at page_virt
1255  * @size: Set to the number of bytes written by this function
1256  * @crypt_stat: The cryptographic context
1257  * @ecryptfs_dentry: The eCryptfs dentry
1258  *
1259  * Format version: 1
1260  *
1261  *   Header Extent:
1262  *     Octets 0-7:        Unencrypted file size (big-endian)
1263  *     Octets 8-15:       eCryptfs special marker
1264  *     Octets 16-19:      Flags
1265  *      Octet 16:         File format version number (between 0 and 255)
1266  *      Octets 17-18:     Reserved
1267  *      Octet 19:         Bit 1 (lsb): Reserved
1268  *                        Bit 2: Encrypted?
1269  *                        Bits 3-8: Reserved
1270  *     Octets 20-23:      Header extent size (big-endian)
1271  *     Octets 24-25:      Number of header extents at front of file
1272  *                        (big-endian)
1273  *     Octet  26:         Begin RFC 2440 authentication token packet set
1274  *   Data Extent 0:
1275  *     Lower data (CBC encrypted)
1276  *   Data Extent 1:
1277  *     Lower data (CBC encrypted)
1278  *   ...
1279  *
1280  * Returns zero on success
1281  */
1282 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1283 				       size_t *size,
1284 				       struct ecryptfs_crypt_stat *crypt_stat,
1285 				       struct dentry *ecryptfs_dentry)
1286 {
1287 	int rc;
1288 	size_t written;
1289 	size_t offset;
1290 
1291 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1292 	write_ecryptfs_marker((page_virt + offset), &written);
1293 	offset += written;
1294 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1295 	offset += written;
1296 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1297 				       &written);
1298 	offset += written;
1299 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1300 					      ecryptfs_dentry, &written,
1301 					      max - offset);
1302 	if (rc)
1303 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1304 				"set; rc = [%d]\n", rc);
1305 	if (size) {
1306 		offset += written;
1307 		*size = offset;
1308 	}
1309 	return rc;
1310 }
1311 
1312 static int
1313 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1314 				    char *virt, size_t virt_len)
1315 {
1316 	int rc;
1317 
1318 	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1319 				  0, virt_len);
1320 	if (rc < 0)
1321 		printk(KERN_ERR "%s: Error attempting to write header "
1322 		       "information to lower file; rc = [%d]\n", __func__, rc);
1323 	else
1324 		rc = 0;
1325 	return rc;
1326 }
1327 
1328 static int
1329 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1330 				 char *page_virt, size_t size)
1331 {
1332 	int rc;
1333 
1334 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1335 			       size, 0);
1336 	return rc;
1337 }
1338 
1339 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1340 					       unsigned int order)
1341 {
1342 	struct page *page;
1343 
1344 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1345 	if (page)
1346 		return (unsigned long) page_address(page);
1347 	return 0;
1348 }
1349 
1350 /**
1351  * ecryptfs_write_metadata
1352  * @ecryptfs_dentry: The eCryptfs dentry
1353  *
1354  * Write the file headers out.  This will likely involve a userspace
1355  * callout, in which the session key is encrypted with one or more
1356  * public keys and/or the passphrase necessary to do the encryption is
1357  * retrieved via a prompt.  Exactly what happens at this point should
1358  * be policy-dependent.
