xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision 7fe2f639)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39 
40 static int
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 			     struct page *dst_page, int dst_offset,
43 			     struct page *src_page, int src_offset, int size,
44 			     unsigned char *iv);
45 static int
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 			     struct page *dst_page, int dst_offset,
48 			     struct page *src_page, int src_offset, int size,
49 			     unsigned char *iv);
50 
51 /**
52  * ecryptfs_to_hex
53  * @dst: Buffer to take hex character representation of contents of
54  *       src; must be at least of size (src_size * 2)
55  * @src: Buffer to be converted to a hex string respresentation
56  * @src_size: number of bytes to convert
57  */
58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59 {
60 	int x;
61 
62 	for (x = 0; x < src_size; x++)
63 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64 }
65 
66 /**
67  * ecryptfs_from_hex
68  * @dst: Buffer to take the bytes from src hex; must be at least of
69  *       size (src_size / 2)
70  * @src: Buffer to be converted from a hex string respresentation to raw value
71  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72  */
73 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74 {
75 	int x;
76 	char tmp[3] = { 0, };
77 
78 	for (x = 0; x < dst_size; x++) {
79 		tmp[0] = src[x * 2];
80 		tmp[1] = src[x * 2 + 1];
81 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 	}
83 }
84 
85 /**
86  * ecryptfs_calculate_md5 - calculates the md5 of @src
87  * @dst: Pointer to 16 bytes of allocated memory
88  * @crypt_stat: Pointer to crypt_stat struct for the current inode
89  * @src: Data to be md5'd
90  * @len: Length of @src
91  *
92  * Uses the allocated crypto context that crypt_stat references to
93  * generate the MD5 sum of the contents of src.
94  */
95 static int ecryptfs_calculate_md5(char *dst,
96 				  struct ecryptfs_crypt_stat *crypt_stat,
97 				  char *src, int len)
98 {
99 	struct scatterlist sg;
100 	struct hash_desc desc = {
101 		.tfm = crypt_stat->hash_tfm,
102 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 	};
104 	int rc = 0;
105 
106 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107 	sg_init_one(&sg, (u8 *)src, len);
108 	if (!desc.tfm) {
109 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 					     CRYPTO_ALG_ASYNC);
111 		if (IS_ERR(desc.tfm)) {
112 			rc = PTR_ERR(desc.tfm);
113 			ecryptfs_printk(KERN_ERR, "Error attempting to "
114 					"allocate crypto context; rc = [%d]\n",
115 					rc);
116 			goto out;
117 		}
118 		crypt_stat->hash_tfm = desc.tfm;
119 	}
120 	rc = crypto_hash_init(&desc);
121 	if (rc) {
122 		printk(KERN_ERR
123 		       "%s: Error initializing crypto hash; rc = [%d]\n",
124 		       __func__, rc);
125 		goto out;
126 	}
127 	rc = crypto_hash_update(&desc, &sg, len);
128 	if (rc) {
129 		printk(KERN_ERR
130 		       "%s: Error updating crypto hash; rc = [%d]\n",
131 		       __func__, rc);
132 		goto out;
133 	}
134 	rc = crypto_hash_final(&desc, dst);
135 	if (rc) {
136 		printk(KERN_ERR
137 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
138 		       __func__, rc);
139 		goto out;
140 	}
141 out:
142 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143 	return rc;
144 }
145 
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 						  char *cipher_name,
148 						  char *chaining_modifier)
149 {
150 	int cipher_name_len = strlen(cipher_name);
151 	int chaining_modifier_len = strlen(chaining_modifier);
152 	int algified_name_len;
153 	int rc;
154 
155 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157 	if (!(*algified_name)) {
158 		rc = -ENOMEM;
159 		goto out;
160 	}
161 	snprintf((*algified_name), algified_name_len, "%s(%s)",
162 		 chaining_modifier, cipher_name);
163 	rc = 0;
164 out:
165 	return rc;
166 }
167 
168 /**
169  * ecryptfs_derive_iv
170  * @iv: destination for the derived iv vale
171  * @crypt_stat: Pointer to crypt_stat struct for the current inode
172  * @offset: Offset of the extent whose IV we are to derive
173  *
174  * Generate the initialization vector from the given root IV and page
175  * offset.
176  *
177  * Returns zero on success; non-zero on error.
178  */
179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 		       loff_t offset)
181 {
182 	int rc = 0;
183 	char dst[MD5_DIGEST_SIZE];
184 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
185 
186 	if (unlikely(ecryptfs_verbosity > 0)) {
187 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 	}
190 	/* TODO: It is probably secure to just cast the least
191 	 * significant bits of the root IV into an unsigned long and
192 	 * add the offset to that rather than go through all this
193 	 * hashing business. -Halcrow */
194 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 	memset((src + crypt_stat->iv_bytes), 0, 16);
196 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 	if (unlikely(ecryptfs_verbosity > 0)) {
198 		ecryptfs_printk(KERN_DEBUG, "source:\n");
199 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 	}
201 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 				    (crypt_stat->iv_bytes + 16));
203 	if (rc) {
204 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 				"MD5 while generating IV for a page\n");
206 		goto out;
207 	}
208 	memcpy(iv, dst, crypt_stat->iv_bytes);
209 	if (unlikely(ecryptfs_verbosity > 0)) {
210 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 	}
213 out:
214 	return rc;
215 }
216 
217 /**
218  * ecryptfs_init_crypt_stat
219  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220  *
221  * Initialize the crypt_stat structure.
222  */
223 void
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225 {
226 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 	mutex_init(&crypt_stat->keysig_list_mutex);
229 	mutex_init(&crypt_stat->cs_mutex);
230 	mutex_init(&crypt_stat->cs_tfm_mutex);
231 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233 }
234 
235 /**
236  * ecryptfs_destroy_crypt_stat
237  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238  *
239  * Releases all memory associated with a crypt_stat struct.
240  */
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242 {
243 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244 
245 	if (crypt_stat->tfm)
246 		crypto_free_blkcipher(crypt_stat->tfm);
247 	if (crypt_stat->hash_tfm)
248 		crypto_free_hash(crypt_stat->hash_tfm);
249 	list_for_each_entry_safe(key_sig, key_sig_tmp,
250 				 &crypt_stat->keysig_list, crypt_stat_list) {
251 		list_del(&key_sig->crypt_stat_list);
252 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 	}
254 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255 }
256 
257 void ecryptfs_destroy_mount_crypt_stat(
258 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259 {
260 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261 
262 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 		return;
264 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 				 &mount_crypt_stat->global_auth_tok_list,
267 				 mount_crypt_stat_list) {
268 		list_del(&auth_tok->mount_crypt_stat_list);
269 		if (auth_tok->global_auth_tok_key
270 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 			key_put(auth_tok->global_auth_tok_key);
272 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 	}
274 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276 }
277 
278 /**
279  * virt_to_scatterlist
280  * @addr: Virtual address
281  * @size: Size of data; should be an even multiple of the block size
282  * @sg: Pointer to scatterlist array; set to NULL to obtain only
283  *      the number of scatterlist structs required in array
284  * @sg_size: Max array size
285  *
286  * Fills in a scatterlist array with page references for a passed
287  * virtual address.
