1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include <linux/slab.h> 37 #include <asm/unaligned.h> 38 #include "ecryptfs_kernel.h" 39 40 static int 41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 42 struct page *dst_page, int dst_offset, 43 struct page *src_page, int src_offset, int size, 44 unsigned char *iv); 45 static int 46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 47 struct page *dst_page, int dst_offset, 48 struct page *src_page, int src_offset, int size, 49 unsigned char *iv); 50 51 /** 52 * ecryptfs_to_hex 53 * @dst: Buffer to take hex character representation of contents of 54 * src; must be at least of size (src_size * 2) 55 * @src: Buffer to be converted to a hex string respresentation 56 * @src_size: number of bytes to convert 57 */ 58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 59 { 60 int x; 61 62 for (x = 0; x < src_size; x++) 63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 64 } 65 66 /** 67 * ecryptfs_from_hex 68 * @dst: Buffer to take the bytes from src hex; must be at least of 69 * size (src_size / 2) 70 * @src: Buffer to be converted from a hex string respresentation to raw value 71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 72 */ 73 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 74 { 75 int x; 76 char tmp[3] = { 0, }; 77 78 for (x = 0; x < dst_size; x++) { 79 tmp[0] = src[x * 2]; 80 tmp[1] = src[x * 2 + 1]; 81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 82 } 83 } 84 85 /** 86 * ecryptfs_calculate_md5 - calculates the md5 of @src 87 * @dst: Pointer to 16 bytes of allocated memory 88 * @crypt_stat: Pointer to crypt_stat struct for the current inode 89 * @src: Data to be md5'd 90 * @len: Length of @src 91 * 92 * Uses the allocated crypto context that crypt_stat references to 93 * generate the MD5 sum of the contents of src. 94 */ 95 static int ecryptfs_calculate_md5(char *dst, 96 struct ecryptfs_crypt_stat *crypt_stat, 97 char *src, int len) 98 { 99 struct scatterlist sg; 100 struct hash_desc desc = { 101 .tfm = crypt_stat->hash_tfm, 102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 103 }; 104 int rc = 0; 105 106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 107 sg_init_one(&sg, (u8 *)src, len); 108 if (!desc.tfm) { 109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 110 CRYPTO_ALG_ASYNC); 111 if (IS_ERR(desc.tfm)) { 112 rc = PTR_ERR(desc.tfm); 113 ecryptfs_printk(KERN_ERR, "Error attempting to " 114 "allocate crypto context; rc = [%d]\n", 115 rc); 116 goto out; 117 } 118 crypt_stat->hash_tfm = desc.tfm; 119 } 120 rc = crypto_hash_init(&desc); 121 if (rc) { 122 printk(KERN_ERR 123 "%s: Error initializing crypto hash; rc = [%d]\n", 124 __func__, rc); 125 goto out; 126 } 127 rc = crypto_hash_update(&desc, &sg, len); 128 if (rc) { 129 printk(KERN_ERR 130 "%s: Error updating crypto hash; rc = [%d]\n", 131 __func__, rc); 132 goto out; 133 } 134 rc = crypto_hash_final(&desc, dst); 135 if (rc) { 136 printk(KERN_ERR 137 "%s: Error finalizing crypto hash; rc = [%d]\n", 138 __func__, rc); 139 goto out; 140 } 141 out: 142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 143 return rc; 144 } 145 146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 147 char *cipher_name, 148 char *chaining_modifier) 149 { 150 int cipher_name_len = strlen(cipher_name); 151 int chaining_modifier_len = strlen(chaining_modifier); 152 int algified_name_len; 153 int rc; 154 155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 157 if (!(*algified_name)) { 158 rc = -ENOMEM; 159 goto out; 160 } 161 snprintf((*algified_name), algified_name_len, "%s(%s)", 162 chaining_modifier, cipher_name); 163 rc = 0; 164 out: 165 return rc; 166 } 167 168 /** 169 * ecryptfs_derive_iv 170 * @iv: destination for the derived iv vale 171 * @crypt_stat: Pointer to crypt_stat struct for the current inode 172 * @offset: Offset of the extent whose IV we are to derive 173 * 174 * Generate the initialization vector from the given root IV and page 175 * offset. 176 * 177 * Returns zero on success; non-zero on error. 178 */ 179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 180 loff_t offset) 181 { 182 int rc = 0; 183 char dst[MD5_DIGEST_SIZE]; 184 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 185 186 if (unlikely(ecryptfs_verbosity > 0)) { 187 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 189 } 190 /* TODO: It is probably secure to just cast the least 191 * significant bits of the root IV into an unsigned long and 192 * add the offset to that rather than go through all this 193 * hashing business. -Halcrow */ 194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 195 memset((src + crypt_stat->iv_bytes), 0, 16); 196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 197 if (unlikely(ecryptfs_verbosity > 0)) { 198 ecryptfs_printk(KERN_DEBUG, "source:\n"); 199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 200 } 201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 202 (crypt_stat->iv_bytes + 16)); 203 if (rc) { 204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 205 "MD5 while generating IV for a page\n"); 206 goto out; 207 } 208 memcpy(iv, dst, crypt_stat->iv_bytes); 209 if (unlikely(ecryptfs_verbosity > 0)) { 210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 212 } 213 out: 214 return rc; 215 } 216 217 /** 218 * ecryptfs_init_crypt_stat 219 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 220 * 221 * Initialize the crypt_stat structure. 222 */ 223 void 224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 225 { 226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 227 INIT_LIST_HEAD(&crypt_stat->keysig_list); 228 mutex_init(&crypt_stat->keysig_list_mutex); 229 mutex_init(&crypt_stat->cs_mutex); 230 mutex_init(&crypt_stat->cs_tfm_mutex); 231 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 233 } 234 235 /** 236 * ecryptfs_destroy_crypt_stat 237 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 238 * 239 * Releases all memory associated with a crypt_stat struct. 240 */ 241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 242 { 243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 244 245 if (crypt_stat->tfm) 246 crypto_free_blkcipher(crypt_stat->tfm); 247 if (crypt_stat->hash_tfm) 248 crypto_free_hash(crypt_stat->hash_tfm); 249 list_for_each_entry_safe(key_sig, key_sig_tmp, 250 &crypt_stat->keysig_list, crypt_stat_list) { 251 list_del(&key_sig->crypt_stat_list); 252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 253 } 254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 255 } 256 257 void ecryptfs_destroy_mount_crypt_stat( 258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 259 { 260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 261 262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 263 return; 264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 265 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 266 &mount_crypt_stat->global_auth_tok_list, 267 mount_crypt_stat_list) { 268 list_del(&auth_tok->mount_crypt_stat_list); 269 mount_crypt_stat->num_global_auth_toks--; 270 if (auth_tok->global_auth_tok_key 271 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 272 key_put(auth_tok->global_auth_tok_key); 273 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 274 } 275 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 276 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 277 } 278 279 /** 280 * virt_to_scatterlist 281 * @addr: Virtual address 282 * @size: Size of data; should be an even multiple of the block size 283 * @sg: Pointer to scatterlist array; set to NULL to obtain only 284 * the number of scatterlist structs required in array 285 * @sg_size: Max array size 286 * 287 * Fills in a scatterlist array with page references for a passed 288 * virtual address. 