1359  *
1360  * Returns zero on success; non-zero on error
1361  */
1362 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1363 {
1364 	struct ecryptfs_crypt_stat *crypt_stat =
1365 		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1366 	unsigned int order;
1367 	char *virt;
1368 	size_t virt_len;
1369 	size_t size = 0;
1370 	int rc = 0;
1371 
1372 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1373 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1374 			printk(KERN_ERR "Key is invalid; bailing out\n");
1375 			rc = -EINVAL;
1376 			goto out;
1377 		}
1378 	} else {
1379 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1380 		       __func__);
1381 		rc = -EINVAL;
1382 		goto out;
1383 	}
1384 	virt_len = crypt_stat->num_header_bytes_at_front;
1385 	order = get_order(virt_len);
1386 	/* Released in this function */
1387 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1388 	if (!virt) {
1389 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1390 		rc = -ENOMEM;
1391 		goto out;
1392 	}
1393 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1394 					 ecryptfs_dentry);
1395 	if (unlikely(rc)) {
1396 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1397 		       __func__, rc);
1398 		goto out_free;
1399 	}
1400 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1401 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1402 						      size);
1403 	else
1404 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1405 							 virt_len);
1406 	if (rc) {
1407 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1408 		       "rc = [%d]\n", __func__, rc);
1409 		goto out_free;
1410 	}
1411 out_free:
1412 	free_pages((unsigned long)virt, order);
1413 out:
1414 	return rc;
1415 }
1416 
1417 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1418 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1419 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1420 				 char *virt, int *bytes_read,
1421 				 int validate_header_size)
1422 {
1423 	int rc = 0;
1424 	u32 header_extent_size;
1425 	u16 num_header_extents_at_front;
1426 
1427 	header_extent_size = get_unaligned_be32(virt);
1428 	virt += sizeof(__be32);
1429 	num_header_extents_at_front = get_unaligned_be16(virt);
1430 	crypt_stat->num_header_bytes_at_front =
1431 		(((size_t)num_header_extents_at_front
1432 		  * (size_t)header_extent_size));
1433 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1434 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1435 	    && (crypt_stat->num_header_bytes_at_front
1436 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1437 		rc = -EINVAL;
1438 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1439 		       crypt_stat->num_header_bytes_at_front);
1440 	}
1441 	return rc;
1442 }
1443 
1444 /**
1445  * set_default_header_data
1446  * @crypt_stat: The cryptographic context
1447  *
1448  * For version 0 file format; this function is only for backwards
1449  * compatibility for files created with the prior versions of
1450  * eCryptfs.
1451  */
1452 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1453 {
1454 	crypt_stat->num_header_bytes_at_front =
1455 		ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1456 }
1457 
1458 /**
1459  * ecryptfs_read_headers_virt
1460  * @page_virt: The virtual address into which to read the headers
1461  * @crypt_stat: The cryptographic context
1462  * @ecryptfs_dentry: The eCryptfs dentry
1463  * @validate_header_size: Whether to validate the header size while reading
1464  *
1465  * Read/parse the header data. The header format is detailed in the
1466  * comment block for the ecryptfs_write_headers_virt() function.
1467  *
1468  * Returns zero on success
1469  */
1470 static int ecryptfs_read_headers_virt(char *page_virt,
1471 				      struct ecryptfs_crypt_stat *crypt_stat,
1472 				      struct dentry *ecryptfs_dentry,
1473 				      int validate_header_size)
1474 {
1475 	int rc = 0;
1476 	int offset;
1477 	int bytes_read;
1478 
1479 	ecryptfs_set_default_sizes(crypt_stat);
1480 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1481 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1482 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1483 	rc = contains_ecryptfs_marker(page_virt + offset);
1484 	if (rc == 0) {
1485 		rc = -EINVAL;
1486 		goto out;
1487 	}
1488 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1489 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1490 				    &bytes_read);
1491 	if (rc) {
1492 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1493 		goto out;
1494 	}
1495 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1496 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1497 				"file version [%d] is supported by this "
1498 				"version of eCryptfs\n",
1499 				crypt_stat->file_version,
1500 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1501 		rc = -EINVAL;
1502 		goto out;
1503 	}
1504 	offset += bytes_read;
1505 	if (crypt_stat->file_version >= 1) {
1506 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1507 					   &bytes_read, validate_header_size);
1508 		if (rc) {
1509 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1510 					"metadata; rc = [%d]\n", rc);
1511 		}
1512 		offset += bytes_read;
1513 	} else
1514 		set_default_header_data(crypt_stat);
1515 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1516 				       ecryptfs_dentry);
1517 out:
1518 	return rc;
1519 }
1520 
1521 /**
1522  * ecryptfs_read_xattr_region
1523  * @page_virt: The vitual address into which to read the xattr data
1524  * @ecryptfs_inode: The eCryptfs inode
1525  *
1526  * Attempts to read the crypto metadata from the extended attribute
1527  * region of the lower file.
