1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /** 3 * eCryptfs: Linux filesystem encryption layer 4 * 5 * Copyright (C) 1997-2004 Erez Zadok 6 * Copyright (C) 2001-2004 Stony Brook University 7 * Copyright (C) 2004-2007 International Business Machines Corp. 8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 9 * Michael C. Thompson <mcthomps@us.ibm.com> 10 */ 11 12 #include <crypto/hash.h> 13 #include <crypto/skcipher.h> 14 #include <linux/fs.h> 15 #include <linux/mount.h> 16 #include <linux/pagemap.h> 17 #include <linux/random.h> 18 #include <linux/compiler.h> 19 #include <linux/key.h> 20 #include <linux/namei.h> 21 #include <linux/file.h> 22 #include <linux/scatterlist.h> 23 #include <linux/slab.h> 24 #include <asm/unaligned.h> 25 #include <linux/kernel.h> 26 #include "ecryptfs_kernel.h" 27 28 #define DECRYPT 0 29 #define ENCRYPT 1 30 31 /** 32 * ecryptfs_from_hex 33 * @dst: Buffer to take the bytes from src hex; must be at least of 34 * size (src_size / 2) 35 * @src: Buffer to be converted from a hex string representation to raw value 36 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 37 */ 38 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 39 { 40 int x; 41 char tmp[3] = { 0, }; 42 43 for (x = 0; x < dst_size; x++) { 44 tmp[0] = src[x * 2]; 45 tmp[1] = src[x * 2 + 1]; 46 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 47 } 48 } 49 50 static int ecryptfs_hash_digest(struct crypto_shash *tfm, 51 char *src, int len, char *dst) 52 { 53 SHASH_DESC_ON_STACK(desc, tfm); 54 int err; 55 56 desc->tfm = tfm; 57 err = crypto_shash_digest(desc, src, len, dst); 58 shash_desc_zero(desc); 59 return err; 60 } 61 62 /** 63 * ecryptfs_calculate_md5 - calculates the md5 of @src 64 * @dst: Pointer to 16 bytes of allocated memory 65 * @crypt_stat: Pointer to crypt_stat struct for the current inode 66 * @src: Data to be md5'd 67 * @len: Length of @src 68 * 69 * Uses the allocated crypto context that crypt_stat references to 70 * generate the MD5 sum of the contents of src. 71 */ 72 static int ecryptfs_calculate_md5(char *dst, 73 struct ecryptfs_crypt_stat *crypt_stat, 74 char *src, int len) 75 { 76 struct crypto_shash *tfm; 77 int rc = 0; 78 79 tfm = crypt_stat->hash_tfm; 80 rc = ecryptfs_hash_digest(tfm, src, len, dst); 81 if (rc) { 82 printk(KERN_ERR 83 "%s: Error computing crypto hash; rc = [%d]\n", 84 __func__, rc); 85 goto out; 86 } 87 out: 88 return rc; 89 } 90 91 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 92 char *cipher_name, 93 char *chaining_modifier) 94 { 95 int cipher_name_len = strlen(cipher_name); 96 int chaining_modifier_len = strlen(chaining_modifier); 97 int algified_name_len; 98 int rc; 99 100 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 101 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 102 if (!(*algified_name)) { 103 rc = -ENOMEM; 104 goto out; 105 } 106 snprintf((*algified_name), algified_name_len, "%s(%s)", 107 chaining_modifier, cipher_name); 108 rc = 0; 109 out: 110 return rc; 111 } 112 113 /** 114 * ecryptfs_derive_iv 115 * @iv: destination for the derived iv vale 116 * @crypt_stat: Pointer to crypt_stat struct for the current inode 117 * @offset: Offset of the extent whose IV we are to derive 118 * 119 * Generate the initialization vector from the given root IV and page 120 * offset. 121 * 122 * Returns zero on success; non-zero on error. 123 */ 124 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 125 loff_t offset) 126 { 127 int rc = 0; 128 char dst[MD5_DIGEST_SIZE]; 129 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 130 131 if (unlikely(ecryptfs_verbosity > 0)) { 132 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 133 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 134 } 135 /* TODO: It is probably secure to just cast the least 136 * significant bits of the root IV into an unsigned long and 137 * add the offset to that rather than go through all this 138 * hashing business. -Halcrow */ 139 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 140 memset((src + crypt_stat->iv_bytes), 0, 16); 141 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 142 if (unlikely(ecryptfs_verbosity > 0)) { 143 ecryptfs_printk(KERN_DEBUG, "source:\n"); 144 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 145 } 146 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 147 (crypt_stat->iv_bytes + 16)); 148 if (rc) { 149 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 150 "MD5 while generating IV for a page\n"); 151 goto out; 152 } 153 memcpy(iv, dst, crypt_stat->iv_bytes); 154 if (unlikely(ecryptfs_verbosity > 0)) { 155 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 156 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 157 } 158 out: 159 return rc; 160 } 161 162 /** 163 * ecryptfs_init_crypt_stat 164 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 165 * 166 * Initialize the crypt_stat structure. 167 */ 168 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 169 { 170 struct crypto_shash *tfm; 171 int rc; 172 173 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0); 174 if (IS_ERR(tfm)) { 175 rc = PTR_ERR(tfm); 176 ecryptfs_printk(KERN_ERR, "Error attempting to " 177 "allocate crypto context; rc = [%d]\n", 178 rc); 179 return rc; 180 } 181 182 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 183 INIT_LIST_HEAD(&crypt_stat->keysig_list); 184 mutex_init(&crypt_stat->keysig_list_mutex); 185 mutex_init(&crypt_stat->cs_mutex); 186 mutex_init(&crypt_stat->cs_tfm_mutex); 187 crypt_stat->hash_tfm = tfm; 188 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 189 190 return 0; 191 } 192 193 /** 194 * ecryptfs_destroy_crypt_stat 195 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 196 * 197 * Releases all memory associated with a crypt_stat struct. 198 */ 199 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 200 { 201 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 202 203 crypto_free_skcipher(crypt_stat->tfm); 204 crypto_free_shash(crypt_stat->hash_tfm); 205 list_for_each_entry_safe(key_sig, key_sig_tmp, 206 &crypt_stat->keysig_list, crypt_stat_list) { 207 list_del(&key_sig->crypt_stat_list); 208 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 209 } 210 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 211 } 212 213 void ecryptfs_destroy_mount_crypt_stat( 214 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 215 { 216 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 217 218 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 219 return; 220 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 221 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 222 &mount_crypt_stat->global_auth_tok_list, 223 mount_crypt_stat_list) { 224 list_del(&auth_tok->mount_crypt_stat_list); 225 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 226 key_put(auth_tok->global_auth_tok_key); 227 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 228 } 229 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 230 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 231 } 232 233 /** 234 * virt_to_scatterlist 235 * @addr: Virtual address 236 * @size: Size of data; should be an even multiple of the block size 237 * @sg: Pointer to scatterlist array; set to NULL to obtain only 238 * the number of scatterlist structs required in array 239 * @sg_size: Max array size 240 * 241 * Fills in a scatterlist array with page references for a passed 242 * virtual address. 