xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision 545e4006)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
38 
39 static int
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
41 			     struct page *dst_page, int dst_offset,
42 			     struct page *src_page, int src_offset, int size,
43 			     unsigned char *iv);
44 static int
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46 			     struct page *dst_page, int dst_offset,
47 			     struct page *src_page, int src_offset, int size,
48 			     unsigned char *iv);
49 
50 /**
51  * ecryptfs_to_hex
52  * @dst: Buffer to take hex character representation of contents of
53  *       src; must be at least of size (src_size * 2)
54  * @src: Buffer to be converted to a hex string respresentation
55  * @src_size: number of bytes to convert
56  */
57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
58 {
59 	int x;
60 
61 	for (x = 0; x < src_size; x++)
62 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
63 }
64 
65 /**
66  * ecryptfs_from_hex
67  * @dst: Buffer to take the bytes from src hex; must be at least of
68  *       size (src_size / 2)
69  * @src: Buffer to be converted from a hex string respresentation to raw value
70  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71  */
72 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
73 {
74 	int x;
75 	char tmp[3] = { 0, };
76 
77 	for (x = 0; x < dst_size; x++) {
78 		tmp[0] = src[x * 2];
79 		tmp[1] = src[x * 2 + 1];
80 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
81 	}
82 }
83 
84 /**
85  * ecryptfs_calculate_md5 - calculates the md5 of @src
86  * @dst: Pointer to 16 bytes of allocated memory
87  * @crypt_stat: Pointer to crypt_stat struct for the current inode
88  * @src: Data to be md5'd
89  * @len: Length of @src
90  *
91  * Uses the allocated crypto context that crypt_stat references to
92  * generate the MD5 sum of the contents of src.
93  */
94 static int ecryptfs_calculate_md5(char *dst,
95 				  struct ecryptfs_crypt_stat *crypt_stat,
96 				  char *src, int len)
97 {
98 	struct scatterlist sg;
99 	struct hash_desc desc = {
100 		.tfm = crypt_stat->hash_tfm,
101 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
102 	};
103 	int rc = 0;
104 
105 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
106 	sg_init_one(&sg, (u8 *)src, len);
107 	if (!desc.tfm) {
108 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109 					     CRYPTO_ALG_ASYNC);
110 		if (IS_ERR(desc.tfm)) {
111 			rc = PTR_ERR(desc.tfm);
112 			ecryptfs_printk(KERN_ERR, "Error attempting to "
113 					"allocate crypto context; rc = [%d]\n",
114 					rc);
115 			goto out;
116 		}
117 		crypt_stat->hash_tfm = desc.tfm;
118 	}
119 	rc = crypto_hash_init(&desc);
120 	if (rc) {
121 		printk(KERN_ERR
122 		       "%s: Error initializing crypto hash; rc = [%d]\n",
123 		       __func__, rc);
124 		goto out;
125 	}
126 	rc = crypto_hash_update(&desc, &sg, len);
127 	if (rc) {
128 		printk(KERN_ERR
129 		       "%s: Error updating crypto hash; rc = [%d]\n",
130 		       __func__, rc);
131 		goto out;
132 	}
133 	rc = crypto_hash_final(&desc, dst);
134 	if (rc) {
135 		printk(KERN_ERR
136 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
137 		       __func__, rc);
138 		goto out;
139 	}
140 out:
141 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
142 	return rc;
143 }
144 
145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
146 						  char *cipher_name,
147 						  char *chaining_modifier)
148 {
149 	int cipher_name_len = strlen(cipher_name);
150 	int chaining_modifier_len = strlen(chaining_modifier);
151 	int algified_name_len;
152 	int rc;
153 
154 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
155 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
156 	if (!(*algified_name)) {
157 		rc = -ENOMEM;
158 		goto out;
159 	}
160 	snprintf((*algified_name), algified_name_len, "%s(%s)",
161 		 chaining_modifier, cipher_name);
162 	rc = 0;
163 out:
164 	return rc;
165 }
166 
167 /**
168  * ecryptfs_derive_iv
169  * @iv: destination for the derived iv vale
170  * @crypt_stat: Pointer to crypt_stat struct for the current inode
171  * @offset: Offset of the extent whose IV we are to derive
172  *
173  * Generate the initialization vector from the given root IV and page
174  * offset.
175  *
176  * Returns zero on success; non-zero on error.
177  */
178 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
179 			      loff_t offset)
180 {
181 	int rc = 0;
182 	char dst[MD5_DIGEST_SIZE];
183 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
184 
185 	if (unlikely(ecryptfs_verbosity > 0)) {
186 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
187 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
188 	}
189 	/* TODO: It is probably secure to just cast the least
190 	 * significant bits of the root IV into an unsigned long and
191 	 * add the offset to that rather than go through all this
192 	 * hashing business. -Halcrow */
193 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
194 	memset((src + crypt_stat->iv_bytes), 0, 16);
195 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
196 	if (unlikely(ecryptfs_verbosity > 0)) {
197 		ecryptfs_printk(KERN_DEBUG, "source:\n");
198 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
199 	}
200 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
201 				    (crypt_stat->iv_bytes + 16));
202 	if (rc) {
203 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
204 				"MD5 while generating IV for a page\n");
205 		goto out;
206 	}
207 	memcpy(iv, dst, crypt_stat->iv_bytes);
208 	if (unlikely(ecryptfs_verbosity > 0)) {
209 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
210 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
211 	}
212 out:
213 	return rc;
214 }
215 
216 /**
217  * ecryptfs_init_crypt_stat
218  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
219  *
220  * Initialize the crypt_stat structure.
221  */
222 void
223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
224 {
225 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
227 	mutex_init(&crypt_stat->keysig_list_mutex);
228 	mutex_init(&crypt_stat->cs_mutex);
229 	mutex_init(&crypt_stat->cs_tfm_mutex);
230 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
231 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
232 }
233 
234 /**
235  * ecryptfs_destroy_crypt_stat
236  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
237  *
238  * Releases all memory associated with a crypt_stat struct.
239  */
240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
241 {
242 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
243 
244 	if (crypt_stat->tfm)
245 		crypto_free_blkcipher(crypt_stat->tfm);
246 	if (crypt_stat->hash_tfm)
247 		crypto_free_hash(crypt_stat->hash_tfm);
248 	mutex_lock(&crypt_stat->keysig_list_mutex);
249 	list_for_each_entry_safe(key_sig, key_sig_tmp,
250 				 &crypt_stat->keysig_list, crypt_stat_list) {
251 		list_del(&key_sig->crypt_stat_list);
252 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 	}
254 	mutex_unlock(&crypt_stat->keysig_list_mutex);
255 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
256 }
257 
258 void ecryptfs_destroy_mount_crypt_stat(
259 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
260 {
261 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
262 
263 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
264 		return;
265 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
266 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
267 				 &mount_crypt_stat->global_auth_tok_list,
268 				 mount_crypt_stat_list) {
269 		list_del(&auth_tok->mount_crypt_stat_list);
270 		mount_crypt_stat->num_global_auth_toks--;
271 		if (auth_tok->global_auth_tok_key
272 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
273 			key_put(auth_tok->global_auth_tok_key);
274 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
275 	}
276 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
277 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
278 }
279 
280 /**
281  * virt_to_scatterlist
282  * @addr: Virtual address
283  * @size: Size of data; should be an even multiple of the block size
284  * @sg: Pointer to scatterlist array; set to NULL to obtain only
285  *      the number of scatterlist structs required in array
286  * @sg_size: Max array size
287  *
288  * Fills in a scatterlist array with page references for a passed
289  * virtual address.