1528  *
1529  * Returns zero on success; non-zero on error
1530  */
1531 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1532 {
1533 	struct dentry *lower_dentry =
1534 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1535 	ssize_t size;
1536 	int rc = 0;
1537 
1538 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1539 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1540 	if (size < 0) {
1541 		if (unlikely(ecryptfs_verbosity > 0))
1542 			printk(KERN_INFO "Error attempting to read the [%s] "
1543 			       "xattr from the lower file; return value = "
1544 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1545 		rc = -EINVAL;
1546 		goto out;
1547 	}
1548 out:
1549 	return rc;
1550 }
1551 
1552 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1553 					    struct dentry *ecryptfs_dentry)
1554 {
1555 	int rc;
1556 
1557 	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1558 	if (rc)
1559 		goto out;
1560 	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
1561 		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1562 			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1563 		rc = -EINVAL;
1564 	}
1565 out:
1566 	return rc;
1567 }
1568 
1569 /**
1570  * ecryptfs_read_metadata
1571  *
1572  * Common entry point for reading file metadata. From here, we could
1573  * retrieve the header information from the header region of the file,
1574  * the xattr region of the file, or some other repostory that is
1575  * stored separately from the file itself. The current implementation
1576  * supports retrieving the metadata information from the file contents
1577  * and from the xattr region.
1578  *
1579  * Returns zero if valid headers found and parsed; non-zero otherwise
1580  */
1581 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1582 {
1583 	int rc = 0;
1584 	char *page_virt = NULL;
1585 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1586 	struct ecryptfs_crypt_stat *crypt_stat =
1587 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1588 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1589 		&ecryptfs_superblock_to_private(
1590 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1591 
1592 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1593 						      mount_crypt_stat);
1594 	/* Read the first page from the underlying file */
1595 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1596 	if (!page_virt) {
1597 		rc = -ENOMEM;
1598 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1599 		       __func__);
1600 		goto out;
1601 	}
1602 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1603 				 ecryptfs_inode);
1604 	if (rc >= 0)
1605 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1606 						ecryptfs_dentry,
1607 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1608 	if (rc) {
1609 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1610 		if (rc) {
1611 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1612 			       "file header region or xattr region\n");
1613 			rc = -EINVAL;
1614 			goto out;
1615 		}
1616 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1617 						ecryptfs_dentry,
1618 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1619 		if (rc) {
1620 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1621 			       "file xattr region either\n");
1622 			rc = -EINVAL;
1623 		}
1624 		if (crypt_stat->mount_crypt_stat->flags
1625 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1626 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1627 		} else {
1628 			printk(KERN_WARNING "Attempt to access file with "
1629 			       "crypto metadata only in the extended attribute "
1630 			       "region, but eCryptfs was mounted without "
1631 			       "xattr support enabled. eCryptfs will not treat "
1632 			       "this like an encrypted file.\n");
1633 			rc = -EINVAL;
1634 		}
1635 	}
1636 out:
1637 	if (page_virt) {
1638 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1639 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1640 	}
1641 	return rc;
1642 }
1643 
1644 /**
1645  * ecryptfs_encrypt_filename - encrypt filename
1646  *
1647  * CBC-encrypts the filename. We do not want to encrypt the same
1648  * filename with the same key and IV, which may happen with hard
1649  * links, so we prepend random bits to each filename.