288  *
289  * Returns the number of scatterlist structs in array used
290  */
291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 			int sg_size)
293 {
294 	int i = 0;
295 	struct page *pg;
296 	int offset;
297 	int remainder_of_page;
298 
299 	sg_init_table(sg, sg_size);
300 
301 	while (size > 0 && i < sg_size) {
302 		pg = virt_to_page(addr);
303 		offset = offset_in_page(addr);
304 		if (sg)
305 			sg_set_page(&sg[i], pg, 0, offset);
306 		remainder_of_page = PAGE_CACHE_SIZE - offset;
307 		if (size >= remainder_of_page) {
308 			if (sg)
309 				sg[i].length = remainder_of_page;
310 			addr += remainder_of_page;
311 			size -= remainder_of_page;
312 		} else {
313 			if (sg)
314 				sg[i].length = size;
315 			addr += size;
316 			size = 0;
317 		}
318 		i++;
319 	}
320 	if (size > 0)
321 		return -ENOMEM;
322 	return i;
323 }
324 
325 /**
326  * encrypt_scatterlist
327  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328  * @dest_sg: Destination of encrypted data
329  * @src_sg: Data to be encrypted
330  * @size: Length of data to be encrypted
331  * @iv: iv to use during encryption
332  *
333  * Returns the number of bytes encrypted; negative value on error
334  */
335 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
336 			       struct scatterlist *dest_sg,
337 			       struct scatterlist *src_sg, int size,
338 			       unsigned char *iv)
339 {
340 	struct blkcipher_desc desc = {
341 		.tfm = crypt_stat->tfm,
342 		.info = iv,
343 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
344 	};
345 	int rc = 0;
346 
347 	BUG_ON(!crypt_stat || !crypt_stat->tfm
348 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
349 	if (unlikely(ecryptfs_verbosity > 0)) {
350 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
351 				crypt_stat->key_size);
352 		ecryptfs_dump_hex(crypt_stat->key,
353 				  crypt_stat->key_size);
354 	}
355 	/* Consider doing this once, when the file is opened */
356 	mutex_lock(&crypt_stat->cs_tfm_mutex);
357 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
358 		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359 					     crypt_stat->key_size);
360 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
361 	}
362 	if (rc) {
363 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
364 				rc);
365 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
366 		rc = -EINVAL;
367 		goto out;
368 	}
369 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
370 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
371 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
372 out:
373 	return rc;
374 }
375 
376 /**
377  * ecryptfs_lower_offset_for_extent
378  *
379  * Convert an eCryptfs page index into a lower byte offset
380  */
381 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
382 					     struct ecryptfs_crypt_stat *crypt_stat)
383 {
384 	(*offset) = ecryptfs_lower_header_size(crypt_stat)
385 		    + (crypt_stat->extent_size * extent_num);
386 }
387 
388 /**
389  * ecryptfs_encrypt_extent
390  * @enc_extent_page: Allocated page into which to encrypt the data in
391  *                   @page
392  * @crypt_stat: crypt_stat containing cryptographic context for the
393  *              encryption operation
394  * @page: Page containing plaintext data extent to encrypt
395  * @extent_offset: Page extent offset for use in generating IV
396  *
397  * Encrypts one extent of data.
398  *
399  * Return zero on success; non-zero otherwise
400  */
401 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
402 				   struct ecryptfs_crypt_stat *crypt_stat,
403 				   struct page *page,
404 				   unsigned long extent_offset)
405 {
406 	loff_t extent_base;
407 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
408 	int rc;
409 
410 	extent_base = (((loff_t)page->index)
411 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
412 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
413 				(extent_base + extent_offset));
414 	if (rc) {
415 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
416 			"extent [0x%.16llx]; rc = [%d]\n",
417 			(unsigned long long)(extent_base + extent_offset), rc);
418 		goto out;
419 	}
420 	if (unlikely(ecryptfs_verbosity > 0)) {
421 		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
422 				"with iv:\n");
423 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
424 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
425 				"encryption:\n");
426 		ecryptfs_dump_hex((char *)
427 				  (page_address(page)
428 				   + (extent_offset * crypt_stat->extent_size)),
429 				  8);
430 	}
431 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
432 					  page, (extent_offset
433 						 * crypt_stat->extent_size),
434 					  crypt_stat->extent_size, extent_iv);
435 	if (rc < 0) {
436 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
437 		       "page->index = [%ld], extent_offset = [%ld]; "
438 		       "rc = [%d]\n", __func__, page->index, extent_offset,
439 		       rc);
440 		goto out;
441 	}
442 	rc = 0;
443 	if (unlikely(ecryptfs_verbosity > 0)) {
444 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16llx]; "
445 			"rc = [%d]\n",
446 			(unsigned long long)(extent_base + extent_offset), rc);
447 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
448 				"encryption:\n");
449 		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
450 	}
451 out:
452 	return rc;
453 }
454 
455 /**
456  * ecryptfs_encrypt_page
457  * @page: Page mapped from the eCryptfs inode for the file; contains
458  *        decrypted content that needs to be encrypted (to a temporary
459  *        page; not in place) and written out to the lower file
460  *
461  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
462  * that eCryptfs pages may straddle the lower pages -- for instance,
463  * if the file was created on a machine with an 8K page size
464  * (resulting in an 8K header), and then the file is copied onto a
465  * host with a 32K page size, then when reading page 0 of the eCryptfs
466  * file, 24K of page 0 of the lower file will be read and decrypted,
467  * and then 8K of page 1 of the lower file will be read and decrypted.
468  *
469  * Returns zero on success; negative on error
470  */
471 int ecryptfs_encrypt_page(struct page *page)
472 {
473 	struct inode *ecryptfs_inode;
474 	struct ecryptfs_crypt_stat *crypt_stat;
475 	char *enc_extent_virt;
476 	struct page *enc_extent_page = NULL;
477 	loff_t extent_offset;
478 	int rc = 0;
479 
480 	ecryptfs_inode = page->mapping->host;
481 	crypt_stat =
482 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
483 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
484 	enc_extent_page = alloc_page(GFP_USER);
485 	if (!enc_extent_page) {
486 		rc = -ENOMEM;
487 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
488 				"encrypted extent\n");
489 		goto out;
490 	}
491 	enc_extent_virt = kmap(enc_extent_page);
492 	for (extent_offset = 0;
493 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
494 	     extent_offset++) {
495 		loff_t offset;
496 
497 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
498 					     extent_offset);
499 		if (rc) {
500 			printk(KERN_ERR "%s: Error encrypting extent; "
501 			       "rc = [%d]\n", __func__, rc);
502 			goto out;
503 		}
504 		ecryptfs_lower_offset_for_extent(
505 			&offset, ((((loff_t)page->index)
506 				   * (PAGE_CACHE_SIZE
507 				      / crypt_stat->extent_size))
508 				  + extent_offset), crypt_stat);
509 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
510 					  offset, crypt_stat->extent_size);
511 		if (rc < 0) {
512 			ecryptfs_printk(KERN_ERR, "Error attempting "
513 					"to write lower page; rc = [%d]"
514 					"\n", rc);
515 			goto out;
516 		}
517 	}
518 	rc = 0;
519 out:
520 	if (enc_extent_page) {
521 		kunmap(enc_extent_page);
522 		__free_page(enc_extent_page);
523 	}
524 	return rc;
525 }
526 
527 static int ecryptfs_decrypt_extent(struct page *page,
528 				   struct ecryptfs_crypt_stat *crypt_stat,
529 				   struct page *enc_extent_page,
530 				   unsigned long extent_offset)
531 {
532 	loff_t extent_base;
533 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
534 	int rc;
535 
536 	extent_base = (((loff_t)page->index)
537 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
538 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
539 				(extent_base + extent_offset));
540 	if (rc) {
541 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
542 			"extent [0x%.16llx]; rc = [%d]\n",
543 			(unsigned long long)(extent_base + extent_offset), rc);
544 		goto out;
545 	}
546 	if (unlikely(ecryptfs_verbosity > 0)) {
547 		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
548 				"with iv:\n");
549 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
550 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
551 				"decryption:\n");
552 		ecryptfs_dump_hex((char *)
553 				  (page_address(enc_extent_page)
554 				   + (extent_offset * crypt_stat->extent_size)),
555 				  8);
556 	}
557 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
558 					  (extent_offset
559 					   * crypt_stat->extent_size),
560 					  enc_extent_page, 0,
561 					  crypt_stat->extent_size, extent_iv);
562 	if (rc < 0) {
563 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
564 		       "page->index = [%ld], extent_offset = [%ld]; "
565 		       "rc = [%d]\n", __func__, page->index, extent_offset,
566 		       rc);
567 		goto out;
568 	}
569 	rc = 0;
570 	if (unlikely(ecryptfs_verbosity > 0)) {
571 		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16llx]; "
572 			"rc = [%d]\n",
573 			(unsigned long long)(extent_base + extent_offset), rc);
574 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
575 				"decryption:\n");
576 		ecryptfs_dump_hex((char *)(page_address(page)
577 					   + (extent_offset
578 					      * crypt_stat->extent_size)), 8);
579 	}
580 out:
581 	return rc;
582 }
583 
584 /**
585  * ecryptfs_decrypt_page
586  * @page: Page mapped from the eCryptfs inode for the file; data read
587  *        and decrypted from the lower file will be written into this
588  *        page
589  *
590  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
591  * that eCryptfs pages may straddle the lower pages -- for instance,
592  * if the file was created on a machine with an 8K page size
593  * (resulting in an 8K header), and then the file is copied onto a
594  * host with a 32K page size, then when reading page 0 of the eCryptfs
595  * file, 24K of page 0 of the lower file will be read and decrypted,
596  * and then 8K of page 1 of the lower file will be read and decrypted.