290  *
291  * Returns the number of scatterlist structs in array used
292  */
293 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
294 			int sg_size)
295 {
296 	int i = 0;
297 	struct page *pg;
298 	int offset;
299 	int remainder_of_page;
300 
301 	sg_init_table(sg, sg_size);
302 
303 	while (size > 0 && i < sg_size) {
304 		pg = virt_to_page(addr);
305 		offset = offset_in_page(addr);
306 		if (sg)
307 			sg_set_page(&sg[i], pg, 0, offset);
308 		remainder_of_page = PAGE_CACHE_SIZE - offset;
309 		if (size >= remainder_of_page) {
310 			if (sg)
311 				sg[i].length = remainder_of_page;
312 			addr += remainder_of_page;
313 			size -= remainder_of_page;
314 		} else {
315 			if (sg)
316 				sg[i].length = size;
317 			addr += size;
318 			size = 0;
319 		}
320 		i++;
321 	}
322 	if (size > 0)
323 		return -ENOMEM;
324 	return i;
325 }
326 
327 /**
328  * encrypt_scatterlist
329  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
330  * @dest_sg: Destination of encrypted data
331  * @src_sg: Data to be encrypted
332  * @size: Length of data to be encrypted
333  * @iv: iv to use during encryption
334  *
335  * Returns the number of bytes encrypted; negative value on error
336  */
337 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
338 			       struct scatterlist *dest_sg,
339 			       struct scatterlist *src_sg, int size,
340 			       unsigned char *iv)
341 {
342 	struct blkcipher_desc desc = {
343 		.tfm = crypt_stat->tfm,
344 		.info = iv,
345 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
346 	};
347 	int rc = 0;
348 
349 	BUG_ON(!crypt_stat || !crypt_stat->tfm
350 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
351 	if (unlikely(ecryptfs_verbosity > 0)) {
352 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
353 				crypt_stat->key_size);
354 		ecryptfs_dump_hex(crypt_stat->key,
355 				  crypt_stat->key_size);
356 	}
357 	/* Consider doing this once, when the file is opened */
358 	mutex_lock(&crypt_stat->cs_tfm_mutex);
359 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
360 		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
361 					     crypt_stat->key_size);
362 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
363 	}
364 	if (rc) {
365 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
366 				rc);
367 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
368 		rc = -EINVAL;
369 		goto out;
370 	}
371 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
372 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
373 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
374 out:
375 	return rc;
376 }
377 
378 /**
379  * ecryptfs_lower_offset_for_extent
380  *
381  * Convert an eCryptfs page index into a lower byte offset
382  */
383 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
384 					     struct ecryptfs_crypt_stat *crypt_stat)
385 {
386 	(*offset) = (crypt_stat->num_header_bytes_at_front
387 		     + (crypt_stat->extent_size * extent_num));
388 }
389 
390 /**
391  * ecryptfs_encrypt_extent
392  * @enc_extent_page: Allocated page into which to encrypt the data in
393  *                   @page
394  * @crypt_stat: crypt_stat containing cryptographic context for the
395  *              encryption operation
396  * @page: Page containing plaintext data extent to encrypt
397  * @extent_offset: Page extent offset for use in generating IV
398  *
399  * Encrypts one extent of data.
400  *
401  * Return zero on success; non-zero otherwise
402  */
403 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
404 				   struct ecryptfs_crypt_stat *crypt_stat,
405 				   struct page *page,
406 				   unsigned long extent_offset)
407 {
408 	loff_t extent_base;
409 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
410 	int rc;
411 
412 	extent_base = (((loff_t)page->index)
413 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
414 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
415 				(extent_base + extent_offset));
416 	if (rc) {
417 		ecryptfs_printk(KERN_ERR, "Error attempting to "
418 				"derive IV for extent [0x%.16x]; "
419 				"rc = [%d]\n", (extent_base + extent_offset),
420 				rc);
421 		goto out;
422 	}
423 	if (unlikely(ecryptfs_verbosity > 0)) {
424 		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
425 				"with iv:\n");
426 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
427 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
428 				"encryption:\n");
429 		ecryptfs_dump_hex((char *)
430 				  (page_address(page)
431 				   + (extent_offset * crypt_stat->extent_size)),
432 				  8);
433 	}
434 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
435 					  page, (extent_offset
436 						 * crypt_stat->extent_size),
437 					  crypt_stat->extent_size, extent_iv);
438 	if (rc < 0) {
439 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
440 		       "page->index = [%ld], extent_offset = [%ld]; "
441 		       "rc = [%d]\n", __func__, page->index, extent_offset,
442 		       rc);
443 		goto out;
444 	}
445 	rc = 0;
446 	if (unlikely(ecryptfs_verbosity > 0)) {
447 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
448 				"rc = [%d]\n", (extent_base + extent_offset),
449 				rc);
450 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
451 				"encryption:\n");
452 		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
453 	}
454 out:
455 	return rc;
456 }
457 
458 /**
459  * ecryptfs_encrypt_page
460  * @page: Page mapped from the eCryptfs inode for the file; contains
461  *        decrypted content that needs to be encrypted (to a temporary
462  *        page; not in place) and written out to the lower file
463  *
464  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
465  * that eCryptfs pages may straddle the lower pages -- for instance,
466  * if the file was created on a machine with an 8K page size
467  * (resulting in an 8K header), and then the file is copied onto a
468  * host with a 32K page size, then when reading page 0 of the eCryptfs
469  * file, 24K of page 0 of the lower file will be read and decrypted,
470  * and then 8K of page 1 of the lower file will be read and decrypted.