1650  *
1651  * Returns zero on success; non-zero otherwise
1652  */
1653 static int
1654 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1655 			  struct ecryptfs_crypt_stat *crypt_stat,
1656 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1657 {
1658 	int rc = 0;
1659 
1660 	filename->encrypted_filename = NULL;
1661 	filename->encrypted_filename_size = 0;
1662 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1663 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1664 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1665 		size_t packet_size;
1666 		size_t remaining_bytes;
1667 
1668 		rc = ecryptfs_write_tag_70_packet(
1669 			NULL, NULL,
1670 			&filename->encrypted_filename_size,
1671 			mount_crypt_stat, NULL,
1672 			filename->filename_size);
1673 		if (rc) {
1674 			printk(KERN_ERR "%s: Error attempting to get packet "
1675 			       "size for tag 72; rc = [%d]\n", __func__,
1676 			       rc);
1677 			filename->encrypted_filename_size = 0;
1678 			goto out;
1679 		}
1680 		filename->encrypted_filename =
1681 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1682 		if (!filename->encrypted_filename) {
1683 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1684 			       "to kmalloc [%zd] bytes\n", __func__,
1685 			       filename->encrypted_filename_size);
1686 			rc = -ENOMEM;
1687 			goto out;
1688 		}
1689 		remaining_bytes = filename->encrypted_filename_size;
1690 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1691 						  &remaining_bytes,
1692 						  &packet_size,
1693 						  mount_crypt_stat,
1694 						  filename->filename,
1695 						  filename->filename_size);
1696 		if (rc) {
1697 			printk(KERN_ERR "%s: Error attempting to generate "
1698 			       "tag 70 packet; rc = [%d]\n", __func__,
1699 			       rc);
1700 			kfree(filename->encrypted_filename);
1701 			filename->encrypted_filename = NULL;
1702 			filename->encrypted_filename_size = 0;
1703 			goto out;
1704 		}
1705 		filename->encrypted_filename_size = packet_size;
1706 	} else {
1707 		printk(KERN_ERR "%s: No support for requested filename "
1708 		       "encryption method in this release\n", __func__);
1709 		rc = -EOPNOTSUPP;
1710 		goto out;
1711 	}
1712 out:
1713 	return rc;
1714 }
1715 
1716 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1717 				  const char *name, size_t name_size)
1718 {
1719 	int rc = 0;
1720 
1721 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1722 	if (!(*copied_name)) {
1723 		rc = -ENOMEM;
1724 		goto out;
1725 	}
1726 	memcpy((void *)(*copied_name), (void *)name, name_size);
1727 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1728 						 * in printing out the
1729 						 * string in debug
1730 						 * messages */
1731 	(*copied_name_size) = name_size;
1732 out:
1733 	return rc;
1734 }
1735 
1736 /**
1737  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1738  * @key_tfm: Crypto context for key material, set by this function
1739  * @cipher_name: Name of the cipher
1740  * @key_size: Size of the key in bytes
1741  *
1742  * Returns zero on success. Any crypto_tfm structs allocated here
1743  * should be released by other functions, such as on a superblock put
1744  * event, regardless of whether this function succeeds for fails.