243 * 244 * Returns the number of scatterlist structs in array used 245 */ 246 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 247 int sg_size) 248 { 249 int i = 0; 250 struct page *pg; 251 int offset; 252 int remainder_of_page; 253 254 sg_init_table(sg, sg_size); 255 256 while (size > 0 && i < sg_size) { 257 pg = virt_to_page(addr); 258 offset = offset_in_page(addr); 259 sg_set_page(&sg[i], pg, 0, offset); 260 remainder_of_page = PAGE_SIZE - offset; 261 if (size >= remainder_of_page) { 262 sg[i].length = remainder_of_page; 263 addr += remainder_of_page; 264 size -= remainder_of_page; 265 } else { 266 sg[i].length = size; 267 addr += size; 268 size = 0; 269 } 270 i++; 271 } 272 if (size > 0) 273 return -ENOMEM; 274 return i; 275 } 276 277 struct extent_crypt_result { 278 struct completion completion; 279 int rc; 280 }; 281 282 static void extent_crypt_complete(struct crypto_async_request *req, int rc) 283 { 284 struct extent_crypt_result *ecr = req->data; 285 286 if (rc == -EINPROGRESS) 287 return; 288 289 ecr->rc = rc; 290 complete(&ecr->completion); 291 } 292 293 /** 294 * crypt_scatterlist 295 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 296 * @dst_sg: Destination of the data after performing the crypto operation 297 * @src_sg: Data to be encrypted or decrypted 298 * @size: Length of data 299 * @iv: IV to use 300 * @op: ENCRYPT or DECRYPT to indicate the desired operation 301 * 302 * Returns the number of bytes encrypted or decrypted; negative value on error 303 */ 304 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 305 struct scatterlist *dst_sg, 306 struct scatterlist *src_sg, int size, 307 unsigned char *iv, int op) 308 { 309 struct skcipher_request *req = NULL; 310 struct extent_crypt_result ecr; 311 int rc = 0; 312 313 BUG_ON(!crypt_stat || !crypt_stat->tfm 314 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 315 if (unlikely(ecryptfs_verbosity > 0)) { 316 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 317 crypt_stat->key_size); 318 ecryptfs_dump_hex(crypt_stat->key, 319 crypt_stat->key_size); 320 } 321 322 init_completion(&ecr.completion); 323 324 mutex_lock(&crypt_stat->cs_tfm_mutex); 325 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 326 if (!req) { 327 mutex_unlock(&crypt_stat->cs_tfm_mutex); 328 rc = -ENOMEM; 329 goto out; 330 } 331 332 skcipher_request_set_callback(req, 333 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 334 extent_crypt_complete, &ecr); 335 /* Consider doing this once, when the file is opened */ 336 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 337 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key, 338 crypt_stat->key_size); 339 if (rc) { 340 ecryptfs_printk(KERN_ERR, 341 "Error setting key; rc = [%d]\n", 342 rc); 343 mutex_unlock(&crypt_stat->cs_tfm_mutex); 344 rc = -EINVAL; 345 goto out; 346 } 347 crypt_stat->flags |= ECRYPTFS_KEY_SET; 348 } 349 mutex_unlock(&crypt_stat->cs_tfm_mutex); 350 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); 351 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) : 352 crypto_skcipher_decrypt(req); 353 if (rc == -EINPROGRESS || rc == -EBUSY) { 354 struct extent_crypt_result *ecr = req->base.data; 355 356 wait_for_completion(&ecr->completion); 357 rc = ecr->rc; 358 reinit_completion(&ecr->completion); 359 } 360 out: 361 skcipher_request_free(req); 362 return rc; 363 } 364 365 /** 366 * lower_offset_for_page 367 * 368 * Convert an eCryptfs page index into a lower byte offset 369 */ 370 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, 371 struct page *page) 372 { 373 return ecryptfs_lower_header_size(crypt_stat) + 374 ((loff_t)page->index << PAGE_SHIFT); 375 } 376 377 /** 378 * crypt_extent 379 * @crypt_stat: crypt_stat containing cryptographic context for the 380 * encryption operation 381 * @dst_page: The page to write the result into 382 * @src_page: The page to read from 383 * @extent_offset: Page extent offset for use in generating IV 384 * @op: ENCRYPT or DECRYPT to indicate the desired operation 385 * 386 * Encrypts or decrypts one extent of data. 387 * 388 * Return zero on success; non-zero otherwise 389 */ 390 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, 391 struct page *dst_page, 392 struct page *src_page, 393 unsigned long extent_offset, int op) 394 { 395 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index; 396 loff_t extent_base; 397 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 398 struct scatterlist src_sg, dst_sg; 399 size_t extent_size = crypt_stat->extent_size; 400 int rc; 401 402 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size)); 403 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 404 (extent_base + extent_offset)); 405 if (rc) { 406 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 407 "extent [0x%.16llx]; rc = [%d]\n", 408 (unsigned long long)(extent_base + extent_offset), rc); 409 goto out; 410 } 411 412 sg_init_table(&src_sg, 1); 413 sg_init_table(&dst_sg, 1); 414 415 sg_set_page(&src_sg, src_page, extent_size, 416 extent_offset * extent_size); 417 sg_set_page(&dst_sg, dst_page, extent_size, 418 extent_offset * extent_size); 419 420 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, 421 extent_iv, op); 422 if (rc < 0) { 423 printk(KERN_ERR "%s: Error attempting to crypt page with " 424 "page_index = [%ld], extent_offset = [%ld]; " 425 "rc = [%d]\n", __func__, page_index, extent_offset, rc); 426 goto out; 427 } 428 rc = 0; 429 out: 430 return rc; 431 } 432 433 /** 434 * ecryptfs_encrypt_page 435 * @page: Page mapped from the eCryptfs inode for the file; contains 436 * decrypted content that needs to be encrypted (to a temporary 437 * page; not in place) and written out to the lower file 438 * 439 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 440 * that eCryptfs pages may straddle the lower pages -- for instance, 441 * if the file was created on a machine with an 8K page size 442 * (resulting in an 8K header), and then the file is copied onto a 443 * host with a 32K page size, then when reading page 0 of the eCryptfs 444 * file, 24K of page 0 of the lower file will be read and decrypted, 445 * and then 8K of page 1 of the lower file will be read and decrypted. 446 * 447 * Returns zero on success; negative on error 448 */ 449 int ecryptfs_encrypt_page(struct page *page) 450 { 451 struct inode *ecryptfs_inode; 452 struct ecryptfs_crypt_stat *crypt_stat; 453 char *enc_extent_virt; 454 struct page *enc_extent_page = NULL; 455 loff_t extent_offset; 456 loff_t lower_offset; 457 int rc = 0; 458 459 ecryptfs_inode = page->mapping->host; 460 crypt_stat = 461 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 462 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 463 enc_extent_page = alloc_page(GFP_USER); 464 if (!enc_extent_page) { 465 rc = -ENOMEM; 466 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 467 "encrypted extent\n"); 468 goto out; 469 } 470 471 for (extent_offset = 0; 472 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 473 extent_offset++) { 474 rc = crypt_extent(crypt_stat, enc_extent_page, page, 475 extent_offset, ENCRYPT); 476 if (rc) { 477 printk(KERN_ERR "%s: Error encrypting extent; " 478 "rc = [%d]\n", __func__, rc); 479 goto out; 480 } 481 } 482 483 lower_offset = lower_offset_for_page(crypt_stat, page); 484 enc_extent_virt = kmap(enc_extent_page); 485 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, 486 PAGE_SIZE); 487 kunmap(enc_extent_page); 488 if (rc < 0) { 489 ecryptfs_printk(KERN_ERR, 490 "Error attempting to write lower page; rc = [%d]\n", 491 rc); 492 goto out; 493 } 494 rc = 0; 495 out: 496 if (enc_extent_page) { 497 __free_page(enc_extent_page); 498 } 499 return rc; 500 } 501 502 /** 503 * ecryptfs_decrypt_page 504 * @page: Page mapped from the eCryptfs inode for the file; data read 505 * and decrypted from the lower file will be written into this 506 * page 507 * 508 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 509 * that eCryptfs pages may straddle the lower pages -- for instance, 510 * if the file was created on a machine with an 8K page size 511 * (resulting in an 8K header), and then the file is copied onto a 512 * host with a 32K page size, then when reading page 0 of the eCryptfs 513 * file, 24K of page 0 of the lower file will be read and decrypted, 514 * and then 8K of page 1 of the lower file will be read and decrypted. 515 * 516 * Returns zero on success; negative on error 517 */ 518 int ecryptfs_decrypt_page(struct page *page) 519 { 520 struct inode *ecryptfs_inode; 521 struct ecryptfs_crypt_stat *crypt_stat; 522 char *page_virt; 523 unsigned long extent_offset; 524 loff_t lower_offset; 525 int rc = 0; 526 527 ecryptfs_inode = page->mapping->host; 528 crypt_stat = 529 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 530 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 531 532 lower_offset = lower_offset_for_page(crypt_stat, page); 533 page_virt = kmap(page); 534 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE, 535 ecryptfs_inode); 536 kunmap(page); 537 if (rc < 0) { 538 ecryptfs_printk(KERN_ERR, 539 "Error attempting to read lower page; rc = [%d]\n", 540 rc); 541 goto out; 542 } 543 544 for (extent_offset = 0; 545 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 546 extent_offset++) { 547 rc = crypt_extent(crypt_stat, page, page, 548 extent_offset, DECRYPT); 549 if (rc) { 550 printk(KERN_ERR "%s: Error encrypting extent; " 551 "rc = [%d]\n", __func__, rc); 552 goto out; 553 } 554 } 555 out: 556 return rc; 557 } 558 559 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 560 561 /** 562 * ecryptfs_init_crypt_ctx 563 * @crypt_stat: Uninitialized crypt stats structure 564 * 565 * Initialize the crypto context. 