1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include <linux/slab.h> 37 #include <asm/unaligned.h> 38 #include "ecryptfs_kernel.h" 39 40 #define DECRYPT 0 41 #define ENCRYPT 1 42 43 /** 44 * ecryptfs_to_hex 45 * @dst: Buffer to take hex character representation of contents of 46 * src; must be at least of size (src_size * 2) 47 * @src: Buffer to be converted to a hex string respresentation 48 * @src_size: number of bytes to convert 49 */ 50 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 51 { 52 int x; 53 54 for (x = 0; x < src_size; x++) 55 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 56 } 57 58 /** 59 * ecryptfs_from_hex 60 * @dst: Buffer to take the bytes from src hex; must be at least of 61 * size (src_size / 2) 62 * @src: Buffer to be converted from a hex string respresentation to raw value 63 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 64 */ 65 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 66 { 67 int x; 68 char tmp[3] = { 0, }; 69 70 for (x = 0; x < dst_size; x++) { 71 tmp[0] = src[x * 2]; 72 tmp[1] = src[x * 2 + 1]; 73 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 74 } 75 } 76 77 /** 78 * ecryptfs_calculate_md5 - calculates the md5 of @src 79 * @dst: Pointer to 16 bytes of allocated memory 80 * @crypt_stat: Pointer to crypt_stat struct for the current inode 81 * @src: Data to be md5'd 82 * @len: Length of @src 83 * 84 * Uses the allocated crypto context that crypt_stat references to 85 * generate the MD5 sum of the contents of src. 86 */ 87 static int ecryptfs_calculate_md5(char *dst, 88 struct ecryptfs_crypt_stat *crypt_stat, 89 char *src, int len) 90 { 91 struct scatterlist sg; 92 struct hash_desc desc = { 93 .tfm = crypt_stat->hash_tfm, 94 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 95 }; 96 int rc = 0; 97 98 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 99 sg_init_one(&sg, (u8 *)src, len); 100 if (!desc.tfm) { 101 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 102 CRYPTO_ALG_ASYNC); 103 if (IS_ERR(desc.tfm)) { 104 rc = PTR_ERR(desc.tfm); 105 ecryptfs_printk(KERN_ERR, "Error attempting to " 106 "allocate crypto context; rc = [%d]\n", 107 rc); 108 goto out; 109 } 110 crypt_stat->hash_tfm = desc.tfm; 111 } 112 rc = crypto_hash_init(&desc); 113 if (rc) { 114 printk(KERN_ERR 115 "%s: Error initializing crypto hash; rc = [%d]\n", 116 __func__, rc); 117 goto out; 118 } 119 rc = crypto_hash_update(&desc, &sg, len); 120 if (rc) { 121 printk(KERN_ERR 122 "%s: Error updating crypto hash; rc = [%d]\n", 123 __func__, rc); 124 goto out; 125 } 126 rc = crypto_hash_final(&desc, dst); 127 if (rc) { 128 printk(KERN_ERR 129 "%s: Error finalizing crypto hash; rc = [%d]\n", 130 __func__, rc); 131 goto out; 132 } 133 out: 134 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 135 return rc; 136 } 137 138 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 139 char *cipher_name, 140 char *chaining_modifier) 141 { 142 int cipher_name_len = strlen(cipher_name); 143 int chaining_modifier_len = strlen(chaining_modifier); 144 int algified_name_len; 145 int rc; 146 147 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 148 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 149 if (!(*algified_name)) { 150 rc = -ENOMEM; 151 goto out; 152 } 153 snprintf((*algified_name), algified_name_len, "%s(%s)", 154 chaining_modifier, cipher_name); 155 rc = 0; 156 out: 157 return rc; 158 } 159 160 /** 161 * ecryptfs_derive_iv 162 * @iv: destination for the derived iv vale 163 * @crypt_stat: Pointer to crypt_stat struct for the current inode 164 * @offset: Offset of the extent whose IV we are to derive 165 * 166 * Generate the initialization vector from the given root IV and page 167 * offset. 168 * 169 * Returns zero on success; non-zero on error. 170 */ 171 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 172 loff_t offset) 173 { 174 int rc = 0; 175 char dst[MD5_DIGEST_SIZE]; 176 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 177 178 if (unlikely(ecryptfs_verbosity > 0)) { 179 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 180 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 181 } 182 /* TODO: It is probably secure to just cast the least 183 * significant bits of the root IV into an unsigned long and 184 * add the offset to that rather than go through all this 185 * hashing business. -Halcrow */ 186 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 187 memset((src + crypt_stat->iv_bytes), 0, 16); 188 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 189 if (unlikely(ecryptfs_verbosity > 0)) { 190 ecryptfs_printk(KERN_DEBUG, "source:\n"); 191 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 192 } 193 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 194 (crypt_stat->iv_bytes + 16)); 195 if (rc) { 196 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 197 "MD5 while generating IV for a page\n"); 198 goto out; 199 } 200 memcpy(iv, dst, crypt_stat->iv_bytes); 201 if (unlikely(ecryptfs_verbosity > 0)) { 202 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 203 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 204 } 205 out: 206 return rc; 207 } 208 209 /** 210 * ecryptfs_init_crypt_stat 211 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 212 * 213 * Initialize the crypt_stat structure. 