289 * 290 * Returns the number of scatterlist structs in array used 291 */ 292 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 293 int sg_size) 294 { 295 int i = 0; 296 struct page *pg; 297 int offset; 298 int remainder_of_page; 299 300 sg_init_table(sg, sg_size); 301 302 while (size > 0 && i < sg_size) { 303 pg = virt_to_page(addr); 304 offset = offset_in_page(addr); 305 if (sg) 306 sg_set_page(&sg[i], pg, 0, offset); 307 remainder_of_page = PAGE_CACHE_SIZE - offset; 308 if (size >= remainder_of_page) { 309 if (sg) 310 sg[i].length = remainder_of_page; 311 addr += remainder_of_page; 312 size -= remainder_of_page; 313 } else { 314 if (sg) 315 sg[i].length = size; 316 addr += size; 317 size = 0; 318 } 319 i++; 320 } 321 if (size > 0) 322 return -ENOMEM; 323 return i; 324 } 325 326 /** 327 * encrypt_scatterlist 328 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 329 * @dest_sg: Destination of encrypted data 330 * @src_sg: Data to be encrypted 331 * @size: Length of data to be encrypted 332 * @iv: iv to use during encryption 333 * 334 * Returns the number of bytes encrypted; negative value on error 335 */ 336 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 337 struct scatterlist *dest_sg, 338 struct scatterlist *src_sg, int size, 339 unsigned char *iv) 340 { 341 struct blkcipher_desc desc = { 342 .tfm = crypt_stat->tfm, 343 .info = iv, 344 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 345 }; 346 int rc = 0; 347 348 BUG_ON(!crypt_stat || !crypt_stat->tfm 349 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 350 if (unlikely(ecryptfs_verbosity > 0)) { 351 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 352 crypt_stat->key_size); 353 ecryptfs_dump_hex(crypt_stat->key, 354 crypt_stat->key_size); 355 } 356 /* Consider doing this once, when the file is opened */ 357 mutex_lock(&crypt_stat->cs_tfm_mutex); 358 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 359 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 360 crypt_stat->key_size); 361 crypt_stat->flags |= ECRYPTFS_KEY_SET; 362 } 363 if (rc) { 364 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 365 rc); 366 mutex_unlock(&crypt_stat->cs_tfm_mutex); 367 rc = -EINVAL; 368 goto out; 369 } 370 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); 371 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); 372 mutex_unlock(&crypt_stat->cs_tfm_mutex); 373 out: 374 return rc; 375 } 376 377 /** 378 * ecryptfs_lower_offset_for_extent 379 * 380 * Convert an eCryptfs page index into a lower byte offset 381 */ 382 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num, 383 struct ecryptfs_crypt_stat *crypt_stat) 384 { 385 (*offset) = ecryptfs_lower_header_size(crypt_stat) 386 + (crypt_stat->extent_size * extent_num); 387 } 388 389 /** 390 * ecryptfs_encrypt_extent 391 * @enc_extent_page: Allocated page into which to encrypt the data in 392 * @page 393 * @crypt_stat: crypt_stat containing cryptographic context for the 394 * encryption operation 395 * @page: Page containing plaintext data extent to encrypt 396 * @extent_offset: Page extent offset for use in generating IV 397 * 398 * Encrypts one extent of data. 399 * 400 * Return zero on success; non-zero otherwise 401 */ 402 static int ecryptfs_encrypt_extent(struct page *enc_extent_page, 403 struct ecryptfs_crypt_stat *crypt_stat, 404 struct page *page, 405 unsigned long extent_offset) 406 { 407 loff_t extent_base; 408 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 409 int rc; 410 411 extent_base = (((loff_t)page->index) 412 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 413 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 414 (extent_base + extent_offset)); 415 if (rc) { 416 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 417 "extent [0x%.16llx]; rc = [%d]\n", 418 (unsigned long long)(extent_base + extent_offset), rc); 419 goto out; 420 } 421 if (unlikely(ecryptfs_verbosity > 0)) { 422 ecryptfs_printk(KERN_DEBUG, "Encrypting extent " 423 "with iv:\n"); 424 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 425 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 426 "encryption:\n"); 427 ecryptfs_dump_hex((char *) 428 (page_address(page) 429 + (extent_offset * crypt_stat->extent_size)), 430 8); 431 } 432 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0, 433 page, (extent_offset 434 * crypt_stat->extent_size), 435 crypt_stat->extent_size, extent_iv); 436 if (rc < 0) { 437 printk(KERN_ERR "%s: Error attempting to encrypt page with " 438 "page->index = [%ld], extent_offset = [%ld]; " 439 "rc = [%d]\n", __func__, page->index, extent_offset, 440 rc); 441 goto out; 442 } 443 rc = 0; 444 if (unlikely(ecryptfs_verbosity > 0)) { 445 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16llx]; " 446 "rc = [%d]\n", 447 (unsigned long long)(extent_base + extent_offset), rc); 448 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 449 "encryption:\n"); 450 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8); 451 } 452 out: 453 return rc; 454 } 455 456 /** 457 * ecryptfs_encrypt_page 458 * @page: Page mapped from the eCryptfs inode for the file; contains 459 * decrypted content that needs to be encrypted (to a temporary 460 * page; not in place) and written out to the lower file 461 * 462 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 463 * that eCryptfs pages may straddle the lower pages -- for instance, 464 * if the file was created on a machine with an 8K page size 465 * (resulting in an 8K header), and then the file is copied onto a 466 * host with a 32K page size, then when reading page 0 of the eCryptfs 467 * file, 24K of page 0 of the lower file will be read and decrypted, 468 * and then 8K of page 1 of the lower file will be read and decrypted. 469 * 470 * Returns zero on success; negative on error 471 */ 472 int ecryptfs_encrypt_page(struct page *page) 473 { 474 struct inode *ecryptfs_inode; 475 struct ecryptfs_crypt_stat *crypt_stat; 476 char *enc_extent_virt; 477 struct page *enc_extent_page = NULL; 478 loff_t extent_offset; 479 int rc = 0; 480 481 ecryptfs_inode = page->mapping->host; 482 crypt_stat = 483 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 484 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 485 enc_extent_page = alloc_page(GFP_USER); 486 if (!enc_extent_page) { 487 rc = -ENOMEM; 488 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 489 "encrypted extent\n"); 490 goto out; 491 } 492 enc_extent_virt = kmap(enc_extent_page); 493 for (extent_offset = 0; 494 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 495 extent_offset++) { 496 loff_t offset; 497 498 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page, 499 extent_offset); 500 if (rc) { 501 printk(KERN_ERR "%s: Error encrypting extent; " 502 "rc = [%d]\n", __func__, rc); 503 goto out; 504 } 505 ecryptfs_lower_offset_for_extent( 506 &offset, ((((loff_t)page->index) 507 * (PAGE_CACHE_SIZE 508 / crypt_stat->extent_size)) 509 + extent_offset), crypt_stat); 510 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, 511 offset, crypt_stat->extent_size); 512 if (rc < 0) { 513 ecryptfs_printk(KERN_ERR, "Error attempting " 514 "to write lower page; rc = [%d]" 515 "\n", rc); 516 goto out; 517 } 518 } 519 rc = 0; 520 out: 521 if (enc_extent_page) { 522 kunmap(enc_extent_page); 523 __free_page(enc_extent_page); 524 } 525 return rc; 526 } 527 528 static int ecryptfs_decrypt_extent(struct page *page, 529 struct ecryptfs_crypt_stat *crypt_stat, 530 struct page *enc_extent_page, 531 unsigned long extent_offset) 532 { 533 loff_t extent_base; 534 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 535 int rc; 536 537 extent_base = (((loff_t)page->index) 538 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 539 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 540 (extent_base + extent_offset)); 541 if (rc) { 542 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 543 "extent [0x%.16llx]; rc = [%d]\n", 544 (unsigned long long)(extent_base + extent_offset), rc); 545 goto out; 546 } 547 if (unlikely(ecryptfs_verbosity > 0)) { 548 ecryptfs_printk(KERN_DEBUG, "Decrypting extent " 549 "with iv:\n"); 550 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 551 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 552 "decryption:\n"); 553 ecryptfs_dump_hex((char *) 554 (page_address(enc_extent_page) 555 + (extent_offset * crypt_stat->extent_size)), 556 8); 557 } 558 rc = ecryptfs_decrypt_page_offset(crypt_stat, page, 559 (extent_offset 560 * crypt_stat->extent_size), 561 enc_extent_page, 0, 562 crypt_stat->extent_size, extent_iv); 563 if (rc < 0) { 564 printk(KERN_ERR "%s: Error attempting to decrypt to page with " 565 "page->index = [%ld], extent_offset = [%ld]; " 566 "rc = [%d]\n", __func__, page->index, extent_offset, 567 rc); 568 goto out; 569 } 570 rc = 0; 571 if (unlikely(ecryptfs_verbosity > 0)) { 572 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16llx]; " 573 "rc = [%d]\n", 574 (unsigned long long)(extent_base + extent_offset), rc); 575 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 576 "decryption:\n"); 577 ecryptfs_dump_hex((char *)(page_address(page) 578 + (extent_offset 579 * crypt_stat->extent_size)), 8); 580 } 581 out: 582 return rc; 583 } 584 585 /** 586 * ecryptfs_decrypt_page 587 * @page: Page mapped from the eCryptfs inode for the file; data read 588 * and decrypted from the lower file will be written into this 589 * page 590 * 591 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 592 * that eCryptfs pages may straddle the lower pages -- for instance, 593 * if the file was created on a machine with an 8K page size 594 * (resulting in an 8K header), and then the file is copied onto a 595 * host with a 32K page size, then when reading page 0 of the eCryptfs 596 * file, 24K of page 0 of the lower file will be read and decrypted, 597 * and then 8K of page 1 of the lower file will be read and decrypted. 