xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision 565d76cb)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39 
40 static int
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 			     struct page *dst_page, int dst_offset,
43 			     struct page *src_page, int src_offset, int size,
44 			     unsigned char *iv);
45 static int
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 			     struct page *dst_page, int dst_offset,
48 			     struct page *src_page, int src_offset, int size,
49 			     unsigned char *iv);
50 
51 /**
52  * ecryptfs_to_hex
53  * @dst: Buffer to take hex character representation of contents of
54  *       src; must be at least of size (src_size * 2)
55  * @src: Buffer to be converted to a hex string respresentation
56  * @src_size: number of bytes to convert
57  */
58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59 {
60 	int x;
61 
62 	for (x = 0; x < src_size; x++)
63 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64 }
65 
66 /**
67  * ecryptfs_from_hex
68  * @dst: Buffer to take the bytes from src hex; must be at least of
69  *       size (src_size / 2)
70  * @src: Buffer to be converted from a hex string respresentation to raw value
71  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72  */
73 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74 {
75 	int x;
76 	char tmp[3] = { 0, };
77 
78 	for (x = 0; x < dst_size; x++) {
79 		tmp[0] = src[x * 2];
80 		tmp[1] = src[x * 2 + 1];
81 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 	}
83 }
84 
85 /**
86  * ecryptfs_calculate_md5 - calculates the md5 of @src
87  * @dst: Pointer to 16 bytes of allocated memory
88  * @crypt_stat: Pointer to crypt_stat struct for the current inode
89  * @src: Data to be md5'd
90  * @len: Length of @src
91  *
92  * Uses the allocated crypto context that crypt_stat references to
93  * generate the MD5 sum of the contents of src.
94  */
95 static int ecryptfs_calculate_md5(char *dst,
96 				  struct ecryptfs_crypt_stat *crypt_stat,
97 				  char *src, int len)
98 {
99 	struct scatterlist sg;
100 	struct hash_desc desc = {
101 		.tfm = crypt_stat->hash_tfm,
102 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 	};
104 	int rc = 0;
105 
106 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107 	sg_init_one(&sg, (u8 *)src, len);
108 	if (!desc.tfm) {
109 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 					     CRYPTO_ALG_ASYNC);
111 		if (IS_ERR(desc.tfm)) {
112 			rc = PTR_ERR(desc.tfm);
113 			ecryptfs_printk(KERN_ERR, "Error attempting to "
114 					"allocate crypto context; rc = [%d]\n",
115 					rc);
116 			goto out;
117 		}
118 		crypt_stat->hash_tfm = desc.tfm;
119 	}
120 	rc = crypto_hash_init(&desc);
121 	if (rc) {
122 		printk(KERN_ERR
123 		       "%s: Error initializing crypto hash; rc = [%d]\n",
124 		       __func__, rc);
125 		goto out;
126 	}
127 	rc = crypto_hash_update(&desc, &sg, len);
128 	if (rc) {
129 		printk(KERN_ERR
130 		       "%s: Error updating crypto hash; rc = [%d]\n",
131 		       __func__, rc);
132 		goto out;
133 	}
134 	rc = crypto_hash_final(&desc, dst);
135 	if (rc) {
136 		printk(KERN_ERR
137 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
138 		       __func__, rc);
139 		goto out;
140 	}
141 out:
142 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143 	return rc;
144 }
145 
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 						  char *cipher_name,
148 						  char *chaining_modifier)
149 {
150 	int cipher_name_len = strlen(cipher_name);
151 	int chaining_modifier_len = strlen(chaining_modifier);
152 	int algified_name_len;
153 	int rc;
154 
155 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157 	if (!(*algified_name)) {
158 		rc = -ENOMEM;
159 		goto out;
160 	}
161 	snprintf((*algified_name), algified_name_len, "%s(%s)",
162 		 chaining_modifier, cipher_name);
163 	rc = 0;
164 out:
165 	return rc;
166 }
167 
168 /**
169  * ecryptfs_derive_iv
170  * @iv: destination for the derived iv vale
171  * @crypt_stat: Pointer to crypt_stat struct for the current inode
172  * @offset: Offset of the extent whose IV we are to derive
173  *
174  * Generate the initialization vector from the given root IV and page
175  * offset.
176  *
177  * Returns zero on success; non-zero on error.
178  */
179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 		       loff_t offset)
181 {
182 	int rc = 0;
183 	char dst[MD5_DIGEST_SIZE];
184 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
185 
186 	if (unlikely(ecryptfs_verbosity > 0)) {
187 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 	}
190 	/* TODO: It is probably secure to just cast the least
191 	 * significant bits of the root IV into an unsigned long and
192 	 * add the offset to that rather than go through all this
193 	 * hashing business. -Halcrow */
194 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 	memset((src + crypt_stat->iv_bytes), 0, 16);
196 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 	if (unlikely(ecryptfs_verbosity > 0)) {
198 		ecryptfs_printk(KERN_DEBUG, "source:\n");
199 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 	}
201 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 				    (crypt_stat->iv_bytes + 16));
203 	if (rc) {
204 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 				"MD5 while generating IV for a page\n");
206 		goto out;
207 	}
208 	memcpy(iv, dst, crypt_stat->iv_bytes);
209 	if (unlikely(ecryptfs_verbosity > 0)) {
210 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 	}
213 out:
214 	return rc;
215 }
216 
217 /**
218  * ecryptfs_init_crypt_stat
219  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220  *
221  * Initialize the crypt_stat structure.
222  */
223 void
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225 {
226 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 	mutex_init(&crypt_stat->keysig_list_mutex);
229 	mutex_init(&crypt_stat->cs_mutex);
230 	mutex_init(&crypt_stat->cs_tfm_mutex);
231 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233 }
234 
235 /**
236  * ecryptfs_destroy_crypt_stat
237  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238  *
239  * Releases all memory associated with a crypt_stat struct.
240  */
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242 {
243 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244 
245 	if (crypt_stat->tfm)
246 		crypto_free_blkcipher(crypt_stat->tfm);
247 	if (crypt_stat->hash_tfm)
248 		crypto_free_hash(crypt_stat->hash_tfm);
249 	list_for_each_entry_safe(key_sig, key_sig_tmp,
250 				 &crypt_stat->keysig_list, crypt_stat_list) {
251 		list_del(&key_sig->crypt_stat_list);
252 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 	}
254 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255 }
256 
257 void ecryptfs_destroy_mount_crypt_stat(
258 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259 {
260 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261 
262 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 		return;
264 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 				 &mount_crypt_stat->global_auth_tok_list,
267 				 mount_crypt_stat_list) {
268 		list_del(&auth_tok->mount_crypt_stat_list);
269 		mount_crypt_stat->num_global_auth_toks--;
270 		if (auth_tok->global_auth_tok_key
271 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
272 			key_put(auth_tok->global_auth_tok_key);
273 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
274 	}
275 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
276 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
277 }
278 
279 /**
280  * virt_to_scatterlist
281  * @addr: Virtual address
282  * @size: Size of data; should be an even multiple of the block size
283  * @sg: Pointer to scatterlist array; set to NULL to obtain only
284  *      the number of scatterlist structs required in array
285  * @sg_size: Max array size
286  *
287  * Fills in a scatterlist array with page references for a passed
288  * virtual address.