597  *
598  * Returns zero on success; negative on error
599  */
600 int ecryptfs_decrypt_page(struct page *page)
601 {
602 	struct inode *ecryptfs_inode;
603 	struct ecryptfs_crypt_stat *crypt_stat;
604 	char *enc_extent_virt;
605 	struct page *enc_extent_page = NULL;
606 	unsigned long extent_offset;
607 	int rc = 0;
608 
609 	ecryptfs_inode = page->mapping->host;
610 	crypt_stat =
611 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
612 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
613 	enc_extent_page = alloc_page(GFP_USER);
614 	if (!enc_extent_page) {
615 		rc = -ENOMEM;
616 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
617 				"encrypted extent\n");
618 		goto out;
619 	}
620 	enc_extent_virt = kmap(enc_extent_page);
621 	for (extent_offset = 0;
622 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
623 	     extent_offset++) {
624 		loff_t offset;
625 
626 		ecryptfs_lower_offset_for_extent(
627 			&offset, ((page->index * (PAGE_CACHE_SIZE
628 						  / crypt_stat->extent_size))
629 				  + extent_offset), crypt_stat);
630 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
631 					 crypt_stat->extent_size,
632 					 ecryptfs_inode);
633 		if (rc < 0) {
634 			ecryptfs_printk(KERN_ERR, "Error attempting "
635 					"to read lower page; rc = [%d]"
636 					"\n", rc);
637 			goto out;
638 		}
639 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
640 					     extent_offset);
641 		if (rc) {
642 			printk(KERN_ERR "%s: Error encrypting extent; "
643 			       "rc = [%d]\n", __func__, rc);
644 			goto out;
645 		}
646 	}
647 out:
648 	if (enc_extent_page) {
649 		kunmap(enc_extent_page);
650 		__free_page(enc_extent_page);
651 	}
652 	return rc;
653 }
654 
655 /**
656  * decrypt_scatterlist
657  * @crypt_stat: Cryptographic context
658  * @dest_sg: The destination scatterlist to decrypt into
659  * @src_sg: The source scatterlist to decrypt from
660  * @size: The number of bytes to decrypt
661  * @iv: The initialization vector to use for the decryption
662  *
663  * Returns the number of bytes decrypted; negative value on error
664  */
665 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
666 			       struct scatterlist *dest_sg,
667 			       struct scatterlist *src_sg, int size,
668 			       unsigned char *iv)
669 {
670 	struct blkcipher_desc desc = {
671 		.tfm = crypt_stat->tfm,
672 		.info = iv,
673 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
674 	};
675 	int rc = 0;
676 
677 	/* Consider doing this once, when the file is opened */
678 	mutex_lock(&crypt_stat->cs_tfm_mutex);
679 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
680 				     crypt_stat->key_size);
681 	if (rc) {
682 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
683 				rc);
684 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
685 		rc = -EINVAL;
686 		goto out;
687 	}
688 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
689 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
690 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
691 	if (rc) {
692 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
693 				rc);
694 		goto out;
695 	}
696 	rc = size;
697 out:
698 	return rc;
699 }
700 
701 /**
702  * ecryptfs_encrypt_page_offset
703  * @crypt_stat: The cryptographic context
704  * @dst_page: The page to encrypt into
705  * @dst_offset: The offset in the page to encrypt into
706  * @src_page: The page to encrypt from
707  * @src_offset: The offset in the page to encrypt from
708  * @size: The number of bytes to encrypt
709  * @iv: The initialization vector to use for the encryption
710  *
711  * Returns the number of bytes encrypted
712  */
713 static int
714 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
715 			     struct page *dst_page, int dst_offset,
716 			     struct page *src_page, int src_offset, int size,
717 			     unsigned char *iv)
718 {
719 	struct scatterlist src_sg, dst_sg;
720 
721 	sg_init_table(&src_sg, 1);
722 	sg_init_table(&dst_sg, 1);
723 
724 	sg_set_page(&src_sg, src_page, size, src_offset);
725 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
726 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
727 }
728 
729 /**
730  * ecryptfs_decrypt_page_offset
731  * @crypt_stat: The cryptographic context
732  * @dst_page: The page to decrypt into
733  * @dst_offset: The offset in the page to decrypt into
734  * @src_page: The page to decrypt from
735  * @src_offset: The offset in the page to decrypt from
736  * @size: The number of bytes to decrypt
737  * @iv: The initialization vector to use for the decryption
738  *
739  * Returns the number of bytes decrypted
740  */
741 static int
742 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
743 			     struct page *dst_page, int dst_offset,
744 			     struct page *src_page, int src_offset, int size,
745 			     unsigned char *iv)
746 {
747 	struct scatterlist src_sg, dst_sg;
748 
749 	sg_init_table(&src_sg, 1);
750 	sg_set_page(&src_sg, src_page, size, src_offset);
751 
752 	sg_init_table(&dst_sg, 1);
753 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
754 
755 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
756 }
757 
758 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
759 
760 /**
761  * ecryptfs_init_crypt_ctx
762  * @crypt_stat: Uninitialized crypt stats structure
763  *
764  * Initialize the crypto context.
765  *
766  * TODO: Performance: Keep a cache of initialized cipher contexts;
767  * only init if needed
768  */
769 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
770 {
771 	char *full_alg_name;
772 	int rc = -EINVAL;
773 
774 	if (!crypt_stat->cipher) {
775 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
776 		goto out;
777 	}
778 	ecryptfs_printk(KERN_DEBUG,
779 			"Initializing cipher [%s]; strlen = [%d]; "
780 			"key_size_bits = [%zd]\n",
781 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
782 			crypt_stat->key_size << 3);
783 	if (crypt_stat->tfm) {
784 		rc = 0;
785 		goto out;
786 	}
787 	mutex_lock(&crypt_stat->cs_tfm_mutex);
788 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
789 						    crypt_stat->cipher, "cbc");
790 	if (rc)
791 		goto out_unlock;
792 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
793 						 CRYPTO_ALG_ASYNC);
794 	kfree(full_alg_name);
795 	if (IS_ERR(crypt_stat->tfm)) {
796 		rc = PTR_ERR(crypt_stat->tfm);
797 		crypt_stat->tfm = NULL;
798 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
799 				"Error initializing cipher [%s]\n",
800 				crypt_stat->cipher);
801 		goto out_unlock;
802 	}
803 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
804 	rc = 0;
805 out_unlock:
806 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
807 out:
808 	return rc;
809 }
810 
811 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
812 {
813 	int extent_size_tmp;
814 
815 	crypt_stat->extent_mask = 0xFFFFFFFF;
816 	crypt_stat->extent_shift = 0;
817 	if (crypt_stat->extent_size == 0)
818 		return;
819 	extent_size_tmp = crypt_stat->extent_size;
820 	while ((extent_size_tmp & 0x01) == 0) {
821 		extent_size_tmp >>= 1;
822 		crypt_stat->extent_mask <<= 1;
823 		crypt_stat->extent_shift++;
824 	}
825 }
826 
827 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
828 {
829 	/* Default values; may be overwritten as we are parsing the
830 	 * packets. */
831 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
832 	set_extent_mask_and_shift(crypt_stat);
833 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
834 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
835 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
836 	else {
837 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
838 			crypt_stat->metadata_size =
839 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
840 		else
841 			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
842 	}
843 }
844 
845 /**
846  * ecryptfs_compute_root_iv
847  * @crypt_stats
848  *
849  * On error, sets the root IV to all 0's.
850  */
851 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
852 {
853 	int rc = 0;
854 	char dst[MD5_DIGEST_SIZE];
855 
856 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
857 	BUG_ON(crypt_stat->iv_bytes <= 0);
858 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
859 		rc = -EINVAL;
860 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
861 				"cannot generate root IV\n");
862 		goto out;
863 	}
864 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
865 				    crypt_stat->key_size);
866 	if (rc) {
867 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
868 				"MD5 while generating root IV\n");
869 		goto out;
870 	}
871 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
872 out:
873 	if (rc) {
874 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
875 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
876 	}
877 	return rc;
878 }
879 
880 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
881 {
882 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
883 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
884 	ecryptfs_compute_root_iv(crypt_stat);
885 	if (unlikely(ecryptfs_verbosity > 0)) {
886 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
887 		ecryptfs_dump_hex(crypt_stat->key,
888 				  crypt_stat->key_size);
889 	}
890 }
891 
892 /**
893  * ecryptfs_copy_mount_wide_flags_to_inode_flags
894  * @crypt_stat: The inode's cryptographic context
895  * @mount_crypt_stat: The mount point's cryptographic context
896  *
897  * This function propagates the mount-wide flags to individual inode
898  * flags.
