xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision 9ac8d3fb)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
38 
39 static int
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
41 			     struct page *dst_page, int dst_offset,
42 			     struct page *src_page, int src_offset, int size,
43 			     unsigned char *iv);
44 static int
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46 			     struct page *dst_page, int dst_offset,
47 			     struct page *src_page, int src_offset, int size,
48 			     unsigned char *iv);
49 
50 /**
51  * ecryptfs_to_hex
52  * @dst: Buffer to take hex character representation of contents of
53  *       src; must be at least of size (src_size * 2)
54  * @src: Buffer to be converted to a hex string respresentation
55  * @src_size: number of bytes to convert
56  */
57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
58 {
59 	int x;
60 
61 	for (x = 0; x < src_size; x++)
62 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
63 }
64 
65 /**
66  * ecryptfs_from_hex
67  * @dst: Buffer to take the bytes from src hex; must be at least of
68  *       size (src_size / 2)
69  * @src: Buffer to be converted from a hex string respresentation to raw value
70  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71  */
72 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
73 {
74 	int x;
75 	char tmp[3] = { 0, };
76 
77 	for (x = 0; x < dst_size; x++) {
78 		tmp[0] = src[x * 2];
79 		tmp[1] = src[x * 2 + 1];
80 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
81 	}
82 }
83 
84 /**
85  * ecryptfs_calculate_md5 - calculates the md5 of @src
86  * @dst: Pointer to 16 bytes of allocated memory
87  * @crypt_stat: Pointer to crypt_stat struct for the current inode
88  * @src: Data to be md5'd
89  * @len: Length of @src
90  *
91  * Uses the allocated crypto context that crypt_stat references to
92  * generate the MD5 sum of the contents of src.
93  */
94 static int ecryptfs_calculate_md5(char *dst,
95 				  struct ecryptfs_crypt_stat *crypt_stat,
96 				  char *src, int len)
97 {
98 	struct scatterlist sg;
99 	struct hash_desc desc = {
100 		.tfm = crypt_stat->hash_tfm,
101 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
102 	};
103 	int rc = 0;
104 
105 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
106 	sg_init_one(&sg, (u8 *)src, len);
107 	if (!desc.tfm) {
108 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109 					     CRYPTO_ALG_ASYNC);
110 		if (IS_ERR(desc.tfm)) {
111 			rc = PTR_ERR(desc.tfm);
112 			ecryptfs_printk(KERN_ERR, "Error attempting to "
113 					"allocate crypto context; rc = [%d]\n",
114 					rc);
115 			goto out;
116 		}
117 		crypt_stat->hash_tfm = desc.tfm;
118 	}
119 	rc = crypto_hash_init(&desc);
120 	if (rc) {
121 		printk(KERN_ERR
122 		       "%s: Error initializing crypto hash; rc = [%d]\n",
123 		       __func__, rc);
124 		goto out;
125 	}
126 	rc = crypto_hash_update(&desc, &sg, len);
127 	if (rc) {
128 		printk(KERN_ERR
129 		       "%s: Error updating crypto hash; rc = [%d]\n",
130 		       __func__, rc);
131 		goto out;
132 	}
133 	rc = crypto_hash_final(&desc, dst);
134 	if (rc) {
135 		printk(KERN_ERR
136 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
137 		       __func__, rc);
138 		goto out;
139 	}
140 out:
141 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
142 	return rc;
143 }
144 
145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
146 						  char *cipher_name,
147 						  char *chaining_modifier)
148 {
149 	int cipher_name_len = strlen(cipher_name);
150 	int chaining_modifier_len = strlen(chaining_modifier);
151 	int algified_name_len;
152 	int rc;
153 
154 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
155 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
156 	if (!(*algified_name)) {
157 		rc = -ENOMEM;
158 		goto out;
159 	}
160 	snprintf((*algified_name), algified_name_len, "%s(%s)",
161 		 chaining_modifier, cipher_name);
162 	rc = 0;
163 out:
164 	return rc;
165 }
166 
167 /**
168  * ecryptfs_derive_iv
169  * @iv: destination for the derived iv vale
170  * @crypt_stat: Pointer to crypt_stat struct for the current inode
171  * @offset: Offset of the extent whose IV we are to derive
172  *
173  * Generate the initialization vector from the given root IV and page
174  * offset.
175  *
176  * Returns zero on success; non-zero on error.
177  */
178 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
179 			      loff_t offset)
180 {
181 	int rc = 0;
182 	char dst[MD5_DIGEST_SIZE];
183 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
184 
185 	if (unlikely(ecryptfs_verbosity > 0)) {
186 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
187 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
188 	}
189 	/* TODO: It is probably secure to just cast the least
190 	 * significant bits of the root IV into an unsigned long and
191 	 * add the offset to that rather than go through all this
192 	 * hashing business. -Halcrow */
193 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
194 	memset((src + crypt_stat->iv_bytes), 0, 16);
195 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
196 	if (unlikely(ecryptfs_verbosity > 0)) {
197 		ecryptfs_printk(KERN_DEBUG, "source:\n");
198 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
199 	}
200 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
201 				    (crypt_stat->iv_bytes + 16));
202 	if (rc) {
203 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
204 				"MD5 while generating IV for a page\n");
205 		goto out;
206 	}
207 	memcpy(iv, dst, crypt_stat->iv_bytes);
208 	if (unlikely(ecryptfs_verbosity > 0)) {
209 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
210 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
211 	}
212 out:
213 	return rc;
214 }
215 
216 /**
217  * ecryptfs_init_crypt_stat
218  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
219  *
220  * Initialize the crypt_stat structure.
221  */
222 void
223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
224 {
225 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
227 	mutex_init(&crypt_stat->keysig_list_mutex);
228 	mutex_init(&crypt_stat->cs_mutex);
229 	mutex_init(&crypt_stat->cs_tfm_mutex);
230 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
231 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
232 }
233 
234 /**
235  * ecryptfs_destroy_crypt_stat
236  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
237  *
238  * Releases all memory associated with a crypt_stat struct.
239  */
240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
241 {
242 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
243 
244 	if (crypt_stat->tfm)
245 		crypto_free_blkcipher(crypt_stat->tfm);
246 	if (crypt_stat->hash_tfm)
247 		crypto_free_hash(crypt_stat->hash_tfm);
248 	mutex_lock(&crypt_stat->keysig_list_mutex);
249 	list_for_each_entry_safe(key_sig, key_sig_tmp,
250 				 &crypt_stat->keysig_list, crypt_stat_list) {
251 		list_del(&key_sig->crypt_stat_list);
252 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 	}
254 	mutex_unlock(&crypt_stat->keysig_list_mutex);
255 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
256 }
257 
258 void ecryptfs_destroy_mount_crypt_stat(
259 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
260 {
261 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
262 
263 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
264 		return;
265 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
266 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
267 				 &mount_crypt_stat->global_auth_tok_list,
268 				 mount_crypt_stat_list) {
269 		list_del(&auth_tok->mount_crypt_stat_list);
270 		mount_crypt_stat->num_global_auth_toks--;
271 		if (auth_tok->global_auth_tok_key
272 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
273 			key_put(auth_tok->global_auth_tok_key);
274 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
275 	}
276 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
277 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
278 }
279 
280 /**
281  * virt_to_scatterlist
282  * @addr: Virtual address
283  * @size: Size of data; should be an even multiple of the block size
284  * @sg: Pointer to scatterlist array; set to NULL to obtain only
285  *      the number of scatterlist structs required in array
286  * @sg_size: Max array size
287  *
288  * Fills in a scatterlist array with page references for a passed
289  * virtual address.
