1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /** 3 * eCryptfs: Linux filesystem encryption layer 4 * 5 * Copyright (C) 1997-2004 Erez Zadok 6 * Copyright (C) 2001-2004 Stony Brook University 7 * Copyright (C) 2004-2007 International Business Machines Corp. 8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 9 * Michael C. Thompson <mcthomps@us.ibm.com> 10 */ 11 12 #include <crypto/hash.h> 13 #include <crypto/skcipher.h> 14 #include <linux/fs.h> 15 #include <linux/mount.h> 16 #include <linux/pagemap.h> 17 #include <linux/random.h> 18 #include <linux/compiler.h> 19 #include <linux/key.h> 20 #include <linux/namei.h> 21 #include <linux/file.h> 22 #include <linux/scatterlist.h> 23 #include <linux/slab.h> 24 #include <asm/unaligned.h> 25 #include <linux/kernel.h> 26 #include <linux/xattr.h> 27 #include "ecryptfs_kernel.h" 28 29 #define DECRYPT 0 30 #define ENCRYPT 1 31 32 /** 33 * ecryptfs_from_hex 34 * @dst: Buffer to take the bytes from src hex; must be at least of 35 * size (src_size / 2) 36 * @src: Buffer to be converted from a hex string representation to raw value 37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 38 */ 39 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 40 { 41 int x; 42 char tmp[3] = { 0, }; 43 44 for (x = 0; x < dst_size; x++) { 45 tmp[0] = src[x * 2]; 46 tmp[1] = src[x * 2 + 1]; 47 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 48 } 49 } 50 51 static int ecryptfs_hash_digest(struct crypto_shash *tfm, 52 char *src, int len, char *dst) 53 { 54 SHASH_DESC_ON_STACK(desc, tfm); 55 int err; 56 57 desc->tfm = tfm; 58 err = crypto_shash_digest(desc, src, len, dst); 59 shash_desc_zero(desc); 60 return err; 61 } 62 63 /** 64 * ecryptfs_calculate_md5 - calculates the md5 of @src 65 * @dst: Pointer to 16 bytes of allocated memory 66 * @crypt_stat: Pointer to crypt_stat struct for the current inode 67 * @src: Data to be md5'd 68 * @len: Length of @src 69 * 70 * Uses the allocated crypto context that crypt_stat references to 71 * generate the MD5 sum of the contents of src. 72 */ 73 static int ecryptfs_calculate_md5(char *dst, 74 struct ecryptfs_crypt_stat *crypt_stat, 75 char *src, int len) 76 { 77 struct crypto_shash *tfm; 78 int rc = 0; 79 80 tfm = crypt_stat->hash_tfm; 81 rc = ecryptfs_hash_digest(tfm, src, len, dst); 82 if (rc) { 83 printk(KERN_ERR 84 "%s: Error computing crypto hash; rc = [%d]\n", 85 __func__, rc); 86 goto out; 87 } 88 out: 89 return rc; 90 } 91 92 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 93 char *cipher_name, 94 char *chaining_modifier) 95 { 96 int cipher_name_len = strlen(cipher_name); 97 int chaining_modifier_len = strlen(chaining_modifier); 98 int algified_name_len; 99 int rc; 100 101 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 102 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 103 if (!(*algified_name)) { 104 rc = -ENOMEM; 105 goto out; 106 } 107 snprintf((*algified_name), algified_name_len, "%s(%s)", 108 chaining_modifier, cipher_name); 109 rc = 0; 110 out: 111 return rc; 112 } 113 114 /** 115 * ecryptfs_derive_iv 116 * @iv: destination for the derived iv vale 117 * @crypt_stat: Pointer to crypt_stat struct for the current inode 118 * @offset: Offset of the extent whose IV we are to derive 119 * 120 * Generate the initialization vector from the given root IV and page 121 * offset. 122 * 123 * Returns zero on success; non-zero on error. 124 */ 125 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 126 loff_t offset) 127 { 128 int rc = 0; 129 char dst[MD5_DIGEST_SIZE]; 130 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 131 132 if (unlikely(ecryptfs_verbosity > 0)) { 133 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 134 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 135 } 136 /* TODO: It is probably secure to just cast the least 137 * significant bits of the root IV into an unsigned long and 138 * add the offset to that rather than go through all this 139 * hashing business. -Halcrow */ 140 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 141 memset((src + crypt_stat->iv_bytes), 0, 16); 142 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 143 if (unlikely(ecryptfs_verbosity > 0)) { 144 ecryptfs_printk(KERN_DEBUG, "source:\n"); 145 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 146 } 147 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 148 (crypt_stat->iv_bytes + 16)); 149 if (rc) { 150 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 151 "MD5 while generating IV for a page\n"); 152 goto out; 153 } 154 memcpy(iv, dst, crypt_stat->iv_bytes); 155 if (unlikely(ecryptfs_verbosity > 0)) { 156 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 157 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 158 } 159 out: 160 return rc; 161 } 162 163 /** 164 * ecryptfs_init_crypt_stat 165 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 166 * 167 * Initialize the crypt_stat structure. 168 */ 169 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 170 { 171 struct crypto_shash *tfm; 172 int rc; 173 174 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0); 175 if (IS_ERR(tfm)) { 176 rc = PTR_ERR(tfm); 177 ecryptfs_printk(KERN_ERR, "Error attempting to " 178 "allocate crypto context; rc = [%d]\n", 179 rc); 180 return rc; 181 } 182 183 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 184 INIT_LIST_HEAD(&crypt_stat->keysig_list); 185 mutex_init(&crypt_stat->keysig_list_mutex); 186 mutex_init(&crypt_stat->cs_mutex); 187 mutex_init(&crypt_stat->cs_tfm_mutex); 188 crypt_stat->hash_tfm = tfm; 189 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 190 191 return 0; 192 } 193 194 /** 195 * ecryptfs_destroy_crypt_stat 196 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 197 * 198 * Releases all memory associated with a crypt_stat struct. 199 */ 200 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 201 { 202 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 203 204 crypto_free_skcipher(crypt_stat->tfm); 205 crypto_free_shash(crypt_stat->hash_tfm); 206 list_for_each_entry_safe(key_sig, key_sig_tmp, 207 &crypt_stat->keysig_list, crypt_stat_list) { 208 list_del(&key_sig->crypt_stat_list); 209 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 210 } 211 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 212 } 213 214 void ecryptfs_destroy_mount_crypt_stat( 215 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 216 { 217 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 218 219 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 220 return; 221 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 222 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 223 &mount_crypt_stat->global_auth_tok_list, 224 mount_crypt_stat_list) { 225 list_del(&auth_tok->mount_crypt_stat_list); 226 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 227 key_put(auth_tok->global_auth_tok_key); 228 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 229 } 230 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 231 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 232 } 233 234 /** 235 * virt_to_scatterlist 236 * @addr: Virtual address 237 * @size: Size of data; should be an even multiple of the block size 238 * @sg: Pointer to scatterlist array; set to NULL to obtain only 239 * the number of scatterlist structs required in array 240 * @sg_size: Max array size 241 * 242 * Fills in a scatterlist array with page references for a passed 243 * virtual address. 