566 * 567 * TODO: Performance: Keep a cache of initialized cipher contexts; 568 * only init if needed 569 */ 570 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 571 { 572 char *full_alg_name; 573 int rc = -EINVAL; 574 575 ecryptfs_printk(KERN_DEBUG, 576 "Initializing cipher [%s]; strlen = [%d]; " 577 "key_size_bits = [%zd]\n", 578 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 579 crypt_stat->key_size << 3); 580 mutex_lock(&crypt_stat->cs_tfm_mutex); 581 if (crypt_stat->tfm) { 582 rc = 0; 583 goto out_unlock; 584 } 585 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 586 crypt_stat->cipher, "cbc"); 587 if (rc) 588 goto out_unlock; 589 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0); 590 if (IS_ERR(crypt_stat->tfm)) { 591 rc = PTR_ERR(crypt_stat->tfm); 592 crypt_stat->tfm = NULL; 593 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 594 "Error initializing cipher [%s]\n", 595 full_alg_name); 596 goto out_free; 597 } 598 crypto_skcipher_set_flags(crypt_stat->tfm, 599 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 600 rc = 0; 601 out_free: 602 kfree(full_alg_name); 603 out_unlock: 604 mutex_unlock(&crypt_stat->cs_tfm_mutex); 605 return rc; 606 } 607 608 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 609 { 610 int extent_size_tmp; 611 612 crypt_stat->extent_mask = 0xFFFFFFFF; 613 crypt_stat->extent_shift = 0; 614 if (crypt_stat->extent_size == 0) 615 return; 616 extent_size_tmp = crypt_stat->extent_size; 617 while ((extent_size_tmp & 0x01) == 0) { 618 extent_size_tmp >>= 1; 619 crypt_stat->extent_mask <<= 1; 620 crypt_stat->extent_shift++; 621 } 622 } 623 624 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 625 { 626 /* Default values; may be overwritten as we are parsing the 627 * packets. */ 628 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 629 set_extent_mask_and_shift(crypt_stat); 630 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 631 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 632 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 633 else { 634 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 635 crypt_stat->metadata_size = 636 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 637 else 638 crypt_stat->metadata_size = PAGE_SIZE; 639 } 640 } 641 642 /** 643 * ecryptfs_compute_root_iv 644 * @crypt_stats 645 * 646 * On error, sets the root IV to all 0's. 647 */ 648 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 649 { 650 int rc = 0; 651 char dst[MD5_DIGEST_SIZE]; 652 653 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 654 BUG_ON(crypt_stat->iv_bytes <= 0); 655 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 656 rc = -EINVAL; 657 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 658 "cannot generate root IV\n"); 659 goto out; 660 } 661 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 662 crypt_stat->key_size); 663 if (rc) { 664 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 665 "MD5 while generating root IV\n"); 666 goto out; 667 } 668 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 669 out: 670 if (rc) { 671 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 672 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 673 } 674 return rc; 675 } 676 677 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 678 { 679 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 680 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 681 ecryptfs_compute_root_iv(crypt_stat); 682 if (unlikely(ecryptfs_verbosity > 0)) { 683 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 684 ecryptfs_dump_hex(crypt_stat->key, 685 crypt_stat->key_size); 686 } 687 } 688 689 /** 690 * ecryptfs_copy_mount_wide_flags_to_inode_flags 691 * @crypt_stat: The inode's cryptographic context 692 * @mount_crypt_stat: The mount point's cryptographic context 693 * 694 * This function propagates the mount-wide flags to individual inode 695 * flags. 696 */ 697 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 698 struct ecryptfs_crypt_stat *crypt_stat, 699 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 700 { 701 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 702 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 703 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 704 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 705 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 706 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 707 if (mount_crypt_stat->flags 708 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 709 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 710 else if (mount_crypt_stat->flags 711 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 712 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 713 } 714 } 715 716 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 717 struct ecryptfs_crypt_stat *crypt_stat, 718 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 719 { 720 struct ecryptfs_global_auth_tok *global_auth_tok; 721 int rc = 0; 722 723 mutex_lock(&crypt_stat->keysig_list_mutex); 724 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 725 726 list_for_each_entry(global_auth_tok, 727 &mount_crypt_stat->global_auth_tok_list, 728 mount_crypt_stat_list) { 729 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 730 continue; 731 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 732 if (rc) { 733 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 734 goto out; 735 } 736 } 737 738 out: 739 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 740 mutex_unlock(&crypt_stat->keysig_list_mutex); 741 return rc; 742 } 743 744 /** 745 * ecryptfs_set_default_crypt_stat_vals 746 * @crypt_stat: The inode's cryptographic context 747 * @mount_crypt_stat: The mount point's cryptographic context 748 * 749 * Default values in the event that policy does not override them. 750 */ 751 static void ecryptfs_set_default_crypt_stat_vals( 752 struct ecryptfs_crypt_stat *crypt_stat, 753 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 754 { 755 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 756 mount_crypt_stat); 757 ecryptfs_set_default_sizes(crypt_stat); 758 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 759 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 760 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 761 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 762 crypt_stat->mount_crypt_stat = mount_crypt_stat; 763 } 764 765 /** 766 * ecryptfs_new_file_context 767 * @ecryptfs_inode: The eCryptfs inode 768 * 769 * If the crypto context for the file has not yet been established, 770 * this is where we do that. Establishing a new crypto context 771 * involves the following decisions: 772 * - What cipher to use? 773 * - What set of authentication tokens to use? 774 * Here we just worry about getting enough information into the 775 * authentication tokens so that we know that they are available. 776 * We associate the available authentication tokens with the new file 777 * via the set of signatures in the crypt_stat struct. Later, when 778 * the headers are actually written out, we may again defer to 779 * userspace to perform the encryption of the session key; for the 780 * foreseeable future, this will be the case with public key packets. 