598 * 599 * Returns zero on success; negative on error 600 */ 601 int ecryptfs_decrypt_page(struct page *page) 602 { 603 struct inode *ecryptfs_inode; 604 struct ecryptfs_crypt_stat *crypt_stat; 605 char *enc_extent_virt; 606 struct page *enc_extent_page = NULL; 607 unsigned long extent_offset; 608 int rc = 0; 609 610 ecryptfs_inode = page->mapping->host; 611 crypt_stat = 612 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 613 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 614 enc_extent_page = alloc_page(GFP_USER); 615 if (!enc_extent_page) { 616 rc = -ENOMEM; 617 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 618 "encrypted extent\n"); 619 goto out; 620 } 621 enc_extent_virt = kmap(enc_extent_page); 622 for (extent_offset = 0; 623 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 624 extent_offset++) { 625 loff_t offset; 626 627 ecryptfs_lower_offset_for_extent( 628 &offset, ((page->index * (PAGE_CACHE_SIZE 629 / crypt_stat->extent_size)) 630 + extent_offset), crypt_stat); 631 rc = ecryptfs_read_lower(enc_extent_virt, offset, 632 crypt_stat->extent_size, 633 ecryptfs_inode); 634 if (rc < 0) { 635 ecryptfs_printk(KERN_ERR, "Error attempting " 636 "to read lower page; rc = [%d]" 637 "\n", rc); 638 goto out; 639 } 640 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page, 641 extent_offset); 642 if (rc) { 643 printk(KERN_ERR "%s: Error encrypting extent; " 644 "rc = [%d]\n", __func__, rc); 645 goto out; 646 } 647 } 648 out: 649 if (enc_extent_page) { 650 kunmap(enc_extent_page); 651 __free_page(enc_extent_page); 652 } 653 return rc; 654 } 655 656 /** 657 * decrypt_scatterlist 658 * @crypt_stat: Cryptographic context 659 * @dest_sg: The destination scatterlist to decrypt into 660 * @src_sg: The source scatterlist to decrypt from 661 * @size: The number of bytes to decrypt 662 * @iv: The initialization vector to use for the decryption 663 * 664 * Returns the number of bytes decrypted; negative value on error 665 */ 666 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 667 struct scatterlist *dest_sg, 668 struct scatterlist *src_sg, int size, 669 unsigned char *iv) 670 { 671 struct blkcipher_desc desc = { 672 .tfm = crypt_stat->tfm, 673 .info = iv, 674 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 675 }; 676 int rc = 0; 677 678 /* Consider doing this once, when the file is opened */ 679 mutex_lock(&crypt_stat->cs_tfm_mutex); 680 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 681 crypt_stat->key_size); 682 if (rc) { 683 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 684 rc); 685 mutex_unlock(&crypt_stat->cs_tfm_mutex); 686 rc = -EINVAL; 687 goto out; 688 } 689 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); 690 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); 691 mutex_unlock(&crypt_stat->cs_tfm_mutex); 692 if (rc) { 693 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", 694 rc); 695 goto out; 696 } 697 rc = size; 698 out: 699 return rc; 700 } 701 702 /** 703 * ecryptfs_encrypt_page_offset 704 * @crypt_stat: The cryptographic context 705 * @dst_page: The page to encrypt into 706 * @dst_offset: The offset in the page to encrypt into 707 * @src_page: The page to encrypt from 708 * @src_offset: The offset in the page to encrypt from 709 * @size: The number of bytes to encrypt 710 * @iv: The initialization vector to use for the encryption 711 * 712 * Returns the number of bytes encrypted 713 */ 714 static int 715 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 716 struct page *dst_page, int dst_offset, 717 struct page *src_page, int src_offset, int size, 718 unsigned char *iv) 719 { 720 struct scatterlist src_sg, dst_sg; 721 722 sg_init_table(&src_sg, 1); 723 sg_init_table(&dst_sg, 1); 724 725 sg_set_page(&src_sg, src_page, size, src_offset); 726 sg_set_page(&dst_sg, dst_page, size, dst_offset); 727 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 728 } 729 730 /** 731 * ecryptfs_decrypt_page_offset 732 * @crypt_stat: The cryptographic context 733 * @dst_page: The page to decrypt into 734 * @dst_offset: The offset in the page to decrypt into 735 * @src_page: The page to decrypt from 736 * @src_offset: The offset in the page to decrypt from 737 * @size: The number of bytes to decrypt 738 * @iv: The initialization vector to use for the decryption 739 * 740 * Returns the number of bytes decrypted 741 */ 742 static int 743 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 744 struct page *dst_page, int dst_offset, 745 struct page *src_page, int src_offset, int size, 746 unsigned char *iv) 747 { 748 struct scatterlist src_sg, dst_sg; 749 750 sg_init_table(&src_sg, 1); 751 sg_set_page(&src_sg, src_page, size, src_offset); 752 753 sg_init_table(&dst_sg, 1); 754 sg_set_page(&dst_sg, dst_page, size, dst_offset); 755 756 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 757 } 758 759 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 760 761 /** 762 * ecryptfs_init_crypt_ctx 763 * @crypt_stat: Uninitialized crypt stats structure 764 * 765 * Initialize the crypto context. 766 * 767 * TODO: Performance: Keep a cache of initialized cipher contexts; 768 * only init if needed 769 */ 770 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 771 { 772 char *full_alg_name; 773 int rc = -EINVAL; 774 775 if (!crypt_stat->cipher) { 776 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 777 goto out; 778 } 779 ecryptfs_printk(KERN_DEBUG, 780 "Initializing cipher [%s]; strlen = [%d]; " 781 "key_size_bits = [%zd]\n", 782 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 783 crypt_stat->key_size << 3); 784 if (crypt_stat->tfm) { 785 rc = 0; 786 goto out; 787 } 788 mutex_lock(&crypt_stat->cs_tfm_mutex); 789 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 790 crypt_stat->cipher, "cbc"); 791 if (rc) 792 goto out_unlock; 793 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, 794 CRYPTO_ALG_ASYNC); 795 kfree(full_alg_name); 796 if (IS_ERR(crypt_stat->tfm)) { 797 rc = PTR_ERR(crypt_stat->tfm); 798 crypt_stat->tfm = NULL; 799 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 800 "Error initializing cipher [%s]\n", 801 crypt_stat->cipher); 802 goto out_unlock; 803 } 804 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 805 rc = 0; 806 out_unlock: 807 mutex_unlock(&crypt_stat->cs_tfm_mutex); 808 out: 809 return rc; 810 } 811 812 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 813 { 814 int extent_size_tmp; 815 816 crypt_stat->extent_mask = 0xFFFFFFFF; 817 crypt_stat->extent_shift = 0; 818 if (crypt_stat->extent_size == 0) 819 return; 820 extent_size_tmp = crypt_stat->extent_size; 821 while ((extent_size_tmp & 0x01) == 0) { 822 extent_size_tmp >>= 1; 823 crypt_stat->extent_mask <<= 1; 824 crypt_stat->extent_shift++; 825 } 826 } 827 828 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 829 { 830 /* Default values; may be overwritten as we are parsing the 831 * packets. */ 832 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 833 set_extent_mask_and_shift(crypt_stat); 834 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 835 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 836 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 837 else { 838 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 839 crypt_stat->metadata_size = 840 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 841 else 842 crypt_stat->metadata_size = PAGE_CACHE_SIZE; 843 } 844 } 845 846 /** 847 * ecryptfs_compute_root_iv 848 * @crypt_stats 849 * 850 * On error, sets the root IV to all 0's. 851 */ 852 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 853 { 854 int rc = 0; 855 char dst[MD5_DIGEST_SIZE]; 856 857 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 858 BUG_ON(crypt_stat->iv_bytes <= 0); 859 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 860 rc = -EINVAL; 861 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 862 "cannot generate root IV\n"); 863 goto out; 864 } 865 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 866 crypt_stat->key_size); 867 if (rc) { 868 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 869 "MD5 while generating root IV\n"); 870 goto out; 871 } 872 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 873 out: 874 if (rc) { 875 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 876 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 877 } 878 return rc; 879 } 880 881 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 882 { 883 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 884 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 885 ecryptfs_compute_root_iv(crypt_stat); 886 if (unlikely(ecryptfs_verbosity > 0)) { 887 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 888 ecryptfs_dump_hex(crypt_stat->key, 889 crypt_stat->key_size); 890 } 891 } 892 893 /** 894 * ecryptfs_copy_mount_wide_flags_to_inode_flags 895 * @crypt_stat: The inode's cryptographic context 896 * @mount_crypt_stat: The mount point's cryptographic context 897 * 898 * This function propagates the mount-wide flags to individual inode 899 * flags. 