290  *
291  * Returns the number of scatterlist structs in array used
292  */
293 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
294 			int sg_size)
295 {
296 	int i = 0;
297 	struct page *pg;
298 	int offset;
299 	int remainder_of_page;
300 
301 	sg_init_table(sg, sg_size);
302 
303 	while (size > 0 && i < sg_size) {
304 		pg = virt_to_page(addr);
305 		offset = offset_in_page(addr);
306 		if (sg)
307 			sg_set_page(&sg[i], pg, 0, offset);
308 		remainder_of_page = PAGE_CACHE_SIZE - offset;
309 		if (size >= remainder_of_page) {
310 			if (sg)
311 				sg[i].length = remainder_of_page;
312 			addr += remainder_of_page;
313 			size -= remainder_of_page;
314 		} else {
315 			if (sg)
316 				sg[i].length = size;
317 			addr += size;
318 			size = 0;
319 		}
320 		i++;
321 	}
322 	if (size > 0)
323 		return -ENOMEM;
324 	return i;
325 }
326 
327 /**
328  * encrypt_scatterlist
329  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
330  * @dest_sg: Destination of encrypted data
331  * @src_sg: Data to be encrypted
332  * @size: Length of data to be encrypted
333  * @iv: iv to use during encryption
334  *
335  * Returns the number of bytes encrypted; negative value on error
336  */
337 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
338 			       struct scatterlist *dest_sg,
339 			       struct scatterlist *src_sg, int size,
340 			       unsigned char *iv)
341 {
342 	struct blkcipher_desc desc = {
343 		.tfm = crypt_stat->tfm,
344 		.info = iv,
345 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
346 	};
347 	int rc = 0;
348 
349 	BUG_ON(!crypt_stat || !crypt_stat->tfm
350 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
351 	if (unlikely(ecryptfs_verbosity > 0)) {
352 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
353 				crypt_stat->key_size);
354 		ecryptfs_dump_hex(crypt_stat->key,
355 				  crypt_stat->key_size);
356 	}
357 	/* Consider doing this once, when the file is opened */
358 	mutex_lock(&crypt_stat->cs_tfm_mutex);
359 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
360 		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
361 					     crypt_stat->key_size);
362 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
363 	}
364 	if (rc) {
365 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
366 				rc);
367 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
368 		rc = -EINVAL;
369 		goto out;
370 	}
371 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
372 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
373 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
374 out:
375 	return rc;
376 }
377 
378 /**
379  * ecryptfs_lower_offset_for_extent
380  *
381  * Convert an eCryptfs page index into a lower byte offset
382  */
383 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
384 					     struct ecryptfs_crypt_stat *crypt_stat)
385 {
386 	(*offset) = (crypt_stat->num_header_bytes_at_front
387 		     + (crypt_stat->extent_size * extent_num));
388 }
389 
390 /**
391  * ecryptfs_encrypt_extent
392  * @enc_extent_page: Allocated page into which to encrypt the data in
393  *                   @page
394  * @crypt_stat: crypt_stat containing cryptographic context for the
395  *              encryption operation
396  * @page: Page containing plaintext data extent to encrypt
397  * @extent_offset: Page extent offset for use in generating IV
398  *
399  * Encrypts one extent of data.
400  *
401  * Return zero on success; non-zero otherwise
402  */
403 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
404 				   struct ecryptfs_crypt_stat *crypt_stat,
405 				   struct page *page,
406 				   unsigned long extent_offset)
407 {
408 	loff_t extent_base;
409 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
410 	int rc;
411 
412 	extent_base = (((loff_t)page->index)
413 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
414 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
415 				(extent_base + extent_offset));
416 	if (rc) {
417 		ecryptfs_printk(KERN_ERR, "Error attempting to "
418 				"derive IV for extent [0x%.16x]; "
419 				"rc = [%d]\n", (extent_base + extent_offset),
420 				rc);
421 		goto out;
422 	}
423 	if (unlikely(ecryptfs_verbosity > 0)) {
424 		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
425 				"with iv:\n");
426 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
427 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
428 				"encryption:\n");
429 		ecryptfs_dump_hex((char *)
430 				  (page_address(page)
431 				   + (extent_offset * crypt_stat->extent_size)),
432 				  8);
433 	}
434 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
435 					  page, (extent_offset
436 						 * crypt_stat->extent_size),
437 					  crypt_stat->extent_size, extent_iv);
438 	if (rc < 0) {
439 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
440 		       "page->index = [%ld], extent_offset = [%ld]; "
441 		       "rc = [%d]\n", __func__, page->index, extent_offset,
442 		       rc);
443 		goto out;
444 	}
445 	rc = 0;
446 	if (unlikely(ecryptfs_verbosity > 0)) {
447 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
448 				"rc = [%d]\n", (extent_base + extent_offset),
449 				rc);
450 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
451 				"encryption:\n");
452 		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
453 	}
454 out:
455 	return rc;
456 }
457 
458 /**
459  * ecryptfs_encrypt_page
460  * @page: Page mapped from the eCryptfs inode for the file; contains
461  *        decrypted content that needs to be encrypted (to a temporary
462  *        page; not in place) and written out to the lower file
463  *
464  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
465  * that eCryptfs pages may straddle the lower pages -- for instance,
466  * if the file was created on a machine with an 8K page size
467  * (resulting in an 8K header), and then the file is copied onto a
468  * host with a 32K page size, then when reading page 0 of the eCryptfs
469  * file, 24K of page 0 of the lower file will be read and decrypted,
470  * and then 8K of page 1 of the lower file will be read and decrypted.