244 * 245 * Returns the number of scatterlist structs in array used 246 */ 247 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 248 int sg_size) 249 { 250 int i = 0; 251 struct page *pg; 252 int offset; 253 int remainder_of_page; 254 255 sg_init_table(sg, sg_size); 256 257 while (size > 0 && i < sg_size) { 258 pg = virt_to_page(addr); 259 offset = offset_in_page(addr); 260 sg_set_page(&sg[i], pg, 0, offset); 261 remainder_of_page = PAGE_SIZE - offset; 262 if (size >= remainder_of_page) { 263 sg[i].length = remainder_of_page; 264 addr += remainder_of_page; 265 size -= remainder_of_page; 266 } else { 267 sg[i].length = size; 268 addr += size; 269 size = 0; 270 } 271 i++; 272 } 273 if (size > 0) 274 return -ENOMEM; 275 return i; 276 } 277 278 struct extent_crypt_result { 279 struct completion completion; 280 int rc; 281 }; 282 283 static void extent_crypt_complete(struct crypto_async_request *req, int rc) 284 { 285 struct extent_crypt_result *ecr = req->data; 286 287 if (rc == -EINPROGRESS) 288 return; 289 290 ecr->rc = rc; 291 complete(&ecr->completion); 292 } 293 294 /** 295 * crypt_scatterlist 296 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 297 * @dst_sg: Destination of the data after performing the crypto operation 298 * @src_sg: Data to be encrypted or decrypted 299 * @size: Length of data 300 * @iv: IV to use 301 * @op: ENCRYPT or DECRYPT to indicate the desired operation 302 * 303 * Returns the number of bytes encrypted or decrypted; negative value on error 304 */ 305 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 306 struct scatterlist *dst_sg, 307 struct scatterlist *src_sg, int size, 308 unsigned char *iv, int op) 309 { 310 struct skcipher_request *req = NULL; 311 struct extent_crypt_result ecr; 312 int rc = 0; 313 314 BUG_ON(!crypt_stat || !crypt_stat->tfm 315 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 316 if (unlikely(ecryptfs_verbosity > 0)) { 317 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 318 crypt_stat->key_size); 319 ecryptfs_dump_hex(crypt_stat->key, 320 crypt_stat->key_size); 321 } 322 323 init_completion(&ecr.completion); 324 325 mutex_lock(&crypt_stat->cs_tfm_mutex); 326 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 327 if (!req) { 328 mutex_unlock(&crypt_stat->cs_tfm_mutex); 329 rc = -ENOMEM; 330 goto out; 331 } 332 333 skcipher_request_set_callback(req, 334 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 335 extent_crypt_complete, &ecr); 336 /* Consider doing this once, when the file is opened */ 337 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 338 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key, 339 crypt_stat->key_size); 340 if (rc) { 341 ecryptfs_printk(KERN_ERR, 342 "Error setting key; rc = [%d]\n", 343 rc); 344 mutex_unlock(&crypt_stat->cs_tfm_mutex); 345 rc = -EINVAL; 346 goto out; 347 } 348 crypt_stat->flags |= ECRYPTFS_KEY_SET; 349 } 350 mutex_unlock(&crypt_stat->cs_tfm_mutex); 351 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); 352 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) : 353 crypto_skcipher_decrypt(req); 354 if (rc == -EINPROGRESS || rc == -EBUSY) { 355 struct extent_crypt_result *ecr = req->base.data; 356 357 wait_for_completion(&ecr->completion); 358 rc = ecr->rc; 359 reinit_completion(&ecr->completion); 360 } 361 out: 362 skcipher_request_free(req); 363 return rc; 364 } 365 366 /** 367 * lower_offset_for_page 368 * 369 * Convert an eCryptfs page index into a lower byte offset 370 */ 371 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, 372 struct page *page) 373 { 374 return ecryptfs_lower_header_size(crypt_stat) + 375 ((loff_t)page->index << PAGE_SHIFT); 376 } 377 378 /** 379 * crypt_extent 380 * @crypt_stat: crypt_stat containing cryptographic context for the 381 * encryption operation 382 * @dst_page: The page to write the result into 383 * @src_page: The page to read from 384 * @extent_offset: Page extent offset for use in generating IV 385 * @op: ENCRYPT or DECRYPT to indicate the desired operation 386 * 387 * Encrypts or decrypts one extent of data. 388 * 389 * Return zero on success; non-zero otherwise 390 */ 391 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, 392 struct page *dst_page, 393 struct page *src_page, 394 unsigned long extent_offset, int op) 395 { 396 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index; 397 loff_t extent_base; 398 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 399 struct scatterlist src_sg, dst_sg; 400 size_t extent_size = crypt_stat->extent_size; 401 int rc; 402 403 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size)); 404 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 405 (extent_base + extent_offset)); 406 if (rc) { 407 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 408 "extent [0x%.16llx]; rc = [%d]\n", 409 (unsigned long long)(extent_base + extent_offset), rc); 410 goto out; 411 } 412 413 sg_init_table(&src_sg, 1); 414 sg_init_table(&dst_sg, 1); 415 416 sg_set_page(&src_sg, src_page, extent_size, 417 extent_offset * extent_size); 418 sg_set_page(&dst_sg, dst_page, extent_size, 419 extent_offset * extent_size); 420 421 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, 422 extent_iv, op); 423 if (rc < 0) { 424 printk(KERN_ERR "%s: Error attempting to crypt page with " 425 "page_index = [%ld], extent_offset = [%ld]; " 426 "rc = [%d]\n", __func__, page_index, extent_offset, rc); 427 goto out; 428 } 429 rc = 0; 430 out: 431 return rc; 432 } 433 434 /** 435 * ecryptfs_encrypt_page 436 * @page: Page mapped from the eCryptfs inode for the file; contains 437 * decrypted content that needs to be encrypted (to a temporary 438 * page; not in place) and written out to the lower file 439 * 440 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 441 * that eCryptfs pages may straddle the lower pages -- for instance, 442 * if the file was created on a machine with an 8K page size 443 * (resulting in an 8K header), and then the file is copied onto a 444 * host with a 32K page size, then when reading page 0 of the eCryptfs 445 * file, 24K of page 0 of the lower file will be read and decrypted, 446 * and then 8K of page 1 of the lower file will be read and decrypted. 447 * 448 * Returns zero on success; negative on error 449 */ 450 int ecryptfs_encrypt_page(struct page *page) 451 { 452 struct inode *ecryptfs_inode; 453 struct ecryptfs_crypt_stat *crypt_stat; 454 char *enc_extent_virt; 455 struct page *enc_extent_page = NULL; 456 loff_t extent_offset; 457 loff_t lower_offset; 458 int rc = 0; 459 460 ecryptfs_inode = page->mapping->host; 461 crypt_stat = 462 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 463 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 464 enc_extent_page = alloc_page(GFP_USER); 465 if (!enc_extent_page) { 466 rc = -ENOMEM; 467 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 468 "encrypted extent\n"); 469 goto out; 470 } 471 472 for (extent_offset = 0; 473 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 474 extent_offset++) { 475 rc = crypt_extent(crypt_stat, enc_extent_page, page, 476 extent_offset, ENCRYPT); 477 if (rc) { 478 printk(KERN_ERR "%s: Error encrypting extent; " 479 "rc = [%d]\n", __func__, rc); 480 goto out; 481 } 482 } 483 484 lower_offset = lower_offset_for_page(crypt_stat, page); 485 enc_extent_virt = kmap(enc_extent_page); 486 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, 487 PAGE_SIZE); 488 kunmap(enc_extent_page); 489 if (rc < 0) { 490 ecryptfs_printk(KERN_ERR, 491 "Error attempting to write lower page; rc = [%d]\n", 492 rc); 493 goto out; 494 } 495 rc = 0; 496 out: 497 if (enc_extent_page) { 498 __free_page(enc_extent_page); 499 } 500 return rc; 501 } 502 503 /** 504 * ecryptfs_decrypt_page 505 * @page: Page mapped from the eCryptfs inode for the file; data read 506 * and decrypted from the lower file will be written into this 507 * page 508 * 509 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 510 * that eCryptfs pages may straddle the lower pages -- for instance, 511 * if the file was created on a machine with an 8K page size 512 * (resulting in an 8K header), and then the file is copied onto a 513 * host with a 32K page size, then when reading page 0 of the eCryptfs 514 * file, 24K of page 0 of the lower file will be read and decrypted, 515 * and then 8K of page 1 of the lower file will be read and decrypted. 516 * 517 * Returns zero on success; negative on error 518 */ 519 int ecryptfs_decrypt_page(struct page *page) 520 { 521 struct inode *ecryptfs_inode; 522 struct ecryptfs_crypt_stat *crypt_stat; 523 char *page_virt; 524 unsigned long extent_offset; 525 loff_t lower_offset; 526 int rc = 0; 527 528 ecryptfs_inode = page->mapping->host; 529 crypt_stat = 530 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 531 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 532 533 lower_offset = lower_offset_for_page(crypt_stat, page); 534 page_virt = kmap(page); 535 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE, 536 ecryptfs_inode); 537 kunmap(page); 538 if (rc < 0) { 539 ecryptfs_printk(KERN_ERR, 540 "Error attempting to read lower page; rc = [%d]\n", 541 rc); 542 goto out; 543 } 544 545 for (extent_offset = 0; 546 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 547 extent_offset++) { 548 rc = crypt_extent(crypt_stat, page, page, 549 extent_offset, DECRYPT); 550 if (rc) { 551 printk(KERN_ERR "%s: Error encrypting extent; " 552 "rc = [%d]\n", __func__, rc); 553 goto out; 554 } 555 } 556 out: 557 return rc; 558 } 559 560 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 561 562 /** 563 * ecryptfs_init_crypt_ctx 564 * @crypt_stat: Uninitialized crypt stats structure 565 * 566 * Initialize the crypto context. 