899  */
900 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
901 	struct ecryptfs_crypt_stat *crypt_stat,
902 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
903 {
904 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
905 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
906 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
907 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
908 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
909 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
910 		if (mount_crypt_stat->flags
911 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
912 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
913 		else if (mount_crypt_stat->flags
914 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
915 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
916 	}
917 }
918 
919 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
920 	struct ecryptfs_crypt_stat *crypt_stat,
921 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
922 {
923 	struct ecryptfs_global_auth_tok *global_auth_tok;
924 	int rc = 0;
925 
926 	mutex_lock(&crypt_stat->keysig_list_mutex);
927 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
928 
929 	list_for_each_entry(global_auth_tok,
930 			    &mount_crypt_stat->global_auth_tok_list,
931 			    mount_crypt_stat_list) {
932 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
933 			continue;
934 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
935 		if (rc) {
936 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
937 			goto out;
938 		}
939 	}
940 
941 out:
942 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
943 	mutex_unlock(&crypt_stat->keysig_list_mutex);
944 	return rc;
945 }
946 
947 /**
948  * ecryptfs_set_default_crypt_stat_vals
949  * @crypt_stat: The inode's cryptographic context
950  * @mount_crypt_stat: The mount point's cryptographic context
951  *
952  * Default values in the event that policy does not override them.
953  */
954 static void ecryptfs_set_default_crypt_stat_vals(
955 	struct ecryptfs_crypt_stat *crypt_stat,
956 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
957 {
958 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
959 						      mount_crypt_stat);
960 	ecryptfs_set_default_sizes(crypt_stat);
961 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
962 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
963 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
964 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
965 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
966 }
967 
968 /**
969  * ecryptfs_new_file_context
970  * @ecryptfs_dentry: The eCryptfs dentry
971  *
972  * If the crypto context for the file has not yet been established,
973  * this is where we do that.  Establishing a new crypto context
974  * involves the following decisions:
975  *  - What cipher to use?
976  *  - What set of authentication tokens to use?
977  * Here we just worry about getting enough information into the
978  * authentication tokens so that we know that they are available.
979  * We associate the available authentication tokens with the new file
980  * via the set of signatures in the crypt_stat struct.  Later, when
981  * the headers are actually written out, we may again defer to
982  * userspace to perform the encryption of the session key; for the
983  * foreseeable future, this will be the case with public key packets.
984  *
985  * Returns zero on success; non-zero otherwise
986  */
987 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
988 {
989 	struct ecryptfs_crypt_stat *crypt_stat =
990 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
991 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
992 	    &ecryptfs_superblock_to_private(
993 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
994 	int cipher_name_len;
995 	int rc = 0;
996 
997 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
998 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
999 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1000 						      mount_crypt_stat);
1001 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1002 							 mount_crypt_stat);
1003 	if (rc) {
1004 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1005 		       "to the inode key sigs; rc = [%d]\n", rc);
1006 		goto out;
1007 	}
1008 	cipher_name_len =
1009 		strlen(mount_crypt_stat->global_default_cipher_name);
1010 	memcpy(crypt_stat->cipher,
1011 	       mount_crypt_stat->global_default_cipher_name,
1012 	       cipher_name_len);
1013 	crypt_stat->cipher[cipher_name_len] = '\0';
1014 	crypt_stat->key_size =
1015 		mount_crypt_stat->global_default_cipher_key_size;
1016 	ecryptfs_generate_new_key(crypt_stat);
1017 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1018 	if (rc)
1019 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1020 				"context for cipher [%s]: rc = [%d]\n",
1021 				crypt_stat->cipher, rc);
1022 out:
1023 	return rc;
1024 }
1025 
1026 /**
1027  * ecryptfs_validate_marker - check for the ecryptfs marker
1028  * @data: The data block in which to check
1029  *
1030  * Returns zero if marker found; -EINVAL if not found
1031  */
1032 static int ecryptfs_validate_marker(char *data)
1033 {
1034 	u32 m_1, m_2;
1035 
1036 	m_1 = get_unaligned_be32(data);
1037 	m_2 = get_unaligned_be32(data + 4);
1038 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1039 		return 0;
1040 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1041 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1042 			MAGIC_ECRYPTFS_MARKER);
1043 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1044 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1045 	return -EINVAL;
1046 }
1047 
1048 struct ecryptfs_flag_map_elem {
1049 	u32 file_flag;
1050 	u32 local_flag;
1051 };
1052 
1053 /* Add support for additional flags by adding elements here. */
1054 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1055 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1056 	{0x00000002, ECRYPTFS_ENCRYPTED},
1057 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1058 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1059 };
1060 
1061 /**
1062  * ecryptfs_process_flags
1063  * @crypt_stat: The cryptographic context
1064  * @page_virt: Source data to be parsed
1065  * @bytes_read: Updated with the number of bytes read
1066  *
1067  * Returns zero on success; non-zero if the flag set is invalid
1068  */
1069 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1070 				  char *page_virt, int *bytes_read)
1071 {
1072 	int rc = 0;
1073 	int i;
1074 	u32 flags;
1075 
1076 	flags = get_unaligned_be32(page_virt);
1077 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1078 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1079 		if (flags & ecryptfs_flag_map[i].file_flag) {
1080 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1081 		} else
1082 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1083 	/* Version is in top 8 bits of the 32-bit flag vector */
1084 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1085 	(*bytes_read) = 4;
1086 	return rc;
1087 }
1088 
1089 /**
1090  * write_ecryptfs_marker
1091  * @page_virt: The pointer to in a page to begin writing the marker
1092  * @written: Number of bytes written
1093  *
1094  * Marker = 0x3c81b7f5
1095  */
1096 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1097 {
1098 	u32 m_1, m_2;
1099 
1100 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1101 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1102 	put_unaligned_be32(m_1, page_virt);
1103 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1104 	put_unaligned_be32(m_2, page_virt);
1105 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1106 }
1107 
1108 void ecryptfs_write_crypt_stat_flags(char *page_virt,
1109 				     struct ecryptfs_crypt_stat *crypt_stat,
1110 				     size_t *written)
1111 {
1112 	u32 flags = 0;
1113 	int i;
1114 
1115 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1116 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1117 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1118 			flags |= ecryptfs_flag_map[i].file_flag;
1119 	/* Version is in top 8 bits of the 32-bit flag vector */
1120 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1121 	put_unaligned_be32(flags, page_virt);
1122 	(*written) = 4;
1123 }
1124 
1125 struct ecryptfs_cipher_code_str_map_elem {
1126 	char cipher_str[16];
1127 	u8 cipher_code;
1128 };
1129 
1130 /* Add support for additional ciphers by adding elements here. The
1131  * cipher_code is whatever OpenPGP applicatoins use to identify the
1132  * ciphers. List in order of probability. */
1133 static struct ecryptfs_cipher_code_str_map_elem
1134 ecryptfs_cipher_code_str_map[] = {
1135 	{"aes",RFC2440_CIPHER_AES_128 },
1136 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1137 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1138 	{"cast5", RFC2440_CIPHER_CAST_5},
1139 	{"twofish", RFC2440_CIPHER_TWOFISH},
1140 	{"cast6", RFC2440_CIPHER_CAST_6},
1141 	{"aes", RFC2440_CIPHER_AES_192},
1142 	{"aes", RFC2440_CIPHER_AES_256}
1143 };
1144 
1145 /**
1146  * ecryptfs_code_for_cipher_string
1147  * @cipher_name: The string alias for the cipher