471  *
472  * Returns zero on success; negative on error
473  */
474 int ecryptfs_encrypt_page(struct page *page)
475 {
476 	struct inode *ecryptfs_inode;
477 	struct ecryptfs_crypt_stat *crypt_stat;
478 	char *enc_extent_virt = NULL;
479 	struct page *enc_extent_page;
480 	loff_t extent_offset;
481 	int rc = 0;
482 
483 	ecryptfs_inode = page->mapping->host;
484 	crypt_stat =
485 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
486 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
487 		rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
488 						       0, PAGE_CACHE_SIZE);
489 		if (rc)
490 			printk(KERN_ERR "%s: Error attempting to copy "
491 			       "page at index [%ld]\n", __func__,
492 			       page->index);
493 		goto out;
494 	}
495 	enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
496 	if (!enc_extent_virt) {
497 		rc = -ENOMEM;
498 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
499 				"encrypted extent\n");
500 		goto out;
501 	}
502 	enc_extent_page = virt_to_page(enc_extent_virt);
503 	for (extent_offset = 0;
504 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
505 	     extent_offset++) {
506 		loff_t offset;
507 
508 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
509 					     extent_offset);
510 		if (rc) {
511 			printk(KERN_ERR "%s: Error encrypting extent; "
512 			       "rc = [%d]\n", __func__, rc);
513 			goto out;
514 		}
515 		ecryptfs_lower_offset_for_extent(
516 			&offset, ((((loff_t)page->index)
517 				   * (PAGE_CACHE_SIZE
518 				      / crypt_stat->extent_size))
519 				  + extent_offset), crypt_stat);
520 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
521 					  offset, crypt_stat->extent_size);
522 		if (rc) {
523 			ecryptfs_printk(KERN_ERR, "Error attempting "
524 					"to write lower page; rc = [%d]"
525 					"\n", rc);
526 			goto out;
527 		}
528 	}
529 out:
530 	kfree(enc_extent_virt);
531 	return rc;
532 }
533 
534 static int ecryptfs_decrypt_extent(struct page *page,
535 				   struct ecryptfs_crypt_stat *crypt_stat,
536 				   struct page *enc_extent_page,
537 				   unsigned long extent_offset)
538 {
539 	loff_t extent_base;
540 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
541 	int rc;
542 
543 	extent_base = (((loff_t)page->index)
544 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
545 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
546 				(extent_base + extent_offset));
547 	if (rc) {
548 		ecryptfs_printk(KERN_ERR, "Error attempting to "
549 				"derive IV for extent [0x%.16x]; "
550 				"rc = [%d]\n", (extent_base + extent_offset),
551 				rc);
552 		goto out;
553 	}
554 	if (unlikely(ecryptfs_verbosity > 0)) {
555 		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
556 				"with iv:\n");
557 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
558 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
559 				"decryption:\n");
560 		ecryptfs_dump_hex((char *)
561 				  (page_address(enc_extent_page)
562 				   + (extent_offset * crypt_stat->extent_size)),
563 				  8);
564 	}
565 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
566 					  (extent_offset
567 					   * crypt_stat->extent_size),
568 					  enc_extent_page, 0,
569 					  crypt_stat->extent_size, extent_iv);
570 	if (rc < 0) {
571 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
572 		       "page->index = [%ld], extent_offset = [%ld]; "
573 		       "rc = [%d]\n", __func__, page->index, extent_offset,
574 		       rc);
575 		goto out;
576 	}
577 	rc = 0;
578 	if (unlikely(ecryptfs_verbosity > 0)) {
579 		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
580 				"rc = [%d]\n", (extent_base + extent_offset),
581 				rc);
582 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
583 				"decryption:\n");
584 		ecryptfs_dump_hex((char *)(page_address(page)
585 					   + (extent_offset
586 					      * crypt_stat->extent_size)), 8);
587 	}
588 out:
589 	return rc;
590 }
591 
592 /**
593  * ecryptfs_decrypt_page
594  * @page: Page mapped from the eCryptfs inode for the file; data read
595  *        and decrypted from the lower file will be written into this
596  *        page
597  *
598  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
599  * that eCryptfs pages may straddle the lower pages -- for instance,
600  * if the file was created on a machine with an 8K page size
601  * (resulting in an 8K header), and then the file is copied onto a
602  * host with a 32K page size, then when reading page 0 of the eCryptfs
603  * file, 24K of page 0 of the lower file will be read and decrypted,
604  * and then 8K of page 1 of the lower file will be read and decrypted.
605  *
606  * Returns zero on success; negative on error
607  */
608 int ecryptfs_decrypt_page(struct page *page)
609 {
610 	struct inode *ecryptfs_inode;
611 	struct ecryptfs_crypt_stat *crypt_stat;
612 	char *enc_extent_virt = NULL;
613 	struct page *enc_extent_page;
614 	unsigned long extent_offset;
615 	int rc = 0;
616 
617 	ecryptfs_inode = page->mapping->host;
618 	crypt_stat =
619 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
620 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
621 		rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
622 						      PAGE_CACHE_SIZE,
623 						      ecryptfs_inode);
624 		if (rc)
625 			printk(KERN_ERR "%s: Error attempting to copy "
626 			       "page at index [%ld]\n", __func__,
627 			       page->index);
628 		goto out;
629 	}
630 	enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
631 	if (!enc_extent_virt) {
632 		rc = -ENOMEM;
633 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
634 				"encrypted extent\n");
635 		goto out;
636 	}
637 	enc_extent_page = virt_to_page(enc_extent_virt);
638 	for (extent_offset = 0;
639 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
640 	     extent_offset++) {
641 		loff_t offset;
642 
643 		ecryptfs_lower_offset_for_extent(
644 			&offset, ((page->index * (PAGE_CACHE_SIZE
645 						  / crypt_stat->extent_size))
646 				  + extent_offset), crypt_stat);
647 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
648 					 crypt_stat->extent_size,
649 					 ecryptfs_inode);
650 		if (rc) {
651 			ecryptfs_printk(KERN_ERR, "Error attempting "
652 					"to read lower page; rc = [%d]"
653 					"\n", rc);
654 			goto out;
655 		}
656 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
657 					     extent_offset);
658 		if (rc) {
659 			printk(KERN_ERR "%s: Error encrypting extent; "
660 			       "rc = [%d]\n", __func__, rc);
661 			goto out;
662 		}
663 	}
664 out:
665 	kfree(enc_extent_virt);
666 	return rc;
667 }
668 
669 /**
670  * decrypt_scatterlist
671  * @crypt_stat: Cryptographic context
672  * @dest_sg: The destination scatterlist to decrypt into
673  * @src_sg: The source scatterlist to decrypt from
674  * @size: The number of bytes to decrypt
675  * @iv: The initialization vector to use for the decryption
676  *
677  * Returns the number of bytes decrypted; negative value on error
678  */
679 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
680 			       struct scatterlist *dest_sg,
681 			       struct scatterlist *src_sg, int size,
682 			       unsigned char *iv)
683 {
684 	struct blkcipher_desc desc = {
685 		.tfm = crypt_stat->tfm,
686 		.info = iv,
687 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
688 	};
689 	int rc = 0;
690 
691 	/* Consider doing this once, when the file is opened */
692 	mutex_lock(&crypt_stat->cs_tfm_mutex);
693 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
694 				     crypt_stat->key_size);
695 	if (rc) {
696 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
697 				rc);
698 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
699 		rc = -EINVAL;
700 		goto out;
701 	}
702 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
703 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
704 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
705 	if (rc) {
706 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
707 				rc);
708 		goto out;
709 	}
710 	rc = size;
711 out:
712 	return rc;
713 }
714 
715 /**
716  * ecryptfs_encrypt_page_offset
717  * @crypt_stat: The cryptographic context
718  * @dst_page: The page to encrypt into
719  * @dst_offset: The offset in the page to encrypt into
720  * @src_page: The page to encrypt from
721  * @src_offset: The offset in the page to encrypt from
722  * @size: The number of bytes to encrypt
723  * @iv: The initialization vector to use for the encryption
724  *
725  * Returns the number of bytes encrypted
726  */
727 static int
728 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
729 			     struct page *dst_page, int dst_offset,
730 			     struct page *src_page, int src_offset, int size,
731 			     unsigned char *iv)
732 {
733 	struct scatterlist src_sg, dst_sg;
734 
735 	sg_init_table(&src_sg, 1);
736 	sg_init_table(&dst_sg, 1);
737 
738 	sg_set_page(&src_sg, src_page, size, src_offset);
739 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
740 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
741 }
742 
743 /**
744  * ecryptfs_decrypt_page_offset
745  * @crypt_stat: The cryptographic context
746  * @dst_page: The page to decrypt into
747  * @dst_offset: The offset in the page to decrypt into
748  * @src_page: The page to decrypt from
749  * @src_offset: The offset in the page to decrypt from
750  * @size: The number of bytes to decrypt
751  * @iv: The initialization vector to use for the decryption
752  *
753  * Returns the number of bytes decrypted
754  */
755 static int
756 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
757 			     struct page *dst_page, int dst_offset,
758 			     struct page *src_page, int src_offset, int size,
759 			     unsigned char *iv)
760 {
761 	struct scatterlist src_sg, dst_sg;
762 
763 	sg_init_table(&src_sg, 1);
764 	sg_set_page(&src_sg, src_page, size, src_offset);
765 
766 	sg_init_table(&dst_sg, 1);
767 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
768 
769 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
770 }
771 
772 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
773 
774 /**
775  * ecryptfs_init_crypt_ctx
776  * @crypt_stat: Uninitilized crypt stats structure
777  *
778  * Initialize the crypto context.