471  *
472  * Returns zero on success; negative on error
473  */
474 int ecryptfs_encrypt_page(struct page *page)
475 {
476 	struct inode *ecryptfs_inode;
477 	struct ecryptfs_crypt_stat *crypt_stat;
478 	char *enc_extent_virt;
479 	struct page *enc_extent_page = NULL;
480 	loff_t extent_offset;
481 	int rc = 0;
482 
483 	ecryptfs_inode = page->mapping->host;
484 	crypt_stat =
485 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
486 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
487 		rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
488 						       0, PAGE_CACHE_SIZE);
489 		if (rc)
490 			printk(KERN_ERR "%s: Error attempting to copy "
491 			       "page at index [%ld]\n", __func__,
492 			       page->index);
493 		goto out;
494 	}
495 	enc_extent_page = alloc_page(GFP_USER);
496 	if (!enc_extent_page) {
497 		rc = -ENOMEM;
498 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
499 				"encrypted extent\n");
500 		goto out;
501 	}
502 	enc_extent_virt = kmap(enc_extent_page);
503 	for (extent_offset = 0;
504 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
505 	     extent_offset++) {
506 		loff_t offset;
507 
508 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
509 					     extent_offset);
510 		if (rc) {
511 			printk(KERN_ERR "%s: Error encrypting extent; "
512 			       "rc = [%d]\n", __func__, rc);
513 			goto out;
514 		}
515 		ecryptfs_lower_offset_for_extent(
516 			&offset, ((((loff_t)page->index)
517 				   * (PAGE_CACHE_SIZE
518 				      / crypt_stat->extent_size))
519 				  + extent_offset), crypt_stat);
520 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
521 					  offset, crypt_stat->extent_size);
522 		if (rc) {
523 			ecryptfs_printk(KERN_ERR, "Error attempting "
524 					"to write lower page; rc = [%d]"
525 					"\n", rc);
526 			goto out;
527 		}
528 	}
529 out:
530 	if (enc_extent_page) {
531 		kunmap(enc_extent_page);
532 		__free_page(enc_extent_page);
533 	}
534 	return rc;
535 }
536 
537 static int ecryptfs_decrypt_extent(struct page *page,
538 				   struct ecryptfs_crypt_stat *crypt_stat,
539 				   struct page *enc_extent_page,
540 				   unsigned long extent_offset)
541 {
542 	loff_t extent_base;
543 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
544 	int rc;
545 
546 	extent_base = (((loff_t)page->index)
547 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
548 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
549 				(extent_base + extent_offset));
550 	if (rc) {
551 		ecryptfs_printk(KERN_ERR, "Error attempting to "
552 				"derive IV for extent [0x%.16x]; "
553 				"rc = [%d]\n", (extent_base + extent_offset),
554 				rc);
555 		goto out;
556 	}
557 	if (unlikely(ecryptfs_verbosity > 0)) {
558 		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
559 				"with iv:\n");
560 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
561 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
562 				"decryption:\n");
563 		ecryptfs_dump_hex((char *)
564 				  (page_address(enc_extent_page)
565 				   + (extent_offset * crypt_stat->extent_size)),
566 				  8);
567 	}
568 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
569 					  (extent_offset
570 					   * crypt_stat->extent_size),
571 					  enc_extent_page, 0,
572 					  crypt_stat->extent_size, extent_iv);
573 	if (rc < 0) {
574 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
575 		       "page->index = [%ld], extent_offset = [%ld]; "
576 		       "rc = [%d]\n", __func__, page->index, extent_offset,
577 		       rc);
578 		goto out;
579 	}
580 	rc = 0;
581 	if (unlikely(ecryptfs_verbosity > 0)) {
582 		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
583 				"rc = [%d]\n", (extent_base + extent_offset),
584 				rc);
585 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
586 				"decryption:\n");
587 		ecryptfs_dump_hex((char *)(page_address(page)
588 					   + (extent_offset
589 					      * crypt_stat->extent_size)), 8);
590 	}
591 out:
592 	return rc;
593 }
594 
595 /**
596  * ecryptfs_decrypt_page
597  * @page: Page mapped from the eCryptfs inode for the file; data read
598  *        and decrypted from the lower file will be written into this
599  *        page
600  *
601  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
602  * that eCryptfs pages may straddle the lower pages -- for instance,
603  * if the file was created on a machine with an 8K page size
604  * (resulting in an 8K header), and then the file is copied onto a
605  * host with a 32K page size, then when reading page 0 of the eCryptfs
606  * file, 24K of page 0 of the lower file will be read and decrypted,
607  * and then 8K of page 1 of the lower file will be read and decrypted.
608  *
609  * Returns zero on success; negative on error
610  */
611 int ecryptfs_decrypt_page(struct page *page)
612 {
613 	struct inode *ecryptfs_inode;
614 	struct ecryptfs_crypt_stat *crypt_stat;
615 	char *enc_extent_virt;
616 	struct page *enc_extent_page = NULL;
617 	unsigned long extent_offset;
618 	int rc = 0;
619 
620 	ecryptfs_inode = page->mapping->host;
621 	crypt_stat =
622 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
623 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
624 		rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
625 						      PAGE_CACHE_SIZE,
626 						      ecryptfs_inode);
627 		if (rc)
628 			printk(KERN_ERR "%s: Error attempting to copy "
629 			       "page at index [%ld]\n", __func__,
630 			       page->index);
631 		goto out;
632 	}
633 	enc_extent_page = alloc_page(GFP_USER);
634 	if (!enc_extent_page) {
635 		rc = -ENOMEM;
636 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
637 				"encrypted extent\n");
638 		goto out;
639 	}
640 	enc_extent_virt = kmap(enc_extent_page);
641 	for (extent_offset = 0;
642 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
643 	     extent_offset++) {
644 		loff_t offset;
645 
646 		ecryptfs_lower_offset_for_extent(
647 			&offset, ((page->index * (PAGE_CACHE_SIZE
648 						  / crypt_stat->extent_size))
649 				  + extent_offset), crypt_stat);
650 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
651 					 crypt_stat->extent_size,
652 					 ecryptfs_inode);
653 		if (rc) {
654 			ecryptfs_printk(KERN_ERR, "Error attempting "
655 					"to read lower page; rc = [%d]"
656 					"\n", rc);
657 			goto out;
658 		}
659 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
660 					     extent_offset);
661 		if (rc) {
662 			printk(KERN_ERR "%s: Error encrypting extent; "
663 			       "rc = [%d]\n", __func__, rc);
664 			goto out;
665 		}
666 	}
667 out:
668 	if (enc_extent_page) {
669 		kunmap(enc_extent_page);
670 		__free_page(enc_extent_page);
671 	}
672 	return rc;
673 }
674 
675 /**
676  * decrypt_scatterlist
677  * @crypt_stat: Cryptographic context
678  * @dest_sg: The destination scatterlist to decrypt into
679  * @src_sg: The source scatterlist to decrypt from
680  * @size: The number of bytes to decrypt
681  * @iv: The initialization vector to use for the decryption
682  *
683  * Returns the number of bytes decrypted; negative value on error
684  */
685 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
686 			       struct scatterlist *dest_sg,
687 			       struct scatterlist *src_sg, int size,
688 			       unsigned char *iv)
689 {
690 	struct blkcipher_desc desc = {
691 		.tfm = crypt_stat->tfm,
692 		.info = iv,
693 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
694 	};
695 	int rc = 0;
696 
697 	/* Consider doing this once, when the file is opened */
698 	mutex_lock(&crypt_stat->cs_tfm_mutex);
699 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
700 				     crypt_stat->key_size);
701 	if (rc) {
702 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
703 				rc);
704 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
705 		rc = -EINVAL;
706 		goto out;
707 	}
708 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
709 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
710 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
711 	if (rc) {
712 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
713 				rc);
714 		goto out;
715 	}
716 	rc = size;
717 out:
718 	return rc;
719 }
720 
721 /**
722  * ecryptfs_encrypt_page_offset
723  * @crypt_stat: The cryptographic context
724  * @dst_page: The page to encrypt into
725  * @dst_offset: The offset in the page to encrypt into
726  * @src_page: The page to encrypt from
727  * @src_offset: The offset in the page to encrypt from
728  * @size: The number of bytes to encrypt
729  * @iv: The initialization vector to use for the encryption
730  *
731  * Returns the number of bytes encrypted
732  */
733 static int
734 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
735 			     struct page *dst_page, int dst_offset,
736 			     struct page *src_page, int src_offset, int size,
737 			     unsigned char *iv)
738 {
739 	struct scatterlist src_sg, dst_sg;
740 
741 	sg_init_table(&src_sg, 1);
742 	sg_init_table(&dst_sg, 1);
743 
744 	sg_set_page(&src_sg, src_page, size, src_offset);
745 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
746 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
747 }
748 
749 /**
750  * ecryptfs_decrypt_page_offset
751  * @crypt_stat: The cryptographic context
752  * @dst_page: The page to decrypt into
753  * @dst_offset: The offset in the page to decrypt into
754  * @src_page: The page to decrypt from
755  * @src_offset: The offset in the page to decrypt from
756  * @size: The number of bytes to decrypt
757  * @iv: The initialization vector to use for the decryption
758  *
759  * Returns the number of bytes decrypted
760  */
761 static int
762 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
763 			     struct page *dst_page, int dst_offset,
764 			     struct page *src_page, int src_offset, int size,
765 			     unsigned char *iv)
766 {
767 	struct scatterlist src_sg, dst_sg;
768 
769 	sg_init_table(&src_sg, 1);
770 	sg_set_page(&src_sg, src_page, size, src_offset);
771 
772 	sg_init_table(&dst_sg, 1);
773 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
774 
775 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
776 }
777 
778 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
779 
780 /**
781  * ecryptfs_init_crypt_ctx
782  * @crypt_stat: Uninitilized crypt stats structure
783  *
784  * Initialize the crypto context.