1148  * @key_bytes: Length of key in bytes; used for AES code selection
1149  *
1150  * Returns zero on no match, or the cipher code on match
1151  */
1152 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1153 {
1154 	int i;
1155 	u8 code = 0;
1156 	struct ecryptfs_cipher_code_str_map_elem *map =
1157 		ecryptfs_cipher_code_str_map;
1158 
1159 	if (strcmp(cipher_name, "aes") == 0) {
1160 		switch (key_bytes) {
1161 		case 16:
1162 			code = RFC2440_CIPHER_AES_128;
1163 			break;
1164 		case 24:
1165 			code = RFC2440_CIPHER_AES_192;
1166 			break;
1167 		case 32:
1168 			code = RFC2440_CIPHER_AES_256;
1169 		}
1170 	} else {
1171 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1172 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1173 				code = map[i].cipher_code;
1174 				break;
1175 			}
1176 	}
1177 	return code;
1178 }
1179 
1180 /**
1181  * ecryptfs_cipher_code_to_string
1182  * @str: Destination to write out the cipher name
1183  * @cipher_code: The code to convert to cipher name string
1184  *
1185  * Returns zero on success
1186  */
1187 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1188 {
1189 	int rc = 0;
1190 	int i;
1191 
1192 	str[0] = '\0';
1193 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1194 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1195 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1196 	if (str[0] == '\0') {
1197 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1198 				"[%d]\n", cipher_code);
1199 		rc = -EINVAL;
1200 	}
1201 	return rc;
1202 }
1203 
1204 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1205 {
1206 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1207 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1208 	int rc;
1209 
1210 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1211 				 inode);
1212 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1213 		return rc >= 0 ? -EINVAL : rc;
1214 	rc = ecryptfs_validate_marker(marker);
1215 	if (!rc)
1216 		ecryptfs_i_size_init(file_size, inode);
1217 	return rc;
1218 }
1219 
1220 void
1221 ecryptfs_write_header_metadata(char *virt,
1222 			       struct ecryptfs_crypt_stat *crypt_stat,
1223 			       size_t *written)
1224 {
1225 	u32 header_extent_size;
1226 	u16 num_header_extents_at_front;
1227 
1228 	header_extent_size = (u32)crypt_stat->extent_size;
1229 	num_header_extents_at_front =
1230 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1231 	put_unaligned_be32(header_extent_size, virt);
1232 	virt += 4;
1233 	put_unaligned_be16(num_header_extents_at_front, virt);
1234 	(*written) = 6;
1235 }
1236 
1237 struct kmem_cache *ecryptfs_header_cache;
1238 
1239 /**
1240  * ecryptfs_write_headers_virt
1241  * @page_virt: The virtual address to write the headers to
1242  * @max: The size of memory allocated at page_virt
1243  * @size: Set to the number of bytes written by this function
1244  * @crypt_stat: The cryptographic context
1245  * @ecryptfs_dentry: The eCryptfs dentry
1246  *
1247  * Format version: 1
1248  *
1249  *   Header Extent:
1250  *     Octets 0-7:        Unencrypted file size (big-endian)
1251  *     Octets 8-15:       eCryptfs special marker
1252  *     Octets 16-19:      Flags
1253  *      Octet 16:         File format version number (between 0 and 255)
1254  *      Octets 17-18:     Reserved
1255  *      Octet 19:         Bit 1 (lsb): Reserved
1256  *                        Bit 2: Encrypted?
1257  *                        Bits 3-8: Reserved
1258  *     Octets 20-23:      Header extent size (big-endian)
1259  *     Octets 24-25:      Number of header extents at front of file
1260  *                        (big-endian)
1261  *     Octet  26:         Begin RFC 2440 authentication token packet set
1262  *   Data Extent 0:
1263  *     Lower data (CBC encrypted)
1264  *   Data Extent 1:
1265  *     Lower data (CBC encrypted)
1266  *   ...
1267  *
1268  * Returns zero on success
1269  */
1270 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1271 				       size_t *size,
1272 				       struct ecryptfs_crypt_stat *crypt_stat,
1273 				       struct dentry *ecryptfs_dentry)
1274 {
1275 	int rc;
1276 	size_t written;
1277 	size_t offset;
1278 
1279 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1280 	write_ecryptfs_marker((page_virt + offset), &written);
1281 	offset += written;
1282 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1283 					&written);
1284 	offset += written;
1285 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1286 				       &written);
1287 	offset += written;
1288 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1289 					      ecryptfs_dentry, &written,
1290 					      max - offset);
1291 	if (rc)
1292 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1293 				"set; rc = [%d]\n", rc);
1294 	if (size) {
1295 		offset += written;
1296 		*size = offset;
1297 	}
1298 	return rc;
1299 }
1300 
1301 static int
1302 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1303 				    char *virt, size_t virt_len)
1304 {
1305 	int rc;
1306 
1307 	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1308 				  0, virt_len);
1309 	if (rc < 0)
1310 		printk(KERN_ERR "%s: Error attempting to write header "
1311 		       "information to lower file; rc = [%d]\n", __func__, rc);
1312 	else
1313 		rc = 0;
1314 	return rc;
1315 }
1316 
1317 static int
1318 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1319 				 char *page_virt, size_t size)
1320 {
1321 	int rc;
1322 
1323 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1324 			       size, 0);
1325 	return rc;
1326 }
1327 
1328 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1329 					       unsigned int order)
1330 {
1331 	struct page *page;
1332 
1333 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1334 	if (page)
1335 		return (unsigned long) page_address(page);
1336 	return 0;
1337 }
1338 
1339 /**
1340  * ecryptfs_write_metadata
1341  * @ecryptfs_dentry: The eCryptfs dentry
1342  *
1343  * Write the file headers out.  This will likely involve a userspace
1344  * callout, in which the session key is encrypted with one or more
1345  * public keys and/or the passphrase necessary to do the encryption is
1346  * retrieved via a prompt.  Exactly what happens at this point should
1347  * be policy-dependent.
1348  *
1349  * Returns zero on success; non-zero on error
1350  */
1351 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1352 {
1353 	struct ecryptfs_crypt_stat *crypt_stat =
1354 		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1355 	unsigned int order;
1356 	char *virt;
1357 	size_t virt_len;
1358 	size_t size = 0;
1359 	int rc = 0;
1360 
1361 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1362 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1363 			printk(KERN_ERR "Key is invalid; bailing out\n");
1364 			rc = -EINVAL;
1365 			goto out;
1366 		}
1367 	} else {
1368 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1369 		       __func__);
1370 		rc = -EINVAL;
1371 		goto out;
1372 	}
1373 	virt_len = crypt_stat->metadata_size;
1374 	order = get_order(virt_len);
1375 	/* Released in this function */
1376 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1377 	if (!virt) {
1378 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1379 		rc = -ENOMEM;
1380 		goto out;
1381 	}
1382 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1383 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1384 					 ecryptfs_dentry);
1385 	if (unlikely(rc)) {
1386 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1387 		       __func__, rc);
1388 		goto out_free;
1389 	}
1390 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1391 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1392 						      size);
1393 	else
1394 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1395 							 virt_len);
1396 	if (rc) {
1397 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1398 		       "rc = [%d]\n", __func__, rc);
1399 		goto out_free;
1400 	}
1401 out_free:
1402 	free_pages((unsigned long)virt, order);
1403 out:
1404 	return rc;
1405 }
1406 
1407 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1408 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1409 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1410 				 char *virt, int *bytes_read,
1411 				 int validate_header_size)
1412 {
1413 	int rc = 0;
1414 	u32 header_extent_size;
1415 	u16 num_header_extents_at_front;
1416 
1417 	header_extent_size = get_unaligned_be32(virt);
1418 	virt += sizeof(__be32);
1419 	num_header_extents_at_front = get_unaligned_be16(virt);
1420 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1421 				     * (size_t)header_extent_size));
1422 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1423 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1424 	    && (crypt_stat->metadata_size
1425 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1426 		rc = -EINVAL;
1427 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1428 		       crypt_stat->metadata_size);
1429 	}
1430 	return rc;
1431 }
1432 
1433 /**
1434  * set_default_header_data
1435  * @crypt_stat: The cryptographic context
1436  *
1437  * For version 0 file format; this function is only for backwards
1438  * compatibility for files created with the prior versions of
1439  * eCryptfs.