779  *
780  * TODO: Performance: Keep a cache of initialized cipher contexts;
781  * only init if needed
782  */
783 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
784 {
785 	char *full_alg_name;
786 	int rc = -EINVAL;
787 
788 	if (!crypt_stat->cipher) {
789 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
790 		goto out;
791 	}
792 	ecryptfs_printk(KERN_DEBUG,
793 			"Initializing cipher [%s]; strlen = [%d]; "
794 			"key_size_bits = [%d]\n",
795 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
796 			crypt_stat->key_size << 3);
797 	if (crypt_stat->tfm) {
798 		rc = 0;
799 		goto out;
800 	}
801 	mutex_lock(&crypt_stat->cs_tfm_mutex);
802 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
803 						    crypt_stat->cipher, "cbc");
804 	if (rc)
805 		goto out_unlock;
806 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
807 						 CRYPTO_ALG_ASYNC);
808 	kfree(full_alg_name);
809 	if (IS_ERR(crypt_stat->tfm)) {
810 		rc = PTR_ERR(crypt_stat->tfm);
811 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
812 				"Error initializing cipher [%s]\n",
813 				crypt_stat->cipher);
814 		goto out_unlock;
815 	}
816 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
817 	rc = 0;
818 out_unlock:
819 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
820 out:
821 	return rc;
822 }
823 
824 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
825 {
826 	int extent_size_tmp;
827 
828 	crypt_stat->extent_mask = 0xFFFFFFFF;
829 	crypt_stat->extent_shift = 0;
830 	if (crypt_stat->extent_size == 0)
831 		return;
832 	extent_size_tmp = crypt_stat->extent_size;
833 	while ((extent_size_tmp & 0x01) == 0) {
834 		extent_size_tmp >>= 1;
835 		crypt_stat->extent_mask <<= 1;
836 		crypt_stat->extent_shift++;
837 	}
838 }
839 
840 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
841 {
842 	/* Default values; may be overwritten as we are parsing the
843 	 * packets. */
844 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
845 	set_extent_mask_and_shift(crypt_stat);
846 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
847 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
848 		crypt_stat->num_header_bytes_at_front = 0;
849 	else {
850 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
851 			crypt_stat->num_header_bytes_at_front =
852 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
853 		else
854 			crypt_stat->num_header_bytes_at_front =	PAGE_CACHE_SIZE;
855 	}
856 }
857 
858 /**
859  * ecryptfs_compute_root_iv
860  * @crypt_stats
861  *
862  * On error, sets the root IV to all 0's.
863  */
864 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
865 {
866 	int rc = 0;
867 	char dst[MD5_DIGEST_SIZE];
868 
869 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
870 	BUG_ON(crypt_stat->iv_bytes <= 0);
871 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
872 		rc = -EINVAL;
873 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
874 				"cannot generate root IV\n");
875 		goto out;
876 	}
877 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
878 				    crypt_stat->key_size);
879 	if (rc) {
880 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
881 				"MD5 while generating root IV\n");
882 		goto out;
883 	}
884 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
885 out:
886 	if (rc) {
887 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
888 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
889 	}
890 	return rc;
891 }
892 
893 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
894 {
895 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
896 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
897 	ecryptfs_compute_root_iv(crypt_stat);
898 	if (unlikely(ecryptfs_verbosity > 0)) {
899 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
900 		ecryptfs_dump_hex(crypt_stat->key,
901 				  crypt_stat->key_size);
902 	}
903 }
904 
905 /**
906  * ecryptfs_copy_mount_wide_flags_to_inode_flags
907  * @crypt_stat: The inode's cryptographic context
908  * @mount_crypt_stat: The mount point's cryptographic context
909  *
910  * This function propagates the mount-wide flags to individual inode
911  * flags.
912  */
913 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
914 	struct ecryptfs_crypt_stat *crypt_stat,
915 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
916 {
917 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
918 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
919 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
920 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
921 }
922 
923 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
924 	struct ecryptfs_crypt_stat *crypt_stat,
925 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
926 {
927 	struct ecryptfs_global_auth_tok *global_auth_tok;
928 	int rc = 0;
929 
930 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
931 	list_for_each_entry(global_auth_tok,
932 			    &mount_crypt_stat->global_auth_tok_list,
933 			    mount_crypt_stat_list) {
934 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
935 		if (rc) {
936 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
937 			mutex_unlock(
938 				&mount_crypt_stat->global_auth_tok_list_mutex);
939 			goto out;
940 		}
941 	}
942 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
943 out:
944 	return rc;
945 }
946 
947 /**
948  * ecryptfs_set_default_crypt_stat_vals
949  * @crypt_stat: The inode's cryptographic context
950  * @mount_crypt_stat: The mount point's cryptographic context
951  *
952  * Default values in the event that policy does not override them.
953  */
954 static void ecryptfs_set_default_crypt_stat_vals(
955 	struct ecryptfs_crypt_stat *crypt_stat,
956 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
957 {
958 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
959 						      mount_crypt_stat);
960 	ecryptfs_set_default_sizes(crypt_stat);
961 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
962 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
963 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
964 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
965 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
966 }
967 
968 /**
969  * ecryptfs_new_file_context
970  * @ecryptfs_dentry: The eCryptfs dentry
971  *
972  * If the crypto context for the file has not yet been established,
973  * this is where we do that.  Establishing a new crypto context
974  * involves the following decisions:
975  *  - What cipher to use?
976  *  - What set of authentication tokens to use?
977  * Here we just worry about getting enough information into the
978  * authentication tokens so that we know that they are available.