289  *
290  * Returns the number of scatterlist structs in array used
291  */
292 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
293 			int sg_size)
294 {
295 	int i = 0;
296 	struct page *pg;
297 	int offset;
298 	int remainder_of_page;
299 
300 	sg_init_table(sg, sg_size);
301 
302 	while (size > 0 && i < sg_size) {
303 		pg = virt_to_page(addr);
304 		offset = offset_in_page(addr);
305 		if (sg)
306 			sg_set_page(&sg[i], pg, 0, offset);
307 		remainder_of_page = PAGE_CACHE_SIZE - offset;
308 		if (size >= remainder_of_page) {
309 			if (sg)
310 				sg[i].length = remainder_of_page;
311 			addr += remainder_of_page;
312 			size -= remainder_of_page;
313 		} else {
314 			if (sg)
315 				sg[i].length = size;
316 			addr += size;
317 			size = 0;
318 		}
319 		i++;
320 	}
321 	if (size > 0)
322 		return -ENOMEM;
323 	return i;
324 }
325 
326 /**
327  * encrypt_scatterlist
328  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
329  * @dest_sg: Destination of encrypted data
330  * @src_sg: Data to be encrypted
331  * @size: Length of data to be encrypted
332  * @iv: iv to use during encryption
333  *
334  * Returns the number of bytes encrypted; negative value on error
335  */
336 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
337 			       struct scatterlist *dest_sg,
338 			       struct scatterlist *src_sg, int size,
339 			       unsigned char *iv)
340 {
341 	struct blkcipher_desc desc = {
342 		.tfm = crypt_stat->tfm,
343 		.info = iv,
344 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
345 	};
346 	int rc = 0;
347 
348 	BUG_ON(!crypt_stat || !crypt_stat->tfm
349 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
350 	if (unlikely(ecryptfs_verbosity > 0)) {
351 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
352 				crypt_stat->key_size);
353 		ecryptfs_dump_hex(crypt_stat->key,
354 				  crypt_stat->key_size);
355 	}
356 	/* Consider doing this once, when the file is opened */
357 	mutex_lock(&crypt_stat->cs_tfm_mutex);
358 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
359 		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
360 					     crypt_stat->key_size);
361 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
362 	}
363 	if (rc) {
364 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
365 				rc);
366 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
367 		rc = -EINVAL;
368 		goto out;
369 	}
370 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
371 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
372 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
373 out:
374 	return rc;
375 }
376 
377 /**
378  * ecryptfs_lower_offset_for_extent
379  *
380  * Convert an eCryptfs page index into a lower byte offset
381  */
382 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
383 					     struct ecryptfs_crypt_stat *crypt_stat)
384 {
385 	(*offset) = ecryptfs_lower_header_size(crypt_stat)
386 		    + (crypt_stat->extent_size * extent_num);
387 }
388 
389 /**
390  * ecryptfs_encrypt_extent
391  * @enc_extent_page: Allocated page into which to encrypt the data in
392  *                   @page
393  * @crypt_stat: crypt_stat containing cryptographic context for the
394  *              encryption operation
395  * @page: Page containing plaintext data extent to encrypt
396  * @extent_offset: Page extent offset for use in generating IV
397  *
398  * Encrypts one extent of data.
399  *
400  * Return zero on success; non-zero otherwise
401  */
402 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
403 				   struct ecryptfs_crypt_stat *crypt_stat,
404 				   struct page *page,
405 				   unsigned long extent_offset)
406 {
407 	loff_t extent_base;
408 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
409 	int rc;
410 
411 	extent_base = (((loff_t)page->index)
412 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
413 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
414 				(extent_base + extent_offset));
415 	if (rc) {
416 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
417 			"extent [0x%.16llx]; rc = [%d]\n",
418 			(unsigned long long)(extent_base + extent_offset), rc);
419 		goto out;
420 	}
421 	if (unlikely(ecryptfs_verbosity > 0)) {
422 		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
423 				"with iv:\n");
424 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
425 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
426 				"encryption:\n");
427 		ecryptfs_dump_hex((char *)
428 				  (page_address(page)
429 				   + (extent_offset * crypt_stat->extent_size)),
430 				  8);
431 	}
432 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
433 					  page, (extent_offset
434 						 * crypt_stat->extent_size),
435 					  crypt_stat->extent_size, extent_iv);
436 	if (rc < 0) {
437 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
438 		       "page->index = [%ld], extent_offset = [%ld]; "
439 		       "rc = [%d]\n", __func__, page->index, extent_offset,
440 		       rc);
441 		goto out;
442 	}
443 	rc = 0;
444 	if (unlikely(ecryptfs_verbosity > 0)) {
445 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16llx]; "
446 			"rc = [%d]\n",
447 			(unsigned long long)(extent_base + extent_offset), rc);
448 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
449 				"encryption:\n");
450 		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
451 	}
452 out:
453 	return rc;
454 }
455 
456 /**
457  * ecryptfs_encrypt_page
458  * @page: Page mapped from the eCryptfs inode for the file; contains
459  *        decrypted content that needs to be encrypted (to a temporary
460  *        page; not in place) and written out to the lower file
461  *
462  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
463  * that eCryptfs pages may straddle the lower pages -- for instance,
464  * if the file was created on a machine with an 8K page size
465  * (resulting in an 8K header), and then the file is copied onto a
466  * host with a 32K page size, then when reading page 0 of the eCryptfs
467  * file, 24K of page 0 of the lower file will be read and decrypted,
468  * and then 8K of page 1 of the lower file will be read and decrypted.
469  *
470  * Returns zero on success; negative on error
471  */
472 int ecryptfs_encrypt_page(struct page *page)
473 {
474 	struct inode *ecryptfs_inode;
475 	struct ecryptfs_crypt_stat *crypt_stat;
476 	char *enc_extent_virt;
477 	struct page *enc_extent_page = NULL;
478 	loff_t extent_offset;
479 	int rc = 0;
480 
481 	ecryptfs_inode = page->mapping->host;
482 	crypt_stat =
483 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
484 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
485 	enc_extent_page = alloc_page(GFP_USER);
486 	if (!enc_extent_page) {
487 		rc = -ENOMEM;
488 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
489 				"encrypted extent\n");
490 		goto out;
491 	}
492 	enc_extent_virt = kmap(enc_extent_page);
493 	for (extent_offset = 0;
494 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
495 	     extent_offset++) {
496 		loff_t offset;
497 
498 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
499 					     extent_offset);
500 		if (rc) {
501 			printk(KERN_ERR "%s: Error encrypting extent; "
502 			       "rc = [%d]\n", __func__, rc);
503 			goto out;
504 		}
505 		ecryptfs_lower_offset_for_extent(
506 			&offset, ((((loff_t)page->index)
507 				   * (PAGE_CACHE_SIZE
508 				      / crypt_stat->extent_size))
509 				  + extent_offset), crypt_stat);
510 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
511 					  offset, crypt_stat->extent_size);
512 		if (rc < 0) {
513 			ecryptfs_printk(KERN_ERR, "Error attempting "
514 					"to write lower page; rc = [%d]"
515 					"\n", rc);
516 			goto out;
517 		}
518 	}
519 	rc = 0;
520 out:
521 	if (enc_extent_page) {
522 		kunmap(enc_extent_page);
523 		__free_page(enc_extent_page);
524 	}
525 	return rc;
526 }
527 
528 static int ecryptfs_decrypt_extent(struct page *page,
529 				   struct ecryptfs_crypt_stat *crypt_stat,
530 				   struct page *enc_extent_page,
531 				   unsigned long extent_offset)
532 {
533 	loff_t extent_base;
534 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
535 	int rc;
536 
537 	extent_base = (((loff_t)page->index)
538 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
539 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
540 				(extent_base + extent_offset));
541 	if (rc) {
542 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
543 			"extent [0x%.16llx]; rc = [%d]\n",
544 			(unsigned long long)(extent_base + extent_offset), rc);
545 		goto out;
546 	}
547 	if (unlikely(ecryptfs_verbosity > 0)) {
548 		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
549 				"with iv:\n");
550 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
551 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
552 				"decryption:\n");
553 		ecryptfs_dump_hex((char *)
554 				  (page_address(enc_extent_page)
555 				   + (extent_offset * crypt_stat->extent_size)),
556 				  8);
557 	}
558 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
559 					  (extent_offset
560 					   * crypt_stat->extent_size),
561 					  enc_extent_page, 0,
562 					  crypt_stat->extent_size, extent_iv);
563 	if (rc < 0) {
564 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
565 		       "page->index = [%ld], extent_offset = [%ld]; "
566 		       "rc = [%d]\n", __func__, page->index, extent_offset,
567 		       rc);
568 		goto out;
569 	}
570 	rc = 0;
571 	if (unlikely(ecryptfs_verbosity > 0)) {
572 		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16llx]; "
573 			"rc = [%d]\n",
574 			(unsigned long long)(extent_base + extent_offset), rc);
575 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
576 				"decryption:\n");
577 		ecryptfs_dump_hex((char *)(page_address(page)
578 					   + (extent_offset
579 					      * crypt_stat->extent_size)), 8);
580 	}
581 out:
582 	return rc;
583 }
584 
585 /**
586  * ecryptfs_decrypt_page
587  * @page: Page mapped from the eCryptfs inode for the file; data read
588  *        and decrypted from the lower file will be written into this
589  *        page
590  *
591  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
592  * that eCryptfs pages may straddle the lower pages -- for instance,
593  * if the file was created on a machine with an 8K page size
594  * (resulting in an 8K header), and then the file is copied onto a
595  * host with a 32K page size, then when reading page 0 of the eCryptfs
596  * file, 24K of page 0 of the lower file will be read and decrypted,
597  * and then 8K of page 1 of the lower file will be read and decrypted.