785  *
786  * TODO: Performance: Keep a cache of initialized cipher contexts;
787  * only init if needed
788  */
789 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
790 {
791 	char *full_alg_name;
792 	int rc = -EINVAL;
793 
794 	if (!crypt_stat->cipher) {
795 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
796 		goto out;
797 	}
798 	ecryptfs_printk(KERN_DEBUG,
799 			"Initializing cipher [%s]; strlen = [%d]; "
800 			"key_size_bits = [%d]\n",
801 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
802 			crypt_stat->key_size << 3);
803 	if (crypt_stat->tfm) {
804 		rc = 0;
805 		goto out;
806 	}
807 	mutex_lock(&crypt_stat->cs_tfm_mutex);
808 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
809 						    crypt_stat->cipher, "cbc");
810 	if (rc)
811 		goto out_unlock;
812 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
813 						 CRYPTO_ALG_ASYNC);
814 	kfree(full_alg_name);
815 	if (IS_ERR(crypt_stat->tfm)) {
816 		rc = PTR_ERR(crypt_stat->tfm);
817 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
818 				"Error initializing cipher [%s]\n",
819 				crypt_stat->cipher);
820 		goto out_unlock;
821 	}
822 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
823 	rc = 0;
824 out_unlock:
825 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
826 out:
827 	return rc;
828 }
829 
830 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
831 {
832 	int extent_size_tmp;
833 
834 	crypt_stat->extent_mask = 0xFFFFFFFF;
835 	crypt_stat->extent_shift = 0;
836 	if (crypt_stat->extent_size == 0)
837 		return;
838 	extent_size_tmp = crypt_stat->extent_size;
839 	while ((extent_size_tmp & 0x01) == 0) {
840 		extent_size_tmp >>= 1;
841 		crypt_stat->extent_mask <<= 1;
842 		crypt_stat->extent_shift++;
843 	}
844 }
845 
846 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
847 {
848 	/* Default values; may be overwritten as we are parsing the
849 	 * packets. */
850 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
851 	set_extent_mask_and_shift(crypt_stat);
852 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
853 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
854 		crypt_stat->num_header_bytes_at_front = 0;
855 	else {
856 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
857 			crypt_stat->num_header_bytes_at_front =
858 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
859 		else
860 			crypt_stat->num_header_bytes_at_front =	PAGE_CACHE_SIZE;
861 	}
862 }
863 
864 /**
865  * ecryptfs_compute_root_iv
866  * @crypt_stats
867  *
868  * On error, sets the root IV to all 0's.
869  */
870 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
871 {
872 	int rc = 0;
873 	char dst[MD5_DIGEST_SIZE];
874 
875 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
876 	BUG_ON(crypt_stat->iv_bytes <= 0);
877 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
878 		rc = -EINVAL;
879 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
880 				"cannot generate root IV\n");
881 		goto out;
882 	}
883 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
884 				    crypt_stat->key_size);
885 	if (rc) {
886 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
887 				"MD5 while generating root IV\n");
888 		goto out;
889 	}
890 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
891 out:
892 	if (rc) {
893 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
894 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
895 	}
896 	return rc;
897 }
898 
899 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
900 {
901 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
902 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
903 	ecryptfs_compute_root_iv(crypt_stat);
904 	if (unlikely(ecryptfs_verbosity > 0)) {
905 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
906 		ecryptfs_dump_hex(crypt_stat->key,
907 				  crypt_stat->key_size);
908 	}
909 }
910 
911 /**
912  * ecryptfs_copy_mount_wide_flags_to_inode_flags
913  * @crypt_stat: The inode's cryptographic context
914  * @mount_crypt_stat: The mount point's cryptographic context
915  *
916  * This function propagates the mount-wide flags to individual inode
917  * flags.
918  */
919 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
920 	struct ecryptfs_crypt_stat *crypt_stat,
921 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
922 {
923 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
924 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
925 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
926 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
927 }
928 
929 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
930 	struct ecryptfs_crypt_stat *crypt_stat,
931 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
932 {
933 	struct ecryptfs_global_auth_tok *global_auth_tok;
934 	int rc = 0;
935 
936 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
937 	list_for_each_entry(global_auth_tok,
938 			    &mount_crypt_stat->global_auth_tok_list,
939 			    mount_crypt_stat_list) {
940 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
941 		if (rc) {
942 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
943 			mutex_unlock(
944 				&mount_crypt_stat->global_auth_tok_list_mutex);
945 			goto out;
946 		}
947 	}
948 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
949 out:
950 	return rc;
951 }
952 
953 /**
954  * ecryptfs_set_default_crypt_stat_vals
955  * @crypt_stat: The inode's cryptographic context
956  * @mount_crypt_stat: The mount point's cryptographic context
957  *
958  * Default values in the event that policy does not override them.
959  */
960 static void ecryptfs_set_default_crypt_stat_vals(
961 	struct ecryptfs_crypt_stat *crypt_stat,
962 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
963 {
964 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
965 						      mount_crypt_stat);
966 	ecryptfs_set_default_sizes(crypt_stat);
967 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
968 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
969 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
970 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
971 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
972 }
973 
974 /**
975  * ecryptfs_new_file_context
976  * @ecryptfs_dentry: The eCryptfs dentry
977  *
978  * If the crypto context for the file has not yet been established,
979  * this is where we do that.  Establishing a new crypto context
980  * involves the following decisions:
981  *  - What cipher to use?
982  *  - What set of authentication tokens to use?