567 * 568 * TODO: Performance: Keep a cache of initialized cipher contexts; 569 * only init if needed 570 */ 571 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 572 { 573 char *full_alg_name; 574 int rc = -EINVAL; 575 576 ecryptfs_printk(KERN_DEBUG, 577 "Initializing cipher [%s]; strlen = [%d]; " 578 "key_size_bits = [%zd]\n", 579 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 580 crypt_stat->key_size << 3); 581 mutex_lock(&crypt_stat->cs_tfm_mutex); 582 if (crypt_stat->tfm) { 583 rc = 0; 584 goto out_unlock; 585 } 586 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 587 crypt_stat->cipher, "cbc"); 588 if (rc) 589 goto out_unlock; 590 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0); 591 if (IS_ERR(crypt_stat->tfm)) { 592 rc = PTR_ERR(crypt_stat->tfm); 593 crypt_stat->tfm = NULL; 594 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 595 "Error initializing cipher [%s]\n", 596 full_alg_name); 597 goto out_free; 598 } 599 crypto_skcipher_set_flags(crypt_stat->tfm, 600 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 601 rc = 0; 602 out_free: 603 kfree(full_alg_name); 604 out_unlock: 605 mutex_unlock(&crypt_stat->cs_tfm_mutex); 606 return rc; 607 } 608 609 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 610 { 611 int extent_size_tmp; 612 613 crypt_stat->extent_mask = 0xFFFFFFFF; 614 crypt_stat->extent_shift = 0; 615 if (crypt_stat->extent_size == 0) 616 return; 617 extent_size_tmp = crypt_stat->extent_size; 618 while ((extent_size_tmp & 0x01) == 0) { 619 extent_size_tmp >>= 1; 620 crypt_stat->extent_mask <<= 1; 621 crypt_stat->extent_shift++; 622 } 623 } 624 625 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 626 { 627 /* Default values; may be overwritten as we are parsing the 628 * packets. */ 629 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 630 set_extent_mask_and_shift(crypt_stat); 631 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 632 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 633 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 634 else { 635 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 636 crypt_stat->metadata_size = 637 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 638 else 639 crypt_stat->metadata_size = PAGE_SIZE; 640 } 641 } 642 643 /** 644 * ecryptfs_compute_root_iv 645 * @crypt_stats 646 * 647 * On error, sets the root IV to all 0's. 648 */ 649 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 650 { 651 int rc = 0; 652 char dst[MD5_DIGEST_SIZE]; 653 654 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 655 BUG_ON(crypt_stat->iv_bytes <= 0); 656 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 657 rc = -EINVAL; 658 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 659 "cannot generate root IV\n"); 660 goto out; 661 } 662 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 663 crypt_stat->key_size); 664 if (rc) { 665 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 666 "MD5 while generating root IV\n"); 667 goto out; 668 } 669 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 670 out: 671 if (rc) { 672 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 673 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 674 } 675 return rc; 676 } 677 678 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 679 { 680 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 681 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 682 ecryptfs_compute_root_iv(crypt_stat); 683 if (unlikely(ecryptfs_verbosity > 0)) { 684 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 685 ecryptfs_dump_hex(crypt_stat->key, 686 crypt_stat->key_size); 687 } 688 } 689 690 /** 691 * ecryptfs_copy_mount_wide_flags_to_inode_flags 692 * @crypt_stat: The inode's cryptographic context 693 * @mount_crypt_stat: The mount point's cryptographic context 694 * 695 * This function propagates the mount-wide flags to individual inode 696 * flags. 697 */ 698 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 699 struct ecryptfs_crypt_stat *crypt_stat, 700 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 701 { 702 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 703 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 704 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 705 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 706 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 707 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 708 if (mount_crypt_stat->flags 709 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 710 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 711 else if (mount_crypt_stat->flags 712 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 713 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 714 } 715 } 716 717 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 718 struct ecryptfs_crypt_stat *crypt_stat, 719 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 720 { 721 struct ecryptfs_global_auth_tok *global_auth_tok; 722 int rc = 0; 723 724 mutex_lock(&crypt_stat->keysig_list_mutex); 725 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 726 727 list_for_each_entry(global_auth_tok, 728 &mount_crypt_stat->global_auth_tok_list, 729 mount_crypt_stat_list) { 730 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 731 continue; 732 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 733 if (rc) { 734 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 735 goto out; 736 } 737 } 738 739 out: 740 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 741 mutex_unlock(&crypt_stat->keysig_list_mutex); 742 return rc; 743 } 744 745 /** 746 * ecryptfs_set_default_crypt_stat_vals 747 * @crypt_stat: The inode's cryptographic context 748 * @mount_crypt_stat: The mount point's cryptographic context 749 * 750 * Default values in the event that policy does not override them. 751 */ 752 static void ecryptfs_set_default_crypt_stat_vals( 753 struct ecryptfs_crypt_stat *crypt_stat, 754 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 755 { 756 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 757 mount_crypt_stat); 758 ecryptfs_set_default_sizes(crypt_stat); 759 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 760 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 761 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 762 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 763 crypt_stat->mount_crypt_stat = mount_crypt_stat; 764 } 765 766 /** 767 * ecryptfs_new_file_context 768 * @ecryptfs_inode: The eCryptfs inode 769 * 770 * If the crypto context for the file has not yet been established, 771 * this is where we do that. Establishing a new crypto context 772 * involves the following decisions: 773 * - What cipher to use? 774 * - What set of authentication tokens to use? 775 * Here we just worry about getting enough information into the 776 * authentication tokens so that we know that they are available. 777 * We associate the available authentication tokens with the new file 778 * via the set of signatures in the crypt_stat struct. Later, when 779 * the headers are actually written out, we may again defer to 780 * userspace to perform the encryption of the session key; for the 781 * foreseeable future, this will be the case with public key packets. 