598  *
599  * Returns zero on success; negative on error
600  */
601 int ecryptfs_decrypt_page(struct page *page)
602 {
603 	struct inode *ecryptfs_inode;
604 	struct ecryptfs_crypt_stat *crypt_stat;
605 	char *enc_extent_virt;
606 	struct page *enc_extent_page = NULL;
607 	unsigned long extent_offset;
608 	int rc = 0;
609 
610 	ecryptfs_inode = page->mapping->host;
611 	crypt_stat =
612 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
613 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
614 	enc_extent_page = alloc_page(GFP_USER);
615 	if (!enc_extent_page) {
616 		rc = -ENOMEM;
617 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
618 				"encrypted extent\n");
619 		goto out;
620 	}
621 	enc_extent_virt = kmap(enc_extent_page);
622 	for (extent_offset = 0;
623 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
624 	     extent_offset++) {
625 		loff_t offset;
626 
627 		ecryptfs_lower_offset_for_extent(
628 			&offset, ((page->index * (PAGE_CACHE_SIZE
629 						  / crypt_stat->extent_size))
630 				  + extent_offset), crypt_stat);
631 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
632 					 crypt_stat->extent_size,
633 					 ecryptfs_inode);
634 		if (rc < 0) {
635 			ecryptfs_printk(KERN_ERR, "Error attempting "
636 					"to read lower page; rc = [%d]"
637 					"\n", rc);
638 			goto out;
639 		}
640 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
641 					     extent_offset);
642 		if (rc) {
643 			printk(KERN_ERR "%s: Error encrypting extent; "
644 			       "rc = [%d]\n", __func__, rc);
645 			goto out;
646 		}
647 	}
648 out:
649 	if (enc_extent_page) {
650 		kunmap(enc_extent_page);
651 		__free_page(enc_extent_page);
652 	}
653 	return rc;
654 }
655 
656 /**
657  * decrypt_scatterlist
658  * @crypt_stat: Cryptographic context
659  * @dest_sg: The destination scatterlist to decrypt into
660  * @src_sg: The source scatterlist to decrypt from
661  * @size: The number of bytes to decrypt
662  * @iv: The initialization vector to use for the decryption
663  *
664  * Returns the number of bytes decrypted; negative value on error
665  */
666 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
667 			       struct scatterlist *dest_sg,
668 			       struct scatterlist *src_sg, int size,
669 			       unsigned char *iv)
670 {
671 	struct blkcipher_desc desc = {
672 		.tfm = crypt_stat->tfm,
673 		.info = iv,
674 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
675 	};
676 	int rc = 0;
677 
678 	/* Consider doing this once, when the file is opened */
679 	mutex_lock(&crypt_stat->cs_tfm_mutex);
680 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
681 				     crypt_stat->key_size);
682 	if (rc) {
683 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
684 				rc);
685 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
686 		rc = -EINVAL;
687 		goto out;
688 	}
689 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
690 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
691 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
692 	if (rc) {
693 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
694 				rc);
695 		goto out;
696 	}
697 	rc = size;
698 out:
699 	return rc;
700 }
701 
702 /**
703  * ecryptfs_encrypt_page_offset
704  * @crypt_stat: The cryptographic context
705  * @dst_page: The page to encrypt into
706  * @dst_offset: The offset in the page to encrypt into
707  * @src_page: The page to encrypt from
708  * @src_offset: The offset in the page to encrypt from
709  * @size: The number of bytes to encrypt
710  * @iv: The initialization vector to use for the encryption
711  *
712  * Returns the number of bytes encrypted
713  */
714 static int
715 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
716 			     struct page *dst_page, int dst_offset,
717 			     struct page *src_page, int src_offset, int size,
718 			     unsigned char *iv)
719 {
720 	struct scatterlist src_sg, dst_sg;
721 
722 	sg_init_table(&src_sg, 1);
723 	sg_init_table(&dst_sg, 1);
724 
725 	sg_set_page(&src_sg, src_page, size, src_offset);
726 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
727 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
728 }
729 
730 /**
731  * ecryptfs_decrypt_page_offset
732  * @crypt_stat: The cryptographic context
733  * @dst_page: The page to decrypt into
734  * @dst_offset: The offset in the page to decrypt into
735  * @src_page: The page to decrypt from
736  * @src_offset: The offset in the page to decrypt from
737  * @size: The number of bytes to decrypt
738  * @iv: The initialization vector to use for the decryption
739  *
740  * Returns the number of bytes decrypted
741  */
742 static int
743 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
744 			     struct page *dst_page, int dst_offset,
745 			     struct page *src_page, int src_offset, int size,
746 			     unsigned char *iv)
747 {
748 	struct scatterlist src_sg, dst_sg;
749 
750 	sg_init_table(&src_sg, 1);
751 	sg_set_page(&src_sg, src_page, size, src_offset);
752 
753 	sg_init_table(&dst_sg, 1);
754 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
755 
756 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
757 }
758 
759 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
760 
761 /**
762  * ecryptfs_init_crypt_ctx
763  * @crypt_stat: Uninitialized crypt stats structure
764  *
765  * Initialize the crypto context.
766  *
767  * TODO: Performance: Keep a cache of initialized cipher contexts;
768  * only init if needed
769  */
770 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
771 {
772 	char *full_alg_name;
773 	int rc = -EINVAL;
774 
775 	if (!crypt_stat->cipher) {
776 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
777 		goto out;
778 	}
779 	ecryptfs_printk(KERN_DEBUG,
780 			"Initializing cipher [%s]; strlen = [%d]; "
781 			"key_size_bits = [%zd]\n",
782 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
783 			crypt_stat->key_size << 3);
784 	if (crypt_stat->tfm) {
785 		rc = 0;
786 		goto out;
787 	}
788 	mutex_lock(&crypt_stat->cs_tfm_mutex);
789 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
790 						    crypt_stat->cipher, "cbc");
791 	if (rc)
792 		goto out_unlock;
793 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
794 						 CRYPTO_ALG_ASYNC);
795 	kfree(full_alg_name);
796 	if (IS_ERR(crypt_stat->tfm)) {
797 		rc = PTR_ERR(crypt_stat->tfm);
798 		crypt_stat->tfm = NULL;
799 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
800 				"Error initializing cipher [%s]\n",
801 				crypt_stat->cipher);
802 		goto out_unlock;
803 	}
804 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
805 	rc = 0;
806 out_unlock:
807 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
808 out:
809 	return rc;
810 }
811 
812 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
813 {
814 	int extent_size_tmp;
815 
816 	crypt_stat->extent_mask = 0xFFFFFFFF;
817 	crypt_stat->extent_shift = 0;
818 	if (crypt_stat->extent_size == 0)
819 		return;
820 	extent_size_tmp = crypt_stat->extent_size;
821 	while ((extent_size_tmp & 0x01) == 0) {
822 		extent_size_tmp >>= 1;
823 		crypt_stat->extent_mask <<= 1;
824 		crypt_stat->extent_shift++;
825 	}
826 }
827 
828 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
829 {
830 	/* Default values; may be overwritten as we are parsing the
831 	 * packets. */
832 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
833 	set_extent_mask_and_shift(crypt_stat);
834 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
835 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
836 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
837 	else {
838 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
839 			crypt_stat->metadata_size =
840 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
841 		else
842 			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
843 	}
844 }
845 
846 /**
847  * ecryptfs_compute_root_iv
848  * @crypt_stats
849  *
850  * On error, sets the root IV to all 0's.