983  * Here we just worry about getting enough information into the
984  * authentication tokens so that we know that they are available.
985  * We associate the available authentication tokens with the new file
986  * via the set of signatures in the crypt_stat struct.  Later, when
987  * the headers are actually written out, we may again defer to
988  * userspace to perform the encryption of the session key; for the
989  * foreseeable future, this will be the case with public key packets.
990  *
991  * Returns zero on success; non-zero otherwise
992  */
993 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
994 {
995 	struct ecryptfs_crypt_stat *crypt_stat =
996 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
997 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
998 	    &ecryptfs_superblock_to_private(
999 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
1000 	int cipher_name_len;
1001 	int rc = 0;
1002 
1003 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1004 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1005 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1006 						      mount_crypt_stat);
1007 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1008 							 mount_crypt_stat);
1009 	if (rc) {
1010 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1011 		       "to the inode key sigs; rc = [%d]\n", rc);
1012 		goto out;
1013 	}
1014 	cipher_name_len =
1015 		strlen(mount_crypt_stat->global_default_cipher_name);
1016 	memcpy(crypt_stat->cipher,
1017 	       mount_crypt_stat->global_default_cipher_name,
1018 	       cipher_name_len);
1019 	crypt_stat->cipher[cipher_name_len] = '\0';
1020 	crypt_stat->key_size =
1021 		mount_crypt_stat->global_default_cipher_key_size;
1022 	ecryptfs_generate_new_key(crypt_stat);
1023 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1024 	if (rc)
1025 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1026 				"context for cipher [%s]: rc = [%d]\n",
1027 				crypt_stat->cipher, rc);
1028 out:
1029 	return rc;
1030 }
1031 
1032 /**
1033  * contains_ecryptfs_marker - check for the ecryptfs marker
1034  * @data: The data block in which to check
1035  *
1036  * Returns one if marker found; zero if not found
1037  */
1038 static int contains_ecryptfs_marker(char *data)
1039 {
1040 	u32 m_1, m_2;
1041 
1042 	m_1 = get_unaligned_be32(data);
1043 	m_2 = get_unaligned_be32(data + 4);
1044 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1045 		return 1;
1046 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1047 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1048 			MAGIC_ECRYPTFS_MARKER);
1049 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1050 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1051 	return 0;
1052 }
1053 
1054 struct ecryptfs_flag_map_elem {
1055 	u32 file_flag;
1056 	u32 local_flag;
1057 };
1058 
1059 /* Add support for additional flags by adding elements here. */
1060 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1061 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1062 	{0x00000002, ECRYPTFS_ENCRYPTED},
1063 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR}
1064 };
1065 
1066 /**
1067  * ecryptfs_process_flags
1068  * @crypt_stat: The cryptographic context
1069  * @page_virt: Source data to be parsed
1070  * @bytes_read: Updated with the number of bytes read
1071  *
1072  * Returns zero on success; non-zero if the flag set is invalid
1073  */
1074 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1075 				  char *page_virt, int *bytes_read)
1076 {
1077 	int rc = 0;
1078 	int i;
1079 	u32 flags;
1080 
1081 	flags = get_unaligned_be32(page_virt);
1082 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1083 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1084 		if (flags & ecryptfs_flag_map[i].file_flag) {
1085 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1086 		} else
1087 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1088 	/* Version is in top 8 bits of the 32-bit flag vector */
1089 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1090 	(*bytes_read) = 4;
1091 	return rc;
1092 }
1093 
1094 /**
1095  * write_ecryptfs_marker
1096  * @page_virt: The pointer to in a page to begin writing the marker
1097  * @written: Number of bytes written
1098  *
1099  * Marker = 0x3c81b7f5
1100  */
1101 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1102 {
1103 	u32 m_1, m_2;
1104 
1105 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1106 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1107 	put_unaligned_be32(m_1, page_virt);
1108 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1109 	put_unaligned_be32(m_2, page_virt);
1110 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1111 }
1112 
1113 static void
1114 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1115 		     size_t *written)
1116 {
1117 	u32 flags = 0;
1118 	int i;
1119 
1120 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1121 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1122 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1123 			flags |= ecryptfs_flag_map[i].file_flag;
1124 	/* Version is in top 8 bits of the 32-bit flag vector */
1125 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1126 	put_unaligned_be32(flags, page_virt);
1127 	(*written) = 4;
1128 }
1129 
1130 struct ecryptfs_cipher_code_str_map_elem {
1131 	char cipher_str[16];
1132 	u8 cipher_code;
1133 };
1134 
1135 /* Add support for additional ciphers by adding elements here. The
1136  * cipher_code is whatever OpenPGP applicatoins use to identify the
1137  * ciphers. List in order of probability. */
1138 static struct ecryptfs_cipher_code_str_map_elem
1139 ecryptfs_cipher_code_str_map[] = {
1140 	{"aes",RFC2440_CIPHER_AES_128 },
1141 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1142 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1143 	{"cast5", RFC2440_CIPHER_CAST_5},
1144 	{"twofish", RFC2440_CIPHER_TWOFISH},
1145 	{"cast6", RFC2440_CIPHER_CAST_6},
1146 	{"aes", RFC2440_CIPHER_AES_192},
1147 	{"aes", RFC2440_CIPHER_AES_256}
1148 };
1149 
1150 /**
1151  * ecryptfs_code_for_cipher_string
1152  * @crypt_stat: The cryptographic context
1153  *
1154  * Returns zero on no match, or the cipher code on match
1155  */
1156 u8 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1157 {
1158 	int i;
1159 	u8 code = 0;
1160 	struct ecryptfs_cipher_code_str_map_elem *map =
1161 		ecryptfs_cipher_code_str_map;
1162 
1163 	if (strcmp(crypt_stat->cipher, "aes") == 0) {
1164 		switch (crypt_stat->key_size) {
1165 		case 16:
1166 			code = RFC2440_CIPHER_AES_128;
1167 			break;
1168 		case 24:
1169 			code = RFC2440_CIPHER_AES_192;
1170 			break;
1171 		case 32:
1172 			code = RFC2440_CIPHER_AES_256;
1173 		}
1174 	} else {
1175 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1176 			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1177 				code = map[i].cipher_code;
1178 				break;
1179 			}
1180 	}
1181 	return code;
1182 }
1183 
1184 /**
1185  * ecryptfs_cipher_code_to_string
1186  * @str: Destination to write out the cipher name
1187  * @cipher_code: The code to convert to cipher name string
1188  *
1189  * Returns zero on success
1190  */
1191 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1192 {
1193 	int rc = 0;
1194 	int i;
1195 
1196 	str[0] = '\0';
1197 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1198 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1199 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1200 	if (str[0] == '\0') {
1201 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1202 				"[%d]\n", cipher_code);
1203 		rc = -EINVAL;
1204 	}
1205 	return rc;
1206 }
1207 
1208 int ecryptfs_read_and_validate_header_region(char *data,
1209 					     struct inode *ecryptfs_inode)
1210 {
1211 	struct ecryptfs_crypt_stat *crypt_stat =
1212 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1213 	int rc;
1214 
1215 	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1216 				 ecryptfs_inode);
1217 	if (rc) {
1218 		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1219 		       __func__, rc);
1220 		goto out;
1221 	}
1222 	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1223 		rc = -EINVAL;
1224 		ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n");
1225 	}
1226 out:
1227 	return rc;
1228 }
1229 
1230 void
1231 ecryptfs_write_header_metadata(char *virt,
1232 			       struct ecryptfs_crypt_stat *crypt_stat,
1233 			       size_t *written)
1234 {
1235 	u32 header_extent_size;
1236 	u16 num_header_extents_at_front;
1237 
1238 	header_extent_size = (u32)crypt_stat->extent_size;
1239 	num_header_extents_at_front =
1240 		(u16)(crypt_stat->num_header_bytes_at_front
1241 		      / crypt_stat->extent_size);
1242 	put_unaligned_be32(header_extent_size, virt);
1243 	virt += 4;
1244 	put_unaligned_be16(num_header_extents_at_front, virt);
1245 	(*written) = 6;
1246 }
1247 
1248 struct kmem_cache *ecryptfs_header_cache_1;
1249 struct kmem_cache *ecryptfs_header_cache_2;
1250 
1251 /**
1252  * ecryptfs_write_headers_virt
1253  * @page_virt: The virtual address to write the headers to
1254  * @max: The size of memory allocated at page_virt
1255  * @size: Set to the number of bytes written by this function
1256  * @crypt_stat: The cryptographic context
1257  * @ecryptfs_dentry: The eCryptfs dentry
1258  *
1259  * Format version: 1
1260  *
1261  *   Header Extent:
1262  *     Octets 0-7:        Unencrypted file size (big-endian)
1263  *     Octets 8-15:       eCryptfs special marker
1264  *     Octets 16-19:      Flags
1265  *      Octet 16:         File format version number (between 0 and 255)
1266  *      Octets 17-18:     Reserved
1267  *      Octet 19:         Bit 1 (lsb): Reserved
1268  *                        Bit 2: Encrypted?