782 * 783 * Returns zero on success; non-zero otherwise 784 */ 785 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 786 { 787 struct ecryptfs_crypt_stat *crypt_stat = 788 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 789 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 790 &ecryptfs_superblock_to_private( 791 ecryptfs_inode->i_sb)->mount_crypt_stat; 792 int cipher_name_len; 793 int rc = 0; 794 795 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 796 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 797 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 798 mount_crypt_stat); 799 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 800 mount_crypt_stat); 801 if (rc) { 802 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 803 "to the inode key sigs; rc = [%d]\n", rc); 804 goto out; 805 } 806 cipher_name_len = 807 strlen(mount_crypt_stat->global_default_cipher_name); 808 memcpy(crypt_stat->cipher, 809 mount_crypt_stat->global_default_cipher_name, 810 cipher_name_len); 811 crypt_stat->cipher[cipher_name_len] = '\0'; 812 crypt_stat->key_size = 813 mount_crypt_stat->global_default_cipher_key_size; 814 ecryptfs_generate_new_key(crypt_stat); 815 rc = ecryptfs_init_crypt_ctx(crypt_stat); 816 if (rc) 817 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 818 "context for cipher [%s]: rc = [%d]\n", 819 crypt_stat->cipher, rc); 820 out: 821 return rc; 822 } 823 824 /** 825 * ecryptfs_validate_marker - check for the ecryptfs marker 826 * @data: The data block in which to check 827 * 828 * Returns zero if marker found; -EINVAL if not found 829 */ 830 static int ecryptfs_validate_marker(char *data) 831 { 832 u32 m_1, m_2; 833 834 m_1 = get_unaligned_be32(data); 835 m_2 = get_unaligned_be32(data + 4); 836 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 837 return 0; 838 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 839 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 840 MAGIC_ECRYPTFS_MARKER); 841 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 842 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 843 return -EINVAL; 844 } 845 846 struct ecryptfs_flag_map_elem { 847 u32 file_flag; 848 u32 local_flag; 849 }; 850 851 /* Add support for additional flags by adding elements here. */ 852 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 853 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 854 {0x00000002, ECRYPTFS_ENCRYPTED}, 855 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 856 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 857 }; 858 859 /** 860 * ecryptfs_process_flags 861 * @crypt_stat: The cryptographic context 862 * @page_virt: Source data to be parsed 863 * @bytes_read: Updated with the number of bytes read 864 */ 865 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 866 char *page_virt, int *bytes_read) 867 { 868 int i; 869 u32 flags; 870 871 flags = get_unaligned_be32(page_virt); 872 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 873 if (flags & ecryptfs_flag_map[i].file_flag) { 874 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 875 } else 876 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 877 /* Version is in top 8 bits of the 32-bit flag vector */ 878 crypt_stat->file_version = ((flags >> 24) & 0xFF); 879 (*bytes_read) = 4; 880 } 881 882 /** 883 * write_ecryptfs_marker 884 * @page_virt: The pointer to in a page to begin writing the marker 885 * @written: Number of bytes written 886 * 887 * Marker = 0x3c81b7f5 888 */ 889 static void write_ecryptfs_marker(char *page_virt, size_t *written) 890 { 891 u32 m_1, m_2; 892 893 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 894 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 895 put_unaligned_be32(m_1, page_virt); 896 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 897 put_unaligned_be32(m_2, page_virt); 898 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 899 } 900 901 void ecryptfs_write_crypt_stat_flags(char *page_virt, 902 struct ecryptfs_crypt_stat *crypt_stat, 903 size_t *written) 904 { 905 u32 flags = 0; 906 int i; 907 908 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 909 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 910 flags |= ecryptfs_flag_map[i].file_flag; 911 /* Version is in top 8 bits of the 32-bit flag vector */ 912 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 913 put_unaligned_be32(flags, page_virt); 914 (*written) = 4; 915 } 916 917 struct ecryptfs_cipher_code_str_map_elem { 918 char cipher_str[16]; 919 u8 cipher_code; 920 }; 921 922 /* Add support for additional ciphers by adding elements here. The 923 * cipher_code is whatever OpenPGP applications use to identify the 924 * ciphers. List in order of probability. */ 925 static struct ecryptfs_cipher_code_str_map_elem 926 ecryptfs_cipher_code_str_map[] = { 927 {"aes",RFC2440_CIPHER_AES_128 }, 928 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 929 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 930 {"cast5", RFC2440_CIPHER_CAST_5}, 931 {"twofish", RFC2440_CIPHER_TWOFISH}, 932 {"cast6", RFC2440_CIPHER_CAST_6}, 933 {"aes", RFC2440_CIPHER_AES_192}, 934 {"aes", RFC2440_CIPHER_AES_256} 935 }; 936 937 /** 938 * ecryptfs_code_for_cipher_string 939 * @cipher_name: The string alias for the cipher 940 * @key_bytes: Length of key in bytes; used for AES code selection 941 * 942 * Returns zero on no match, or the cipher code on match 943 */ 944 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 945 { 946 int i; 947 u8 code = 0; 948 struct ecryptfs_cipher_code_str_map_elem *map = 949 ecryptfs_cipher_code_str_map; 950 951 if (strcmp(cipher_name, "aes") == 0) { 952 switch (key_bytes) { 953 case 16: 954 code = RFC2440_CIPHER_AES_128; 955 break; 956 case 24: 957 code = RFC2440_CIPHER_AES_192; 958 break; 959 case 32: 960 code = RFC2440_CIPHER_AES_256; 961 } 962 } else { 963 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 964 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 965 code = map[i].cipher_code; 966 break; 967 } 968 } 969 return code; 970 } 971 972 /** 973 * ecryptfs_cipher_code_to_string 974 * @str: Destination to write out the cipher name 975 * @cipher_code: The code to convert to cipher name string 976 * 977 * Returns zero on success 978 */ 979 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 980 { 981 int rc = 0; 982 int i; 983 984 str[0] = '\0'; 985 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 986 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 987 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 988 if (str[0] == '\0') { 989 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 990 "[%d]\n", cipher_code); 991 rc = -EINVAL; 992 } 993 return rc; 994 } 995 996 int ecryptfs_read_and_validate_header_region(struct inode *inode) 997 { 998 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 999 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1000 int rc; 1001 1002 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 1003 inode); 1004 if (rc < 0) 1005 return rc; 1006 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1007 return -EINVAL; 1008 rc = ecryptfs_validate_marker(marker); 1009 if (!rc) 1010 ecryptfs_i_size_init(file_size, inode); 1011 return rc; 1012 } 1013 1014 void 1015 ecryptfs_write_header_metadata(char *virt, 1016 struct ecryptfs_crypt_stat *crypt_stat, 1017 size_t *written) 1018 { 1019 u32 header_extent_size; 1020 u16 num_header_extents_at_front; 1021 1022 header_extent_size = (u32)crypt_stat->extent_size; 1023 num_header_extents_at_front = 1024 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1025 put_unaligned_be32(header_extent_size, virt); 1026 virt += 4; 1027 put_unaligned_be16(num_header_extents_at_front, virt); 1028 (*written) = 6; 1029 } 1030 1031 struct kmem_cache *ecryptfs_header_cache; 1032 1033 /** 1034 * ecryptfs_write_headers_virt 1035 * @page_virt: The virtual address to write the headers to 1036 * @max: The size of memory allocated at page_virt 1037 * @size: Set to the number of bytes written by this function 1038 * @crypt_stat: The cryptographic context 1039 * @ecryptfs_dentry: The eCryptfs dentry 1040 * 1041 * Format version: 1 1042 * 1043 * Header Extent: 1044 * Octets 0-7: Unencrypted file size (big-endian) 1045 * Octets 8-15: eCryptfs special marker 1046 * Octets 16-19: Flags 1047 * Octet 16: File format version number (between 0 and 255) 1048 * Octets 17-18: Reserved 1049 * Octet 19: Bit 1 (lsb): Reserved 1050 * Bit 2: Encrypted? 1051 * Bits 3-8: Reserved 1052 * Octets 20-23: Header extent size (big-endian) 1053 * Octets 24-25: Number of header extents at front of file 1054 * (big-endian) 1055 * Octet 26: Begin RFC 2440 authentication token packet set 1056 * Data Extent 0: 1057 * Lower data (CBC encrypted) 1058 * Data Extent 1: 1059 * Lower data (CBC encrypted) 1060 * ... 