979  * We associate the available authentication tokens with the new file
980  * via the set of signatures in the crypt_stat struct.  Later, when
981  * the headers are actually written out, we may again defer to
982  * userspace to perform the encryption of the session key; for the
983  * foreseeable future, this will be the case with public key packets.
984  *
985  * Returns zero on success; non-zero otherwise
986  */
987 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
988 {
989 	struct ecryptfs_crypt_stat *crypt_stat =
990 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
991 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
992 	    &ecryptfs_superblock_to_private(
993 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
994 	int cipher_name_len;
995 	int rc = 0;
996 
997 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
998 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
999 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1000 						      mount_crypt_stat);
1001 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1002 							 mount_crypt_stat);
1003 	if (rc) {
1004 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1005 		       "to the inode key sigs; rc = [%d]\n", rc);
1006 		goto out;
1007 	}
1008 	cipher_name_len =
1009 		strlen(mount_crypt_stat->global_default_cipher_name);
1010 	memcpy(crypt_stat->cipher,
1011 	       mount_crypt_stat->global_default_cipher_name,
1012 	       cipher_name_len);
1013 	crypt_stat->cipher[cipher_name_len] = '\0';
1014 	crypt_stat->key_size =
1015 		mount_crypt_stat->global_default_cipher_key_size;
1016 	ecryptfs_generate_new_key(crypt_stat);
1017 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1018 	if (rc)
1019 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1020 				"context for cipher [%s]: rc = [%d]\n",
1021 				crypt_stat->cipher, rc);
1022 out:
1023 	return rc;
1024 }
1025 
1026 /**
1027  * contains_ecryptfs_marker - check for the ecryptfs marker
1028  * @data: The data block in which to check
1029  *
1030  * Returns one if marker found; zero if not found
1031  */
1032 static int contains_ecryptfs_marker(char *data)
1033 {
1034 	u32 m_1, m_2;
1035 
1036 	m_1 = get_unaligned_be32(data);
1037 	m_2 = get_unaligned_be32(data + 4);
1038 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1039 		return 1;
1040 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1041 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1042 			MAGIC_ECRYPTFS_MARKER);
1043 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1044 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1045 	return 0;
1046 }
1047 
1048 struct ecryptfs_flag_map_elem {
1049 	u32 file_flag;
1050 	u32 local_flag;
1051 };
1052 
1053 /* Add support for additional flags by adding elements here. */
1054 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1055 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1056 	{0x00000002, ECRYPTFS_ENCRYPTED},
1057 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR}
1058 };
1059 
1060 /**
1061  * ecryptfs_process_flags
1062  * @crypt_stat: The cryptographic context
1063  * @page_virt: Source data to be parsed
1064  * @bytes_read: Updated with the number of bytes read
1065  *
1066  * Returns zero on success; non-zero if the flag set is invalid
1067  */
1068 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1069 				  char *page_virt, int *bytes_read)
1070 {
1071 	int rc = 0;
1072 	int i;
1073 	u32 flags;
1074 
1075 	flags = get_unaligned_be32(page_virt);
1076 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1077 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1078 		if (flags & ecryptfs_flag_map[i].file_flag) {
1079 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1080 		} else
1081 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1082 	/* Version is in top 8 bits of the 32-bit flag vector */
1083 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1084 	(*bytes_read) = 4;
1085 	return rc;
1086 }
1087 
1088 /**
1089  * write_ecryptfs_marker
1090  * @page_virt: The pointer to in a page to begin writing the marker
1091  * @written: Number of bytes written
1092  *
1093  * Marker = 0x3c81b7f5
1094  */
1095 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1096 {
1097 	u32 m_1, m_2;
1098 
1099 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1100 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1101 	put_unaligned_be32(m_1, page_virt);
1102 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1103 	put_unaligned_be32(m_2, page_virt);
1104 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1105 }
1106 
1107 static void
1108 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1109 		     size_t *written)
1110 {
1111 	u32 flags = 0;
1112 	int i;
1113 
1114 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1115 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1116 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1117 			flags |= ecryptfs_flag_map[i].file_flag;
1118 	/* Version is in top 8 bits of the 32-bit flag vector */
1119 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1120 	put_unaligned_be32(flags, page_virt);
1121 	(*written) = 4;
1122 }
1123 
1124 struct ecryptfs_cipher_code_str_map_elem {
1125 	char cipher_str[16];
1126 	u8 cipher_code;
1127 };
1128 
1129 /* Add support for additional ciphers by adding elements here. The
1130  * cipher_code is whatever OpenPGP applicatoins use to identify the
1131  * ciphers. List in order of probability. */
1132 static struct ecryptfs_cipher_code_str_map_elem
1133 ecryptfs_cipher_code_str_map[] = {
1134 	{"aes",RFC2440_CIPHER_AES_128 },
1135 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1136 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1137 	{"cast5", RFC2440_CIPHER_CAST_5},
1138 	{"twofish", RFC2440_CIPHER_TWOFISH},
1139 	{"cast6", RFC2440_CIPHER_CAST_6},
1140 	{"aes", RFC2440_CIPHER_AES_192},
1141 	{"aes", RFC2440_CIPHER_AES_256}
1142 };
1143 
1144 /**
1145  * ecryptfs_code_for_cipher_string
1146  * @crypt_stat: The cryptographic context
1147  *
1148  * Returns zero on no match, or the cipher code on match
1149  */
1150 u8 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1151 {
1152 	int i;
1153 	u8 code = 0;
1154 	struct ecryptfs_cipher_code_str_map_elem *map =
1155 		ecryptfs_cipher_code_str_map;
1156 
1157 	if (strcmp(crypt_stat->cipher, "aes") == 0) {
1158 		switch (crypt_stat->key_size) {
1159 		case 16:
1160 			code = RFC2440_CIPHER_AES_128;
1161 			break;
1162 		case 24:
1163 			code = RFC2440_CIPHER_AES_192;
1164 			break;
1165 		case 32:
1166 			code = RFC2440_CIPHER_AES_256;
1167 		}
1168 	} else {
1169 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1170 			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1171 				code = map[i].cipher_code;
1172 				break;
1173 			}
1174 	}
1175 	return code;
1176 }
1177 
1178 /**
1179  * ecryptfs_cipher_code_to_string
1180  * @str: Destination to write out the cipher name
1181  * @cipher_code: The code to convert to cipher name string
1182  *
1183  * Returns zero on success
1184  */
1185 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1186 {
1187 	int rc = 0;
1188 	int i;
1189 
1190 	str[0] = '\0';
1191 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1192 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1193 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1194 	if (str[0] == '\0') {
1195 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1196 				"[%d]\n", cipher_code);
1197 		rc = -EINVAL;
1198 	}
1199 	return rc;
1200 }
1201 
1202 int ecryptfs_read_and_validate_header_region(char *data,
1203 					     struct inode *ecryptfs_inode)
1204 {
1205 	struct ecryptfs_crypt_stat *crypt_stat =
1206 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1207 	int rc;
1208 
1209 	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1210 				 ecryptfs_inode);
1211 	if (rc) {
1212 		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1213 		       __func__, rc);
1214 		goto out;
1215 	}
1216 	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1217 		rc = -EINVAL;
1218 		ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n");
1219 	}
1220 out:
1221 	return rc;
1222 }
1223 
1224 void
1225 ecryptfs_write_header_metadata(char *virt,
1226 			       struct ecryptfs_crypt_stat *crypt_stat,
1227 			       size_t *written)
1228 {
1229 	u32 header_extent_size;
1230 	u16 num_header_extents_at_front;
1231 
1232 	header_extent_size = (u32)crypt_stat->extent_size;
1233 	num_header_extents_at_front =
1234 		(u16)(crypt_stat->num_header_bytes_at_front
1235 		      / crypt_stat->extent_size);
1236 	put_unaligned_be32(header_extent_size, virt);
1237 	virt += 4;
1238 	put_unaligned_be16(num_header_extents_at_front, virt);
1239 	(*written) = 6;
1240 }
1241 
1242 struct kmem_cache *ecryptfs_header_cache_1;
1243 struct kmem_cache *ecryptfs_header_cache_2;
1244 
1245 /**
1246  * ecryptfs_write_headers_virt
1247  * @page_virt: The virtual address to write the headers to
1248  * @size: Set to the number of bytes written by this function
1249  * @crypt_stat: The cryptographic context
1250  * @ecryptfs_dentry: The eCryptfs dentry
1251  *
1252  * Format version: 1
1253  *
1254  *   Header Extent:
1255  *     Octets 0-7:        Unencrypted file size (big-endian)
1256  *     Octets 8-15:       eCryptfs special marker
1257  *     Octets 16-19:      Flags
1258  *      Octet 16:         File format version number (between 0 and 255)
1259  *      Octets 17-18:     Reserved
1260  *      Octet 19:         Bit 1 (lsb): Reserved
1261  *                        Bit 2: Encrypted?