1269  *                        Bits 3-8: Reserved
1270  *     Octets 20-23:      Header extent size (big-endian)
1271  *     Octets 24-25:      Number of header extents at front of file
1272  *                        (big-endian)
1273  *     Octet  26:         Begin RFC 2440 authentication token packet set
1274  *   Data Extent 0:
1275  *     Lower data (CBC encrypted)
1276  *   Data Extent 1:
1277  *     Lower data (CBC encrypted)
1278  *   ...
1279  *
1280  * Returns zero on success
1281  */
1282 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1283 				       size_t *size,
1284 				       struct ecryptfs_crypt_stat *crypt_stat,
1285 				       struct dentry *ecryptfs_dentry)
1286 {
1287 	int rc;
1288 	size_t written;
1289 	size_t offset;
1290 
1291 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1292 	write_ecryptfs_marker((page_virt + offset), &written);
1293 	offset += written;
1294 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1295 	offset += written;
1296 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1297 				       &written);
1298 	offset += written;
1299 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1300 					      ecryptfs_dentry, &written,
1301 					      max - offset);
1302 	if (rc)
1303 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1304 				"set; rc = [%d]\n", rc);
1305 	if (size) {
1306 		offset += written;
1307 		*size = offset;
1308 	}
1309 	return rc;
1310 }
1311 
1312 static int
1313 ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1314 				    struct dentry *ecryptfs_dentry,
1315 				    char *virt)
1316 {
1317 	int rc;
1318 
1319 	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1320 				  0, crypt_stat->num_header_bytes_at_front);
1321 	if (rc)
1322 		printk(KERN_ERR "%s: Error attempting to write header "
1323 		       "information to lower file; rc = [%d]\n", __func__,
1324 		       rc);
1325 	return rc;
1326 }
1327 
1328 static int
1329 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1330 				 struct ecryptfs_crypt_stat *crypt_stat,
1331 				 char *page_virt, size_t size)
1332 {
1333 	int rc;
1334 
1335 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1336 			       size, 0);
1337 	return rc;
1338 }
1339 
1340 /**
1341  * ecryptfs_write_metadata
1342  * @ecryptfs_dentry: The eCryptfs dentry
1343  *
1344  * Write the file headers out.  This will likely involve a userspace
1345  * callout, in which the session key is encrypted with one or more
1346  * public keys and/or the passphrase necessary to do the encryption is
1347  * retrieved via a prompt.  Exactly what happens at this point should
1348  * be policy-dependent.
1349  *
1350  * Returns zero on success; non-zero on error
1351  */
1352 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1353 {
1354 	struct ecryptfs_crypt_stat *crypt_stat =
1355 		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1356 	char *virt;
1357 	size_t size = 0;
1358 	int rc = 0;
1359 
1360 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1361 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1362 			printk(KERN_ERR "Key is invalid; bailing out\n");
1363 			rc = -EINVAL;
1364 			goto out;
1365 		}
1366 	} else {
1367 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1368 		       __func__);
1369 		rc = -EINVAL;
1370 		goto out;
1371 	}
1372 	/* Released in this function */
1373 	virt = (char *)get_zeroed_page(GFP_KERNEL);
1374 	if (!virt) {
1375 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1376 		rc = -ENOMEM;
1377 		goto out;
1378 	}
1379 	rc = ecryptfs_write_headers_virt(virt, PAGE_CACHE_SIZE, &size,
1380 					 crypt_stat, ecryptfs_dentry);
1381 	if (unlikely(rc)) {
1382 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1383 		       __func__, rc);
1384 		goto out_free;
1385 	}
1386 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1387 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1388 						      crypt_stat, virt, size);
1389 	else
1390 		rc = ecryptfs_write_metadata_to_contents(crypt_stat,
1391 							 ecryptfs_dentry, virt);
1392 	if (rc) {
1393 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1394 		       "rc = [%d]\n", __func__, rc);
1395 		goto out_free;
1396 	}
1397 out_free:
1398 	free_page((unsigned long)virt);
1399 out:
1400 	return rc;
1401 }
1402 
1403 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1404 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1405 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1406 				 char *virt, int *bytes_read,
1407 				 int validate_header_size)
1408 {
1409 	int rc = 0;
1410 	u32 header_extent_size;
1411 	u16 num_header_extents_at_front;
1412 
1413 	header_extent_size = get_unaligned_be32(virt);
1414 	virt += sizeof(__be32);
1415 	num_header_extents_at_front = get_unaligned_be16(virt);
1416 	crypt_stat->num_header_bytes_at_front =
1417 		(((size_t)num_header_extents_at_front
1418 		  * (size_t)header_extent_size));
1419 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1420 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1421 	    && (crypt_stat->num_header_bytes_at_front
1422 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1423 		rc = -EINVAL;
1424 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1425 		       crypt_stat->num_header_bytes_at_front);
1426 	}
1427 	return rc;
1428 }
1429 
1430 /**
1431  * set_default_header_data
1432  * @crypt_stat: The cryptographic context
1433  *
1434  * For version 0 file format; this function is only for backwards
1435  * compatibility for files created with the prior versions of
1436  * eCryptfs.