1061 * 1062 * Returns zero on success 1063 */ 1064 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1065 size_t *size, 1066 struct ecryptfs_crypt_stat *crypt_stat, 1067 struct dentry *ecryptfs_dentry) 1068 { 1069 int rc; 1070 size_t written; 1071 size_t offset; 1072 1073 offset = ECRYPTFS_FILE_SIZE_BYTES; 1074 write_ecryptfs_marker((page_virt + offset), &written); 1075 offset += written; 1076 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1077 &written); 1078 offset += written; 1079 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1080 &written); 1081 offset += written; 1082 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1083 ecryptfs_dentry, &written, 1084 max - offset); 1085 if (rc) 1086 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1087 "set; rc = [%d]\n", rc); 1088 if (size) { 1089 offset += written; 1090 *size = offset; 1091 } 1092 return rc; 1093 } 1094 1095 static int 1096 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1097 char *virt, size_t virt_len) 1098 { 1099 int rc; 1100 1101 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1102 0, virt_len); 1103 if (rc < 0) 1104 printk(KERN_ERR "%s: Error attempting to write header " 1105 "information to lower file; rc = [%d]\n", __func__, rc); 1106 else 1107 rc = 0; 1108 return rc; 1109 } 1110 1111 static int 1112 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1113 struct inode *ecryptfs_inode, 1114 char *page_virt, size_t size) 1115 { 1116 int rc; 1117 struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry); 1118 struct inode *lower_inode = d_inode(lower_dentry); 1119 1120 if (!(lower_inode->i_opflags & IOP_XATTR)) { 1121 rc = -EOPNOTSUPP; 1122 goto out; 1123 } 1124 1125 inode_lock(lower_inode); 1126 rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME, 1127 page_virt, size, 0); 1128 if (!rc && ecryptfs_inode) 1129 fsstack_copy_attr_all(ecryptfs_inode, lower_inode); 1130 inode_unlock(lower_inode); 1131 out: 1132 return rc; 1133 } 1134 1135 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1136 unsigned int order) 1137 { 1138 struct page *page; 1139 1140 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1141 if (page) 1142 return (unsigned long) page_address(page); 1143 return 0; 1144 } 1145 1146 /** 1147 * ecryptfs_write_metadata 1148 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1149 * @ecryptfs_inode: The newly created eCryptfs inode 1150 * 1151 * Write the file headers out. This will likely involve a userspace 1152 * callout, in which the session key is encrypted with one or more 1153 * public keys and/or the passphrase necessary to do the encryption is 1154 * retrieved via a prompt. Exactly what happens at this point should 1155 * be policy-dependent. 1156 * 1157 * Returns zero on success; non-zero on error 1158 */ 1159 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1160 struct inode *ecryptfs_inode) 1161 { 1162 struct ecryptfs_crypt_stat *crypt_stat = 1163 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1164 unsigned int order; 1165 char *virt; 1166 size_t virt_len; 1167 size_t size = 0; 1168 int rc = 0; 1169 1170 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1171 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1172 printk(KERN_ERR "Key is invalid; bailing out\n"); 1173 rc = -EINVAL; 1174 goto out; 1175 } 1176 } else { 1177 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1178 __func__); 1179 rc = -EINVAL; 1180 goto out; 1181 } 1182 virt_len = crypt_stat->metadata_size; 1183 order = get_order(virt_len); 1184 /* Released in this function */ 1185 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1186 if (!virt) { 1187 printk(KERN_ERR "%s: Out of memory\n", __func__); 1188 rc = -ENOMEM; 1189 goto out; 1190 } 1191 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1192 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1193 ecryptfs_dentry); 1194 if (unlikely(rc)) { 1195 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1196 __func__, rc); 1197 goto out_free; 1198 } 1199 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1200 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode, 1201 virt, size); 1202 else 1203 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1204 virt_len); 1205 if (rc) { 1206 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1207 "rc = [%d]\n", __func__, rc); 1208 goto out_free; 1209 } 1210 out_free: 1211 free_pages((unsigned long)virt, order); 1212 out: 1213 return rc; 1214 } 1215 1216 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1217 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1218 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1219 char *virt, int *bytes_read, 1220 int validate_header_size) 1221 { 1222 int rc = 0; 1223 u32 header_extent_size; 1224 u16 num_header_extents_at_front; 1225 1226 header_extent_size = get_unaligned_be32(virt); 1227 virt += sizeof(__be32); 1228 num_header_extents_at_front = get_unaligned_be16(virt); 1229 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1230 * (size_t)header_extent_size)); 1231 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1232 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1233 && (crypt_stat->metadata_size 1234 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1235 rc = -EINVAL; 1236 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1237 crypt_stat->metadata_size); 1238 } 1239 return rc; 1240 } 1241 1242 /** 1243 * set_default_header_data 1244 * @crypt_stat: The cryptographic context 1245 * 1246 * For version 0 file format; this function is only for backwards 1247 * compatibility for files created with the prior versions of 1248 * eCryptfs. 1249 */ 1250 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1251 { 1252 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1253 } 1254 1255 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1256 { 1257 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1258 struct ecryptfs_crypt_stat *crypt_stat; 1259 u64 file_size; 1260 1261 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1262 mount_crypt_stat = 1263 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1264 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1265 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1266 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1267 file_size += crypt_stat->metadata_size; 1268 } else 1269 file_size = get_unaligned_be64(page_virt); 1270 i_size_write(inode, (loff_t)file_size); 1271 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1272 } 1273 1274 /** 1275 * ecryptfs_read_headers_virt 1276 * @page_virt: The virtual address into which to read the headers 1277 * @crypt_stat: The cryptographic context 1278 * @ecryptfs_dentry: The eCryptfs dentry 1279 * @validate_header_size: Whether to validate the header size while reading 1280 * 1281 * Read/parse the header data. The header format is detailed in the 1282 * comment block for the ecryptfs_write_headers_virt() function. 1283 * 1284 * Returns zero on success 1285 */ 1286 static int ecryptfs_read_headers_virt(char *page_virt, 1287 struct ecryptfs_crypt_stat *crypt_stat, 1288 struct dentry *ecryptfs_dentry, 1289 int validate_header_size) 1290 { 1291 int rc = 0; 1292 int offset; 1293 int bytes_read; 1294 1295 ecryptfs_set_default_sizes(crypt_stat); 1296 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1297 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1298 offset = ECRYPTFS_FILE_SIZE_BYTES; 1299 rc = ecryptfs_validate_marker(page_virt + offset); 1300 if (rc) 1301 goto out; 1302 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1303 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry)); 1304 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1305 ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read); 1306 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1307 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1308 "file version [%d] is supported by this " 1309 "version of eCryptfs\n", 1310 crypt_stat->file_version, 1311 ECRYPTFS_SUPPORTED_FILE_VERSION); 1312 rc = -EINVAL; 1313 goto out; 1314 } 1315 offset += bytes_read; 1316 if (crypt_stat->file_version >= 1) { 1317 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1318 &bytes_read, validate_header_size); 1319 if (rc) { 1320 ecryptfs_printk(KERN_WARNING, "Error reading header " 1321 "metadata; rc = [%d]\n", rc); 1322 } 1323 offset += bytes_read; 1324 } else 1325 set_default_header_data(crypt_stat); 1326 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1327 ecryptfs_dentry); 1328 out: 1329 return rc; 1330 } 1331 1332 /** 1333 * ecryptfs_read_xattr_region 1334 * @page_virt: The vitual address into which to read the xattr data 1335 * @ecryptfs_inode: The