1745  */
1746 static int
1747 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1748 			    char *cipher_name, size_t *key_size)
1749 {
1750 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1751 	char *full_alg_name;
1752 	int rc;
1753 
1754 	*key_tfm = NULL;
1755 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1756 		rc = -EINVAL;
1757 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1758 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1759 		goto out;
1760 	}
1761 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1762 						    "ecb");
1763 	if (rc)
1764 		goto out;
1765 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1766 	kfree(full_alg_name);
1767 	if (IS_ERR(*key_tfm)) {
1768 		rc = PTR_ERR(*key_tfm);
1769 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1770 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1771 		goto out;
1772 	}
1773 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1774 	if (*key_size == 0) {
1775 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1776 
1777 		*key_size = alg->max_keysize;
1778 	}
1779 	get_random_bytes(dummy_key, *key_size);
1780 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1781 	if (rc) {
1782 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1783 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1784 		       rc);
1785 		rc = -EINVAL;
1786 		goto out;
1787 	}
1788 out:
1789 	return rc;
1790 }
1791 
1792 struct kmem_cache *ecryptfs_key_tfm_cache;
1793 static struct list_head key_tfm_list;
1794 struct mutex key_tfm_list_mutex;
1795 
1796 int ecryptfs_init_crypto(void)
1797 {
1798 	mutex_init(&key_tfm_list_mutex);
1799 	INIT_LIST_HEAD(&key_tfm_list);
1800 	return 0;
1801 }
1802 
1803 /**
1804  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1805  *
1806  * Called only at module unload time
1807  */
1808 int ecryptfs_destroy_crypto(void)
1809 {
1810 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1811 
1812 	mutex_lock(&key_tfm_list_mutex);
1813 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1814 				 key_tfm_list) {
1815 		list_del(&key_tfm->key_tfm_list);
1816 		if (key_tfm->key_tfm)
1817 			crypto_free_blkcipher(key_tfm->key_tfm);
1818 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1819 	}
1820 	mutex_unlock(&key_tfm_list_mutex);
1821 	return 0;
1822 }
1823 
1824 int
1825 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1826 			 size_t key_size)
1827 {
1828 	struct ecryptfs_key_tfm *tmp_tfm;
1829 	int rc = 0;
1830 
1831 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1832 
1833 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1834 	if (key_tfm != NULL)
1835 		(*key_tfm) = tmp_tfm;
1836 	if (!tmp_tfm) {
1837 		rc = -ENOMEM;
1838 		printk(KERN_ERR "Error attempting to allocate from "
1839 		       "ecryptfs_key_tfm_cache\n");
1840 		goto out;
1841 	}
1842 	mutex_init(&tmp_tfm->key_tfm_mutex);
1843 	strncpy(tmp_tfm->cipher_name, cipher_name,
1844 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1845 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1846 	tmp_tfm->key_size = key_size;
1847 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1848 					 tmp_tfm->cipher_name,
1849 					 &tmp_tfm->key_size);
1850 	if (rc) {
1851 		printk(KERN_ERR "Error attempting to initialize key TFM "
1852 		       "cipher with name = [%s]; rc = [%d]\n",
1853 		       tmp_tfm->cipher_name, rc);
1854 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1855 		if (key_tfm != NULL)
1856 			(*key_tfm) = NULL;
1857 		goto out;
1858 	}
1859 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1860 out:
1861 	return rc;
1862 }
1863 
1864 /**
1865  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1866  * @cipher_name: the name of the cipher to search for
1867  * @key_tfm: set to corresponding tfm if found
1868  *
1869  * Searches for cached key_tfm matching @cipher_name
1870  * Must be called with &key_tfm_list_mutex held
1871  * Returns 1 if found, with @key_tfm set
1872  * Returns 0 if not found, with @key_tfm set to NULL
1873  */
1874 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1875 {
1876 	struct ecryptfs_key_tfm *tmp_key_tfm;
1877 
1878 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1879 
1880 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1881 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1882 			if (key_tfm)
1883 				(*key_tfm) = tmp_key_tfm;
1884 			return 1;
1885 		}
1886 	}
1887 	if (key_tfm)
1888 		(*key_tfm) = NULL;
1889 	return 0;
1890 }
1891 
1892 /**
1893  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1894  *
1895  * @tfm: set to cached tfm found, or new tfm created
1896  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1897  * @cipher_name: the name of the cipher to search for and/or add
1898  *
1899  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1900  * Searches for cached item first, and creates new if not found.