781 * 782 * Returns zero on success; non-zero otherwise 783 */ 784 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 785 { 786 struct ecryptfs_crypt_stat *crypt_stat = 787 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 788 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 789 &ecryptfs_superblock_to_private( 790 ecryptfs_inode->i_sb)->mount_crypt_stat; 791 int cipher_name_len; 792 int rc = 0; 793 794 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 795 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 796 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 797 mount_crypt_stat); 798 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 799 mount_crypt_stat); 800 if (rc) { 801 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 802 "to the inode key sigs; rc = [%d]\n", rc); 803 goto out; 804 } 805 cipher_name_len = 806 strlen(mount_crypt_stat->global_default_cipher_name); 807 memcpy(crypt_stat->cipher, 808 mount_crypt_stat->global_default_cipher_name, 809 cipher_name_len); 810 crypt_stat->cipher[cipher_name_len] = '\0'; 811 crypt_stat->key_size = 812 mount_crypt_stat->global_default_cipher_key_size; 813 ecryptfs_generate_new_key(crypt_stat); 814 rc = ecryptfs_init_crypt_ctx(crypt_stat); 815 if (rc) 816 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 817 "context for cipher [%s]: rc = [%d]\n", 818 crypt_stat->cipher, rc); 819 out: 820 return rc; 821 } 822 823 /** 824 * ecryptfs_validate_marker - check for the ecryptfs marker 825 * @data: The data block in which to check 826 * 827 * Returns zero if marker found; -EINVAL if not found 828 */ 829 static int ecryptfs_validate_marker(char *data) 830 { 831 u32 m_1, m_2; 832 833 m_1 = get_unaligned_be32(data); 834 m_2 = get_unaligned_be32(data + 4); 835 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 836 return 0; 837 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 838 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 839 MAGIC_ECRYPTFS_MARKER); 840 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 841 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 842 return -EINVAL; 843 } 844 845 struct ecryptfs_flag_map_elem { 846 u32 file_flag; 847 u32 local_flag; 848 }; 849 850 /* Add support for additional flags by adding elements here. */ 851 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 852 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 853 {0x00000002, ECRYPTFS_ENCRYPTED}, 854 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 855 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 856 }; 857 858 /** 859 * ecryptfs_process_flags 860 * @crypt_stat: The cryptographic context 861 * @page_virt: Source data to be parsed 862 * @bytes_read: Updated with the number of bytes read 863 * 864 * Returns zero on success; non-zero if the flag set is invalid 865 */ 866 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 867 char *page_virt, int *bytes_read) 868 { 869 int rc = 0; 870 int i; 871 u32 flags; 872 873 flags = get_unaligned_be32(page_virt); 874 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 875 if (flags & ecryptfs_flag_map[i].file_flag) { 876 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 877 } else 878 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 879 /* Version is in top 8 bits of the 32-bit flag vector */ 880 crypt_stat->file_version = ((flags >> 24) & 0xFF); 881 (*bytes_read) = 4; 882 return rc; 883 } 884 885 /** 886 * write_ecryptfs_marker 887 * @page_virt: The pointer to in a page to begin writing the marker 888 * @written: Number of bytes written 889 * 890 * Marker = 0x3c81b7f5 891 */ 892 static void write_ecryptfs_marker(char *page_virt, size_t *written) 893 { 894 u32 m_1, m_2; 895 896 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 897 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 898 put_unaligned_be32(m_1, page_virt); 899 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 900 put_unaligned_be32(m_2, page_virt); 901 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 902 } 903 904 void ecryptfs_write_crypt_stat_flags(char *page_virt, 905 struct ecryptfs_crypt_stat *crypt_stat, 906 size_t *written) 907 { 908 u32 flags = 0; 909 int i; 910 911 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 912 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 913 flags |= ecryptfs_flag_map[i].file_flag; 914 /* Version is in top 8 bits of the 32-bit flag vector */ 915 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 916 put_unaligned_be32(flags, page_virt); 917 (*written) = 4; 918 } 919 920 struct ecryptfs_cipher_code_str_map_elem { 921 char cipher_str[16]; 922 u8 cipher_code; 923 }; 924 925 /* Add support for additional ciphers by adding elements here. The 926 * cipher_code is whatever OpenPGP applications use to identify the 927 * ciphers. List in order of probability. */ 928 static struct ecryptfs_cipher_code_str_map_elem 929 ecryptfs_cipher_code_str_map[] = { 930 {"aes",RFC2440_CIPHER_AES_128 }, 931 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 932 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 933 {"cast5", RFC2440_CIPHER_CAST_5}, 934 {"twofish", RFC2440_CIPHER_TWOFISH}, 935 {"cast6", RFC2440_CIPHER_CAST_6}, 936 {"aes", RFC2440_CIPHER_AES_192}, 937 {"aes", RFC2440_CIPHER_AES_256} 938 }; 939 940 /** 941 * ecryptfs_code_for_cipher_string 942 * @cipher_name: The string alias for the cipher 943 * @key_bytes: Length of key in bytes; used for AES code selection 944 * 945 * Returns zero on no match, or the cipher code on match 946 */ 947 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 948 { 949 int i; 950 u8 code = 0; 951 struct ecryptfs_cipher_code_str_map_elem *map = 952 ecryptfs_cipher_code_str_map; 953 954 if (strcmp(cipher_name, "aes") == 0) { 955 switch (key_bytes) { 956 case 16: 957 code = RFC2440_CIPHER_AES_128; 958 break; 959 case 24: 960 code = RFC2440_CIPHER_AES_192; 961 break; 962 case 32: 963 code = RFC2440_CIPHER_AES_256; 964 } 965 } else { 966 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 967 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 968 code = map[i].cipher_code; 969 break; 970 } 971 } 972 return code; 973 } 974 975 /** 976 * ecryptfs_cipher_code_to_string 977 * @str: Destination to write out the cipher name 978 * @cipher_code: The code to convert to cipher name string 979 * 980 * Returns zero on success 981 */ 982 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 983 { 984 int rc = 0; 985 int i; 986 987 str[0] = '\0'; 988 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 989 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 990 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 991 if (str[0] == '\0') { 992 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 993 "[%d]\n", cipher_code); 994 rc = -EINVAL; 995 } 996 return rc; 997 } 998 999 int ecryptfs_read_and_validate_header_region(struct inode *inode) 1000 { 1001 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1002 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1003 int rc; 1004 1005 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 1006 inode); 1007 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1008 return rc >= 0 ? -EINVAL : rc; 1009 rc = ecryptfs_validate_marker(marker); 1010 if (!rc) 1011 ecryptfs_i_size_init(file_size, inode); 1012 return rc; 1013 } 1014 1015 void 1016 ecryptfs_write_header_metadata(char *virt, 1017 struct ecryptfs_crypt_stat *crypt_stat, 1018 size_t *written) 1019 { 1020 u32 header_extent_size; 1021 u16 num_header_extents_at_front; 1022 1023 header_extent_size = (u32)crypt_stat->extent_size; 1024 num_header_extents_at_front = 1025 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1026 put_unaligned_be32(header_extent_size, virt); 1027 virt += 4; 1028 put_unaligned_be16(num_header_extents_at_front, virt); 1029 (*written) = 6; 1030 } 1031 1032 struct kmem_cache *ecryptfs_header_cache; 1033 1034 /** 1035 * ecryptfs_write_headers_virt 1036 * @page_virt: The virtual address to write the headers to 1037 * @max: The size of memory allocated at page_virt 1038 * @size: Set to the number of bytes written by this function 1039 * @crypt_stat: The cryptographic context 1040 * @ecryptfs_dentry: The eCryptfs dentry 1041 * 1042 * Format version: 1 1043 * 1044 * Header Extent: 1045 * Octets 0-7: Unencrypted file size (big-endian) 1046 * Octets 8-15: eCryptfs special marker 1047 * Octets 16-19: Flags 1048 * Octet 16: File format version number (between 0 and 255) 1049 * Octets 17-18: Reserved 1050 * Octet 19: Bit 1 (lsb): Reserved 1051 * Bit 2: Encrypted? 1052 * Bits 3-8: Reserved 1053 * Octets 20-23: Header extent size (big-endian) 1054 * Octets 24-25: Number of header extents at front of file 1055 * (big-endian) 1056 * Octet 26: Begin RFC 2440 authentication token packet set 1057 * Data Extent 0: 1058 * Lower data (CBC encrypted) 1059 * Data Extent 1: 1060 * Lower data (CBC encrypted) 1061 * ... 