eCryptfs inode 1336 * 1337 * Attempts to read the crypto metadata from the extended attribute 1338 * region of the lower file. 1339 * 1340 * Returns zero on success; non-zero on error 1341 */ 1342 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1343 { 1344 struct dentry *lower_dentry = 1345 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry; 1346 ssize_t size; 1347 int rc = 0; 1348 1349 size = ecryptfs_getxattr_lower(lower_dentry, 1350 ecryptfs_inode_to_lower(ecryptfs_inode), 1351 ECRYPTFS_XATTR_NAME, 1352 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1353 if (size < 0) { 1354 if (unlikely(ecryptfs_verbosity > 0)) 1355 printk(KERN_INFO "Error attempting to read the [%s] " 1356 "xattr from the lower file; return value = " 1357 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1358 rc = -EINVAL; 1359 goto out; 1360 } 1361 out: 1362 return rc; 1363 } 1364 1365 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1366 struct inode *inode) 1367 { 1368 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1369 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1370 int rc; 1371 1372 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1373 ecryptfs_inode_to_lower(inode), 1374 ECRYPTFS_XATTR_NAME, file_size, 1375 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1376 if (rc < 0) 1377 return rc; 1378 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1379 return -EINVAL; 1380 rc = ecryptfs_validate_marker(marker); 1381 if (!rc) 1382 ecryptfs_i_size_init(file_size, inode); 1383 return rc; 1384 } 1385 1386 /** 1387 * ecryptfs_read_metadata 1388 * 1389 * Common entry point for reading file metadata. From here, we could 1390 * retrieve the header information from the header region of the file, 1391 * the xattr region of the file, or some other repository that is 1392 * stored separately from the file itself. The current implementation 1393 * supports retrieving the metadata information from the file contents 1394 * and from the xattr region. 1395 * 1396 * Returns zero if valid headers found and parsed; non-zero otherwise 1397 */ 1398 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1399 { 1400 int rc; 1401 char *page_virt; 1402 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry); 1403 struct ecryptfs_crypt_stat *crypt_stat = 1404 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1405 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1406 &ecryptfs_superblock_to_private( 1407 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1408 1409 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1410 mount_crypt_stat); 1411 /* Read the first page from the underlying file */ 1412 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1413 if (!page_virt) { 1414 rc = -ENOMEM; 1415 goto out; 1416 } 1417 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1418 ecryptfs_inode); 1419 if (rc >= 0) 1420 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1421 ecryptfs_dentry, 1422 ECRYPTFS_VALIDATE_HEADER_SIZE); 1423 if (rc) { 1424 /* metadata is not in the file header, so try xattrs */ 1425 memset(page_virt, 0, PAGE_SIZE); 1426 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1427 if (rc) { 1428 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1429 "file header region or xattr region, inode %lu\n", 1430 ecryptfs_inode->i_ino); 1431 rc = -EINVAL; 1432 goto out; 1433 } 1434 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1435 ecryptfs_dentry, 1436 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1437 if (rc) { 1438 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1439 "file xattr region either, inode %lu\n", 1440 ecryptfs_inode->i_ino); 1441 rc = -EINVAL; 1442 } 1443 if (crypt_stat->mount_crypt_stat->flags 1444 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1445 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1446 } else { 1447 printk(KERN_WARNING "Attempt to access file with " 1448 "crypto metadata only in the extended attribute " 1449 "region, but eCryptfs was mounted without " 1450 "xattr support enabled. eCryptfs will not treat " 1451 "this like an encrypted file, inode %lu\n", 1452 ecryptfs_inode->i_ino); 1453 rc = -EINVAL; 1454 } 1455 } 1456 out: 1457 if (page_virt) { 1458 memset(page_virt, 0, PAGE_SIZE); 1459 kmem_cache_free(ecryptfs_header_cache, page_virt); 1460 } 1461 return rc; 1462 } 1463 1464 /** 1465 * ecryptfs_encrypt_filename - encrypt filename 1466 * 1467 * CBC-encrypts the filename. We do not want to encrypt the same 1468 * filename with the same key and IV, which may happen with hard 1469 * links, so we prepend random bits to each filename. 1470 * 1471 * Returns zero on success; non-zero otherwise 1472 */ 1473 static int 1474 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1475 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1476 { 1477 int rc = 0; 1478 1479 filename->encrypted_filename = NULL; 1480 filename->encrypted_filename_size = 0; 1481 if (mount_crypt_stat && (mount_crypt_stat->flags 1482 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1483 size_t packet_size; 1484 size_t remaining_bytes; 1485 1486 rc = ecryptfs_write_tag_70_packet( 1487 NULL, NULL, 1488 &filename->encrypted_filename_size, 1489 mount_crypt_stat, NULL, 1490 filename->filename_size); 1491 if (rc) { 1492 printk(KERN_ERR "%s: Error attempting to get packet " 1493 "size for tag 72; rc = [%d]\n", __func__, 1494 rc); 1495 filename->encrypted_filename_size = 0; 1496 goto out; 1497 } 1498 filename->encrypted_filename = 1499 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1500 if (!filename->encrypted_filename) { 1501 rc = -ENOMEM; 1502 goto out; 1503 } 1504 remaining_bytes = filename->encrypted_filename_size; 1505 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1506 &remaining_bytes, 1507 &packet_size, 1508 mount_crypt_stat, 1509 filename->filename, 1510 filename->filename_size); 1511 if (rc) { 1512 printk(KERN_ERR "%s: Error attempting to generate " 1513 "tag 70 packet; rc = [%d]\n", __func__, 1514 rc); 1515 kfree(filename->encrypted_filename); 1516 filename->encrypted_filename = NULL; 1517 filename->encrypted_filename_size = 0; 1518 goto out; 1519 } 1520 filename->encrypted_filename_size = packet_size; 1521 } else { 1522 printk(KERN_ERR "%s: No support for requested filename " 1523 "encryption method in this release\n", __func__); 1524 rc = -EOPNOTSUPP; 1525 goto out; 1526 } 1527 out: 1528 return rc; 1529 } 1530 1531 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1532 const char *name, size_t name_size) 1533 { 1534 int rc = 0; 1535 1536 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1537 if (!(*copied_name)) { 1538 rc = -ENOMEM; 1539 goto out; 1540 } 1541 memcpy((void *)(*copied_name), (void *)name, name_size); 1542 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1543 * in printing out the 1544 * string in debug 1545 * messages */ 1546 (*copied_name_size) = name_size; 1547 out: 1548 return rc; 1549 } 1550 1551 /** 1552 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1553 * @key_tfm: Crypto context for key material, set by this function 1554 * @cipher_name: Name of the cipher 1555 * @key_size: Size of the key in bytes 1556 * 1557 * Returns zero on success. Any crypto_tfm structs allocated here 1558 * should be released by other functions, such as on a superblock put 1559 * event, regardless of whether this function succeeds for fails. 