1901  * Returns 0 on success, non-zero if adding new cipher failed
1902  */
1903 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1904 					       struct mutex **tfm_mutex,
1905 					       char *cipher_name)
1906 {
1907 	struct ecryptfs_key_tfm *key_tfm;
1908 	int rc = 0;
1909 
1910 	(*tfm) = NULL;
1911 	(*tfm_mutex) = NULL;
1912 
1913 	mutex_lock(&key_tfm_list_mutex);
1914 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1915 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1916 		if (rc) {
1917 			printk(KERN_ERR "Error adding new key_tfm to list; "
1918 					"rc = [%d]\n", rc);
1919 			goto out;
1920 		}
1921 	}
1922 	(*tfm) = key_tfm->key_tfm;
1923 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1924 out:
1925 	mutex_unlock(&key_tfm_list_mutex);
1926 	return rc;
1927 }
1928 
1929 /* 64 characters forming a 6-bit target field */
1930 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1931 						 "EFGHIJKLMNOPQRST"
1932 						 "UVWXYZabcdefghij"
1933 						 "klmnopqrstuvwxyz");
1934 
1935 /* We could either offset on every reverse map or just pad some 0x00's
1936  * at the front here */
1937 static const unsigned char filename_rev_map[] = {
1938 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1939 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1940 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1941 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1942 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1943 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1944 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1945 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1946 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1947 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1948 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1949 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1950 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1951 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1952 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1953 	0x3D, 0x3E, 0x3F
1954 };
1955 
1956 /**
1957  * ecryptfs_encode_for_filename
1958  * @dst: Destination location for encoded filename
1959  * @dst_size: Size of the encoded filename in bytes
1960  * @src: Source location for the filename to encode
1961  * @src_size: Size of the source in bytes
1962  */
1963 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1964 				  unsigned char *src, size_t src_size)
1965 {
1966 	size_t num_blocks;
1967 	size_t block_num = 0;
1968 	size_t dst_offset = 0;
1969 	unsigned char last_block[3];
1970 
1971 	if (src_size == 0) {
1972 		(*dst_size) = 0;
1973 		goto out;
1974 	}
1975 	num_blocks = (src_size / 3);
1976 	if ((src_size % 3) == 0) {
1977 		memcpy(last_block, (&src[src_size - 3]), 3);
1978 	} else {
1979 		num_blocks++;
1980 		last_block[2] = 0x00;
1981 		switch (src_size % 3) {
1982 		case 1:
1983 			last_block[0] = src[src_size - 1];
1984 			last_block[1] = 0x00;
1985 			break;
1986 		case 2:
1987 			last_block[0] = src[src_size - 2];
1988 			last_block[1] = src[src_size - 1];
1989 		}
1990 	}
1991 	(*dst_size) = (num_blocks * 4);
1992 	if (!dst)
1993 		goto out;
1994 	while (block_num < num_blocks) {
1995 		unsigned char *src_block;
1996 		unsigned char dst_block[4];
1997 
1998 		if (block_num == (num_blocks - 1))
1999 			src_block = last_block;
2000 		else
2001 			src_block = &src[block_num * 3];
2002 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2003 		dst_block[1] = (((src_block[0] << 4) & 0x30)
2004 				| ((src_block[1] >> 4) & 0x0F));
2005 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
2006 				| ((src_block[2] >> 6) & 0x03));
2007 		dst_block[3] = (src_block[2] & 0x3F);
2008 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2009 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2010 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2011 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2012 		block_num++;
2013 	}
2014 out:
2015 	return;
2016 }
2017 
2018 /**
2019  * ecryptfs_decode_from_filename
2020  * @dst: If NULL, this function only sets @dst_size and returns. If
2021  *       non-NULL, this function decodes the encoded octets in @src
2022  *       into the memory that @dst points to.
2023  * @dst_size: Set to the size of the decoded string.
2024  * @src: The encoded set of octets to decode.
2025  * @src_size: The size of the encoded set of octets to decode.