851  */
852 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
853 {
854 	int rc = 0;
855 	char dst[MD5_DIGEST_SIZE];
856 
857 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
858 	BUG_ON(crypt_stat->iv_bytes <= 0);
859 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
860 		rc = -EINVAL;
861 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
862 				"cannot generate root IV\n");
863 		goto out;
864 	}
865 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
866 				    crypt_stat->key_size);
867 	if (rc) {
868 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
869 				"MD5 while generating root IV\n");
870 		goto out;
871 	}
872 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
873 out:
874 	if (rc) {
875 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
876 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
877 	}
878 	return rc;
879 }
880 
881 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
882 {
883 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
884 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
885 	ecryptfs_compute_root_iv(crypt_stat);
886 	if (unlikely(ecryptfs_verbosity > 0)) {
887 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
888 		ecryptfs_dump_hex(crypt_stat->key,
889 				  crypt_stat->key_size);
890 	}
891 }
892 
893 /**
894  * ecryptfs_copy_mount_wide_flags_to_inode_flags
895  * @crypt_stat: The inode's cryptographic context
896  * @mount_crypt_stat: The mount point's cryptographic context
897  *
898  * This function propagates the mount-wide flags to individual inode
899  * flags.
900  */
901 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
902 	struct ecryptfs_crypt_stat *crypt_stat,
903 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
904 {
905 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
906 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
907 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
908 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
909 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
910 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
911 		if (mount_crypt_stat->flags
912 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
913 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
914 		else if (mount_crypt_stat->flags
915 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
916 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
917 	}
918 }
919 
920 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
921 	struct ecryptfs_crypt_stat *crypt_stat,
922 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
923 {
924 	struct ecryptfs_global_auth_tok *global_auth_tok;
925 	int rc = 0;
926 
927 	mutex_lock(&crypt_stat->keysig_list_mutex);
928 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
929 
930 	list_for_each_entry(global_auth_tok,
931 			    &mount_crypt_stat->global_auth_tok_list,
932 			    mount_crypt_stat_list) {
933 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
934 			continue;
935 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
936 		if (rc) {
937 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
938 			goto out;
939 		}
940 	}
941 
942 out:
943 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
944 	mutex_unlock(&crypt_stat->keysig_list_mutex);
945 	return rc;
946 }
947 
948 /**
949  * ecryptfs_set_default_crypt_stat_vals
950  * @crypt_stat: The inode's cryptographic context
951  * @mount_crypt_stat: The mount point's cryptographic context
952  *
953  * Default values in the event that policy does not override them.
954  */
955 static void ecryptfs_set_default_crypt_stat_vals(
956 	struct ecryptfs_crypt_stat *crypt_stat,
957 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
958 {
959 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
960 						      mount_crypt_stat);
961 	ecryptfs_set_default_sizes(crypt_stat);
962 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
963 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
964 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
965 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
966 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
967 }
968 
969 /**
970  * ecryptfs_new_file_context
971  * @ecryptfs_dentry: The eCryptfs dentry
972  *
973  * If the crypto context for the file has not yet been established,
974  * this is where we do that.  Establishing a new crypto context
975  * involves the following decisions:
976  *  - What cipher to use?
977  *  - What set of authentication tokens to use?
978  * Here we just worry about getting enough information into the
979  * authentication tokens so that we know that they are available.
980  * We associate the available authentication tokens with the new file
981  * via the set of signatures in the crypt_stat struct.  Later, when
982  * the headers are actually written out, we may again defer to
983  * userspace to perform the encryption of the session key; for the
984  * foreseeable future, this will be the case with public key packets.
985  *
986  * Returns zero on success; non-zero otherwise
987  */
988 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
989 {
990 	struct ecryptfs_crypt_stat *crypt_stat =
991 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
992 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
993 	    &ecryptfs_superblock_to_private(
994 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
995 	int cipher_name_len;
996 	int rc = 0;
997 
998 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
999 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1000 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1001 						      mount_crypt_stat);
1002 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1003 							 mount_crypt_stat);
1004 	if (rc) {
1005 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1006 		       "to the inode key sigs; rc = [%d]\n", rc);
1007 		goto out;
1008 	}
1009 	cipher_name_len =
1010 		strlen(mount_crypt_stat->global_default_cipher_name);
1011 	memcpy(crypt_stat->cipher,
1012 	       mount_crypt_stat->global_default_cipher_name,
1013 	       cipher_name_len);
1014 	crypt_stat->cipher[cipher_name_len] = '\0';
1015 	crypt_stat->key_size =
1016 		mount_crypt_stat->global_default_cipher_key_size;
1017 	ecryptfs_generate_new_key(crypt_stat);
1018 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1019 	if (rc)
1020 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1021 				"context for cipher [%s]: rc = [%d]\n",
1022 				crypt_stat->cipher, rc);
1023 out:
1024 	return rc;
1025 }
1026 
1027 /**
1028  * contains_ecryptfs_marker - check for the ecryptfs marker
1029  * @data: The data block in which to check
1030  *
1031  * Returns one if marker found; zero if not found
1032  */
1033 static int contains_ecryptfs_marker(char *data)
1034 {
1035 	u32 m_1, m_2;
1036 
1037 	m_1 = get_unaligned_be32(data);
1038 	m_2 = get_unaligned_be32(data + 4);
1039 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1040 		return 1;
1041 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1042 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1043 			MAGIC_ECRYPTFS_MARKER);
1044 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1045 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1046 	return 0;
1047 }
1048 
1049 struct ecryptfs_flag_map_elem {
1050 	u32 file_flag;
1051 	u32 local_flag;
1052 };
1053 
1054 /* Add support for additional flags by adding elements here. */
1055 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1056 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1057 	{0x00000002, ECRYPTFS_ENCRYPTED},
1058 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1059 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1060 };
1061 
1062 /**
1063  * ecryptfs_process_flags
1064  * @crypt_stat: The cryptographic context
1065  * @page_virt: Source data to be parsed
1066  * @bytes_read: Updated with the number of bytes read
1067  *
1068  * Returns zero on success; non-zero if the flag set is invalid
1069  */
1070 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1071 				  char *page_virt, int *bytes_read)
1072 {
1073 	int rc = 0;
1074 	int i;
1075 	u32 flags;
1076 
1077 	flags = get_unaligned_be32(page_virt);
1078 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1079 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1080 		if (flags & ecryptfs_flag_map[i].file_flag) {
1081 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1082 		} else
1083 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1084 	/* Version is in top 8 bits of the 32-bit flag vector */
1085 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1086 	(*bytes_read) = 4;
1087 	return rc;
1088 }
1089 
1090 /**
1091  * write_ecryptfs_marker
1092  * @page_virt: The pointer to in a page to begin writing the marker
1093  * @written: Number of bytes written
1094  *
1095  * Marker = 0x3c81b7f5
1096  */
1097 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1098 {
1099 	u32 m_1, m_2;
1100 
1101 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1102 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1103 	put_unaligned_be32(m_1, page_virt);
1104 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1105 	put_unaligned_be32(m_2, page_virt);
1106 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1107 }
1108 
1109 void ecryptfs_write_crypt_stat_flags(char *page_virt,
1110 				     struct ecryptfs_crypt_stat *crypt_stat,
1111 				     size_t *written)
1112 {
1113 	u32 flags = 0;
1114 	int i;
1115 
1116 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1117 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1118 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1119 			flags |= ecryptfs_flag_map[i].file_flag;
1120 	/* Version is in top 8 bits of the 32-bit flag vector */
1121 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1122 	put_unaligned_be32(flags, page_virt);
1123 	(*written) = 4;
1124 }
1125 
1126 struct ecryptfs_cipher_code_str_map_elem {
1127 	char cipher_str[16];
1128 	u8 cipher_code;
1129 };
1130 
1131 /* Add support for additional ciphers by adding elements here. The