1440  */
1441 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1442 {
1443 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1444 }
1445 
1446 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1447 {
1448 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1449 	struct ecryptfs_crypt_stat *crypt_stat;
1450 	u64 file_size;
1451 
1452 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1453 	mount_crypt_stat =
1454 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1455 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1456 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1457 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1458 			file_size += crypt_stat->metadata_size;
1459 	} else
1460 		file_size = get_unaligned_be64(page_virt);
1461 	i_size_write(inode, (loff_t)file_size);
1462 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1463 }
1464 
1465 /**
1466  * ecryptfs_read_headers_virt
1467  * @page_virt: The virtual address into which to read the headers
1468  * @crypt_stat: The cryptographic context
1469  * @ecryptfs_dentry: The eCryptfs dentry
1470  * @validate_header_size: Whether to validate the header size while reading
1471  *
1472  * Read/parse the header data. The header format is detailed in the
1473  * comment block for the ecryptfs_write_headers_virt() function.
1474  *
1475  * Returns zero on success
1476  */
1477 static int ecryptfs_read_headers_virt(char *page_virt,
1478 				      struct ecryptfs_crypt_stat *crypt_stat,
1479 				      struct dentry *ecryptfs_dentry,
1480 				      int validate_header_size)
1481 {
1482 	int rc = 0;
1483 	int offset;
1484 	int bytes_read;
1485 
1486 	ecryptfs_set_default_sizes(crypt_stat);
1487 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1488 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1489 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1490 	rc = ecryptfs_validate_marker(page_virt + offset);
1491 	if (rc)
1492 		goto out;
1493 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1494 		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1495 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1496 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1497 				    &bytes_read);
1498 	if (rc) {
1499 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1500 		goto out;
1501 	}
1502 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1503 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1504 				"file version [%d] is supported by this "
1505 				"version of eCryptfs\n",
1506 				crypt_stat->file_version,
1507 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1508 		rc = -EINVAL;
1509 		goto out;
1510 	}
1511 	offset += bytes_read;
1512 	if (crypt_stat->file_version >= 1) {
1513 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1514 					   &bytes_read, validate_header_size);
1515 		if (rc) {
1516 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1517 					"metadata; rc = [%d]\n", rc);
1518 		}
1519 		offset += bytes_read;
1520 	} else
1521 		set_default_header_data(crypt_stat);
1522 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1523 				       ecryptfs_dentry);
1524 out:
1525 	return rc;
1526 }
1527 
1528 /**
1529  * ecryptfs_read_xattr_region
1530  * @page_virt: The vitual address into which to read the xattr data
1531  * @ecryptfs_inode: The eCryptfs inode
1532  *
1533  * Attempts to read the crypto metadata from the extended attribute
1534  * region of the lower file.
1535  *
1536  * Returns zero on success; non-zero on error
1537  */
1538 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1539 {
1540 	struct dentry *lower_dentry =
1541 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1542 	ssize_t size;
1543 	int rc = 0;
1544 
1545 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1546 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1547 	if (size < 0) {
1548 		if (unlikely(ecryptfs_verbosity > 0))
1549 			printk(KERN_INFO "Error attempting to read the [%s] "
1550 			       "xattr from the lower file; return value = "
1551 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1552 		rc = -EINVAL;
1553 		goto out;
1554 	}
1555 out:
1556 	return rc;
1557 }
1558 
1559 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1560 					    struct inode *inode)
1561 {
1562 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1563 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1564 	int rc;
1565 
1566 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1567 				     ECRYPTFS_XATTR_NAME, file_size,
1568 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1569 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1570 		return rc >= 0 ? -EINVAL : rc;
1571 	rc = ecryptfs_validate_marker(marker);
1572 	if (!rc)
1573 		ecryptfs_i_size_init(file_size, inode);
1574 	return rc;
1575 }
1576 
1577 /**
1578  * ecryptfs_read_metadata
1579  *
1580  * Common entry point for reading file metadata. From here, we could
1581  * retrieve the header information from the header region of the file,
1582  * the xattr region of the file, or some other repostory that is
1583  * stored separately from the file itself. The current implementation
1584  * supports retrieving the metadata information from the file contents
1585  * and from the xattr region.
1586  *
1587  * Returns zero if valid headers found and parsed; non-zero otherwise
1588  */
1589 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1590 {
1591 	int rc = 0;
1592 	char *page_virt = NULL;
1593 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1594 	struct ecryptfs_crypt_stat *crypt_stat =
1595 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1596 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1597 		&ecryptfs_superblock_to_private(
1598 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1599 
1600 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1601 						      mount_crypt_stat);
1602 	/* Read the first page from the underlying file */
1603 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1604 	if (!page_virt) {
1605 		rc = -ENOMEM;
1606 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1607 		       __func__);
1608 		goto out;
1609 	}
1610 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1611 				 ecryptfs_inode);
1612 	if (rc >= 0)
1613 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1614 						ecryptfs_dentry,
1615 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1616 	if (rc) {
1617 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1618 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1619 		if (rc) {
1620 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1621 			       "file header region or xattr region\n");
1622 			rc = -EINVAL;
1623 			goto out;
1624 		}
1625 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1626 						ecryptfs_dentry,
1627 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1628 		if (rc) {
1629 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1630 			       "file xattr region either\n");
1631 			rc = -EINVAL;
1632 		}
1633 		if (crypt_stat->mount_crypt_stat->flags
1634 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1635 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1636 		} else {
1637 			printk(KERN_WARNING "Attempt to access file with "
1638 			       "crypto metadata only in the extended attribute "
1639 			       "region, but eCryptfs was mounted without "
1640 			       "xattr support enabled. eCryptfs will not treat "
1641 			       "this like an encrypted file.\n");
1642 			rc = -EINVAL;
1643 		}
1644 	}
1645 out:
1646 	if (page_virt) {
1647 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1648 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1649 	}
1650 	return rc;
1651 }
1652 
1653 /**
1654  * ecryptfs_encrypt_filename - encrypt filename
1655  *
1656  * CBC-encrypts the filename. We do not want to encrypt the same
1657  * filename with the same key and IV, which may happen with hard
1658  * links, so we prepend random bits to each filename.
1659  *
1660  * Returns zero on success; non-zero otherwise
1661  */
1662 static int
1663 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1664 			  struct ecryptfs_crypt_stat *crypt_stat,
1665 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1666 {
1667 	int rc = 0;
1668 
1669 	filename->encrypted_filename = NULL;
1670 	filename->encrypted_filename_size = 0;
1671 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1672 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1673 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1674 		size_t packet_size;
1675 		size_t remaining_bytes;
1676 
1677 		rc = ecryptfs_write_tag_70_packet(
1678 			NULL, NULL,
1679 			&filename->encrypted_filename_size,
1680 			mount_crypt_stat, NULL,
1681 			filename->filename_size);
1682 		if (rc) {
1683 			printk(KERN_ERR "%s: Error attempting to get packet "
1684 			       "size for tag 72; rc = [%d]\n", __func__,
1685 			       rc);
1686 			filename->encrypted_filename_size = 0;
1687 			goto out;
1688 		}
1689 		filename->encrypted_filename =
1690 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1691 		if (!filename->encrypted_filename) {
1692 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1693 			       "to kmalloc [%zd] bytes\n", __func__,
1694 			       filename->encrypted_filename_size);
1695 			rc = -ENOMEM;
1696 			goto out;
1697 		}
1698 		remaining_bytes = filename->encrypted_filename_size;
1699 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1700 						  &remaining_bytes,
1701 						  &packet_size,
1702 						  mount_crypt_stat,
1703 						  filename->filename,
1704 						  filename->filename_size);
1705 		if (rc) {
1706 			printk(KERN_ERR "%s: Error attempting to generate "
1707 			       "tag 70 packet; rc = [%d]\n", __func__,
1708 			       rc);
1709 			kfree(filename->encrypted_filename);
1710 			filename->encrypted_filename = NULL;
1711 			filename->encrypted_filename_size = 0;
1712 			goto out;
1713 		}
1714 		filename->encrypted_filename_size = packet_size;
1715 	} else {
1716 		printk(KERN_ERR "%s: No support for requested filename "
1717 		       "encryption method in this release\n", __func__);
1718 		rc = -EOPNOTSUPP;
1719 		goto out;
1720 	}
1721 out:
1722 	return rc;
1723 }
1724 
1725 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1726 				  const char *name, size_t name_size)
1727 {
1728 	int rc = 0;
1729 
1730 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1731 	if (!(*copied_name)) {
1732 		rc = -ENOMEM;
1733 		goto out;
1734 	}
1735 	memcpy((void *)(*copied_name), (void *)name, name_size);
1736 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1737 						 * in printing out the
1738 						 * string in debug
1739 						 * messages */
1740 	(*copied_name_size) = name_size;
1741 out:
1742 	return rc;
1743 }
1744 
1745 /**
1746  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1747  * @key_tfm: Crypto context for key material, set by this function
1748  * @cipher_name: Name of the cipher
1749  * @key_size: Size of the key in bytes
1750  *
1751  * Returns zero on success. Any crypto_tfm structs allocated here
1752  * should be released by other functions, such as on a superblock put
1753  * event, regardless of whether this function succeeds for fails.