2026  */
2027 static void
2028 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2029 			      const unsigned char *src, size_t src_size)
2030 {
2031 	u8 current_bit_offset = 0;
2032 	size_t src_byte_offset = 0;
2033 	size_t dst_byte_offset = 0;
2034 
2035 	if (dst == NULL) {
2036 		/* Not exact; conservatively long. Every block of 4
2037 		 * encoded characters decodes into a block of 3
2038 		 * decoded characters. This segment of code provides
2039 		 * the caller with the maximum amount of allocated
2040 		 * space that @dst will need to point to in a
2041 		 * subsequent call. */
2042 		(*dst_size) = (((src_size + 1) * 3) / 4);
2043 		goto out;
2044 	}
2045 	while (src_byte_offset < src_size) {
2046 		unsigned char src_byte =
2047 				filename_rev_map[(int)src[src_byte_offset]];
2048 
2049 		switch (current_bit_offset) {
2050 		case 0:
2051 			dst[dst_byte_offset] = (src_byte << 2);
2052 			current_bit_offset = 6;
2053 			break;
2054 		case 6:
2055 			dst[dst_byte_offset++] |= (src_byte >> 4);
2056 			dst[dst_byte_offset] = ((src_byte & 0xF)
2057 						 << 4);
2058 			current_bit_offset = 4;
2059 			break;
2060 		case 4:
2061 			dst[dst_byte_offset++] |= (src_byte >> 2);
2062 			dst[dst_byte_offset] = (src_byte << 6);
2063 			current_bit_offset = 2;
2064 			break;
2065 		case 2:
2066 			dst[dst_byte_offset++] |= (src_byte);
2067 			dst[dst_byte_offset] = 0;
2068 			current_bit_offset = 0;
2069 			break;
2070 		}
2071 		src_byte_offset++;
2072 	}
2073 	(*dst_size) = dst_byte_offset;
2074 out:
2075 	return;
2076 }
2077 
2078 /**
2079  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2080  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2081  * @name: The plaintext name
2082  * @length: The length of the plaintext
2083  * @encoded_name: The encypted name
2084  *
2085  * Encrypts and encodes a filename into something that constitutes a
2086  * valid filename for a filesystem, with printable characters.
2087  *
2088  * We assume that we have a properly initialized crypto context,
2089  * pointed to by crypt_stat->tfm.
2090  *
2091  * Returns zero on success; non-zero on otherwise
2092  */
2093 int ecryptfs_encrypt_and_encode_filename(
2094 	char **encoded_name,
2095 	size_t *encoded_name_size,
2096 	struct ecryptfs_crypt_stat *crypt_stat,
2097 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2098 	const char *name, size_t name_size)
2099 {
2100 	size_t encoded_name_no_prefix_size;
2101 	int rc = 0;
2102 
2103 	(*encoded_name) = NULL;
2104 	(*encoded_name_size) = 0;
2105 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2106 	    || (mount_crypt_stat && (mount_crypt_stat->flags
2107 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2108 		struct ecryptfs_filename *filename;
2109 
2110 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2111 		if (!filename) {
2112 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2113 			       "to kzalloc [%zd] bytes\n", __func__,
2114 			       sizeof(*filename));
2115 			rc = -ENOMEM;
2116 			goto out;
2117 		}
2118 		filename->filename = (char *)name;
2119 		filename->filename_size = name_size;
2120 		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2121 					       mount_crypt_stat);
2122 		if (rc) {
2123 			printk(KERN_ERR "%s: Error attempting to encrypt "
2124 			       "filename; rc = [%d]\n", __func__, rc);
2125 			kfree(filename);
2126 			goto out;
2127 		}
2128 		ecryptfs_encode_for_filename(
2129 			NULL, &encoded_name_no_prefix_size,
2130 			filename->encrypted_filename,
2131 			filename->encrypted_filename_size);
2132 		if ((crypt_stat && (crypt_stat->flags
2133 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2134 		    || (mount_crypt_stat
2135 			&& (mount_crypt_stat->flags
2136 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2137 			(*encoded_name_size) =
2138 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2139 				 + encoded_name_no_prefix_size);
2140 		else
2141 			(*encoded_name_size) =
2142 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2143 				 + encoded_name_no_prefix_size);
2144 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2145 		if (!(*encoded_name)) {
2146 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2147 			       "to kzalloc [%zd] bytes\n", __func__,