1262  *                        Bits 3-8: Reserved
1263  *     Octets 20-23:      Header extent size (big-endian)
1264  *     Octets 24-25:      Number of header extents at front of file
1265  *                        (big-endian)
1266  *     Octet  26:         Begin RFC 2440 authentication token packet set
1267  *   Data Extent 0:
1268  *     Lower data (CBC encrypted)
1269  *   Data Extent 1:
1270  *     Lower data (CBC encrypted)
1271  *   ...
1272  *
1273  * Returns zero on success
1274  */
1275 static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
1276 				       struct ecryptfs_crypt_stat *crypt_stat,
1277 				       struct dentry *ecryptfs_dentry)
1278 {
1279 	int rc;
1280 	size_t written;
1281 	size_t offset;
1282 
1283 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1284 	write_ecryptfs_marker((page_virt + offset), &written);
1285 	offset += written;
1286 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1287 	offset += written;
1288 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1289 				       &written);
1290 	offset += written;
1291 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1292 					      ecryptfs_dentry, &written,
1293 					      PAGE_CACHE_SIZE - offset);
1294 	if (rc)
1295 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1296 				"set; rc = [%d]\n", rc);
1297 	if (size) {
1298 		offset += written;
1299 		*size = offset;
1300 	}
1301 	return rc;
1302 }
1303 
1304 static int
1305 ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1306 				    struct dentry *ecryptfs_dentry,
1307 				    char *virt)
1308 {
1309 	int rc;
1310 
1311 	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1312 				  0, crypt_stat->num_header_bytes_at_front);
1313 	if (rc)
1314 		printk(KERN_ERR "%s: Error attempting to write header "
1315 		       "information to lower file; rc = [%d]\n", __func__,
1316 		       rc);
1317 	return rc;
1318 }
1319 
1320 static int
1321 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1322 				 struct ecryptfs_crypt_stat *crypt_stat,
1323 				 char *page_virt, size_t size)
1324 {
1325 	int rc;
1326 
1327 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1328 			       size, 0);
1329 	return rc;
1330 }
1331 
1332 /**
1333  * ecryptfs_write_metadata
1334  * @ecryptfs_dentry: The eCryptfs dentry
1335  *
1336  * Write the file headers out.  This will likely involve a userspace
1337  * callout, in which the session key is encrypted with one or more
1338  * public keys and/or the passphrase necessary to do the encryption is
1339  * retrieved via a prompt.  Exactly what happens at this point should
1340  * be policy-dependent.
1341  *
1342  * Returns zero on success; non-zero on error
1343  */
1344 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1345 {
1346 	struct ecryptfs_crypt_stat *crypt_stat =
1347 		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1348 	char *virt;
1349 	size_t size = 0;
1350 	int rc = 0;
1351 
1352 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1353 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1354 			printk(KERN_ERR "Key is invalid; bailing out\n");
1355 			rc = -EINVAL;
1356 			goto out;
1357 		}
1358 	} else {
1359 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1360 		       __func__);
1361 		rc = -EINVAL;
1362 		goto out;
1363 	}
1364 	/* Released in this function */
1365 	virt = kzalloc(crypt_stat->num_header_bytes_at_front, GFP_KERNEL);
1366 	if (!virt) {
1367 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1368 		rc = -ENOMEM;
1369 		goto out;
1370 	}
1371 	rc = ecryptfs_write_headers_virt(virt, &size, crypt_stat,
1372 					 ecryptfs_dentry);
1373 	if (unlikely(rc)) {
1374 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1375 		       __func__, rc);
1376 		goto out_free;
1377 	}
1378 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1379 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1380 						      crypt_stat, virt, size);
1381 	else
1382 		rc = ecryptfs_write_metadata_to_contents(crypt_stat,
1383 							 ecryptfs_dentry, virt);
1384 	if (rc) {
1385 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1386 		       "rc = [%d]\n", __func__, rc);
1387 		goto out_free;
1388 	}
1389 out_free:
1390 	memset(virt, 0, crypt_stat->num_header_bytes_at_front);
1391 	kfree(virt);
1392 out:
1393 	return rc;
1394 }
1395 
1396 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1397 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1398 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1399 				 char *virt, int *bytes_read,
1400 				 int validate_header_size)
1401 {
1402 	int rc = 0;
1403 	u32 header_extent_size;
1404 	u16 num_header_extents_at_front;
1405 
1406 	header_extent_size = get_unaligned_be32(virt);
1407 	virt += sizeof(__be32);
1408 	num_header_extents_at_front = get_unaligned_be16(virt);
1409 	crypt_stat->num_header_bytes_at_front =
1410 		(((size_t)num_header_extents_at_front
1411 		  * (size_t)header_extent_size));
1412 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1413 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1414 	    && (crypt_stat->num_header_bytes_at_front
1415 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1416 		rc = -EINVAL;
1417 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1418 		       crypt_stat->num_header_bytes_at_front);
1419 	}
1420 	return rc;
1421 }
1422 
1423 /**
1424  * set_default_header_data
1425  * @crypt_stat: The cryptographic context
1426  *
1427  * For version 0 file format; this function is only for backwards
1428  * compatibility for files created with the prior versions of
1429  * eCryptfs.