1437  */
1438 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1439 {
1440 	crypt_stat->num_header_bytes_at_front =
1441 		ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1442 }
1443 
1444 /**
1445  * ecryptfs_read_headers_virt
1446  * @page_virt: The virtual address into which to read the headers
1447  * @crypt_stat: The cryptographic context
1448  * @ecryptfs_dentry: The eCryptfs dentry
1449  * @validate_header_size: Whether to validate the header size while reading
1450  *
1451  * Read/parse the header data. The header format is detailed in the
1452  * comment block for the ecryptfs_write_headers_virt() function.
1453  *
1454  * Returns zero on success
1455  */
1456 static int ecryptfs_read_headers_virt(char *page_virt,
1457 				      struct ecryptfs_crypt_stat *crypt_stat,
1458 				      struct dentry *ecryptfs_dentry,
1459 				      int validate_header_size)
1460 {
1461 	int rc = 0;
1462 	int offset;
1463 	int bytes_read;
1464 
1465 	ecryptfs_set_default_sizes(crypt_stat);
1466 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1467 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1468 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1469 	rc = contains_ecryptfs_marker(page_virt + offset);
1470 	if (rc == 0) {
1471 		rc = -EINVAL;
1472 		goto out;
1473 	}
1474 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1475 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1476 				    &bytes_read);
1477 	if (rc) {
1478 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1479 		goto out;
1480 	}
1481 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1482 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1483 				"file version [%d] is supported by this "
1484 				"version of eCryptfs\n",
1485 				crypt_stat->file_version,
1486 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1487 		rc = -EINVAL;
1488 		goto out;
1489 	}
1490 	offset += bytes_read;
1491 	if (crypt_stat->file_version >= 1) {
1492 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1493 					   &bytes_read, validate_header_size);
1494 		if (rc) {
1495 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1496 					"metadata; rc = [%d]\n", rc);
1497 		}
1498 		offset += bytes_read;
1499 	} else
1500 		set_default_header_data(crypt_stat);
1501 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1502 				       ecryptfs_dentry);
1503 out:
1504 	return rc;
1505 }
1506 
1507 /**
1508  * ecryptfs_read_xattr_region
1509  * @page_virt: The vitual address into which to read the xattr data
1510  * @ecryptfs_inode: The eCryptfs inode
1511  *
1512  * Attempts to read the crypto metadata from the extended attribute
1513  * region of the lower file.
1514  *
1515  * Returns zero on success; non-zero on error
1516  */
1517 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1518 {
1519 	struct dentry *lower_dentry =
1520 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1521 	ssize_t size;
1522 	int rc = 0;
1523 
1524 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1525 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1526 	if (size < 0) {
1527 		if (unlikely(ecryptfs_verbosity > 0))
1528 			printk(KERN_INFO "Error attempting to read the [%s] "
1529 			       "xattr from the lower file; return value = "
1530 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1531 		rc = -EINVAL;
1532 		goto out;
1533 	}
1534 out:
1535 	return rc;
1536 }
1537 
1538 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1539 					    struct dentry *ecryptfs_dentry)
1540 {
1541 	int rc;
1542 
1543 	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1544 	if (rc)
1545 		goto out;
1546 	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
1547 		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1548 			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1549 		rc = -EINVAL;
1550 	}
1551 out:
1552 	return rc;
1553 }
1554 
1555 /**
1556  * ecryptfs_read_metadata
1557  *
1558  * Common entry point for reading file metadata. From here, we could
1559  * retrieve the header information from the header region of the file,
1560  * the xattr region of the file, or some other repostory that is
1561  * stored separately from the file itself. The current implementation
1562  * supports retrieving the metadata information from the file contents
1563  * and from the xattr region.
1564  *
1565  * Returns zero if valid headers found and parsed; non-zero otherwise
1566  */
1567 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1568 {
1569 	int rc = 0;
1570 	char *page_virt = NULL;
1571 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1572 	struct ecryptfs_crypt_stat *crypt_stat =
1573 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1574 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1575 		&ecryptfs_superblock_to_private(
1576 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1577 
1578 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1579 						      mount_crypt_stat);
1580 	/* Read the first page from the underlying file */
1581 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1582 	if (!page_virt) {
1583 		rc = -ENOMEM;
1584 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1585 		       __func__);
1586 		goto out;
1587 	}
1588 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1589 				 ecryptfs_inode);
1590 	if (!rc)
1591 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1592 						ecryptfs_dentry,
1593 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1594 	if (rc) {
1595 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1596 		if (rc) {
1597 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1598 			       "file header region or xattr region\n");
1599 			rc = -EINVAL;
1600 			goto out;
1601 		}
1602 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1603 						ecryptfs_dentry,
1604 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1605 		if (rc) {
1606 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1607 			       "file xattr region either\n");
1608 			rc = -EINVAL;
1609 		}
1610 		if (crypt_stat->mount_crypt_stat->flags
1611 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1612 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1613 		} else {
1614 			printk(KERN_WARNING "Attempt to access file with "
1615 			       "crypto metadata only in the extended attribute "
1616 			       "region, but eCryptfs was mounted without "
1617 			       "xattr support enabled. eCryptfs will not treat "
1618 			       "this like an encrypted file.\n");
1619 			rc = -EINVAL;
1620 		}
1621 	}
1622 out:
1623 	if (page_virt) {
1624 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1625 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1626 	}
1627 	return rc;
1628 }
1629 
1630 /**
1631  * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1632  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1633  * @name: The plaintext name
1634  * @length: The length of the plaintext
1635  * @encoded_name: The encypted name
1636  *
1637  * Encrypts and encodes a filename into something that constitutes a
1638  * valid filename for a filesystem, with printable characters.
1639  *
1640  * We assume that we have a properly initialized crypto context,
1641  * pointed to by crypt_stat->tfm.
1642  *
1643  * TODO: Implement filename decoding and decryption here, in place of
1644  * memcpy. We are keeping the framework around for now to (1)
1645  * facilitate testing of the components needed to implement filename
1646  * encryption and (2) to provide a code base from which other
1647  * developers in the community can easily implement this feature.
1648  *
1649  * Returns the length of encoded filename; negative if error
1650  */
1651 int
1652 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1653 			 const char *name, int length, char **encoded_name)
1654 {
1655 	int error = 0;
1656 
1657 	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1658 	if (!(*encoded_name)) {
1659 		error = -ENOMEM;
1660 		goto out;
1661 	}
1662 	/* TODO: Filename encryption is a scheduled feature for a
1663 	 * future version of eCryptfs. This function is here only for
1664 	 * the purpose of providing a framework for other developers
1665 	 * to easily implement filename encryption. Hint: Replace this
1666 	 * memcpy() with a call to encrypt and encode the
1667 	 * filename, the set the length accordingly. */
1668 	memcpy((void *)(*encoded_name), (void *)name, length);
1669 	(*encoded_name)[length] = '\0';
1670 	error = length + 1;
1671 out:
1672 	return error;
1673 }
1674 
1675 /**
1676  * ecryptfs_decode_filename - converts the cipher text name to plaintext
1677  * @crypt_stat: The crypt_stat struct associated with the file
1678  * @name: The filename in cipher text
1679  * @length: The length of the cipher text name
1680  * @decrypted_name: The plaintext name
1681  *
1682  * Decodes and decrypts the filename.