1132  * cipher_code is whatever OpenPGP applicatoins use to identify the
1133  * ciphers. List in order of probability. */
1134 static struct ecryptfs_cipher_code_str_map_elem
1135 ecryptfs_cipher_code_str_map[] = {
1136 	{"aes",RFC2440_CIPHER_AES_128 },
1137 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1138 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1139 	{"cast5", RFC2440_CIPHER_CAST_5},
1140 	{"twofish", RFC2440_CIPHER_TWOFISH},
1141 	{"cast6", RFC2440_CIPHER_CAST_6},
1142 	{"aes", RFC2440_CIPHER_AES_192},
1143 	{"aes", RFC2440_CIPHER_AES_256}
1144 };
1145 
1146 /**
1147  * ecryptfs_code_for_cipher_string
1148  * @cipher_name: The string alias for the cipher
1149  * @key_bytes: Length of key in bytes; used for AES code selection
1150  *
1151  * Returns zero on no match, or the cipher code on match
1152  */
1153 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1154 {
1155 	int i;
1156 	u8 code = 0;
1157 	struct ecryptfs_cipher_code_str_map_elem *map =
1158 		ecryptfs_cipher_code_str_map;
1159 
1160 	if (strcmp(cipher_name, "aes") == 0) {
1161 		switch (key_bytes) {
1162 		case 16:
1163 			code = RFC2440_CIPHER_AES_128;
1164 			break;
1165 		case 24:
1166 			code = RFC2440_CIPHER_AES_192;
1167 			break;
1168 		case 32:
1169 			code = RFC2440_CIPHER_AES_256;
1170 		}
1171 	} else {
1172 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1173 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1174 				code = map[i].cipher_code;
1175 				break;
1176 			}
1177 	}
1178 	return code;
1179 }
1180 
1181 /**
1182  * ecryptfs_cipher_code_to_string
1183  * @str: Destination to write out the cipher name
1184  * @cipher_code: The code to convert to cipher name string
1185  *
1186  * Returns zero on success
1187  */
1188 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1189 {
1190 	int rc = 0;
1191 	int i;
1192 
1193 	str[0] = '\0';
1194 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1195 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1196 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1197 	if (str[0] == '\0') {
1198 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1199 				"[%d]\n", cipher_code);
1200 		rc = -EINVAL;
1201 	}
1202 	return rc;
1203 }
1204 
1205 int ecryptfs_read_and_validate_header_region(char *data,
1206 					     struct inode *ecryptfs_inode)
1207 {
1208 	struct ecryptfs_crypt_stat *crypt_stat =
1209 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1210 	int rc;
1211 
1212 	if (crypt_stat->extent_size == 0)
1213 		crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
1214 	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1215 				 ecryptfs_inode);
1216 	if (rc < 0) {
1217 		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1218 		       __func__, rc);
1219 		goto out;
1220 	}
1221 	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1222 		rc = -EINVAL;
1223 	} else
1224 		rc = 0;
1225 out:
1226 	return rc;
1227 }
1228 
1229 void
1230 ecryptfs_write_header_metadata(char *virt,
1231 			       struct ecryptfs_crypt_stat *crypt_stat,
1232 			       size_t *written)
1233 {
1234 	u32 header_extent_size;
1235 	u16 num_header_extents_at_front;
1236 
1237 	header_extent_size = (u32)crypt_stat->extent_size;
1238 	num_header_extents_at_front =
1239 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1240 	put_unaligned_be32(header_extent_size, virt);
1241 	virt += 4;
1242 	put_unaligned_be16(num_header_extents_at_front, virt);
1243 	(*written) = 6;
1244 }
1245 
1246 struct kmem_cache *ecryptfs_header_cache_1;
1247 struct kmem_cache *ecryptfs_header_cache_2;
1248 
1249 /**
1250  * ecryptfs_write_headers_virt
1251  * @page_virt: The virtual address to write the headers to
1252  * @max: The size of memory allocated at page_virt
1253  * @size: Set to the number of bytes written by this function
1254  * @crypt_stat: The cryptographic context
1255  * @ecryptfs_dentry: The eCryptfs dentry
1256  *
1257  * Format version: 1
1258  *
1259  *   Header Extent:
1260  *     Octets 0-7:        Unencrypted file size (big-endian)
1261  *     Octets 8-15:       eCryptfs special marker
1262  *     Octets 16-19:      Flags
1263  *      Octet 16:         File format version number (between 0 and 255)
1264  *      Octets 17-18:     Reserved
1265  *      Octet 19:         Bit 1 (lsb): Reserved
1266  *                        Bit 2: Encrypted?
1267  *                        Bits 3-8: Reserved
1268  *     Octets 20-23:      Header extent size (big-endian)
1269  *     Octets 24-25:      Number of header extents at front of file
1270  *                        (big-endian)
1271  *     Octet  26:         Begin RFC 2440 authentication token packet set
1272  *   Data Extent 0:
1273  *     Lower data (CBC encrypted)
1274  *   Data Extent 1:
1275  *     Lower data (CBC encrypted)
1276  *   ...
1277  *
1278  * Returns zero on success
1279  */
1280 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1281 				       size_t *size,
1282 				       struct ecryptfs_crypt_stat *crypt_stat,
1283 				       struct dentry *ecryptfs_dentry)
1284 {
1285 	int rc;
1286 	size_t written;
1287 	size_t offset;
1288 
1289 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1290 	write_ecryptfs_marker((page_virt + offset), &written);
1291 	offset += written;
1292 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1293 					&written);
1294 	offset += written;
1295 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1296 				       &written);
1297 	offset += written;
1298 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1299 					      ecryptfs_dentry, &written,
1300 					      max - offset);
1301 	if (rc)
1302 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1303 				"set; rc = [%d]\n", rc);
1304 	if (size) {
1305 		offset += written;
1306 		*size = offset;
1307 	}
1308 	return rc;
1309 }
1310 
1311 static int
1312 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1313 				    char *virt, size_t virt_len)
1314 {
1315 	int rc;
1316 
1317 	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1318 				  0, virt_len);
1319 	if (rc < 0)
1320 		printk(KERN_ERR "%s: Error attempting to write header "
1321 		       "information to lower file; rc = [%d]\n", __func__, rc);
1322 	else
1323 		rc = 0;
1324 	return rc;
1325 }
1326 
1327 static int
1328 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1329 				 char *page_virt, size_t size)
1330 {
1331 	int rc;
1332 
1333 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1334 			       size, 0);
1335 	return rc;
1336 }
1337 
1338 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1339 					       unsigned int order)
1340 {
1341 	struct page *page;
1342 
1343 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1344 	if (page)
1345 		return (unsigned long) page_address(page);
1346 	return 0;
1347 }
1348 
1349 /**
1350  * ecryptfs_write_metadata
1351  * @ecryptfs_dentry: The eCryptfs dentry
1352  *
1353  * Write the file headers out.  This will likely involve a userspace
1354  * callout, in which the session key is encrypted with one or more
1355  * public keys and/or the passphrase necessary to do the encryption is
1356  * retrieved via a prompt.  Exactly what happens at this point should
1357  * be policy-dependent.
1358  *
1359  * Returns zero on success; non-zero on error
1360  */
1361 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1362 {
1363 	struct ecryptfs_crypt_stat *crypt_stat =
1364 		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1365 	unsigned int order;
1366 	char *virt;
1367 	size_t virt_len;
1368 	size_t size = 0;
1369 	int rc = 0;
1370 
1371 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1372 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1373 			printk(KERN_ERR "Key is invalid; bailing out\n");
1374 			rc = -EINVAL;
1375 			goto out;
1376 		}
1377 	} else {
1378 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1379 		       __func__);
1380 		rc = -EINVAL;
1381 		goto out;
1382 	}
1383 	virt_len = crypt_stat->metadata_size;
1384 	order = get_order(virt_len);
1385 	/* Released in this function */
1386 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1387 	if (!virt) {
1388 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1389 		rc = -ENOMEM;
1390 		goto out;
1391 	}
1392 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1393 					 ecryptfs_dentry);
1394 	if (unlikely(rc)) {
1395 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1396 		       __func__, rc);
1397 		goto out_free;
1398 	}
1399 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1400 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1401 						      size);
1402 	else
1403 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1404 							 virt_len);
1405 	if (rc) {
1406 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1407 		       "rc = [%d]\n", __func__, rc);
1408 		goto out_free;
1409 	}
1410 out_free:
1411 	free_pages((unsigned long)virt, order);
1412 out:
1413 	return rc;
1414 }
1415 
1416 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1417 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1418 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1419 				 char *virt, int *bytes_read,
1420 				 int validate_header_size)
1421 {
1422 	int rc = 0;
1423 	u32 header_extent_size;
1424 	u16 num_header_extents_at_front;
1425 
1426 	header_extent_size = get_unaligned_be32(virt);
1427 	virt += sizeof(__be32);
1428 	num_header_extents_at_front = get_unaligned_be16(virt);
1429 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1430 				     * (size_t)header_extent_size));
1431 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1432 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1433 	    && (crypt_stat->metadata_size
1434 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1435 		rc = -EINVAL;
1436 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1437 		       crypt_stat->metadata_size);
1438 	}
1439 	return rc;
1440 }
1441 
1442 /**
1443  * set_default_header_data
1444  * @crypt_stat: The cryptographic context
1445  *
1446  * For version 0 file format; this function is only for backwards
1447  * compatibility for files created with the prior versions of
1448  * eCryptfs.