1430  */
1431 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1432 {
1433 	crypt_stat->num_header_bytes_at_front =
1434 		ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1435 }
1436 
1437 /**
1438  * ecryptfs_read_headers_virt
1439  * @page_virt: The virtual address into which to read the headers
1440  * @crypt_stat: The cryptographic context
1441  * @ecryptfs_dentry: The eCryptfs dentry
1442  * @validate_header_size: Whether to validate the header size while reading
1443  *
1444  * Read/parse the header data. The header format is detailed in the
1445  * comment block for the ecryptfs_write_headers_virt() function.
1446  *
1447  * Returns zero on success
1448  */
1449 static int ecryptfs_read_headers_virt(char *page_virt,
1450 				      struct ecryptfs_crypt_stat *crypt_stat,
1451 				      struct dentry *ecryptfs_dentry,
1452 				      int validate_header_size)
1453 {
1454 	int rc = 0;
1455 	int offset;
1456 	int bytes_read;
1457 
1458 	ecryptfs_set_default_sizes(crypt_stat);
1459 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1460 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1461 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1462 	rc = contains_ecryptfs_marker(page_virt + offset);
1463 	if (rc == 0) {
1464 		rc = -EINVAL;
1465 		goto out;
1466 	}
1467 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1468 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1469 				    &bytes_read);
1470 	if (rc) {
1471 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1472 		goto out;
1473 	}
1474 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1475 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1476 				"file version [%d] is supported by this "
1477 				"version of eCryptfs\n",
1478 				crypt_stat->file_version,
1479 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1480 		rc = -EINVAL;
1481 		goto out;
1482 	}
1483 	offset += bytes_read;
1484 	if (crypt_stat->file_version >= 1) {
1485 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1486 					   &bytes_read, validate_header_size);
1487 		if (rc) {
1488 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1489 					"metadata; rc = [%d]\n", rc);
1490 		}
1491 		offset += bytes_read;
1492 	} else
1493 		set_default_header_data(crypt_stat);
1494 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1495 				       ecryptfs_dentry);
1496 out:
1497 	return rc;
1498 }
1499 
1500 /**
1501  * ecryptfs_read_xattr_region
1502  * @page_virt: The vitual address into which to read the xattr data
1503  * @ecryptfs_inode: The eCryptfs inode
1504  *
1505  * Attempts to read the crypto metadata from the extended attribute
1506  * region of the lower file.
1507  *
1508  * Returns zero on success; non-zero on error
1509  */
1510 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1511 {
1512 	struct dentry *lower_dentry =
1513 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1514 	ssize_t size;
1515 	int rc = 0;
1516 
1517 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1518 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1519 	if (size < 0) {
1520 		if (unlikely(ecryptfs_verbosity > 0))
1521 			printk(KERN_INFO "Error attempting to read the [%s] "
1522 			       "xattr from the lower file; return value = "
1523 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1524 		rc = -EINVAL;
1525 		goto out;
1526 	}
1527 out:
1528 	return rc;
1529 }
1530 
1531 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1532 					    struct dentry *ecryptfs_dentry)
1533 {
1534 	int rc;
1535 
1536 	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1537 	if (rc)
1538 		goto out;
1539 	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
1540 		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1541 			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1542 		rc = -EINVAL;
1543 	}
1544 out:
1545 	return rc;
1546 }
1547 
1548 /**
1549  * ecryptfs_read_metadata
1550  *
1551  * Common entry point for reading file metadata. From here, we could
1552  * retrieve the header information from the header region of the file,
1553  * the xattr region of the file, or some other repostory that is
1554  * stored separately from the file itself. The current implementation
1555  * supports retrieving the metadata information from the file contents
1556  * and from the xattr region.
1557  *
1558  * Returns zero if valid headers found and parsed; non-zero otherwise
1559  */
1560 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1561 {
1562 	int rc = 0;
1563 	char *page_virt = NULL;
1564 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1565 	struct ecryptfs_crypt_stat *crypt_stat =
1566 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1567 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1568 		&ecryptfs_superblock_to_private(
1569 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1570 
1571 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1572 						      mount_crypt_stat);
1573 	/* Read the first page from the underlying file */
1574 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1575 	if (!page_virt) {
1576 		rc = -ENOMEM;
1577 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1578 		       __func__);
1579 		goto out;
1580 	}
1581 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1582 				 ecryptfs_inode);
1583 	if (!rc)
1584 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1585 						ecryptfs_dentry,
1586 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1587 	if (rc) {
1588 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1589 		if (rc) {
1590 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1591 			       "file header region or xattr region\n");
1592 			rc = -EINVAL;
1593 			goto out;
1594 		}
1595 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1596 						ecryptfs_dentry,
1597 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1598 		if (rc) {
1599 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1600 			       "file xattr region either\n");
1601 			rc = -EINVAL;
1602 		}
1603 		if (crypt_stat->mount_crypt_stat->flags
1604 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1605 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1606 		} else {
1607 			printk(KERN_WARNING "Attempt to access file with "
1608 			       "crypto metadata only in the extended attribute "
1609 			       "region, but eCryptfs was mounted without "
1610 			       "xattr support enabled. eCryptfs will not treat "
1611 			       "this like an encrypted file.\n");
1612 			rc = -EINVAL;
1613 		}
1614 	}
1615 out:
1616 	if (page_virt) {
1617 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1618 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1619 	}
1620 	return rc;
1621 }
1622 
1623 /**
1624  * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1625  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1626  * @name: The plaintext name
1627  * @length: The length of the plaintext
1628  * @encoded_name: The encypted name
1629  *
1630  * Encrypts and encodes a filename into something that constitutes a
1631  * valid filename for a filesystem, with printable characters.
1632  *
1633  * We assume that we have a properly initialized crypto context,
1634  * pointed to by crypt_stat->tfm.
1635  *
1636  * TODO: Implement filename decoding and decryption here, in place of
1637  * memcpy. We are keeping the framework around for now to (1)
1638  * facilitate testing of the components needed to implement filename
1639  * encryption and (2) to provide a code base from which other
1640  * developers in the community can easily implement this feature.
1641  *
1642  * Returns the length of encoded filename; negative if error
1643  */
1644 int
1645 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1646 			 const char *name, int length, char **encoded_name)
1647 {
1648 	int error = 0;
1649 
1650 	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1651 	if (!(*encoded_name)) {
1652 		error = -ENOMEM;
1653 		goto out;
1654 	}
1655 	/* TODO: Filename encryption is a scheduled feature for a
1656 	 * future version of eCryptfs. This function is here only for
1657 	 * the purpose of providing a framework for other developers
1658 	 * to easily implement filename encryption. Hint: Replace this
1659 	 * memcpy() with a call to encrypt and encode the
1660 	 * filename, the set the length accordingly. */
1661 	memcpy((void *)(*encoded_name), (void *)name, length);
1662 	(*encoded_name)[length] = '\0';
1663 	error = length + 1;
1664 out:
1665 	return error;
1666 }
1667 
1668 /**
1669  * ecryptfs_decode_filename - converts the cipher text name to plaintext
1670  * @crypt_stat: The crypt_stat struct associated with the file
1671  * @name: The filename in cipher text
1672  * @length: The length of the cipher text name
1673  * @decrypted_name: The plaintext name
1674  *
1675  * Decodes and decrypts the filename.