1754  */
1755 static int
1756 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1757 			    char *cipher_name, size_t *key_size)
1758 {
1759 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1760 	char *full_alg_name = NULL;
1761 	int rc;
1762 
1763 	*key_tfm = NULL;
1764 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1765 		rc = -EINVAL;
1766 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1767 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1768 		goto out;
1769 	}
1770 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1771 						    "ecb");
1772 	if (rc)
1773 		goto out;
1774 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1775 	if (IS_ERR(*key_tfm)) {
1776 		rc = PTR_ERR(*key_tfm);
1777 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1778 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1779 		goto out;
1780 	}
1781 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1782 	if (*key_size == 0) {
1783 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1784 
1785 		*key_size = alg->max_keysize;
1786 	}
1787 	get_random_bytes(dummy_key, *key_size);
1788 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1789 	if (rc) {
1790 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1791 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1792 		       rc);
1793 		rc = -EINVAL;
1794 		goto out;
1795 	}
1796 out:
1797 	kfree(full_alg_name);
1798 	return rc;
1799 }
1800 
1801 struct kmem_cache *ecryptfs_key_tfm_cache;
1802 static struct list_head key_tfm_list;
1803 struct mutex key_tfm_list_mutex;
1804 
1805 int __init ecryptfs_init_crypto(void)
1806 {
1807 	mutex_init(&key_tfm_list_mutex);
1808 	INIT_LIST_HEAD(&key_tfm_list);
1809 	return 0;
1810 }
1811 
1812 /**
1813  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1814  *
1815  * Called only at module unload time
1816  */
1817 int ecryptfs_destroy_crypto(void)
1818 {
1819 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1820 
1821 	mutex_lock(&key_tfm_list_mutex);
1822 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1823 				 key_tfm_list) {
1824 		list_del(&key_tfm->key_tfm_list);
1825 		if (key_tfm->key_tfm)
1826 			crypto_free_blkcipher(key_tfm->key_tfm);
1827 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1828 	}
1829 	mutex_unlock(&key_tfm_list_mutex);
1830 	return 0;
1831 }
1832 
1833 int
1834 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1835 			 size_t key_size)
1836 {
1837 	struct ecryptfs_key_tfm *tmp_tfm;
1838 	int rc = 0;
1839 
1840 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1841 
1842 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1843 	if (key_tfm != NULL)
1844 		(*key_tfm) = tmp_tfm;
1845 	if (!tmp_tfm) {
1846 		rc = -ENOMEM;
1847 		printk(KERN_ERR "Error attempting to allocate from "
1848 		       "ecryptfs_key_tfm_cache\n");
1849 		goto out;
1850 	}
1851 	mutex_init(&tmp_tfm->key_tfm_mutex);
1852 	strncpy(tmp_tfm->cipher_name, cipher_name,
1853 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1854 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1855 	tmp_tfm->key_size = key_size;
1856 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1857 					 tmp_tfm->cipher_name,
1858 					 &tmp_tfm->key_size);
1859 	if (rc) {
1860 		printk(KERN_ERR "Error attempting to initialize key TFM "
1861 		       "cipher with name = [%s]; rc = [%d]\n",
1862 		       tmp_tfm->cipher_name, rc);
1863 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1864 		if (key_tfm != NULL)
1865 			(*key_tfm) = NULL;
1866 		goto out;
1867 	}
1868 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1869 out:
1870 	return rc;
1871 }
1872 
1873 /**
1874  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1875  * @cipher_name: the name of the cipher to search for
1876  * @key_tfm: set to corresponding tfm if found
1877  *
1878  * Searches for cached key_tfm matching @cipher_name
1879  * Must be called with &key_tfm_list_mutex held
1880  * Returns 1 if found, with @key_tfm set
1881  * Returns 0 if not found, with @key_tfm set to NULL
1882  */
1883 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1884 {
1885 	struct ecryptfs_key_tfm *tmp_key_tfm;
1886 
1887 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1888 
1889 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1890 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1891 			if (key_tfm)
1892 				(*key_tfm) = tmp_key_tfm;
1893 			return 1;
1894 		}
1895 	}
1896 	if (key_tfm)
1897 		(*key_tfm) = NULL;
1898 	return 0;
1899 }
1900 
1901 /**
1902  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1903  *
1904  * @tfm: set to cached tfm found, or new tfm created
1905  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1906  * @cipher_name: the name of the cipher to search for and/or add
1907  *
1908  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1909  * Searches for cached item first, and creates new if not found.
1910  * Returns 0 on success, non-zero if adding new cipher failed
1911  */
1912 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1913 					       struct mutex **tfm_mutex,
1914 					       char *cipher_name)
1915 {
1916 	struct ecryptfs_key_tfm *key_tfm;
1917 	int rc = 0;
1918 
1919 	(*tfm) = NULL;
1920 	(*tfm_mutex) = NULL;
1921 
1922 	mutex_lock(&key_tfm_list_mutex);
1923 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1924 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1925 		if (rc) {
1926 			printk(KERN_ERR "Error adding new key_tfm to list; "
1927 					"rc = [%d]\n", rc);
1928 			goto out;
1929 		}
1930 	}
1931 	(*tfm) = key_tfm->key_tfm;
1932 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1933 out:
1934 	mutex_unlock(&key_tfm_list_mutex);
1935 	return rc;
1936 }
1937 
1938 /* 64 characters forming a 6-bit target field */
1939 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1940 						 "EFGHIJKLMNOPQRST"
1941 						 "UVWXYZabcdefghij"
1942 						 "klmnopqrstuvwxyz");
1943 
1944 /* We could either offset on every reverse map or just pad some 0x00's
1945  * at the front here */
1946 static const unsigned char filename_rev_map[] = {
1947 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1948 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1949 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1950 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1951 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1952 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1953 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1954 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1955 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1956 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1957 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1958 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1959 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1960 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1961 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1962 	0x3D, 0x3E, 0x3F
1963 };
1964 
1965 /**
1966  * ecryptfs_encode_for_filename
1967  * @dst: Destination location for encoded filename
1968  * @dst_size: Size of the encoded filename in bytes
1969  * @src: Source location for the filename to encode
1970  * @src_size: Size of the source in bytes
1971  */
1972 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1973 				  unsigned char *src, size_t src_size)
1974 {
1975 	size_t num_blocks;
1976 	size_t block_num = 0;
1977 	size_t dst_offset = 0;
1978 	unsigned char last_block[3];
1979 
1980 	if (src_size == 0) {
1981 		(*dst_size) = 0;
1982 		goto out;
1983 	}
1984 	num_blocks = (src_size / 3);
1985 	if ((src_size % 3) == 0) {
1986 		memcpy(last_block, (&src[src_size - 3]), 3);
1987 	} else {
1988 		num_blocks++;
1989 		last_block[2] = 0x00;
1990 		switch (src_size % 3) {
1991 		case 1:
1992 			last_block[0] = src[src_size - 1];
1993 			last_block[1] = 0x00;
1994 			break;
1995 		case 2:
1996 			last_block[0] = src[src_size - 2];
1997 			last_block[1] = src[src_size - 1];
1998 		}
1999 	}
2000 	(*dst_size) = (num_blocks * 4);
2001 	if (!dst)
2002 		goto out;
2003 	while (block_num < num_blocks) {
2004 		unsigned char *src_block;
2005 		unsigned char dst_block[4];
2006 
2007 		if (block_num == (num_blocks - 1))
2008 			src_block = last_block;
2009 		else
2010 			src_block = &src[block_num * 3];
2011 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2012 		dst_block[1] = (((src_block[0] << 4) & 0x30)
2013 				| ((src_block[1] >> 4) & 0x0F));
2014 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
2015 				| ((src_block[2] >> 6) & 0x03));
2016 		dst_block[3] = (src_block[2] & 0x3F);
2017 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2018 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2019 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2020 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2021 		block_num++;
2022 	}
2023 out:
2024 	return;
2025 }
2026 
2027 /**
2028  * ecryptfs_decode_from_filename
2029  * @dst: If NULL, this function only sets @dst_size and returns. If
2030  *       non-NULL, this function decodes the encoded octets in @src
2031  *       into the memory that @dst points to.