900 */ 901 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 902 struct ecryptfs_crypt_stat *crypt_stat, 903 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 904 { 905 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 906 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 907 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 908 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 909 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 910 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 911 if (mount_crypt_stat->flags 912 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 913 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 914 else if (mount_crypt_stat->flags 915 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 916 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 917 } 918 } 919 920 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 921 struct ecryptfs_crypt_stat *crypt_stat, 922 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 923 { 924 struct ecryptfs_global_auth_tok *global_auth_tok; 925 int rc = 0; 926 927 mutex_lock(&crypt_stat->keysig_list_mutex); 928 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 929 930 list_for_each_entry(global_auth_tok, 931 &mount_crypt_stat->global_auth_tok_list, 932 mount_crypt_stat_list) { 933 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 934 continue; 935 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 936 if (rc) { 937 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 938 goto out; 939 } 940 } 941 942 out: 943 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 944 mutex_unlock(&crypt_stat->keysig_list_mutex); 945 return rc; 946 } 947 948 /** 949 * ecryptfs_set_default_crypt_stat_vals 950 * @crypt_stat: The inode's cryptographic context 951 * @mount_crypt_stat: The mount point's cryptographic context 952 * 953 * Default values in the event that policy does not override them. 954 */ 955 static void ecryptfs_set_default_crypt_stat_vals( 956 struct ecryptfs_crypt_stat *crypt_stat, 957 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 958 { 959 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 960 mount_crypt_stat); 961 ecryptfs_set_default_sizes(crypt_stat); 962 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 963 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 964 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 965 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 966 crypt_stat->mount_crypt_stat = mount_crypt_stat; 967 } 968 969 /** 970 * ecryptfs_new_file_context 971 * @ecryptfs_dentry: The eCryptfs dentry 972 * 973 * If the crypto context for the file has not yet been established, 974 * this is where we do that. Establishing a new crypto context 975 * involves the following decisions: 976 * - What cipher to use? 977 * - What set of authentication tokens to use? 978 * Here we just worry about getting enough information into the 979 * authentication tokens so that we know that they are available. 980 * We associate the available authentication tokens with the new file 981 * via the set of signatures in the crypt_stat struct. Later, when 982 * the headers are actually written out, we may again defer to 983 * userspace to perform the encryption of the session key; for the 984 * foreseeable future, this will be the case with public key packets. 985 * 986 * Returns zero on success; non-zero otherwise 987 */ 988 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry) 989 { 990 struct ecryptfs_crypt_stat *crypt_stat = 991 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 992 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 993 &ecryptfs_superblock_to_private( 994 ecryptfs_dentry->d_sb)->mount_crypt_stat; 995 int cipher_name_len; 996 int rc = 0; 997 998 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 999 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 1000 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1001 mount_crypt_stat); 1002 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 1003 mount_crypt_stat); 1004 if (rc) { 1005 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 1006 "to the inode key sigs; rc = [%d]\n", rc); 1007 goto out; 1008 } 1009 cipher_name_len = 1010 strlen(mount_crypt_stat->global_default_cipher_name); 1011 memcpy(crypt_stat->cipher, 1012 mount_crypt_stat->global_default_cipher_name, 1013 cipher_name_len); 1014 crypt_stat->cipher[cipher_name_len] = '\0'; 1015 crypt_stat->key_size = 1016 mount_crypt_stat->global_default_cipher_key_size; 1017 ecryptfs_generate_new_key(crypt_stat); 1018 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1019 if (rc) 1020 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 1021 "context for cipher [%s]: rc = [%d]\n", 1022 crypt_stat->cipher, rc); 1023 out: 1024 return rc; 1025 } 1026 1027 /** 1028 * contains_ecryptfs_marker - check for the ecryptfs marker 1029 * @data: The data block in which to check 1030 * 1031 * Returns one if marker found; zero if not found 1032 */ 1033 static int contains_ecryptfs_marker(char *data) 1034 { 1035 u32 m_1, m_2; 1036 1037 m_1 = get_unaligned_be32(data); 1038 m_2 = get_unaligned_be32(data + 4); 1039 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 1040 return 1; 1041 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 1042 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 1043 MAGIC_ECRYPTFS_MARKER); 1044 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 1045 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 1046 return 0; 1047 } 1048 1049 struct ecryptfs_flag_map_elem { 1050 u32 file_flag; 1051 u32 local_flag; 1052 }; 1053 1054 /* Add support for additional flags by adding elements here. */ 1055 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 1056 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 1057 {0x00000002, ECRYPTFS_ENCRYPTED}, 1058 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 1059 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 1060 }; 1061 1062 /** 1063 * ecryptfs_process_flags 1064 * @crypt_stat: The cryptographic context 1065 * @page_virt: Source data to be parsed 1066 * @bytes_read: Updated with the number of bytes read 1067 * 1068 * Returns zero on success; non-zero if the flag set is invalid 1069 */ 1070 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 1071 char *page_virt, int *bytes_read) 1072 { 1073 int rc = 0; 1074 int i; 1075 u32 flags; 1076 1077 flags = get_unaligned_be32(page_virt); 1078 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1079 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1080 if (flags & ecryptfs_flag_map[i].file_flag) { 1081 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 1082 } else 1083 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 1084 /* Version is in top 8 bits of the 32-bit flag vector */ 1085 crypt_stat->file_version = ((flags >> 24) & 0xFF); 1086 (*bytes_read) = 4; 1087 return rc; 1088 } 1089 1090 /** 1091 * write_ecryptfs_marker 1092 * @page_virt: The pointer to in a page to begin writing the marker 1093 * @written: Number of bytes written 1094 * 1095 * Marker = 0x3c81b7f5 1096 */ 1097 static void write_ecryptfs_marker(char *page_virt, size_t *written) 1098 { 1099 u32 m_1, m_2; 1100 1101 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1102 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 1103 put_unaligned_be32(m_1, page_virt); 1104 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 1105 put_unaligned_be32(m_2, page_virt); 1106 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1107 } 1108 1109 void ecryptfs_write_crypt_stat_flags(char *page_virt, 1110 struct ecryptfs_crypt_stat *crypt_stat, 1111 size_t *written) 1112 { 1113 u32 flags = 0; 1114 int i; 1115 1116 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1117 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1118 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 1119 flags |= ecryptfs_flag_map[i].file_flag; 1120 /* Version is in top 8 bits of the 32-bit flag vector */ 1121 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 1122 put_unaligned_be32(flags, page_virt); 1123 (*written) = 4; 1124 } 1125 1126 struct ecryptfs_cipher_code_str_map_elem { 1127 char cipher_str[16]; 1128 u8 cipher_code; 1129 }; 1130 1131 /* Add support for additional ciphers by adding elements here. The 1132 * cipher_code is whatever OpenPGP applicatoins use to identify the 1133 * ciphers. List in order of probability. */ 1134 static struct ecryptfs_cipher_code_str_map_elem 1135 ecryptfs_cipher_code_str_map[] = { 1136 {"aes",RFC2440_CIPHER_AES_128 }, 1137 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 1138 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 1139 {"cast5", RFC2440_CIPHER_CAST_5}, 