1062 * 1063 * Returns zero on success 1064 */ 1065 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1066 size_t *size, 1067 struct ecryptfs_crypt_stat *crypt_stat, 1068 struct dentry *ecryptfs_dentry) 1069 { 1070 int rc; 1071 size_t written; 1072 size_t offset; 1073 1074 offset = ECRYPTFS_FILE_SIZE_BYTES; 1075 write_ecryptfs_marker((page_virt + offset), &written); 1076 offset += written; 1077 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1078 &written); 1079 offset += written; 1080 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1081 &written); 1082 offset += written; 1083 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1084 ecryptfs_dentry, &written, 1085 max - offset); 1086 if (rc) 1087 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1088 "set; rc = [%d]\n", rc); 1089 if (size) { 1090 offset += written; 1091 *size = offset; 1092 } 1093 return rc; 1094 } 1095 1096 static int 1097 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1098 char *virt, size_t virt_len) 1099 { 1100 int rc; 1101 1102 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1103 0, virt_len); 1104 if (rc < 0) 1105 printk(KERN_ERR "%s: Error attempting to write header " 1106 "information to lower file; rc = [%d]\n", __func__, rc); 1107 else 1108 rc = 0; 1109 return rc; 1110 } 1111 1112 static int 1113 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1114 struct inode *ecryptfs_inode, 1115 char *page_virt, size_t size) 1116 { 1117 int rc; 1118 1119 rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode, 1120 ECRYPTFS_XATTR_NAME, page_virt, size, 0); 1121 return rc; 1122 } 1123 1124 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1125 unsigned int order) 1126 { 1127 struct page *page; 1128 1129 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1130 if (page) 1131 return (unsigned long) page_address(page); 1132 return 0; 1133 } 1134 1135 /** 1136 * ecryptfs_write_metadata 1137 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1138 * @ecryptfs_inode: The newly created eCryptfs inode 1139 * 1140 * Write the file headers out. This will likely involve a userspace 1141 * callout, in which the session key is encrypted with one or more 1142 * public keys and/or the passphrase necessary to do the encryption is 1143 * retrieved via a prompt. Exactly what happens at this point should 1144 * be policy-dependent. 1145 * 1146 * Returns zero on success; non-zero on error 1147 */ 1148 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1149 struct inode *ecryptfs_inode) 1150 { 1151 struct ecryptfs_crypt_stat *crypt_stat = 1152 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1153 unsigned int order; 1154 char *virt; 1155 size_t virt_len; 1156 size_t size = 0; 1157 int rc = 0; 1158 1159 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1160 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1161 printk(KERN_ERR "Key is invalid; bailing out\n"); 1162 rc = -EINVAL; 1163 goto out; 1164 } 1165 } else { 1166 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1167 __func__); 1168 rc = -EINVAL; 1169 goto out; 1170 } 1171 virt_len = crypt_stat->metadata_size; 1172 order = get_order(virt_len); 1173 /* Released in this function */ 1174 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1175 if (!virt) { 1176 printk(KERN_ERR "%s: Out of memory\n", __func__); 1177 rc = -ENOMEM; 1178 goto out; 1179 } 1180 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1181 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1182 ecryptfs_dentry); 1183 if (unlikely(rc)) { 1184 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1185 __func__, rc); 1186 goto out_free; 1187 } 1188 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1189 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode, 1190 virt, size); 1191 else 1192 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1193 virt_len); 1194 if (rc) { 1195 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1196 "rc = [%d]\n", __func__, rc); 1197 goto out_free; 1198 } 1199 out_free: 1200 free_pages((unsigned long)virt, order); 1201 out: 1202 return rc; 1203 } 1204 1205 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1206 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1207 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1208 char *virt, int *bytes_read, 1209 int validate_header_size) 1210 { 1211 int rc = 0; 1212 u32 header_extent_size; 1213 u16 num_header_extents_at_front; 1214 1215 header_extent_size = get_unaligned_be32(virt); 1216 virt += sizeof(__be32); 1217 num_header_extents_at_front = get_unaligned_be16(virt); 1218 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1219 * (size_t)header_extent_size)); 1220 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1221 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1222 && (crypt_stat->metadata_size 1223 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1224 rc = -EINVAL; 1225 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1226 crypt_stat->metadata_size); 1227 } 1228 return rc; 1229 } 1230 1231 /** 1232 * set_default_header_data 1233 * @crypt_stat: The cryptographic context 1234 * 1235 * For version 0 file format; this function is only for backwards 1236 * compatibility for files created with the prior versions of 1237 * eCryptfs. 1238 */ 1239 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1240 { 1241 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1242 } 1243 1244 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1245 { 1246 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1247 struct ecryptfs_crypt_stat *crypt_stat; 1248 u64 file_size; 1249 1250 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1251 mount_crypt_stat = 1252 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1253 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1254 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1255 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1256 file_size += crypt_stat->metadata_size; 1257 } else 1258 file_size = get_unaligned_be64(page_virt); 1259 i_size_write(inode, (loff_t)file_size); 1260 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1261 } 1262 1263 /** 1264 * ecryptfs_read_headers_virt 1265 * @page_virt: The virtual address into which to read the headers 1266 * @crypt_stat: The cryptographic context 1267 * @ecryptfs_dentry: The eCryptfs dentry 1268 * @validate_header_size: Whether to validate the header size while reading 1269 * 1270 * Read/parse the header data. The header format is detailed in the 1271 * comment block for the ecryptfs_write_headers_virt() function. 1272 * 1273 * Returns zero on success 1274 */ 1275 static int ecryptfs_read_headers_virt(char *page_virt, 1276 struct ecryptfs_crypt_stat *crypt_stat, 1277 struct dentry *ecryptfs_dentry, 1278 int validate_header_size) 1279 { 1280 int rc = 0; 1281 int offset; 1282 int bytes_read; 1283 1284 ecryptfs_set_default_sizes(crypt_stat); 1285 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1286 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1287 offset = ECRYPTFS_FILE_SIZE_BYTES; 1288 rc = ecryptfs_validate_marker(page_virt + offset); 1289 if (rc) 1290 goto out; 1291 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1292 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry)); 1293 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1294 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1295 &bytes_read); 1296 if (rc) { 1297 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1298 goto out; 1299 } 1300 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1301 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1302 "file version [%d] is supported by this " 1303 "version of eCryptfs\n", 1304 crypt_stat->file_version, 1305 ECRYPTFS_SUPPORTED_FILE_VERSION); 1306 rc = -EINVAL; 1307 goto out; 1308 } 1309 offset += bytes_read; 1310 if (crypt_stat->file_version >= 1) { 1311 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1312 &bytes_read, validate_header_size); 1313 if (rc) { 1314 ecryptfs_printk(KERN_WARNING, "Error reading header " 1315 "metadata; rc = [%d]\n", rc); 1316 } 1317 offset += bytes_read; 1318 } else 1319 set_default_header_data(crypt_stat); 1320 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1321 ecryptfs_dentry); 1322 out: 1323 return rc; 1324 } 1325 1326 /** 1327 * ecryptfs_read_xattr_region 1328 * @page_virt: The vitual address into which to read the xattr data 1329 * @ecryptfs_inode: The eCryptfs inode 1330 * 1331 * Attempts to read the crypto metadata