1449  */
1450 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1451 {
1452 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1453 }
1454 
1455 /**
1456  * ecryptfs_read_headers_virt
1457  * @page_virt: The virtual address into which to read the headers
1458  * @crypt_stat: The cryptographic context
1459  * @ecryptfs_dentry: The eCryptfs dentry
1460  * @validate_header_size: Whether to validate the header size while reading
1461  *
1462  * Read/parse the header data. The header format is detailed in the
1463  * comment block for the ecryptfs_write_headers_virt() function.
1464  *
1465  * Returns zero on success
1466  */
1467 static int ecryptfs_read_headers_virt(char *page_virt,
1468 				      struct ecryptfs_crypt_stat *crypt_stat,
1469 				      struct dentry *ecryptfs_dentry,
1470 				      int validate_header_size)
1471 {
1472 	int rc = 0;
1473 	int offset;
1474 	int bytes_read;
1475 
1476 	ecryptfs_set_default_sizes(crypt_stat);
1477 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1478 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1479 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1480 	rc = contains_ecryptfs_marker(page_virt + offset);
1481 	if (rc == 0) {
1482 		rc = -EINVAL;
1483 		goto out;
1484 	}
1485 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1486 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1487 				    &bytes_read);
1488 	if (rc) {
1489 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1490 		goto out;
1491 	}
1492 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1493 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1494 				"file version [%d] is supported by this "
1495 				"version of eCryptfs\n",
1496 				crypt_stat->file_version,
1497 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1498 		rc = -EINVAL;
1499 		goto out;
1500 	}
1501 	offset += bytes_read;
1502 	if (crypt_stat->file_version >= 1) {
1503 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1504 					   &bytes_read, validate_header_size);
1505 		if (rc) {
1506 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1507 					"metadata; rc = [%d]\n", rc);
1508 		}
1509 		offset += bytes_read;
1510 	} else
1511 		set_default_header_data(crypt_stat);
1512 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1513 				       ecryptfs_dentry);
1514 out:
1515 	return rc;
1516 }
1517 
1518 /**
1519  * ecryptfs_read_xattr_region
1520  * @page_virt: The vitual address into which to read the xattr data
1521  * @ecryptfs_inode: The eCryptfs inode
1522  *
1523  * Attempts to read the crypto metadata from the extended attribute
1524  * region of the lower file.
1525  *
1526  * Returns zero on success; non-zero on error
1527  */
1528 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1529 {
1530 	struct dentry *lower_dentry =
1531 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1532 	ssize_t size;
1533 	int rc = 0;
1534 
1535 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1536 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1537 	if (size < 0) {
1538 		if (unlikely(ecryptfs_verbosity > 0))
1539 			printk(KERN_INFO "Error attempting to read the [%s] "
1540 			       "xattr from the lower file; return value = "
1541 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1542 		rc = -EINVAL;
1543 		goto out;
1544 	}
1545 out:
1546 	return rc;
1547 }
1548 
1549 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1550 					    struct dentry *ecryptfs_dentry)
1551 {
1552 	int rc;
1553 
1554 	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1555 	if (rc)
1556 		goto out;
1557 	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
1558 		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1559 			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1560 		rc = -EINVAL;
1561 	}
1562 out:
1563 	return rc;
1564 }
1565 
1566 /**
1567  * ecryptfs_read_metadata
1568  *
1569  * Common entry point for reading file metadata. From here, we could
1570  * retrieve the header information from the header region of the file,
1571  * the xattr region of the file, or some other repostory that is
1572  * stored separately from the file itself. The current implementation
1573  * supports retrieving the metadata information from the file contents
1574  * and from the xattr region.
1575  *
1576  * Returns zero if valid headers found and parsed; non-zero otherwise
1577  */
1578 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1579 {
1580 	int rc = 0;
1581 	char *page_virt = NULL;
1582 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1583 	struct ecryptfs_crypt_stat *crypt_stat =
1584 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1585 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1586 		&ecryptfs_superblock_to_private(
1587 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1588 
1589 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1590 						      mount_crypt_stat);
1591 	/* Read the first page from the underlying file */
1592 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1593 	if (!page_virt) {
1594 		rc = -ENOMEM;
1595 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1596 		       __func__);
1597 		goto out;
1598 	}
1599 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1600 				 ecryptfs_inode);
1601 	if (rc >= 0)
1602 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1603 						ecryptfs_dentry,
1604 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1605 	if (rc) {
1606 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1607 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1608 		if (rc) {
1609 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1610 			       "file header region or xattr region\n");
1611 			rc = -EINVAL;
1612 			goto out;
1613 		}
1614 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1615 						ecryptfs_dentry,
1616 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1617 		if (rc) {
1618 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1619 			       "file xattr region either\n");
1620 			rc = -EINVAL;
1621 		}
1622 		if (crypt_stat->mount_crypt_stat->flags
1623 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1624 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1625 		} else {
1626 			printk(KERN_WARNING "Attempt to access file with "
1627 			       "crypto metadata only in the extended attribute "
1628 			       "region, but eCryptfs was mounted without "
1629 			       "xattr support enabled. eCryptfs will not treat "
1630 			       "this like an encrypted file.\n");
1631 			rc = -EINVAL;
1632 		}
1633 	}
1634 out:
1635 	if (page_virt) {
1636 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1637 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1638 	}
1639 	return rc;
1640 }
1641 
1642 /**
1643  * ecryptfs_encrypt_filename - encrypt filename
1644  *
1645  * CBC-encrypts the filename. We do not want to encrypt the same
1646  * filename with the same key and IV, which may happen with hard
1647  * links, so we prepend random bits to each filename.
1648  *
1649  * Returns zero on success; non-zero otherwise
1650  */
1651 static int
1652 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1653 			  struct ecryptfs_crypt_stat *crypt_stat,
1654 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1655 {
1656 	int rc = 0;
1657 
1658 	filename->encrypted_filename = NULL;
1659 	filename->encrypted_filename_size = 0;
1660 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1661 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1662 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1663 		size_t packet_size;
1664 		size_t remaining_bytes;
1665 
1666 		rc = ecryptfs_write_tag_70_packet(
1667 			NULL, NULL,
1668 			&filename->encrypted_filename_size,
1669 			mount_crypt_stat, NULL,
1670 			filename->filename_size);
1671 		if (rc) {
1672 			printk(KERN_ERR "%s: Error attempting to get packet "
1673 			       "size for tag 72; rc = [%d]\n", __func__,
1674 			       rc);
1675 			filename->encrypted_filename_size = 0;
1676 			goto out;
1677 		}
1678 		filename->encrypted_filename =
1679 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1680 		if (!filename->encrypted_filename) {
1681 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1682 			       "to kmalloc [%zd] bytes\n", __func__,
1683 			       filename->encrypted_filename_size);
1684 			rc = -ENOMEM;
1685 			goto out;
1686 		}
1687 		remaining_bytes = filename->encrypted_filename_size;
1688 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1689 						  &remaining_bytes,
1690 						  &packet_size,
1691 						  mount_crypt_stat,
1692 						  filename->filename,
1693 						  filename->filename_size);
1694 		if (rc) {
1695 			printk(KERN_ERR "%s: Error attempting to generate "
1696 			       "tag 70 packet; rc = [%d]\n", __func__,
1697 			       rc);
1698 			kfree(filename->encrypted_filename);
1699 			filename->encrypted_filename = NULL;
1700 			filename->encrypted_filename_size = 0;
1701 			goto out;
1702 		}
1703 		filename->encrypted_filename_size = packet_size;
1704 	} else {
1705 		printk(KERN_ERR "%s: No support for requested filename "
1706 		       "encryption method in this release\n", __func__);
1707 		rc = -EOPNOTSUPP;
1708 		goto out;
1709 	}
1710 out:
1711 	return rc;
1712 }
1713 
1714 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1715 				  const char *name, size_t name_size)
1716 {
1717 	int rc = 0;
1718 
1719 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1720 	if (!(*copied_name)) {
1721 		rc = -ENOMEM;
1722 		goto out;
1723 	}
1724 	memcpy((void *)(*copied_name), (void *)name, name_size);
1725 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1726 						 * in printing out the
1727 						 * string in debug
1728 						 * messages */
1729 	(*copied_name_size) = name_size;
1730 out:
1731 	return rc;
1732 }
1733 
1734 /**
1735  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1736  * @key_tfm: Crypto context for key material, set by this function
1737  * @cipher_name: Name of the cipher
1738  * @key_size: Size of the key in bytes
1739  *
1740  * Returns zero on success. Any crypto_tfm structs allocated here
1741  * should be released by other functions, such as on a superblock put
1742  * event, regardless of whether this function succeeds for fails.