1140 {"twofish", RFC2440_CIPHER_TWOFISH}, 1141 {"cast6", RFC2440_CIPHER_CAST_6}, 1142 {"aes", RFC2440_CIPHER_AES_192}, 1143 {"aes", RFC2440_CIPHER_AES_256} 1144 }; 1145 1146 /** 1147 * ecryptfs_code_for_cipher_string 1148 * @cipher_name: The string alias for the cipher 1149 * @key_bytes: Length of key in bytes; used for AES code selection 1150 * 1151 * Returns zero on no match, or the cipher code on match 1152 */ 1153 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 1154 { 1155 int i; 1156 u8 code = 0; 1157 struct ecryptfs_cipher_code_str_map_elem *map = 1158 ecryptfs_cipher_code_str_map; 1159 1160 if (strcmp(cipher_name, "aes") == 0) { 1161 switch (key_bytes) { 1162 case 16: 1163 code = RFC2440_CIPHER_AES_128; 1164 break; 1165 case 24: 1166 code = RFC2440_CIPHER_AES_192; 1167 break; 1168 case 32: 1169 code = RFC2440_CIPHER_AES_256; 1170 } 1171 } else { 1172 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1173 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 1174 code = map[i].cipher_code; 1175 break; 1176 } 1177 } 1178 return code; 1179 } 1180 1181 /** 1182 * ecryptfs_cipher_code_to_string 1183 * @str: Destination to write out the cipher name 1184 * @cipher_code: The code to convert to cipher name string 1185 * 1186 * Returns zero on success 1187 */ 1188 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 1189 { 1190 int rc = 0; 1191 int i; 1192 1193 str[0] = '\0'; 1194 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1195 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1196 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1197 if (str[0] == '\0') { 1198 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1199 "[%d]\n", cipher_code); 1200 rc = -EINVAL; 1201 } 1202 return rc; 1203 } 1204 1205 int ecryptfs_read_and_validate_header_region(char *data, 1206 struct inode *ecryptfs_inode) 1207 { 1208 struct ecryptfs_crypt_stat *crypt_stat = 1209 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 1210 int rc; 1211 1212 if (crypt_stat->extent_size == 0) 1213 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 1214 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size, 1215 ecryptfs_inode); 1216 if (rc < 0) { 1217 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n", 1218 __func__, rc); 1219 goto out; 1220 } 1221 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) { 1222 rc = -EINVAL; 1223 } else 1224 rc = 0; 1225 out: 1226 return rc; 1227 } 1228 1229 void 1230 ecryptfs_write_header_metadata(char *virt, 1231 struct ecryptfs_crypt_stat *crypt_stat, 1232 size_t *written) 1233 { 1234 u32 header_extent_size; 1235 u16 num_header_extents_at_front; 1236 1237 header_extent_size = (u32)crypt_stat->extent_size; 1238 num_header_extents_at_front = 1239 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1240 put_unaligned_be32(header_extent_size, virt); 1241 virt += 4; 1242 put_unaligned_be16(num_header_extents_at_front, virt); 1243 (*written) = 6; 1244 } 1245 1246 struct kmem_cache *ecryptfs_header_cache_1; 1247 struct kmem_cache *ecryptfs_header_cache_2; 1248 1249 /** 1250 * ecryptfs_write_headers_virt 1251 * @page_virt: The virtual address to write the headers to 1252 * @max: The size of memory allocated at page_virt 1253 * @size: Set to the number of bytes written by this function 1254 * @crypt_stat: The cryptographic context 1255 * @ecryptfs_dentry: The eCryptfs dentry 1256 * 1257 * Format version: 1 1258 * 1259 * Header Extent: 1260 * Octets 0-7: Unencrypted file size (big-endian) 1261 * Octets 8-15: eCryptfs special marker 1262 * Octets 16-19: Flags 1263 * Octet 16: File format version number (between 0 and 255) 1264 * Octets 17-18: Reserved 1265 * Octet 19: Bit 1 (lsb): Reserved 1266 * Bit 2: Encrypted? 1267 * Bits 3-8: Reserved 1268 * Octets 20-23: Header extent size (big-endian) 1269 * Octets 24-25: Number of header extents at front of file 1270 * (big-endian) 1271 * Octet 26: Begin RFC 2440 authentication token packet set 1272 * Data Extent 0: 1273 * Lower data (CBC encrypted) 1274 * Data Extent 1: 1275 * Lower data (CBC encrypted) 1276 * ... 1277 * 1278 * Returns zero on success 1279 */ 1280 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1281 size_t *size, 1282 struct ecryptfs_crypt_stat *crypt_stat, 1283 struct dentry *ecryptfs_dentry) 1284 { 1285 int rc; 1286 size_t written; 1287 size_t offset; 1288 1289 offset = ECRYPTFS_FILE_SIZE_BYTES; 1290 write_ecryptfs_marker((page_virt + offset), &written); 1291 offset += written; 1292 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1293 &written); 1294 offset += written; 1295 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1296 &written); 1297 offset += written; 1298 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1299 ecryptfs_dentry, &written, 1300 max - offset); 1301 if (rc) 1302 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1303 "set; rc = [%d]\n", rc); 1304 if (size) { 1305 offset += written; 1306 *size = offset; 1307 } 1308 return rc; 1309 } 1310 1311 static int 1312 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry, 1313 char *virt, size_t virt_len) 1314 { 1315 int rc; 1316 1317 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt, 1318 0, virt_len); 1319 if (rc < 0) 1320 printk(KERN_ERR "%s: Error attempting to write header " 1321 "information to lower file; rc = [%d]\n", __func__, rc); 1322 else 1323 rc = 0; 1324 return rc; 1325 } 1326 1327 static int 1328 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1329 char *page_virt, size_t size) 1330 { 1331 int rc; 1332 1333 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1334 size, 0); 1335 return rc; 1336 } 1337 1338 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1339 unsigned int order) 1340 { 1341 struct page *page; 1342 1343 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1344 if (page) 1345 return (unsigned long) page_address(page); 1346 return 0; 1347 } 1348 1349 /** 1350 * ecryptfs_write_metadata 1351 * @ecryptfs_dentry: The eCryptfs dentry 1352 * 1353 * Write the file headers out. This will likely involve a userspace 1354 * callout, in which the session key is encrypted with one or more 1355 * public keys and/or the passphrase necessary to do the encryption is 1356 * retrieved via a prompt. Exactly what happens at this point should 1357 * be policy-dependent. 1358 * 1359 * Returns zero on success; non-zero on error 1360 */ 1361 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry) 1362 { 1363 struct ecryptfs_crypt_stat *crypt_stat = 1364 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 1365 unsigned int order; 1366 char *virt; 1367 size_t virt_len; 1368 size_t size = 0; 1369 int rc = 0; 1370 1371 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1372 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1373 printk(KERN_ERR "Key is invalid; bailing out\n"); 1374 rc = -EINVAL; 1375 goto out; 1376 } 1377 } else { 1378 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1379 __func__); 1380 rc = -EINVAL; 1381 goto out; 1382 } 1383 virt_len = crypt_stat->metadata_size; 1384 order = get_order(virt_len); 1385 /* Released in this function */ 1386 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1387 if (!virt) { 1388 printk(KERN_ERR "%s: Out of memory\n", __func__); 1389 rc = -ENOMEM; 1390 goto out; 1391 } 1392 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1393 ecryptfs_dentry); 1394 if (unlikely(rc)) { 1395 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1396 __func__, rc); 1397 goto out_free; 1398 } 1399 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1400 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt, 1401 size); 1402 else 1403 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt, 1404 virt_len); 1405 if (rc) { 1406 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1407 "rc = [%d]\n", __func__, rc); 1408 goto out_free; 1409 } 1410 out_free: 1411 free_pages((unsigned long)virt, order); 1412 out: 1413 return rc; 1414 } 1415 1416 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1417 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1418 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1419 char *virt, int *bytes_read, 1420 int validate_header_size) 1421 { 1422 int rc = 0; 1423 u32 header_extent_size; 1424 u16 num_header_extents_at_front; 1425 1426 header_extent_size = get_unaligned_be32(virt); 1427 virt += sizeof(__be32); 1428 num_header_extents_at_front = get_unaligned_be16(virt); 1429 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1430 * (size_t)header_extent_size)); 1431 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1432 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1433 && (crypt_stat->metadata_size 1434 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1435 rc = -EINVAL; 1436 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1437 crypt_stat->metadata_size); 1438 } 1439 return rc; 1440 } 1441 1442 /** 1443 * set_default_header_data 1444 * @crypt_stat: The cryptographic context 1445 * 1446 * For version 0 file format; this function is only for backwards 1447 * compatibility for files created with the prior versions of 1448 * eCryptfs. 