from the extended attribute 1332 * region of the lower file. 1333 * 1334 * Returns zero on success; non-zero on error 1335 */ 1336 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1337 { 1338 struct dentry *lower_dentry = 1339 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry; 1340 ssize_t size; 1341 int rc = 0; 1342 1343 size = ecryptfs_getxattr_lower(lower_dentry, 1344 ecryptfs_inode_to_lower(ecryptfs_inode), 1345 ECRYPTFS_XATTR_NAME, 1346 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1347 if (size < 0) { 1348 if (unlikely(ecryptfs_verbosity > 0)) 1349 printk(KERN_INFO "Error attempting to read the [%s] " 1350 "xattr from the lower file; return value = " 1351 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1352 rc = -EINVAL; 1353 goto out; 1354 } 1355 out: 1356 return rc; 1357 } 1358 1359 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1360 struct inode *inode) 1361 { 1362 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1363 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1364 int rc; 1365 1366 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1367 ecryptfs_inode_to_lower(inode), 1368 ECRYPTFS_XATTR_NAME, file_size, 1369 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1370 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1371 return rc >= 0 ? -EINVAL : rc; 1372 rc = ecryptfs_validate_marker(marker); 1373 if (!rc) 1374 ecryptfs_i_size_init(file_size, inode); 1375 return rc; 1376 } 1377 1378 /** 1379 * ecryptfs_read_metadata 1380 * 1381 * Common entry point for reading file metadata. From here, we could 1382 * retrieve the header information from the header region of the file, 1383 * the xattr region of the file, or some other repository that is 1384 * stored separately from the file itself. The current implementation 1385 * supports retrieving the metadata information from the file contents 1386 * and from the xattr region. 1387 * 1388 * Returns zero if valid headers found and parsed; non-zero otherwise 1389 */ 1390 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1391 { 1392 int rc; 1393 char *page_virt; 1394 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry); 1395 struct ecryptfs_crypt_stat *crypt_stat = 1396 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1397 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1398 &ecryptfs_superblock_to_private( 1399 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1400 1401 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1402 mount_crypt_stat); 1403 /* Read the first page from the underlying file */ 1404 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1405 if (!page_virt) { 1406 rc = -ENOMEM; 1407 goto out; 1408 } 1409 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1410 ecryptfs_inode); 1411 if (rc >= 0) 1412 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1413 ecryptfs_dentry, 1414 ECRYPTFS_VALIDATE_HEADER_SIZE); 1415 if (rc) { 1416 /* metadata is not in the file header, so try xattrs */ 1417 memset(page_virt, 0, PAGE_SIZE); 1418 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1419 if (rc) { 1420 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1421 "file header region or xattr region, inode %lu\n", 1422 ecryptfs_inode->i_ino); 1423 rc = -EINVAL; 1424 goto out; 1425 } 1426 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1427 ecryptfs_dentry, 1428 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1429 if (rc) { 1430 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1431 "file xattr region either, inode %lu\n", 1432 ecryptfs_inode->i_ino); 1433 rc = -EINVAL; 1434 } 1435 if (crypt_stat->mount_crypt_stat->flags 1436 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1437 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1438 } else { 1439 printk(KERN_WARNING "Attempt to access file with " 1440 "crypto metadata only in the extended attribute " 1441 "region, but eCryptfs was mounted without " 1442 "xattr support enabled. eCryptfs will not treat " 1443 "this like an encrypted file, inode %lu\n", 1444 ecryptfs_inode->i_ino); 1445 rc = -EINVAL; 1446 } 1447 } 1448 out: 1449 if (page_virt) { 1450 memset(page_virt, 0, PAGE_SIZE); 1451 kmem_cache_free(ecryptfs_header_cache, page_virt); 1452 } 1453 return rc; 1454 } 1455 1456 /** 1457 * ecryptfs_encrypt_filename - encrypt filename 1458 * 1459 * CBC-encrypts the filename. We do not want to encrypt the same 1460 * filename with the same key and IV, which may happen with hard 1461 * links, so we prepend random bits to each filename. 1462 * 1463 * Returns zero on success; non-zero otherwise 1464 */ 1465 static int 1466 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1467 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1468 { 1469 int rc = 0; 1470 1471 filename->encrypted_filename = NULL; 1472 filename->encrypted_filename_size = 0; 1473 if (mount_crypt_stat && (mount_crypt_stat->flags 1474 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1475 size_t packet_size; 1476 size_t remaining_bytes; 1477 1478 rc = ecryptfs_write_tag_70_packet( 1479 NULL, NULL, 1480 &filename->encrypted_filename_size, 1481 mount_crypt_stat, NULL, 1482 filename->filename_size); 1483 if (rc) { 1484 printk(KERN_ERR "%s: Error attempting to get packet " 1485 "size for tag 72; rc = [%d]\n", __func__, 1486 rc); 1487 filename->encrypted_filename_size = 0; 1488 goto out; 1489 } 1490 filename->encrypted_filename = 1491 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1492 if (!filename->encrypted_filename) { 1493 rc = -ENOMEM; 1494 goto out; 1495 } 1496 remaining_bytes = filename->encrypted_filename_size; 1497 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1498 &remaining_bytes, 1499 &packet_size, 1500 mount_crypt_stat, 1501 filename->filename, 1502 filename->filename_size); 1503 if (rc) { 1504 printk(KERN_ERR "%s: Error attempting to generate " 1505 "tag 70 packet; rc = [%d]\n", __func__, 1506 rc); 1507 kfree(filename->encrypted_filename); 1508 filename->encrypted_filename = NULL; 1509 filename->encrypted_filename_size = 0; 1510 goto out; 1511 } 1512 filename->encrypted_filename_size = packet_size; 1513 } else { 1514 printk(KERN_ERR "%s: No support for requested filename " 1515 "encryption method in this release\n", __func__); 1516 rc = -EOPNOTSUPP; 1517 goto out; 1518 } 1519 out: 1520 return rc; 1521 } 1522 1523 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1524 const char *name, size_t name_size) 1525 { 1526 int rc = 0; 1527 1528 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1529 if (!(*copied_name)) { 1530 rc = -ENOMEM; 1531 goto out; 1532 } 1533 memcpy((void *)(*copied_name), (void *)name, name_size); 1534 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1535 * in printing out the 1536 * string in debug 1537 * messages */ 1538 (*copied_name_size) = name_size; 1539 out: 1540 return rc; 1541 } 1542 1543 /** 1544 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1545 * @key_tfm: Crypto context for key material, set by this function 1546 * @cipher_name: Name of the cipher 1547 * @key_size: Size of the key in bytes 1548 * 1549 * Returns zero on success. Any crypto_tfm structs allocated here 1550 * should be released by other functions, such as on a superblock put 1551 * event, regardless of whether this function succeeds for fails. 