2032  * @dst_size: Set to the size of the decoded string.
2033  * @src: The encoded set of octets to decode.
2034  * @src_size: The size of the encoded set of octets to decode.
2035  */
2036 static void
2037 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2038 			      const unsigned char *src, size_t src_size)
2039 {
2040 	u8 current_bit_offset = 0;
2041 	size_t src_byte_offset = 0;
2042 	size_t dst_byte_offset = 0;
2043 
2044 	if (dst == NULL) {
2045 		/* Not exact; conservatively long. Every block of 4
2046 		 * encoded characters decodes into a block of 3
2047 		 * decoded characters. This segment of code provides
2048 		 * the caller with the maximum amount of allocated
2049 		 * space that @dst will need to point to in a
2050 		 * subsequent call. */
2051 		(*dst_size) = (((src_size + 1) * 3) / 4);
2052 		goto out;
2053 	}
2054 	while (src_byte_offset < src_size) {
2055 		unsigned char src_byte =
2056 				filename_rev_map[(int)src[src_byte_offset]];
2057 
2058 		switch (current_bit_offset) {
2059 		case 0:
2060 			dst[dst_byte_offset] = (src_byte << 2);
2061 			current_bit_offset = 6;
2062 			break;
2063 		case 6:
2064 			dst[dst_byte_offset++] |= (src_byte >> 4);
2065 			dst[dst_byte_offset] = ((src_byte & 0xF)
2066 						 << 4);
2067 			current_bit_offset = 4;
2068 			break;
2069 		case 4:
2070 			dst[dst_byte_offset++] |= (src_byte >> 2);
2071 			dst[dst_byte_offset] = (src_byte << 6);
2072 			current_bit_offset = 2;
2073 			break;
2074 		case 2:
2075 			dst[dst_byte_offset++] |= (src_byte);
2076 			dst[dst_byte_offset] = 0;
2077 			current_bit_offset = 0;
2078 			break;
2079 		}
2080 		src_byte_offset++;
2081 	}
2082 	(*dst_size) = dst_byte_offset;
2083 out:
2084 	return;
2085 }
2086 
2087 /**
2088  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2089  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2090  * @name: The plaintext name
2091  * @length: The length of the plaintext
2092  * @encoded_name: The encypted name
2093  *
2094  * Encrypts and encodes a filename into something that constitutes a
2095  * valid filename for a filesystem, with printable characters.
2096  *
2097  * We assume that we have a properly initialized crypto context,
2098  * pointed to by crypt_stat->tfm.
2099  *
2100  * Returns zero on success; non-zero on otherwise
2101  */
2102 int ecryptfs_encrypt_and_encode_filename(
2103 	char **encoded_name,
2104 	size_t *encoded_name_size,
2105 	struct ecryptfs_crypt_stat *crypt_stat,
2106 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2107 	const char *name, size_t name_size)
2108 {
2109 	size_t encoded_name_no_prefix_size;
2110 	int rc = 0;
2111 
2112 	(*encoded_name) = NULL;
2113 	(*encoded_name_size) = 0;
2114 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2115 	    || (mount_crypt_stat && (mount_crypt_stat->flags
2116 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2117 		struct ecryptfs_filename *filename;
2118 
2119 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2120 		if (!filename) {
2121 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2122 			       "to kzalloc [%zd] bytes\n", __func__,
2123 			       sizeof(*filename));
2124 			rc = -ENOMEM;
2125 			goto out;
2126 		}
2127 		filename->filename = (char *)name;
2128 		filename->filename_size = name_size;
2129 		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2130 					       mount_crypt_stat);
2131 		if (rc) {
2132 			printk(KERN_ERR "%s: Error attempting to encrypt "
2133 			       "filename; rc = [%d]\n", __func__, rc);
2134 			kfree(filename);
2135 			goto out;
2136 		}
2137 		ecryptfs_encode_for_filename(
2138 			NULL, &encoded_name_no_prefix_size,
2139 			filename->encrypted_filename,
2140 			filename->encrypted_filename_size);
2141 		if ((crypt_stat && (crypt_stat->flags
2142 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2143 		    || (mount_crypt_stat
2144 			&& (mount_crypt_stat->flags
2145 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2146 			(*encoded_name_size) =
2147 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2148 				 + encoded_name_no_prefix_size);
2149 		else
2150 			(*encoded_name_size) =
2151 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2152 				 + encoded_name_no_prefix_size);
2153 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2154 		if (!(*encoded_name)) {
2155 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2156 			       "to kzalloc [%zd] bytes\n", __func__,
2157 			       (*encoded_name_size));
2158 			rc = -ENOMEM;
2159 			kfree(filename->encrypted_filename);
2160 			kfree(filename);
2161 			goto out;
2162 		}
2163 		if ((crypt_stat && (crypt_stat->flags
2164 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2165 		    || (mount_crypt_stat
2166 			&& (mount_crypt_stat->flags
2167 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2168 			memcpy((*encoded_name),
2169 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2170 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2171 			ecryptfs_encode_for_filename(
2172 			    ((*encoded_name)
2173 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2174 			    &encoded_name_no_prefix_size,
2175 			    filename->encrypted_filename,
2176 			    filename->encrypted_filename_size);
2177 			(*encoded_name_size) =
2178 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2179 				 + encoded_name_no_prefix_size);
2180 			(*encoded_name)[(*encoded_name_size)] = '\0';
2181 		} else {
2182 			rc = -EOPNOTSUPP;
2183 		}
2184 		if (rc) {
2185 			printk(KERN_ERR "%s: Error attempting to encode "
2186 			       "encrypted filename; rc = [%d]\n", __func__,
2187 			       rc);
2188 			kfree((*encoded_name));
2189 			(*encoded_name) = NULL;
2190 			(*encoded_name_size) = 0;
2191 		}
2192 		kfree(filename->encrypted_filename);
2193 		kfree(filename);
2194 	} else {
2195 		rc = ecryptfs_copy_filename(encoded_name,
2196 					    encoded_name_size,
2197 					    name, name_size);
2198 	}
2199 out:
2200 	return rc;
2201 }
2202 
2203 /**
2204  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2205  * @plaintext_name: The plaintext name
2206  * @plaintext_name_size: The plaintext name size
2207  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2208  * @name: The filename in cipher text
2209  * @name_size: The cipher text name size
2210  *
2211  * Decrypts and decodes the filename.
2212  *
2213  * Returns zero on error; non-zero otherwise
2214  */
2215 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2216 					 size_t *plaintext_name_size,
2217 					 struct dentry *ecryptfs_dir_dentry,
2218 					 const char *name, size_t name_size)
2219 {
2220 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2221 		&ecryptfs_superblock_to_private(
2222 			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2223 	char *decoded_name;
2224 	size_t decoded_name_size;
2225 	size_t packet_size;
2226 	int rc = 0;
2227 
2228 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2229 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2230 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2231 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2232 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2233 		const char *orig_name = name;
2234 		size_t orig_name_size = name_size;
2235 
2236 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2237 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2238 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2239 					      name, name_size);
2240 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2241 		if (!decoded_name) {
2242 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2243 			       "to kmalloc [%zd] bytes\n", __func__,
2244 			       decoded_name_size);
2245 			rc = -ENOMEM;
2246 			goto out;
2247 		}
2248 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2249 					      name, name_size);
2250 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2251 						  plaintext_name_size,
2252 						  &packet_size,
2253 						  mount_crypt_stat,
2254 						  decoded_name,
2255 						  decoded_name_size);
2256 		if (rc) {
2257 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2258 			       "from filename; copying through filename "
2259 			       "as-is\n", __func__);
2260 			rc = ecryptfs_copy_filename(plaintext_name,
2261 						    plaintext_name_size,
2262 						    orig_name, orig_name_size);
2263 			goto out_free;
2264 		}
2265 	} else {
2266 		rc = ecryptfs_copy_filename(plaintext_name,
2267 					    plaintext_name_size,
2268 					    name, name_size);
2269 		goto out;
2270 	}
2271 out_free:
2272 	kfree(decoded_name);
2273 out:
2274 	return rc;
2275 }
2276