1449 */ 1450 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1451 { 1452 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1453 } 1454 1455 /** 1456 * ecryptfs_read_headers_virt 1457 * @page_virt: The virtual address into which to read the headers 1458 * @crypt_stat: The cryptographic context 1459 * @ecryptfs_dentry: The eCryptfs dentry 1460 * @validate_header_size: Whether to validate the header size while reading 1461 * 1462 * Read/parse the header data. The header format is detailed in the 1463 * comment block for the ecryptfs_write_headers_virt() function. 1464 * 1465 * Returns zero on success 1466 */ 1467 static int ecryptfs_read_headers_virt(char *page_virt, 1468 struct ecryptfs_crypt_stat *crypt_stat, 1469 struct dentry *ecryptfs_dentry, 1470 int validate_header_size) 1471 { 1472 int rc = 0; 1473 int offset; 1474 int bytes_read; 1475 1476 ecryptfs_set_default_sizes(crypt_stat); 1477 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1478 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1479 offset = ECRYPTFS_FILE_SIZE_BYTES; 1480 rc = contains_ecryptfs_marker(page_virt + offset); 1481 if (rc == 0) { 1482 rc = -EINVAL; 1483 goto out; 1484 } 1485 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1486 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1487 &bytes_read); 1488 if (rc) { 1489 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1490 goto out; 1491 } 1492 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1493 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1494 "file version [%d] is supported by this " 1495 "version of eCryptfs\n", 1496 crypt_stat->file_version, 1497 ECRYPTFS_SUPPORTED_FILE_VERSION); 1498 rc = -EINVAL; 1499 goto out; 1500 } 1501 offset += bytes_read; 1502 if (crypt_stat->file_version >= 1) { 1503 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1504 &bytes_read, validate_header_size); 1505 if (rc) { 1506 ecryptfs_printk(KERN_WARNING, "Error reading header " 1507 "metadata; rc = [%d]\n", rc); 1508 } 1509 offset += bytes_read; 1510 } else 1511 set_default_header_data(crypt_stat); 1512 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1513 ecryptfs_dentry); 1514 out: 1515 return rc; 1516 } 1517 1518 /** 1519 * ecryptfs_read_xattr_region 1520 * @page_virt: The vitual address into which to read the xattr data 1521 * @ecryptfs_inode: The eCryptfs inode 1522 * 1523 * Attempts to read the crypto metadata from the extended attribute 1524 * region of the lower file. 1525 * 1526 * Returns zero on success; non-zero on error 1527 */ 1528 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1529 { 1530 struct dentry *lower_dentry = 1531 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1532 ssize_t size; 1533 int rc = 0; 1534 1535 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1536 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1537 if (size < 0) { 1538 if (unlikely(ecryptfs_verbosity > 0)) 1539 printk(KERN_INFO "Error attempting to read the [%s] " 1540 "xattr from the lower file; return value = " 1541 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1542 rc = -EINVAL; 1543 goto out; 1544 } 1545 out: 1546 return rc; 1547 } 1548 1549 int ecryptfs_read_and_validate_xattr_region(char *page_virt, 1550 struct dentry *ecryptfs_dentry) 1551 { 1552 int rc; 1553 1554 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode); 1555 if (rc) 1556 goto out; 1557 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) { 1558 printk(KERN_WARNING "Valid data found in [%s] xattr, but " 1559 "the marker is invalid\n", ECRYPTFS_XATTR_NAME); 1560 rc = -EINVAL; 1561 } 1562 out: 1563 return rc; 1564 } 1565 1566 /** 1567 * ecryptfs_read_metadata 1568 * 1569 * Common entry point for reading file metadata. From here, we could 1570 * retrieve the header information from the header region of the file, 1571 * the xattr region of the file, or some other repostory that is 1572 * stored separately from the file itself. The current implementation 1573 * supports retrieving the metadata information from the file contents 1574 * and from the xattr region. 1575 * 1576 * Returns zero if valid headers found and parsed; non-zero otherwise 1577 */ 1578 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1579 { 1580 int rc = 0; 1581 char *page_virt = NULL; 1582 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1583 struct ecryptfs_crypt_stat *crypt_stat = 1584 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1585 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1586 &ecryptfs_superblock_to_private( 1587 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1588 1589 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1590 mount_crypt_stat); 1591 /* Read the first page from the underlying file */ 1592 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER); 1593 if (!page_virt) { 1594 rc = -ENOMEM; 1595 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1596 __func__); 1597 goto out; 1598 } 1599 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1600 ecryptfs_inode); 1601 if (rc >= 0) 1602 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1603 ecryptfs_dentry, 1604 ECRYPTFS_VALIDATE_HEADER_SIZE); 1605 if (rc) { 1606 memset(page_virt, 0, PAGE_CACHE_SIZE); 1607 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1608 if (rc) { 1609 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1610 "file header region or xattr region\n"); 1611 rc = -EINVAL; 1612 goto out; 1613 } 1614 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1615 ecryptfs_dentry, 1616 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1617 if (rc) { 1618 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1619 "file xattr region either\n"); 1620 rc = -EINVAL; 1621 } 1622 if (crypt_stat->mount_crypt_stat->flags 1623 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1624 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1625 } else { 1626 printk(KERN_WARNING "Attempt to access file with " 1627 "crypto metadata only in the extended attribute " 1628 "region, but eCryptfs was mounted without " 1629 "xattr support enabled. eCryptfs will not treat " 1630 "this like an encrypted file.\n"); 1631 rc = -EINVAL; 1632 } 1633 } 1634 out: 1635 if (page_virt) { 1636 memset(page_virt, 0, PAGE_CACHE_SIZE); 1637 kmem_cache_free(ecryptfs_header_cache_1, page_virt); 1638 } 1639 return rc; 1640 } 1641 1642 /** 1643 * ecryptfs_encrypt_filename - encrypt filename 1644 * 1645 * CBC-encrypts the filename. We do not want to encrypt the same 1646 * filename with the same key and IV, which may happen with hard 1647 * links, so we prepend random bits to each filename. 1648 * 1649 * Returns zero on success; non-zero otherwise 1650 */ 1651 static int 1652 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1653 struct ecryptfs_crypt_stat *crypt_stat, 1654 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1655 { 1656 int rc = 0; 1657 1658 filename->encrypted_filename = NULL; 1659 filename->encrypted_filename_size = 0; 1660 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1661 || (mount_crypt_stat && (mount_crypt_stat->flags 1662 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 1663 size_t packet_size; 1664 size_t remaining_bytes; 1665 1666 rc = ecryptfs_write_tag_70_packet( 1667 NULL, NULL, 1668 &filename->encrypted_filename_size, 1669 mount_crypt_stat, NULL, 1670 filename->filename_size); 1671 if (rc) { 1672 printk(KERN_ERR "%s: Error attempting to get packet " 1673 "size for tag 72; rc = [%d]\n", __func__, 1674 rc); 1675 filename->encrypted_filename_size = 0; 1676 goto out; 1677 } 1678 filename->encrypted_filename = 1679 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1680 if (!filename->encrypted_filename) { 1681 printk(KERN_ERR "%s: Out of memory whilst attempting " 1682 "to kmalloc [%zd] bytes\n", __func__, 1683 filename->encrypted_filename_size); 1684 rc = -ENOMEM; 1685 goto out; 1686 } 1687 remaining_bytes = filename->encrypted_filename_size; 1688 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1689 &remaining_bytes, 1690 &packet_size, 1691 mount_crypt_stat, 1692 filename->filename, 1693 filename->filename_size); 1694 if (rc) { 1695 printk(KERN_ERR "%s: Error attempting to generate " 1696 "tag 70 packet; rc = [%d]\n", __func__, 1697 rc); 1698 kfree(filename->encrypted_filename); 1699 filename->encrypted_filename = NULL; 1700 filename->encrypted_filename_size = 0; 1701 goto out; 1702 } 1703 filename->encrypted_filename_size = packet_size; 1704 } else { 1705 printk(KERN_ERR "%s: No support for requested filename " 1706 "encryption method in this release\n", __func__); 1707 rc = -EOPNOTSUPP; 1708 goto out; 1709 } 1710 out: 1711 return rc; 1712 } 1713 1714 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1715 const char *name, size_t name_size) 1716 { 1717 int rc = 0; 1718 1719 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1720 if (!