1676  *
1677  * We assume that we have a properly initialized crypto context,
1678  * pointed to by crypt_stat->tfm.
1679  *
1680  * TODO: Implement filename decoding and decryption here, in place of
1681  * memcpy. We are keeping the framework around for now to (1)
1682  * facilitate testing of the components needed to implement filename
1683  * encryption and (2) to provide a code base from which other
1684  * developers in the community can easily implement this feature.
1685  *
1686  * Returns the length of decoded filename; negative if error
1687  */
1688 int
1689 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1690 			 const char *name, int length, char **decrypted_name)
1691 {
1692 	int error = 0;
1693 
1694 	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1695 	if (!(*decrypted_name)) {
1696 		error = -ENOMEM;
1697 		goto out;
1698 	}
1699 	/* TODO: Filename encryption is a scheduled feature for a
1700 	 * future version of eCryptfs. This function is here only for
1701 	 * the purpose of providing a framework for other developers
1702 	 * to easily implement filename encryption. Hint: Replace this
1703 	 * memcpy() with a call to decode and decrypt the
1704 	 * filename, the set the length accordingly. */
1705 	memcpy((void *)(*decrypted_name), (void *)name, length);
1706 	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
1707 						 * in printing out the
1708 						 * string in debug
1709 						 * messages */
1710 	error = length;
1711 out:
1712 	return error;
1713 }
1714 
1715 /**
1716  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1717  * @key_tfm: Crypto context for key material, set by this function
1718  * @cipher_name: Name of the cipher
1719  * @key_size: Size of the key in bytes
1720  *
1721  * Returns zero on success. Any crypto_tfm structs allocated here
1722  * should be released by other functions, such as on a superblock put
1723  * event, regardless of whether this function succeeds for fails.
1724  */
1725 static int
1726 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1727 			    char *cipher_name, size_t *key_size)
1728 {
1729 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1730 	char *full_alg_name;
1731 	int rc;
1732 
1733 	*key_tfm = NULL;
1734 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1735 		rc = -EINVAL;
1736 		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1737 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1738 		goto out;
1739 	}
1740 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1741 						    "ecb");
1742 	if (rc)
1743 		goto out;
1744 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1745 	kfree(full_alg_name);
1746 	if (IS_ERR(*key_tfm)) {
1747 		rc = PTR_ERR(*key_tfm);
1748 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1749 		       "[%s]; rc = [%d]\n", cipher_name, rc);
1750 		goto out;
1751 	}
1752 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1753 	if (*key_size == 0) {
1754 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1755 
1756 		*key_size = alg->max_keysize;
1757 	}
1758 	get_random_bytes(dummy_key, *key_size);
1759 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1760 	if (rc) {
1761 		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1762 		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1763 		rc = -EINVAL;
1764 		goto out;
1765 	}
1766 out:
1767 	return rc;
1768 }
1769 
1770 struct kmem_cache *ecryptfs_key_tfm_cache;
1771 static struct list_head key_tfm_list;
1772 struct mutex key_tfm_list_mutex;
1773 
1774 int ecryptfs_init_crypto(void)
1775 {
1776 	mutex_init(&key_tfm_list_mutex);
1777 	INIT_LIST_HEAD(&key_tfm_list);
1778 	return 0;
1779 }
1780 
1781 /**
1782  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1783  *
1784  * Called only at module unload time
1785  */
1786 int ecryptfs_destroy_crypto(void)
1787 {
1788 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1789 
1790 	mutex_lock(&key_tfm_list_mutex);
1791 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1792 				 key_tfm_list) {
1793 		list_del(&key_tfm->key_tfm_list);
1794 		if (key_tfm->key_tfm)
1795 			crypto_free_blkcipher(key_tfm->key_tfm);
1796 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1797 	}
1798 	mutex_unlock(&key_tfm_list_mutex);
1799 	return 0;
1800 }
1801 
1802 int
1803 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1804 			 size_t key_size)
1805 {
1806 	struct ecryptfs_key_tfm *tmp_tfm;
1807 	int rc = 0;
1808 
1809 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1810 
1811 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1812 	if (key_tfm != NULL)
1813 		(*key_tfm) = tmp_tfm;
1814 	if (!tmp_tfm) {
1815 		rc = -ENOMEM;
1816 		printk(KERN_ERR "Error attempting to allocate from "
1817 		       "ecryptfs_key_tfm_cache\n");
1818 		goto out;
1819 	}
1820 	mutex_init(&tmp_tfm->key_tfm_mutex);
1821 	strncpy(tmp_tfm->cipher_name, cipher_name,
1822 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1823 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1824 	tmp_tfm->key_size = key_size;
1825 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1826 					 tmp_tfm->cipher_name,
1827 					 &tmp_tfm->key_size);
1828 	if (rc) {
1829 		printk(KERN_ERR "Error attempting to initialize key TFM "
1830 		       "cipher with name = [%s]; rc = [%d]\n",
1831 		       tmp_tfm->cipher_name, rc);
1832 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1833 		if (key_tfm != NULL)
1834 			(*key_tfm) = NULL;
1835 		goto out;
1836 	}
1837 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1838 out:
1839 	return rc;
1840 }
1841 
1842 /**
1843  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1844  * @cipher_name: the name of the cipher to search for
1845  * @key_tfm: set to corresponding tfm if found
1846  *
1847  * Searches for cached key_tfm matching @cipher_name
1848  * Must be called with &key_tfm_list_mutex held
1849  * Returns 1 if found, with @key_tfm set
1850  * Returns 0 if not found, with @key_tfm set to NULL
1851  */
1852 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1853 {
1854 	struct ecryptfs_key_tfm *tmp_key_tfm;
1855 
1856 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1857 
1858 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1859 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1860 			if (key_tfm)
1861 				(*key_tfm) = tmp_key_tfm;
1862 			return 1;
1863 		}
1864 	}
1865 	if (key_tfm)
1866 		(*key_tfm) = NULL;
1867 	return 0;
1868 }
1869 
1870 /**
1871  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1872  *
1873  * @tfm: set to cached tfm found, or new tfm created
1874  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1875  * @cipher_name: the name of the cipher to search for and/or add
1876  *
1877  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1878  * Searches for cached item first, and creates new if not found.
1879  * Returns 0 on success, non-zero if adding new cipher failed
1880  */
1881 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1882 					       struct mutex **tfm_mutex,
1883 					       char *cipher_name)
1884 {
1885 	struct ecryptfs_key_tfm *key_tfm;
1886 	int rc = 0;
1887 
1888 	(*tfm) = NULL;
1889 	(*tfm_mutex) = NULL;
1890 
1891 	mutex_lock(&key_tfm_list_mutex);
1892 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1893 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1894 		if (rc) {
1895 			printk(KERN_ERR "Error adding new key_tfm to list; "
1896 					"rc = [%d]\n", rc);
1897 			goto out;
1898 		}
1899 	}
1900 	(*tfm) = key_tfm->key_tfm;
1901 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1902 out:
1903 	mutex_unlock(&key_tfm_list_mutex);
1904 	return rc;
1905 }
1906