1683  *
1684  * We assume that we have a properly initialized crypto context,
1685  * pointed to by crypt_stat->tfm.
1686  *
1687  * TODO: Implement filename decoding and decryption here, in place of
1688  * memcpy. We are keeping the framework around for now to (1)
1689  * facilitate testing of the components needed to implement filename
1690  * encryption and (2) to provide a code base from which other
1691  * developers in the community can easily implement this feature.
1692  *
1693  * Returns the length of decoded filename; negative if error
1694  */
1695 int
1696 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1697 			 const char *name, int length, char **decrypted_name)
1698 {
1699 	int error = 0;
1700 
1701 	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1702 	if (!(*decrypted_name)) {
1703 		error = -ENOMEM;
1704 		goto out;
1705 	}
1706 	/* TODO: Filename encryption is a scheduled feature for a
1707 	 * future version of eCryptfs. This function is here only for
1708 	 * the purpose of providing a framework for other developers
1709 	 * to easily implement filename encryption. Hint: Replace this
1710 	 * memcpy() with a call to decode and decrypt the
1711 	 * filename, the set the length accordingly. */
1712 	memcpy((void *)(*decrypted_name), (void *)name, length);
1713 	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
1714 						 * in printing out the
1715 						 * string in debug
1716 						 * messages */
1717 	error = length;
1718 out:
1719 	return error;
1720 }
1721 
1722 /**
1723  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1724  * @key_tfm: Crypto context for key material, set by this function
1725  * @cipher_name: Name of the cipher
1726  * @key_size: Size of the key in bytes
1727  *
1728  * Returns zero on success. Any crypto_tfm structs allocated here
1729  * should be released by other functions, such as on a superblock put
1730  * event, regardless of whether this function succeeds for fails.
1731  */
1732 static int
1733 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1734 			    char *cipher_name, size_t *key_size)
1735 {
1736 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1737 	char *full_alg_name;
1738 	int rc;
1739 
1740 	*key_tfm = NULL;
1741 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1742 		rc = -EINVAL;
1743 		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1744 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1745 		goto out;
1746 	}
1747 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1748 						    "ecb");
1749 	if (rc)
1750 		goto out;
1751 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1752 	kfree(full_alg_name);
1753 	if (IS_ERR(*key_tfm)) {
1754 		rc = PTR_ERR(*key_tfm);
1755 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1756 		       "[%s]; rc = [%d]\n", cipher_name, rc);
1757 		goto out;
1758 	}
1759 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1760 	if (*key_size == 0) {
1761 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1762 
1763 		*key_size = alg->max_keysize;
1764 	}
1765 	get_random_bytes(dummy_key, *key_size);
1766 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1767 	if (rc) {
1768 		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1769 		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1770 		rc = -EINVAL;
1771 		goto out;
1772 	}
1773 out:
1774 	return rc;
1775 }
1776 
1777 struct kmem_cache *ecryptfs_key_tfm_cache;
1778 static struct list_head key_tfm_list;
1779 struct mutex key_tfm_list_mutex;
1780 
1781 int ecryptfs_init_crypto(void)
1782 {
1783 	mutex_init(&key_tfm_list_mutex);
1784 	INIT_LIST_HEAD(&key_tfm_list);
1785 	return 0;
1786 }
1787 
1788 /**
1789  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1790  *
1791  * Called only at module unload time
1792  */
1793 int ecryptfs_destroy_crypto(void)
1794 {
1795 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1796 
1797 	mutex_lock(&key_tfm_list_mutex);
1798 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1799 				 key_tfm_list) {
1800 		list_del(&key_tfm->key_tfm_list);
1801 		if (key_tfm->key_tfm)
1802 			crypto_free_blkcipher(key_tfm->key_tfm);
1803 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1804 	}
1805 	mutex_unlock(&key_tfm_list_mutex);
1806 	return 0;
1807 }
1808 
1809 int
1810 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1811 			 size_t key_size)
1812 {
1813 	struct ecryptfs_key_tfm *tmp_tfm;
1814 	int rc = 0;
1815 
1816 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1817 
1818 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1819 	if (key_tfm != NULL)
1820 		(*key_tfm) = tmp_tfm;
1821 	if (!tmp_tfm) {
1822 		rc = -ENOMEM;
1823 		printk(KERN_ERR "Error attempting to allocate from "
1824 		       "ecryptfs_key_tfm_cache\n");
1825 		goto out;
1826 	}
1827 	mutex_init(&tmp_tfm->key_tfm_mutex);
1828 	strncpy(tmp_tfm->cipher_name, cipher_name,
1829 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1830 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1831 	tmp_tfm->key_size = key_size;
1832 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1833 					 tmp_tfm->cipher_name,
1834 					 &tmp_tfm->key_size);
1835 	if (rc) {
1836 		printk(KERN_ERR "Error attempting to initialize key TFM "
1837 		       "cipher with name = [%s]; rc = [%d]\n",
1838 		       tmp_tfm->cipher_name, rc);
1839 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1840 		if (key_tfm != NULL)
1841 			(*key_tfm) = NULL;
1842 		goto out;
1843 	}
1844 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1845 out:
1846 	return rc;
1847 }
1848 
1849 /**
1850  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1851  * @cipher_name: the name of the cipher to search for
1852  * @key_tfm: set to corresponding tfm if found
1853  *
1854  * Searches for cached key_tfm matching @cipher_name
1855  * Must be called with &key_tfm_list_mutex held
1856  * Returns 1 if found, with @key_tfm set
1857  * Returns 0 if not found, with @key_tfm set to NULL
1858  */
1859 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1860 {
1861 	struct ecryptfs_key_tfm *tmp_key_tfm;
1862 
1863 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1864 
1865 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1866 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1867 			if (key_tfm)
1868 				(*key_tfm) = tmp_key_tfm;
1869 			return 1;
1870 		}
1871 	}
1872 	if (key_tfm)
1873 		(*key_tfm) = NULL;
1874 	return 0;
1875 }
1876 
1877 /**
1878  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1879  *
1880  * @tfm: set to cached tfm found, or new tfm created
1881  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1882  * @cipher_name: the name of the cipher to search for and/or add
1883  *
1884  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1885  * Searches for cached item first, and creates new if not found.
1886  * Returns 0 on success, non-zero if adding new cipher failed
1887  */
1888 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1889 					       struct mutex **tfm_mutex,
1890 					       char *cipher_name)
1891 {
1892 	struct ecryptfs_key_tfm *key_tfm;
1893 	int rc = 0;
1894 
1895 	(*tfm) = NULL;
1896 	(*tfm_mutex) = NULL;
1897 
1898 	mutex_lock(&key_tfm_list_mutex);
1899 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1900 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1901 		if (rc) {
1902 			printk(KERN_ERR "Error adding new key_tfm to list; "
1903 					"rc = [%d]\n", rc);
1904 			goto out;
1905 		}
1906 	}
1907 	(*tfm) = key_tfm->key_tfm;
1908 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1909 out:
1910 	mutex_unlock(&key_tfm_list_mutex);
1911 	return rc;
1912 }
1913