2148 			       (*encoded_name_size));
2149 			rc = -ENOMEM;
2150 			kfree(filename->encrypted_filename);
2151 			kfree(filename);
2152 			goto out;
2153 		}
2154 		if ((crypt_stat && (crypt_stat->flags
2155 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2156 		    || (mount_crypt_stat
2157 			&& (mount_crypt_stat->flags
2158 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2159 			memcpy((*encoded_name),
2160 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2161 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2162 			ecryptfs_encode_for_filename(
2163 			    ((*encoded_name)
2164 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2165 			    &encoded_name_no_prefix_size,
2166 			    filename->encrypted_filename,
2167 			    filename->encrypted_filename_size);
2168 			(*encoded_name_size) =
2169 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2170 				 + encoded_name_no_prefix_size);
2171 			(*encoded_name)[(*encoded_name_size)] = '\0';
2172 			(*encoded_name_size)++;
2173 		} else {
2174 			rc = -EOPNOTSUPP;
2175 		}
2176 		if (rc) {
2177 			printk(KERN_ERR "%s: Error attempting to encode "
2178 			       "encrypted filename; rc = [%d]\n", __func__,
2179 			       rc);
2180 			kfree((*encoded_name));
2181 			(*encoded_name) = NULL;
2182 			(*encoded_name_size) = 0;
2183 		}
2184 		kfree(filename->encrypted_filename);
2185 		kfree(filename);
2186 	} else {
2187 		rc = ecryptfs_copy_filename(encoded_name,
2188 					    encoded_name_size,
2189 					    name, name_size);
2190 	}
2191 out:
2192 	return rc;
2193 }
2194 
2195 /**
2196  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2197  * @plaintext_name: The plaintext name
2198  * @plaintext_name_size: The plaintext name size
2199  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2200  * @name: The filename in cipher text
2201  * @name_size: The cipher text name size
2202  *
2203  * Decrypts and decodes the filename.
2204  *
2205  * Returns zero on error; non-zero otherwise
2206  */
2207 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2208 					 size_t *plaintext_name_size,
2209 					 struct dentry *ecryptfs_dir_dentry,
2210 					 const char *name, size_t name_size)
2211 {
2212 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2213 		&ecryptfs_superblock_to_private(
2214 			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2215 	char *decoded_name;
2216 	size_t decoded_name_size;
2217 	size_t packet_size;
2218 	int rc = 0;
2219 
2220 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2221 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2222 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2223 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2224 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2225 		const char *orig_name = name;
2226 		size_t orig_name_size = name_size;
2227 
2228 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2229 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2230 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2231 					      name, name_size);
2232 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2233 		if (!decoded_name) {
2234 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2235 			       "to kmalloc [%zd] bytes\n", __func__,
2236 			       decoded_name_size);
2237 			rc = -ENOMEM;
2238 			goto out;
2239 		}
2240 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2241 					      name, name_size);
2242 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2243 						  plaintext_name_size,
2244 						  &packet_size,
2245 						  mount_crypt_stat,
2246 						  decoded_name,
2247 						  decoded_name_size);
2248 		if (rc) {
2249 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2250 			       "from filename; copying through filename "
2251 			       "as-is\n", __func__);
2252 			rc = ecryptfs_copy_filename(plaintext_name,
2253 						    plaintext_name_size,
2254 						    orig_name, orig_name_size);
2255 			goto out_free;
2256 		}
2257 	} else {
2258 		rc = ecryptfs_copy_filename(plaintext_name,
2259 					    plaintext_name_size,
2260 					    name, name_size);
2261 		goto out;
2262 	}
2263 out_free:
2264 	kfree(decoded_name);
2265 out:
2266 	return rc;
2267 }
2268