1743  */
1744 static int
1745 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1746 			    char *cipher_name, size_t *key_size)
1747 {
1748 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1749 	char *full_alg_name = NULL;
1750 	int rc;
1751 
1752 	*key_tfm = NULL;
1753 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1754 		rc = -EINVAL;
1755 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1756 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1757 		goto out;
1758 	}
1759 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1760 						    "ecb");
1761 	if (rc)
1762 		goto out;
1763 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1764 	if (IS_ERR(*key_tfm)) {
1765 		rc = PTR_ERR(*key_tfm);
1766 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1767 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1768 		goto out;
1769 	}
1770 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1771 	if (*key_size == 0) {
1772 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1773 
1774 		*key_size = alg->max_keysize;
1775 	}
1776 	get_random_bytes(dummy_key, *key_size);
1777 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1778 	if (rc) {
1779 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1780 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1781 		       rc);
1782 		rc = -EINVAL;
1783 		goto out;
1784 	}
1785 out:
1786 	kfree(full_alg_name);
1787 	return rc;
1788 }
1789 
1790 struct kmem_cache *ecryptfs_key_tfm_cache;
1791 static struct list_head key_tfm_list;
1792 struct mutex key_tfm_list_mutex;
1793 
1794 int __init ecryptfs_init_crypto(void)
1795 {
1796 	mutex_init(&key_tfm_list_mutex);
1797 	INIT_LIST_HEAD(&key_tfm_list);
1798 	return 0;
1799 }
1800 
1801 /**
1802  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1803  *
1804  * Called only at module unload time
1805  */
1806 int ecryptfs_destroy_crypto(void)
1807 {
1808 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1809 
1810 	mutex_lock(&key_tfm_list_mutex);
1811 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1812 				 key_tfm_list) {
1813 		list_del(&key_tfm->key_tfm_list);
1814 		if (key_tfm->key_tfm)
1815 			crypto_free_blkcipher(key_tfm->key_tfm);
1816 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1817 	}
1818 	mutex_unlock(&key_tfm_list_mutex);
1819 	return 0;
1820 }
1821 
1822 int
1823 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1824 			 size_t key_size)
1825 {
1826 	struct ecryptfs_key_tfm *tmp_tfm;
1827 	int rc = 0;
1828 
1829 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1830 
1831 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1832 	if (key_tfm != NULL)
1833 		(*key_tfm) = tmp_tfm;
1834 	if (!tmp_tfm) {
1835 		rc = -ENOMEM;
1836 		printk(KERN_ERR "Error attempting to allocate from "
1837 		       "ecryptfs_key_tfm_cache\n");
1838 		goto out;
1839 	}
1840 	mutex_init(&tmp_tfm->key_tfm_mutex);
1841 	strncpy(tmp_tfm->cipher_name, cipher_name,
1842 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1843 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1844 	tmp_tfm->key_size = key_size;
1845 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1846 					 tmp_tfm->cipher_name,
1847 					 &tmp_tfm->key_size);
1848 	if (rc) {
1849 		printk(KERN_ERR "Error attempting to initialize key TFM "
1850 		       "cipher with name = [%s]; rc = [%d]\n",
1851 		       tmp_tfm->cipher_name, rc);
1852 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1853 		if (key_tfm != NULL)
1854 			(*key_tfm) = NULL;
1855 		goto out;
1856 	}
1857 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1858 out:
1859 	return rc;
1860 }
1861 
1862 /**
1863  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1864  * @cipher_name: the name of the cipher to search for
1865  * @key_tfm: set to corresponding tfm if found
1866  *
1867  * Searches for cached key_tfm matching @cipher_name
1868  * Must be called with &key_tfm_list_mutex held
1869  * Returns 1 if found, with @key_tfm set
1870  * Returns 0 if not found, with @key_tfm set to NULL
1871  */
1872 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1873 {
1874 	struct ecryptfs_key_tfm *tmp_key_tfm;
1875 
1876 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1877 
1878 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1879 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1880 			if (key_tfm)
1881 				(*key_tfm) = tmp_key_tfm;
1882 			return 1;
1883 		}
1884 	}
1885 	if (key_tfm)
1886 		(*key_tfm) = NULL;
1887 	return 0;
1888 }
1889 
1890 /**
1891  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1892  *
1893  * @tfm: set to cached tfm found, or new tfm created
1894  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1895  * @cipher_name: the name of the cipher to search for and/or add
1896  *
1897  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1898  * Searches for cached item first, and creates new if not found.
1899  * Returns 0 on success, non-zero if adding new cipher failed
1900  */
1901 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1902 					       struct mutex **tfm_mutex,
1903 					       char *cipher_name)
1904 {
1905 	struct ecryptfs_key_tfm *key_tfm;
1906 	int rc = 0;
1907 
1908 	(*tfm) = NULL;
1909 	(*tfm_mutex) = NULL;
1910 
1911 	mutex_lock(&key_tfm_list_mutex);
1912 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1913 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1914 		if (rc) {
1915 			printk(KERN_ERR "Error adding new key_tfm to list; "
1916 					"rc = [%d]\n", rc);
1917 			goto out;
1918 		}
1919 	}
1920 	(*tfm) = key_tfm->key_tfm;
1921 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1922 out:
1923 	mutex_unlock(&key_tfm_list_mutex);
1924 	return rc;
1925 }
1926 
1927 /* 64 characters forming a 6-bit target field */
1928 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1929 						 "EFGHIJKLMNOPQRST"
1930 						 "UVWXYZabcdefghij"
1931 						 "klmnopqrstuvwxyz");
1932 
1933 /* We could either offset on every reverse map or just pad some 0x00's
1934  * at the front here */
1935 static const unsigned char filename_rev_map[] = {
1936 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1937 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1938 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1939 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1940 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1941 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1942 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1943 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1944 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1945 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1946 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1947 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1948 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1949 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1950 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1951 	0x3D, 0x3E, 0x3F
1952 };
1953 
1954 /**
1955  * ecryptfs_encode_for_filename
1956  * @dst: Destination location for encoded filename
1957  * @dst_size: Size of the encoded filename in bytes
1958  * @src: Source location for the filename to encode
1959  * @src_size: Size of the source in bytes
1960  */
1961 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1962 				  unsigned char *src, size_t src_size)
1963 {
1964 	size_t num_blocks;
1965 	size_t block_num = 0;
1966 	size_t dst_offset = 0;
1967 	unsigned char last_block[3];
1968 
1969 	if (src_size == 0) {
1970 		(*dst_size) = 0;
1971 		goto out;
1972 	}
1973 	num_blocks = (src_size / 3);
1974 	if ((src_size % 3) == 0) {
1975 		memcpy(last_block, (&src[src_size - 3]), 3);
1976 	} else {
1977 		num_blocks++;
1978 		last_block[2] = 0x00;
1979 		switch (src_size % 3) {
1980 		case 1:
1981 			last_block[0] = src[src_size - 1];
1982 			last_block[1] = 0x00;
1983 			break;
1984 		case 2:
1985 			last_block[0] = src[src_size - 2];
1986 			last_block[1] = src[src_size - 1];
1987 		}
1988 	}
1989 	(*dst_size) = (num_blocks * 4);
1990 	if (!dst)
1991 		goto out;
1992 	while (block_num < num_blocks) {
1993 		unsigned char *src_block;
1994 		unsigned char dst_block[4];
1995 
1996 		if (block_num == (num_blocks - 1))
1997 			src_block = last_block;
1998 		else
1999 			src_block = &src[block_num * 3];
2000 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2001 		dst_block[1] = (((src_block[0] << 4) & 0x30)
2002 				| ((src_block[1] >> 4) & 0x0F));
2003 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
2004 				| ((src_block[2] >> 6) & 0x03));
2005 		dst_block[3] = (src_block[2] & 0x3F);
2006 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2007 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2008 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2009 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2010 		block_num++;
2011 	}
2012 out:
2013 	return;
2014 }
2015 
2016 /**
2017  * ecryptfs_decode_from_filename
2018  * @dst: If NULL, this function only sets @dst_size and returns. If
2019  *       non-NULL, this function decodes the encoded octets in @src
2020  *       into the memory that @dst points to.