(*copied_name)) { 1721 rc = -ENOMEM; 1722 goto out; 1723 } 1724 memcpy((void *)(*copied_name), (void *)name, name_size); 1725 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1726 * in printing out the 1727 * string in debug 1728 * messages */ 1729 (*copied_name_size) = name_size; 1730 out: 1731 return rc; 1732 } 1733 1734 /** 1735 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1736 * @key_tfm: Crypto context for key material, set by this function 1737 * @cipher_name: Name of the cipher 1738 * @key_size: Size of the key in bytes 1739 * 1740 * Returns zero on success. Any crypto_tfm structs allocated here 1741 * should be released by other functions, such as on a superblock put 1742 * event, regardless of whether this function succeeds for fails. 1743 */ 1744 static int 1745 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1746 char *cipher_name, size_t *key_size) 1747 { 1748 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1749 char *full_alg_name = NULL; 1750 int rc; 1751 1752 *key_tfm = NULL; 1753 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1754 rc = -EINVAL; 1755 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1756 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1757 goto out; 1758 } 1759 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1760 "ecb"); 1761 if (rc) 1762 goto out; 1763 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1764 if (IS_ERR(*key_tfm)) { 1765 rc = PTR_ERR(*key_tfm); 1766 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1767 "[%s]; rc = [%d]\n", full_alg_name, rc); 1768 goto out; 1769 } 1770 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1771 if (*key_size == 0) { 1772 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1773 1774 *key_size = alg->max_keysize; 1775 } 1776 get_random_bytes(dummy_key, *key_size); 1777 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1778 if (rc) { 1779 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1780 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1781 rc); 1782 rc = -EINVAL; 1783 goto out; 1784 } 1785 out: 1786 kfree(full_alg_name); 1787 return rc; 1788 } 1789 1790 struct kmem_cache *ecryptfs_key_tfm_cache; 1791 static struct list_head key_tfm_list; 1792 struct mutex key_tfm_list_mutex; 1793 1794 int __init ecryptfs_init_crypto(void) 1795 { 1796 mutex_init(&key_tfm_list_mutex); 1797 INIT_LIST_HEAD(&key_tfm_list); 1798 return 0; 1799 } 1800 1801 /** 1802 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1803 * 1804 * Called only at module unload time 1805 */ 1806 int ecryptfs_destroy_crypto(void) 1807 { 1808 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1809 1810 mutex_lock(&key_tfm_list_mutex); 1811 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1812 key_tfm_list) { 1813 list_del(&key_tfm->key_tfm_list); 1814 if (key_tfm->key_tfm) 1815 crypto_free_blkcipher(key_tfm->key_tfm); 1816 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1817 } 1818 mutex_unlock(&key_tfm_list_mutex); 1819 return 0; 1820 } 1821 1822 int 1823 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1824 size_t key_size) 1825 { 1826 struct ecryptfs_key_tfm *tmp_tfm; 1827 int rc = 0; 1828 1829 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1830 1831 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1832 if (key_tfm != NULL) 1833 (*key_tfm) = tmp_tfm; 1834 if (!tmp_tfm) { 1835 rc = -ENOMEM; 1836 printk(KERN_ERR "Error attempting to allocate from " 1837 "ecryptfs_key_tfm_cache\n"); 1838 goto out; 1839 } 1840 mutex_init(&tmp_tfm->key_tfm_mutex); 1841 strncpy(tmp_tfm->cipher_name, cipher_name, 1842 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1843 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1844 tmp_tfm->key_size = key_size; 1845 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1846 tmp_tfm->cipher_name, 1847 &tmp_tfm->key_size); 1848 if (rc) { 1849 printk(KERN_ERR "Error attempting to initialize key TFM " 1850 "cipher with name = [%s]; rc = [%d]\n", 1851 tmp_tfm->cipher_name, rc); 1852 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1853 if (key_tfm != NULL) 1854 (*key_tfm) = NULL; 1855 goto out; 1856 } 1857 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1858 out: 1859 return rc; 1860 } 1861 1862 /** 1863 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1864 * @cipher_name: the name of the cipher to search for 1865 * @key_tfm: set to corresponding tfm if found 1866 * 1867 * Searches for cached key_tfm matching @cipher_name 1868 * Must be called with &key_tfm_list_mutex held 1869 * Returns 1 if found, with @key_tfm set 1870 * Returns 0 if not found, with @key_tfm set to NULL 1871 */ 1872 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1873 { 1874 struct ecryptfs_key_tfm *tmp_key_tfm; 1875 1876 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1877 1878 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1879 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1880 if (key_tfm) 1881 (*key_tfm) = tmp_key_tfm; 1882 return 1; 1883 } 1884 } 1885 if (key_tfm) 1886 (*key_tfm) = NULL; 1887 return 0; 1888 } 1889 1890 /** 1891 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1892 * 1893 * @tfm: set to cached tfm found, or new tfm created 1894 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1895 * @cipher_name: the name of the cipher to search for and/or add 1896 * 1897 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1898 * Searches for cached item first, and creates new if not found. 1899 * Returns 0 on success, non-zero if adding new cipher failed 1900 */ 1901 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1902 struct mutex **tfm_mutex, 1903 char *cipher_name) 1904 { 1905 struct ecryptfs_key_tfm *key_tfm; 1906 int rc = 0; 1907 1908 (*tfm) = NULL; 1909 (*tfm_mutex) = NULL; 1910 1911 mutex_lock(&key_tfm_list_mutex); 1912 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1913 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1914 if (rc) { 1915 printk(KERN_ERR "Error adding new key_tfm to list; " 1916 "rc = [%d]\n", rc); 1917 goto out; 1918 } 1919 } 1920 (*tfm) = key_tfm->key_tfm; 1921 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1922 out: 1923 mutex_unlock(&key_tfm_list_mutex); 1924 return rc; 1925 } 1926 1927 /* 64 characters forming a 6-bit target field */ 1928 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1929 "EFGHIJKLMNOPQRST" 1930 "UVWXYZabcdefghij" 1931 "klmnopqrstuvwxyz"); 1932 1933 /* We could either offset on every reverse map or just pad some 0x00's 1934 * at the front here */ 1935 static const unsigned char filename_rev_map[] = { 1936 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1937 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1939 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1940 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1941 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1942 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1943 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1944 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1945 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1946 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1947 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1948 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1949 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1950 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1951 0x3D, 0x3E, 0x3F 1952 }; 1953 1954 /** 1955 * ecryptfs_encode_for_filename 1956 * @dst: Destination location for encoded filename 1957 * @dst_size: Size of the encoded filename in bytes 1958 * @src: Source location for the filename to encode 1959 * @src_size: Size of the source in bytes 1960 */ 1961 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1962 unsigned char *src, size_t src_size) 1963 { 1964 size_t num_blocks; 1965 size_t block_num = 0; 1966 size_t dst_offset = 0; 1967 unsigned char last_block[3]; 1968 1969 if (src_size == 0) { 1970 (*dst_size) = 0; 1971 goto out; 1972 } 1973 num_blocks = (src_size / 3); 1974 if ((src_size % 3) == 0) { 1975 memcpy(last_block, (&src[src_size - 3]), 3); 1976 } else { 1977 num_blocks++; 1978 last_block[2] = 0x00; 1979 switch (src_size % 3) { 1980 case 1: 1981 last_block[0] = src[src_size - 1]; 1982 last_block[1] = 0x00; 1983 break; 1984 case 2: 1985 last_block[0] = src[src_size - 2]; 1986 last_block[1] = src[src_size - 1]; 1987 } 1988 } 1989 (*dst_size) = (num_blocks * 4); 1990 if (!dst) 1991 goto out; 1992 while (block_num < num_blocks) { 1993 unsigned char *src_block; 1994 unsigned char dst_block[4]; 1995 1996 if (block_num == (num_blocks - 1)) 1997 src_block = last_block; 1998 else 1999 src_block = &src[block_num * 3]; 2000 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 2001 dst_block[1] = (((src_block[0] << 4) & 0x30) 2002 | ((src_block[1] >> 4) & 0x0F)); 2003 dst_block[2] = (((src_block[1] << 2) & 0x3C) 2004 | ((src_block[2] >> 6) & 0x03)); 2005 dst_block[3] = (src_block[2] & 0x3F); 2006 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 2007 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 2008 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 2009 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 2010 block_num++; 2011 } 2012 out: 2013 return; 2014 } 2015 2016 /** 2017 * ecryptfs_decode_from_filename 2018 * @dst: If NULL, this function only sets @dst_size and returns. If 2019 * non-NULL, this function decodes the encoded octets in @src 2020 * into the memory that @dst points to. 2021 * @dst_size: Set to the size of the decoded string. 