1552 */ 1553 static int 1554 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, 1555 char *cipher_name, size_t *key_size) 1556 { 1557 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1558 char *full_alg_name = NULL; 1559 int rc; 1560 1561 *key_tfm = NULL; 1562 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1563 rc = -EINVAL; 1564 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1565 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1566 goto out; 1567 } 1568 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1569 "ecb"); 1570 if (rc) 1571 goto out; 1572 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1573 if (IS_ERR(*key_tfm)) { 1574 rc = PTR_ERR(*key_tfm); 1575 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1576 "[%s]; rc = [%d]\n", full_alg_name, rc); 1577 goto out; 1578 } 1579 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 1580 if (*key_size == 0) 1581 *key_size = crypto_skcipher_default_keysize(*key_tfm); 1582 get_random_bytes(dummy_key, *key_size); 1583 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size); 1584 if (rc) { 1585 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1586 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1587 rc); 1588 rc = -EINVAL; 1589 goto out; 1590 } 1591 out: 1592 kfree(full_alg_name); 1593 return rc; 1594 } 1595 1596 struct kmem_cache *ecryptfs_key_tfm_cache; 1597 static struct list_head key_tfm_list; 1598 struct mutex key_tfm_list_mutex; 1599 1600 int __init ecryptfs_init_crypto(void) 1601 { 1602 mutex_init(&key_tfm_list_mutex); 1603 INIT_LIST_HEAD(&key_tfm_list); 1604 return 0; 1605 } 1606 1607 /** 1608 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1609 * 1610 * Called only at module unload time 1611 */ 1612 int ecryptfs_destroy_crypto(void) 1613 { 1614 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1615 1616 mutex_lock(&key_tfm_list_mutex); 1617 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1618 key_tfm_list) { 1619 list_del(&key_tfm->key_tfm_list); 1620 crypto_free_skcipher(key_tfm->key_tfm); 1621 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1622 } 1623 mutex_unlock(&key_tfm_list_mutex); 1624 return 0; 1625 } 1626 1627 int 1628 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1629 size_t key_size) 1630 { 1631 struct ecryptfs_key_tfm *tmp_tfm; 1632 int rc = 0; 1633 1634 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1635 1636 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1637 if (key_tfm) 1638 (*key_tfm) = tmp_tfm; 1639 if (!tmp_tfm) { 1640 rc = -ENOMEM; 1641 goto out; 1642 } 1643 mutex_init(&tmp_tfm->key_tfm_mutex); 1644 strncpy(tmp_tfm->cipher_name, cipher_name, 1645 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1646 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1647 tmp_tfm->key_size = key_size; 1648 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1649 tmp_tfm->cipher_name, 1650 &tmp_tfm->key_size); 1651 if (rc) { 1652 printk(KERN_ERR "Error attempting to initialize key TFM " 1653 "cipher with name = [%s]; rc = [%d]\n", 1654 tmp_tfm->cipher_name, rc); 1655 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1656 if (key_tfm) 1657 (*key_tfm) = NULL; 1658 goto out; 1659 } 1660 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1661 out: 1662 return rc; 1663 } 1664 1665 /** 1666 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1667 * @cipher_name: the name of the cipher to search for 1668 * @key_tfm: set to corresponding tfm if found 1669 * 1670 * Searches for cached key_tfm matching @cipher_name 1671 * Must be called with &key_tfm_list_mutex held 1672 * Returns 1 if found, with @key_tfm set 1673 * Returns 0 if not found, with @key_tfm set to NULL 1674 */ 1675 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1676 { 1677 struct ecryptfs_key_tfm *tmp_key_tfm; 1678 1679 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1680 1681 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1682 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1683 if (key_tfm) 1684 (*key_tfm) = tmp_key_tfm; 1685 return 1; 1686 } 1687 } 1688 if (key_tfm) 1689 (*key_tfm) = NULL; 1690 return 0; 1691 } 1692 1693 /** 1694 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1695 * 1696 * @tfm: set to cached tfm found, or new tfm created 1697 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1698 * @cipher_name: the name of the cipher to search for and/or add 1699 * 1700 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1701 * Searches for cached item first, and creates new if not found. 1702 * Returns 0 on success, non-zero if adding new cipher failed 1703 */ 1704 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, 1705 struct mutex **tfm_mutex, 1706 char *cipher_name) 1707 { 1708 struct ecryptfs_key_tfm *key_tfm; 1709 int rc = 0; 1710 1711 (*tfm) = NULL; 1712 (*tfm_mutex) = NULL; 1713 1714 mutex_lock(&key_tfm_list_mutex); 1715 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1716 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1717 if (rc) { 1718 printk(KERN_ERR "Error adding new key_tfm to list; " 1719 "rc = [%d]\n", rc); 1720 goto out; 1721 } 1722 } 1723 (*tfm) = key_tfm->key_tfm; 1724 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1725 out: 1726 mutex_unlock(&key_tfm_list_mutex); 1727 return rc; 1728 } 1729 1730 /* 64 characters forming a 6-bit target field */ 1731 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1732 "EFGHIJKLMNOPQRST" 1733 "UVWXYZabcdefghij" 1734 "klmnopqrstuvwxyz"); 1735 1736 /* We could either offset on every reverse map or just pad some 0x00's 1737 * at the front here */ 1738 static const unsigned char filename_rev_map[256] = { 1739 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1740 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1741 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1742 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1743 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1744 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1745 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1746 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1747 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1748 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1749 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1750 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1751 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1752 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1753 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1754 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1755 }; 1756 1757 /** 1758 * ecryptfs_encode_for_filename 1759 * @dst: Destination location for encoded filename 1760 * @dst_size: Size of the encoded filename in bytes 1761 * @src: Source location for the filename to encode 1762 * @src_size: Size of the source in bytes 1763 */ 1764 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1765 unsigned char *src, size_t src_size) 1766 { 1767 size_t num_blocks; 1768 size_t block_num = 0; 1769 size_t dst_offset = 0; 1770 unsigned char last_block[3]; 1771 1772 if (src_size == 0) { 1773 (*dst_size) = 0; 1774 goto out; 1775 } 1776 num_blocks = (src_size / 3); 1777 if ((src_size % 3) == 0) { 1778 memcpy(last_block, (&src[src_size - 3]), 3); 1779 } else { 1780 num_blocks++; 1781 last_block[2] = 0x00; 1782 switch (src_size % 3) { 1783 case 1: 1784 last_block[0] = src[src_size - 1]; 1785 last_block[1] = 0x00; 1786 break; 1787 case 2: 1788 last_block[0] = src[src_size - 2]; 1789 last_block[1] = src[src_size - 1]; 1790 } 1791 } 1792 (*dst_size) = (num_blocks * 4); 1793 if (!dst) 1794 goto out; 1795 while (block_num < num_blocks) { 1796 unsigned char *src_block; 1797 unsigned char dst_block[4]; 1798 1799 if (block_num == (num_blocks - 1)) 1800 src_block = last_block; 1801 else 1802 src_block = &src[block_num * 3]; 1803 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1804 dst_block[1] = (((src_block[0] << 4) & 0x30) 1805 | ((src_block[1] >> 4) & 0x0F)); 1806 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1807 | ((src_block[2] >> 6) & 0x03)); 1808 dst_block[3] = (src_block[2] & 0x3F); 1809 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1810 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1811 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1812 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1813 block_num++; 1814 } 1815 out: 1816 return; 1817 } 1818 1819 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1820 { 1821 /* Not exact; conservatively long. Every block of 4 1822 * encoded characters decodes into a block of 3 1823 * decoded characters. This segment of code provides 1824 * the caller with the maximum amount of allocated 1825 * space that @dst will need to point to in a 1826 * subsequent call. */ 1827 return ((encoded_size + 1) * 3) / 4; 1828 } 1829 1830 /** 1831 * ecryptfs_decode_from_filename 1832 * @dst: If NULL, this function only sets @dst_size and returns. If 1833 * non-NULL, this function decodes the encoded octets in @src 1834 * into the memory that @dst points to. 1835 * @dst_size: Set to the size of the decoded string. 1836 * @src: The encoded set of octets to decode. 1837 * @src_size: The size of the encoded set of octets to decode. 