2021  * @dst_size: Set to the size of the decoded string.
2022  * @src: The encoded set of octets to decode.
2023  * @src_size: The size of the encoded set of octets to decode.
2024  */
2025 static void
2026 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2027 			      const unsigned char *src, size_t src_size)
2028 {
2029 	u8 current_bit_offset = 0;
2030 	size_t src_byte_offset = 0;
2031 	size_t dst_byte_offset = 0;
2032 
2033 	if (dst == NULL) {
2034 		/* Not exact; conservatively long. Every block of 4
2035 		 * encoded characters decodes into a block of 3
2036 		 * decoded characters. This segment of code provides
2037 		 * the caller with the maximum amount of allocated
2038 		 * space that @dst will need to point to in a
2039 		 * subsequent call. */
2040 		(*dst_size) = (((src_size + 1) * 3) / 4);
2041 		goto out;
2042 	}
2043 	while (src_byte_offset < src_size) {
2044 		unsigned char src_byte =
2045 				filename_rev_map[(int)src[src_byte_offset]];
2046 
2047 		switch (current_bit_offset) {
2048 		case 0:
2049 			dst[dst_byte_offset] = (src_byte << 2);
2050 			current_bit_offset = 6;
2051 			break;
2052 		case 6:
2053 			dst[dst_byte_offset++] |= (src_byte >> 4);
2054 			dst[dst_byte_offset] = ((src_byte & 0xF)
2055 						 << 4);
2056 			current_bit_offset = 4;
2057 			break;
2058 		case 4:
2059 			dst[dst_byte_offset++] |= (src_byte >> 2);
2060 			dst[dst_byte_offset] = (src_byte << 6);
2061 			current_bit_offset = 2;
2062 			break;
2063 		case 2:
2064 			dst[dst_byte_offset++] |= (src_byte);
2065 			dst[dst_byte_offset] = 0;
2066 			current_bit_offset = 0;
2067 			break;
2068 		}
2069 		src_byte_offset++;
2070 	}
2071 	(*dst_size) = dst_byte_offset;
2072 out:
2073 	return;
2074 }
2075 
2076 /**
2077  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2078  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2079  * @name: The plaintext name
2080  * @length: The length of the plaintext
2081  * @encoded_name: The encypted name
2082  *
2083  * Encrypts and encodes a filename into something that constitutes a
2084  * valid filename for a filesystem, with printable characters.
2085  *
2086  * We assume that we have a properly initialized crypto context,
2087  * pointed to by crypt_stat->tfm.
2088  *
2089  * Returns zero on success; non-zero on otherwise
2090  */
2091 int ecryptfs_encrypt_and_encode_filename(
2092 	char **encoded_name,
2093 	size_t *encoded_name_size,
2094 	struct ecryptfs_crypt_stat *crypt_stat,
2095 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2096 	const char *name, size_t name_size)
2097 {
2098 	size_t encoded_name_no_prefix_size;
2099 	int rc = 0;
2100 
2101 	(*encoded_name) = NULL;
2102 	(*encoded_name_size) = 0;
2103 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2104 	    || (mount_crypt_stat && (mount_crypt_stat->flags
2105 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2106 		struct ecryptfs_filename *filename;
2107 
2108 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2109 		if (!filename) {
2110 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2111 			       "to kzalloc [%zd] bytes\n", __func__,
2112 			       sizeof(*filename));
2113 			rc = -ENOMEM;
2114 			goto out;
2115 		}
2116 		filename->filename = (char *)name;
2117 		filename->filename_size = name_size;
2118 		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2119 					       mount_crypt_stat);
2120 		if (rc) {
2121 			printk(KERN_ERR "%s: Error attempting to encrypt "
2122 			       "filename; rc = [%d]\n", __func__, rc);
2123 			kfree(filename);
2124 			goto out;
2125 		}
2126 		ecryptfs_encode_for_filename(
2127 			NULL, &encoded_name_no_prefix_size,
2128 			filename->encrypted_filename,
2129 			filename->encrypted_filename_size);
2130 		if ((crypt_stat && (crypt_stat->flags
2131 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2132 		    || (mount_crypt_stat
2133 			&& (mount_crypt_stat->flags
2134 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2135 			(*encoded_name_size) =
2136 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2137 				 + encoded_name_no_prefix_size);
2138 		else
2139 			(*encoded_name_size) =
2140 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2141 				 + encoded_name_no_prefix_size);
2142 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2143 		if (!(*encoded_name)) {
2144 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2145 			       "to kzalloc [%zd] bytes\n", __func__,
2146 			       (*encoded_name_size));
2147 			rc = -ENOMEM;
2148 			kfree(filename->encrypted_filename);
2149 			kfree(filename);
2150 			goto out;
2151 		}
2152 		if ((crypt_stat && (crypt_stat->flags
2153 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2154 		    || (mount_crypt_stat
2155 			&& (mount_crypt_stat->flags
2156 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2157 			memcpy((*encoded_name),
2158 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2159 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2160 			ecryptfs_encode_for_filename(
2161 			    ((*encoded_name)
2162 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2163 			    &encoded_name_no_prefix_size,
2164 			    filename->encrypted_filename,
2165 			    filename->encrypted_filename_size);
2166 			(*encoded_name_size) =
2167 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2168 				 + encoded_name_no_prefix_size);
2169 			(*encoded_name)[(*encoded_name_size)] = '\0';
2170 		} else {
2171 			rc = -EOPNOTSUPP;
2172 		}
2173 		if (rc) {
2174 			printk(KERN_ERR "%s: Error attempting to encode "
2175 			       "encrypted filename; rc = [%d]\n", __func__,
2176 			       rc);
2177 			kfree((*encoded_name));
2178 			(*encoded_name) = NULL;
2179 			(*encoded_name_size) = 0;
2180 		}
2181 		kfree(filename->encrypted_filename);
2182 		kfree(filename);
2183 	} else {
2184 		rc = ecryptfs_copy_filename(encoded_name,
2185 					    encoded_name_size,
2186 					    name, name_size);
2187 	}
2188 out:
2189 	return rc;
2190 }
2191 
2192 /**
2193  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2194  * @plaintext_name: The plaintext name
2195  * @plaintext_name_size: The plaintext name size
2196  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2197  * @name: The filename in cipher text
2198  * @name_size: The cipher text name size
2199  *
2200  * Decrypts and decodes the filename.
2201  *
2202  * Returns zero on error; non-zero otherwise
2203  */
2204 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2205 					 size_t *plaintext_name_size,
2206 					 struct dentry *ecryptfs_dir_dentry,
2207 					 const char *name, size_t name_size)
2208 {
2209 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2210 		&ecryptfs_superblock_to_private(
2211 			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2212 	char *decoded_name;
2213 	size_t decoded_name_size;
2214 	size_t packet_size;
2215 	int rc = 0;
2216 
2217 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2218 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2219 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2220 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2221 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2222 		const char *orig_name = name;
2223 		size_t orig_name_size = name_size;
2224 
2225 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2226 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2227 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2228 					      name, name_size);
2229 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2230 		if (!decoded_name) {
2231 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2232 			       "to kmalloc [%zd] bytes\n", __func__,
2233 			       decoded_name_size);
2234 			rc = -ENOMEM;
2235 			goto out;
2236 		}
2237 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2238 					      name, name_size);
2239 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2240 						  plaintext_name_size,
2241 						  &packet_size,
2242 						  mount_crypt_stat,
2243 						  decoded_name,
2244 						  decoded_name_size);
2245 		if (rc) {
2246 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2247 			       "from filename; copying through filename "
2248 			       "as-is\n", __func__);
2249 			rc = ecryptfs_copy_filename(plaintext_name,
2250 						    plaintext_name_size,
2251 						    orig_name, orig_name_size);
2252 			goto out_free;
2253 		}
2254 	} else {
2255 		rc = ecryptfs_copy_filename(plaintext_name,
2256 					    plaintext_name_size,
2257 					    name, name_size);
2258 		goto out;
2259 	}
2260 out_free:
2261 	kfree(decoded_name);
2262 out:
2263 	return rc;
2264 }
2265