1560 */ 1561 static int 1562 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, 1563 char *cipher_name, size_t *key_size) 1564 { 1565 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1566 char *full_alg_name = NULL; 1567 int rc; 1568 1569 *key_tfm = NULL; 1570 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1571 rc = -EINVAL; 1572 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1573 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1574 goto out; 1575 } 1576 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1577 "ecb"); 1578 if (rc) 1579 goto out; 1580 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1581 if (IS_ERR(*key_tfm)) { 1582 rc = PTR_ERR(*key_tfm); 1583 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1584 "[%s]; rc = [%d]\n", full_alg_name, rc); 1585 goto out; 1586 } 1587 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 1588 if (*key_size == 0) 1589 *key_size = crypto_skcipher_max_keysize(*key_tfm); 1590 get_random_bytes(dummy_key, *key_size); 1591 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size); 1592 if (rc) { 1593 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1594 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1595 rc); 1596 rc = -EINVAL; 1597 goto out; 1598 } 1599 out: 1600 kfree(full_alg_name); 1601 return rc; 1602 } 1603 1604 struct kmem_cache *ecryptfs_key_tfm_cache; 1605 static struct list_head key_tfm_list; 1606 struct mutex key_tfm_list_mutex; 1607 1608 int __init ecryptfs_init_crypto(void) 1609 { 1610 mutex_init(&key_tfm_list_mutex); 1611 INIT_LIST_HEAD(&key_tfm_list); 1612 return 0; 1613 } 1614 1615 /** 1616 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1617 * 1618 * Called only at module unload time 1619 */ 1620 int ecryptfs_destroy_crypto(void) 1621 { 1622 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1623 1624 mutex_lock(&key_tfm_list_mutex); 1625 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1626 key_tfm_list) { 1627 list_del(&key_tfm->key_tfm_list); 1628 crypto_free_skcipher(key_tfm->key_tfm); 1629 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1630 } 1631 mutex_unlock(&key_tfm_list_mutex); 1632 return 0; 1633 } 1634 1635 int 1636 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1637 size_t key_size) 1638 { 1639 struct ecryptfs_key_tfm *tmp_tfm; 1640 int rc = 0; 1641 1642 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1643 1644 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1645 if (key_tfm) 1646 (*key_tfm) = tmp_tfm; 1647 if (!tmp_tfm) { 1648 rc = -ENOMEM; 1649 goto out; 1650 } 1651 mutex_init(&tmp_tfm->key_tfm_mutex); 1652 strncpy(tmp_tfm->cipher_name, cipher_name, 1653 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1654 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1655 tmp_tfm->key_size = key_size; 1656 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1657 tmp_tfm->cipher_name, 1658 &tmp_tfm->key_size); 1659 if (rc) { 1660 printk(KERN_ERR "Error attempting to initialize key TFM " 1661 "cipher with name = [%s]; rc = [%d]\n", 1662 tmp_tfm->cipher_name, rc); 1663 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1664 if (key_tfm) 1665 (*key_tfm) = NULL; 1666 goto out; 1667 } 1668 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1669 out: 1670 return rc; 1671 } 1672 1673 /** 1674 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1675 * @cipher_name: the name of the cipher to search for 1676 * @key_tfm: set to corresponding tfm if found 1677 * 1678 * Searches for cached key_tfm matching @cipher_name 1679 * Must be called with &key_tfm_list_mutex held 1680 * Returns 1 if found, with @key_tfm set 1681 * Returns 0 if not found, with @key_tfm set to NULL 1682 */ 1683 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1684 { 1685 struct ecryptfs_key_tfm *tmp_key_tfm; 1686 1687 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1688 1689 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1690 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1691 if (key_tfm) 1692 (*key_tfm) = tmp_key_tfm; 1693 return 1; 1694 } 1695 } 1696 if (key_tfm) 1697 (*key_tfm) = NULL; 1698 return 0; 1699 } 1700 1701 /** 1702 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1703 * 1704 * @tfm: set to cached tfm found, or new tfm created 1705 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1706 * @cipher_name: the name of the cipher to search for and/or add 1707 * 1708 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1709 * Searches for cached item first, and creates new if not found. 1710 * Returns 0 on success, non-zero if adding new cipher failed 1711 */ 1712 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, 1713 struct mutex **tfm_mutex, 1714 char *cipher_name) 1715 { 1716 struct ecryptfs_key_tfm *key_tfm; 1717 int rc = 0; 1718 1719 (*tfm) = NULL; 1720 (*tfm_mutex) = NULL; 1721 1722 mutex_lock(&key_tfm_list_mutex); 1723 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1724 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1725 if (rc) { 1726 printk(KERN_ERR "Error adding new key_tfm to list; " 1727 "rc = [%d]\n", rc); 1728 goto out; 1729 } 1730 } 1731 (*tfm) = key_tfm->key_tfm; 1732 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1733 out: 1734 mutex_unlock(&key_tfm_list_mutex); 1735 return rc; 1736 } 1737 1738 /* 64 characters forming a 6-bit target field */ 1739 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1740 "EFGHIJKLMNOPQRST" 1741 "UVWXYZabcdefghij" 1742 "klmnopqrstuvwxyz"); 1743 1744 /* We could either offset on every reverse map or just pad some 0x00's 1745 * at the front here */ 1746 static const unsigned char filename_rev_map[256] = { 1747 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1748 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1749 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1750 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1751 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1752 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1753 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1754 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1755 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1756 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1757 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1758 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1759 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1760 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1761 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1762 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1763 }; 1764 1765 /** 1766 * ecryptfs_encode_for_filename 1767 * @dst: Destination location for encoded filename 1768 * @dst_size: Size of the encoded filename in bytes 1769 * @src: Source location for the filename to encode 1770 * @src_size: Size of the source in bytes 1771 */ 1772 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1773 unsigned char *src, size_t src_size) 1774 { 1775 size_t num_blocks; 1776 size_t block_num = 0; 1777 size_t dst_offset = 0; 1778 unsigned char last_block[3]; 1779 1780 if (src_size == 0) { 1781 (*dst_size) = 0; 1782 goto out; 1783 } 1784 num_blocks = (src_size / 3); 1785 if ((src_size % 3) == 0) { 1786 memcpy(last_block, (&src[src_size - 3]), 3); 1787 } else { 1788 num_blocks++; 1789 last_block[2] = 0x00; 1790 switch (src_size % 3) { 1791 case 1: 1792 last_block[0] = src[src_size - 1]; 1793 last_block[1] = 0x00; 1794 break; 1795 case 2: 1796 last_block[0] = src[src_size - 2]; 1797 last_block[1] = src[src_size - 1]; 1798 } 1799 } 1800 (*dst_size) = (num_blocks * 4); 1801 if (!dst) 1802 goto out; 1803 while (block_num < num_blocks) { 1804 unsigned char *src_block; 1805 unsigned char dst_block[4]; 1806 1807 if (block_num == (num_blocks - 1)) 1808 src_block = last_block; 1809 else 1810 src_block = &src[block_num * 3]; 1811 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1812 dst_block[1] = (((src_block[0] << 4) & 0x30) 1813 | ((src_block[1] >> 4) & 0x0F)); 1814 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1815 | ((src_block[2] >> 6) & 0x03)); 1816 dst_block[3] = (src_block[2] & 0x3F); 1817 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1818 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1819 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1820 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1821 block_num++; 1822 } 1823 out: 1824 return; 1825 } 1826 1827 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1828 { 1829 /* Not exact; conservatively long. Every block of 4 1830 * encoded characters decodes into a block of 3 1831 * decoded characters. This segment of code provides 1832 * the caller with the maximum amount of allocated 1833 * space that @dst will need to point to in a 1834 * subsequent call. */ 1835 return ((encoded_size + 1) * 3) / 4; 1836 } 1837 1838 /** 1839 * ecryptfs_decode_from_filename 1840 * @dst: If NULL, this function only sets @dst_size and returns. If 1841 * non-NULL, this function decodes the encoded octets in @src 1842 * into the memory that @dst points to. 1843 * @dst_size: Set to the size of the decoded string. 1844 * @src: The encoded set of octets to decode. 1845 * @src_size: The size of the encoded set of octets to decode. 