1838 */ 1839 static void 1840 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 1841 const unsigned char *src, size_t src_size) 1842 { 1843 u8 current_bit_offset = 0; 1844 size_t src_byte_offset = 0; 1845 size_t dst_byte_offset = 0; 1846 1847 if (!dst) { 1848 (*dst_size) = ecryptfs_max_decoded_size(src_size); 1849 goto out; 1850 } 1851 while (src_byte_offset < src_size) { 1852 unsigned char src_byte = 1853 filename_rev_map[(int)src[src_byte_offset]]; 1854 1855 switch (current_bit_offset) { 1856 case 0: 1857 dst[dst_byte_offset] = (src_byte << 2); 1858 current_bit_offset = 6; 1859 break; 1860 case 6: 1861 dst[dst_byte_offset++] |= (src_byte >> 4); 1862 dst[dst_byte_offset] = ((src_byte & 0xF) 1863 << 4); 1864 current_bit_offset = 4; 1865 break; 1866 case 4: 1867 dst[dst_byte_offset++] |= (src_byte >> 2); 1868 dst[dst_byte_offset] = (src_byte << 6); 1869 current_bit_offset = 2; 1870 break; 1871 case 2: 1872 dst[dst_byte_offset++] |= (src_byte); 1873 current_bit_offset = 0; 1874 break; 1875 } 1876 src_byte_offset++; 1877 } 1878 (*dst_size) = dst_byte_offset; 1879 out: 1880 return; 1881 } 1882 1883 /** 1884 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 1885 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 1886 * @name: The plaintext name 1887 * @length: The length of the plaintext 1888 * @encoded_name: The encypted name 1889 * 1890 * Encrypts and encodes a filename into something that constitutes a 1891 * valid filename for a filesystem, with printable characters. 1892 * 1893 * We assume that we have a properly initialized crypto context, 1894 * pointed to by crypt_stat->tfm. 1895 * 1896 * Returns zero on success; non-zero on otherwise 1897 */ 1898 int ecryptfs_encrypt_and_encode_filename( 1899 char **encoded_name, 1900 size_t *encoded_name_size, 1901 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 1902 const char *name, size_t name_size) 1903 { 1904 size_t encoded_name_no_prefix_size; 1905 int rc = 0; 1906 1907 (*encoded_name) = NULL; 1908 (*encoded_name_size) = 0; 1909 if (mount_crypt_stat && (mount_crypt_stat->flags 1910 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 1911 struct ecryptfs_filename *filename; 1912 1913 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 1914 if (!filename) { 1915 rc = -ENOMEM; 1916 goto out; 1917 } 1918 filename->filename = (char *)name; 1919 filename->filename_size = name_size; 1920 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat); 1921 if (rc) { 1922 printk(KERN_ERR "%s: Error attempting to encrypt " 1923 "filename; rc = [%d]\n", __func__, rc); 1924 kfree(filename); 1925 goto out; 1926 } 1927 ecryptfs_encode_for_filename( 1928 NULL, &encoded_name_no_prefix_size, 1929 filename->encrypted_filename, 1930 filename->encrypted_filename_size); 1931 if (mount_crypt_stat 1932 && (mount_crypt_stat->flags 1933 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) 1934 (*encoded_name_size) = 1935 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1936 + encoded_name_no_prefix_size); 1937 else 1938 (*encoded_name_size) = 1939 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1940 + encoded_name_no_prefix_size); 1941 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 1942 if (!(*encoded_name)) { 1943 rc = -ENOMEM; 1944 kfree(filename->encrypted_filename); 1945 kfree(filename); 1946 goto out; 1947 } 1948 if (mount_crypt_stat 1949 && (mount_crypt_stat->flags 1950 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1951 memcpy((*encoded_name), 1952 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 1953 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 1954 ecryptfs_encode_for_filename( 1955 ((*encoded_name) 1956 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 1957 &encoded_name_no_prefix_size, 1958 filename->encrypted_filename, 1959 filename->encrypted_filename_size); 1960 (*encoded_name_size) = 1961 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1962 + encoded_name_no_prefix_size); 1963 (*encoded_name)[(*encoded_name_size)] = '\0'; 1964 } else { 1965 rc = -EOPNOTSUPP; 1966 } 1967 if (rc) { 1968 printk(KERN_ERR "%s: Error attempting to encode " 1969 "encrypted filename; rc = [%d]\n", __func__, 1970 rc); 1971 kfree((*encoded_name)); 1972 (*encoded_name) = NULL; 1973 (*encoded_name_size) = 0; 1974 } 1975 kfree(filename->encrypted_filename); 1976 kfree(filename); 1977 } else { 1978 rc = ecryptfs_copy_filename(encoded_name, 1979 encoded_name_size, 1980 name, name_size); 1981 } 1982 out: 1983 return rc; 1984 } 1985 1986 static bool is_dot_dotdot(const char *name, size_t name_size) 1987 { 1988 if (name_size == 1 && name[0] == '.') 1989 return true; 1990 else if (name_size == 2 && name[0] == '.' && name[1] == '.') 1991 return true; 1992 1993 return false; 1994 } 1995 1996 /** 1997 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 1998 * @plaintext_name: The plaintext name 1999 * @plaintext_name_size: The plaintext name size 2000 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2001 * @name: The filename in cipher text 2002 * @name_size: The cipher text name size 2003 * 2004 * Decrypts and decodes the filename. 2005 * 2006 * Returns zero on error; non-zero otherwise 2007 */ 2008 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2009 size_t *plaintext_name_size, 2010 struct super_block *sb, 2011 const char *name, size_t name_size) 2012 { 2013 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2014 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 2015 char *decoded_name; 2016 size_t decoded_name_size; 2017 size_t packet_size; 2018 int rc = 0; 2019 2020 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) && 2021 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) { 2022 if (is_dot_dotdot(name, name_size)) { 2023 rc = ecryptfs_copy_filename(plaintext_name, 2024 plaintext_name_size, 2025 name, name_size); 2026 goto out; 2027 } 2028 2029 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE || 2030 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2031 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) { 2032 rc = -EINVAL; 2033 goto out; 2034 } 2035 2036 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2037 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2038 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2039 name, name_size); 2040 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2041 if (!decoded_name) { 2042 rc = -ENOMEM; 2043 goto out; 2044 } 2045 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2046 name, name_size); 2047 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2048 plaintext_name_size, 2049 &packet_size, 2050 mount_crypt_stat, 2051 decoded_name, 2052 decoded_name_size); 2053 if (rc) { 2054 ecryptfs_printk(KERN_DEBUG, 2055 "%s: Could not parse tag 70 packet from filename\n", 2056 __func__); 2057 goto out_free; 2058 } 2059 } else { 2060 rc = ecryptfs_copy_filename(plaintext_name, 2061 plaintext_name_size, 2062 name, name_size); 2063 goto out; 2064 } 2065 out_free: 2066 kfree(decoded_name); 2067 out: 2068 return rc; 2069 } 2070 2071 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2072 2073 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2074 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2075 { 2076 struct crypto_skcipher *tfm; 2077 struct mutex *tfm_mutex; 2078 size_t cipher_blocksize; 2079 int rc; 2080 2081 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2082 (*namelen) = lower_namelen; 2083 return 0; 2084 } 2085 2086 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, 2087 mount_crypt_stat->global_default_fn_cipher_name); 2088 if (unlikely(rc)) { 2089 (*namelen) = 0; 2090 return rc; 2091 } 2092 2093 mutex_lock(tfm_mutex); 2094 cipher_blocksize = crypto_skcipher_blocksize(tfm); 2095 mutex_unlock(tfm_mutex); 2096 2097 /* Return an exact amount for the common cases */ 2098 if (lower_namelen == NAME_MAX 2099 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2100 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2101 return 0; 2102 } 2103 2104 /* Return a safe estimate for the uncommon cases */ 2105 (*namelen) = lower_namelen; 2106 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2107 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2108 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2109 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2110 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2111 /* Worst case is that the filename is padded nearly a full block size */ 2112 (*namelen) -= cipher_blocksize - 1; 2113 2114 if ((*namelen) < 0) 2115 (*namelen) = 0; 2116 2117 return 0; 2118 } 2119