2022 * @src: The encoded set of octets to decode. 2023 * @src_size: The size of the encoded set of octets to decode. 2024 */ 2025 static void 2026 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 2027 const unsigned char *src, size_t src_size) 2028 { 2029 u8 current_bit_offset = 0; 2030 size_t src_byte_offset = 0; 2031 size_t dst_byte_offset = 0; 2032 2033 if (dst == NULL) { 2034 /* Not exact; conservatively long. Every block of 4 2035 * encoded characters decodes into a block of 3 2036 * decoded characters. This segment of code provides 2037 * the caller with the maximum amount of allocated 2038 * space that @dst will need to point to in a 2039 * subsequent call. */ 2040 (*dst_size) = (((src_size + 1) * 3) / 4); 2041 goto out; 2042 } 2043 while (src_byte_offset < src_size) { 2044 unsigned char src_byte = 2045 filename_rev_map[(int)src[src_byte_offset]]; 2046 2047 switch (current_bit_offset) { 2048 case 0: 2049 dst[dst_byte_offset] = (src_byte << 2); 2050 current_bit_offset = 6; 2051 break; 2052 case 6: 2053 dst[dst_byte_offset++] |= (src_byte >> 4); 2054 dst[dst_byte_offset] = ((src_byte & 0xF) 2055 << 4); 2056 current_bit_offset = 4; 2057 break; 2058 case 4: 2059 dst[dst_byte_offset++] |= (src_byte >> 2); 2060 dst[dst_byte_offset] = (src_byte << 6); 2061 current_bit_offset = 2; 2062 break; 2063 case 2: 2064 dst[dst_byte_offset++] |= (src_byte); 2065 dst[dst_byte_offset] = 0; 2066 current_bit_offset = 0; 2067 break; 2068 } 2069 src_byte_offset++; 2070 } 2071 (*dst_size) = dst_byte_offset; 2072 out: 2073 return; 2074 } 2075 2076 /** 2077 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 2078 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 2079 * @name: The plaintext name 2080 * @length: The length of the plaintext 2081 * @encoded_name: The encypted name 2082 * 2083 * Encrypts and encodes a filename into something that constitutes a 2084 * valid filename for a filesystem, with printable characters. 2085 * 2086 * We assume that we have a properly initialized crypto context, 2087 * pointed to by crypt_stat->tfm. 2088 * 2089 * Returns zero on success; non-zero on otherwise 2090 */ 2091 int ecryptfs_encrypt_and_encode_filename( 2092 char **encoded_name, 2093 size_t *encoded_name_size, 2094 struct ecryptfs_crypt_stat *crypt_stat, 2095 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 2096 const char *name, size_t name_size) 2097 { 2098 size_t encoded_name_no_prefix_size; 2099 int rc = 0; 2100 2101 (*encoded_name) = NULL; 2102 (*encoded_name_size) = 0; 2103 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES)) 2104 || (mount_crypt_stat && (mount_crypt_stat->flags 2105 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) { 2106 struct ecryptfs_filename *filename; 2107 2108 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 2109 if (!filename) { 2110 printk(KERN_ERR "%s: Out of memory whilst attempting " 2111 "to kzalloc [%zd] bytes\n", __func__, 2112 sizeof(*filename)); 2113 rc = -ENOMEM; 2114 goto out; 2115 } 2116 filename->filename = (char *)name; 2117 filename->filename_size = name_size; 2118 rc = ecryptfs_encrypt_filename(filename, crypt_stat, 2119 mount_crypt_stat); 2120 if (rc) { 2121 printk(KERN_ERR "%s: Error attempting to encrypt " 2122 "filename; rc = [%d]\n", __func__, rc); 2123 kfree(filename); 2124 goto out; 2125 } 2126 ecryptfs_encode_for_filename( 2127 NULL, &encoded_name_no_prefix_size, 2128 filename->encrypted_filename, 2129 filename->encrypted_filename_size); 2130 if ((crypt_stat && (crypt_stat->flags 2131 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2132 || (mount_crypt_stat 2133 && (mount_crypt_stat->flags 2134 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) 2135 (*encoded_name_size) = 2136 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2137 + encoded_name_no_prefix_size); 2138 else 2139 (*encoded_name_size) = 2140 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2141 + encoded_name_no_prefix_size); 2142 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 2143 if (!(*encoded_name)) { 2144 printk(KERN_ERR "%s: Out of memory whilst attempting " 2145 "to kzalloc [%zd] bytes\n", __func__, 2146 (*encoded_name_size)); 2147 rc = -ENOMEM; 2148 kfree(filename->encrypted_filename); 2149 kfree(filename); 2150 goto out; 2151 } 2152 if ((crypt_stat && (crypt_stat->flags 2153 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2154 || (mount_crypt_stat 2155 && (mount_crypt_stat->flags 2156 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 2157 memcpy((*encoded_name), 2158 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2159 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 2160 ecryptfs_encode_for_filename( 2161 ((*encoded_name) 2162 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 2163 &encoded_name_no_prefix_size, 2164 filename->encrypted_filename, 2165 filename->encrypted_filename_size); 2166 (*encoded_name_size) = 2167 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2168 + encoded_name_no_prefix_size); 2169 (*encoded_name)[(*encoded_name_size)] = '\0'; 2170 } else { 2171 rc = -EOPNOTSUPP; 2172 } 2173 if (rc) { 2174 printk(KERN_ERR "%s: Error attempting to encode " 2175 "encrypted filename; rc = [%d]\n", __func__, 2176 rc); 2177 kfree((*encoded_name)); 2178 (*encoded_name) = NULL; 2179 (*encoded_name_size) = 0; 2180 } 2181 kfree(filename->encrypted_filename); 2182 kfree(filename); 2183 } else { 2184 rc = ecryptfs_copy_filename(encoded_name, 2185 encoded_name_size, 2186 name, name_size); 2187 } 2188 out: 2189 return rc; 2190 } 2191 2192 /** 2193 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2194 * @plaintext_name: The plaintext name 2195 * @plaintext_name_size: The plaintext name size 2196 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2197 * @name: The filename in cipher text 2198 * @name_size: The cipher text name size 2199 * 2200 * Decrypts and decodes the filename. 2201 * 2202 * Returns zero on error; non-zero otherwise 2203 */ 2204 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2205 size_t *plaintext_name_size, 2206 struct dentry *ecryptfs_dir_dentry, 2207 const char *name, size_t name_size) 2208 { 2209 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2210 &ecryptfs_superblock_to_private( 2211 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat; 2212 char *decoded_name; 2213 size_t decoded_name_size; 2214 size_t packet_size; 2215 int rc = 0; 2216 2217 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 2218 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 2219 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) 2220 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2221 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) { 2222 const char *orig_name = name; 2223 size_t orig_name_size = name_size; 2224 2225 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2226 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2227 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2228 name, name_size); 2229 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2230 if (!decoded_name) { 2231 printk(KERN_ERR "%s: Out of memory whilst attempting " 2232 "to kmalloc [%zd] bytes\n", __func__, 2233 decoded_name_size); 2234 rc = -ENOMEM; 2235 goto out; 2236 } 2237 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2238 name, name_size); 2239 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2240 plaintext_name_size, 2241 &packet_size, 2242 mount_crypt_stat, 2243 decoded_name, 2244 decoded_name_size); 2245 if (rc) { 2246 printk(KERN_INFO "%s: Could not parse tag 70 packet " 2247 "from filename; copying through filename " 2248 "as-is\n", __func__); 2249 rc = ecryptfs_copy_filename(plaintext_name, 2250 plaintext_name_size, 2251 orig_name, orig_name_size); 2252 goto out_free; 2253 } 2254 } else { 2255 rc = ecryptfs_copy_filename(plaintext_name, 2256 plaintext_name_size, 2257 name, name_size); 2258 goto out; 2259 } 2260 out_free: 2261 kfree(decoded_name); 2262 out: 2263 return rc; 2264 } 2265