1846 */ 1847 static void 1848 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 1849 const unsigned char *src, size_t src_size) 1850 { 1851 u8 current_bit_offset = 0; 1852 size_t src_byte_offset = 0; 1853 size_t dst_byte_offset = 0; 1854 1855 if (!dst) { 1856 (*dst_size) = ecryptfs_max_decoded_size(src_size); 1857 goto out; 1858 } 1859 while (src_byte_offset < src_size) { 1860 unsigned char src_byte = 1861 filename_rev_map[(int)src[src_byte_offset]]; 1862 1863 switch (current_bit_offset) { 1864 case 0: 1865 dst[dst_byte_offset] = (src_byte << 2); 1866 current_bit_offset = 6; 1867 break; 1868 case 6: 1869 dst[dst_byte_offset++] |= (src_byte >> 4); 1870 dst[dst_byte_offset] = ((src_byte & 0xF) 1871 << 4); 1872 current_bit_offset = 4; 1873 break; 1874 case 4: 1875 dst[dst_byte_offset++] |= (src_byte >> 2); 1876 dst[dst_byte_offset] = (src_byte << 6); 1877 current_bit_offset = 2; 1878 break; 1879 case 2: 1880 dst[dst_byte_offset++] |= (src_byte); 1881 current_bit_offset = 0; 1882 break; 1883 } 1884 src_byte_offset++; 1885 } 1886 (*dst_size) = dst_byte_offset; 1887 out: 1888 return; 1889 } 1890 1891 /** 1892 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 1893 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 1894 * @name: The plaintext name 1895 * @length: The length of the plaintext 1896 * @encoded_name: The encypted name 1897 * 1898 * Encrypts and encodes a filename into something that constitutes a 1899 * valid filename for a filesystem, with printable characters. 1900 * 1901 * We assume that we have a properly initialized crypto context, 1902 * pointed to by crypt_stat->tfm. 1903 * 1904 * Returns zero on success; non-zero on otherwise 1905 */ 1906 int ecryptfs_encrypt_and_encode_filename( 1907 char **encoded_name, 1908 size_t *encoded_name_size, 1909 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 1910 const char *name, size_t name_size) 1911 { 1912 size_t encoded_name_no_prefix_size; 1913 int rc = 0; 1914 1915 (*encoded_name) = NULL; 1916 (*encoded_name_size) = 0; 1917 if (mount_crypt_stat && (mount_crypt_stat->flags 1918 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 1919 struct ecryptfs_filename *filename; 1920 1921 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 1922 if (!filename) { 1923 rc = -ENOMEM; 1924 goto out; 1925 } 1926 filename->filename = (char *)name; 1927 filename->filename_size = name_size; 1928 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat); 1929 if (rc) { 1930 printk(KERN_ERR "%s: Error attempting to encrypt " 1931 "filename; rc = [%d]\n", __func__, rc); 1932 kfree(filename); 1933 goto out; 1934 } 1935 ecryptfs_encode_for_filename( 1936 NULL, &encoded_name_no_prefix_size, 1937 filename->encrypted_filename, 1938 filename->encrypted_filename_size); 1939 if (mount_crypt_stat 1940 && (mount_crypt_stat->flags 1941 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) 1942 (*encoded_name_size) = 1943 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1944 + encoded_name_no_prefix_size); 1945 else 1946 (*encoded_name_size) = 1947 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1948 + encoded_name_no_prefix_size); 1949 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 1950 if (!(*encoded_name)) { 1951 rc = -ENOMEM; 1952 kfree(filename->encrypted_filename); 1953 kfree(filename); 1954 goto out; 1955 } 1956 if (mount_crypt_stat 1957 && (mount_crypt_stat->flags 1958 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1959 memcpy((*encoded_name), 1960 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 1961 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 1962 ecryptfs_encode_for_filename( 1963 ((*encoded_name) 1964 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 1965 &encoded_name_no_prefix_size, 1966 filename->encrypted_filename, 1967 filename->encrypted_filename_size); 1968 (*encoded_name_size) = 1969 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1970 + encoded_name_no_prefix_size); 1971 (*encoded_name)[(*encoded_name_size)] = '\0'; 1972 } else { 1973 rc = -EOPNOTSUPP; 1974 } 1975 if (rc) { 1976 printk(KERN_ERR "%s: Error attempting to encode " 1977 "encrypted filename; rc = [%d]\n", __func__, 1978 rc); 1979 kfree((*encoded_name)); 1980 (*encoded_name) = NULL; 1981 (*encoded_name_size) = 0; 1982 } 1983 kfree(filename->encrypted_filename); 1984 kfree(filename); 1985 } else { 1986 rc = ecryptfs_copy_filename(encoded_name, 1987 encoded_name_size, 1988 name, name_size); 1989 } 1990 out: 1991 return rc; 1992 } 1993 1994 static bool is_dot_dotdot(const char *name, size_t name_size) 1995 { 1996 if (name_size == 1 && name[0] == '.') 1997 return true; 1998 else if (name_size == 2 && name[0] == '.' && name[1] == '.') 1999 return true; 2000 2001 return false; 2002 } 2003 2004 /** 2005 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2006 * @plaintext_name: The plaintext name 2007 * @plaintext_name_size: The plaintext name size 2008 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2009 * @name: The filename in cipher text 2010 * @name_size: The cipher text name size 2011 * 2012 * Decrypts and decodes the filename. 2013 * 2014 * Returns zero on error; non-zero otherwise 2015 */ 2016 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2017 size_t *plaintext_name_size, 2018 struct super_block *sb, 2019 const char *name, size_t name_size) 2020 { 2021 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2022 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 2023 char *decoded_name; 2024 size_t decoded_name_size; 2025 size_t packet_size; 2026 int rc = 0; 2027 2028 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) && 2029 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) { 2030 if (is_dot_dotdot(name, name_size)) { 2031 rc = ecryptfs_copy_filename(plaintext_name, 2032 plaintext_name_size, 2033 name, name_size); 2034 goto out; 2035 } 2036 2037 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE || 2038 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2039 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) { 2040 rc = -EINVAL; 2041 goto out; 2042 } 2043 2044 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2045 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2046 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2047 name, name_size); 2048 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2049 if (!decoded_name) { 2050 rc = -ENOMEM; 2051 goto out; 2052 } 2053 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2054 name, name_size); 2055 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2056 plaintext_name_size, 2057 &packet_size, 2058 mount_crypt_stat, 2059 decoded_name, 2060 decoded_name_size); 2061 if (rc) { 2062 ecryptfs_printk(KERN_DEBUG, 2063 "%s: Could not parse tag 70 packet from filename\n", 2064 __func__); 2065 goto out_free; 2066 } 2067 } else { 2068 rc = ecryptfs_copy_filename(plaintext_name, 2069 plaintext_name_size, 2070 name, name_size); 2071 goto out; 2072 } 2073 out_free: 2074 kfree(decoded_name); 2075 out: 2076 return rc; 2077 } 2078 2079 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2080 2081 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2082 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2083 { 2084 struct crypto_skcipher *tfm; 2085 struct mutex *tfm_mutex; 2086 size_t cipher_blocksize; 2087 int rc; 2088 2089 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2090 (*namelen) = lower_namelen; 2091 return 0; 2092 } 2093 2094 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, 2095 mount_crypt_stat->global_default_fn_cipher_name); 2096 if (unlikely(rc)) { 2097 (*namelen) = 0; 2098 return rc; 2099 } 2100 2101 mutex_lock(tfm_mutex); 2102 cipher_blocksize = crypto_skcipher_blocksize(tfm); 2103 mutex_unlock(tfm_mutex); 2104 2105 /* Return an exact amount for the common cases */ 2106 if (lower_namelen == NAME_MAX 2107 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2108 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2109 return 0; 2110 } 2111 2112 /* Return a safe estimate for the uncommon cases */ 2113 (*namelen) = lower_namelen; 2114 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2115 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2116 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2117 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2118 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2119 /* Worst case is that the filename is padded nearly a full block size */ 2120 (*namelen) -= cipher_blocksize - 1; 2121 2122 if ((*namelen) < 0) 2123 (*namelen) = 0; 2124 2125 return 0; 2126 } 2127