214 */ 215 void 216 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 217 { 218 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 219 INIT_LIST_HEAD(&crypt_stat->keysig_list); 220 mutex_init(&crypt_stat->keysig_list_mutex); 221 mutex_init(&crypt_stat->cs_mutex); 222 mutex_init(&crypt_stat->cs_tfm_mutex); 223 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 224 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 225 } 226 227 /** 228 * ecryptfs_destroy_crypt_stat 229 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 230 * 231 * Releases all memory associated with a crypt_stat struct. 232 */ 233 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 234 { 235 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 236 237 if (crypt_stat->tfm) 238 crypto_free_ablkcipher(crypt_stat->tfm); 239 if (crypt_stat->hash_tfm) 240 crypto_free_hash(crypt_stat->hash_tfm); 241 list_for_each_entry_safe(key_sig, key_sig_tmp, 242 &crypt_stat->keysig_list, crypt_stat_list) { 243 list_del(&key_sig->crypt_stat_list); 244 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 245 } 246 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 247 } 248 249 void ecryptfs_destroy_mount_crypt_stat( 250 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 251 { 252 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 253 254 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 255 return; 256 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 257 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 258 &mount_crypt_stat->global_auth_tok_list, 259 mount_crypt_stat_list) { 260 list_del(&auth_tok->mount_crypt_stat_list); 261 if (auth_tok->global_auth_tok_key 262 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 263 key_put(auth_tok->global_auth_tok_key); 264 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 265 } 266 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 267 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 268 } 269 270 /** 271 * virt_to_scatterlist 272 * @addr: Virtual address 273 * @size: Size of data; should be an even multiple of the block size 274 * @sg: Pointer to scatterlist array; set to NULL to obtain only 275 * the number of scatterlist structs required in array 276 * @sg_size: Max array size 277 * 278 * Fills in a scatterlist array with page references for a passed 279 * virtual address. 280 * 281 * Returns the number of scatterlist structs in array used 282 */ 283 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 284 int sg_size) 285 { 286 int i = 0; 287 struct page *pg; 288 int offset; 289 int remainder_of_page; 290 291 sg_init_table(sg, sg_size); 292 293 while (size > 0 && i < sg_size) { 294 pg = virt_to_page(addr); 295 offset = offset_in_page(addr); 296 sg_set_page(&sg[i], pg, 0, offset); 297 remainder_of_page = PAGE_CACHE_SIZE - offset; 298 if (size >= remainder_of_page) { 299 sg[i].length = remainder_of_page; 300 addr += remainder_of_page; 301 size -= remainder_of_page; 302 } else { 303 sg[i].length = size; 304 addr += size; 305 size = 0; 306 } 307 i++; 308 } 309 if (size > 0) 310 return -ENOMEM; 311 return i; 312 } 313 314 struct extent_crypt_result { 315 struct completion completion; 316 int rc; 317 }; 318 319 static void extent_crypt_complete(struct crypto_async_request *req, int rc) 320 { 321 struct extent_crypt_result *ecr = req->data; 322 323 if (rc == -EINPROGRESS) 324 return; 325 326 ecr->rc = rc; 327 complete(&ecr->completion); 328 } 329 330 /** 331 * crypt_scatterlist 332 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 333 * @dst_sg: Destination of the data after performing the crypto operation 334 * @src_sg: Data to be encrypted or decrypted 335 * @size: Length of data 336 * @iv: IV to use 337 * @op: ENCRYPT or DECRYPT to indicate the desired operation 338 * 339 * Returns the number of bytes encrypted or decrypted; negative value on error 340 */ 341 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 342 struct scatterlist *dst_sg, 343 struct scatterlist *src_sg, int size, 344 unsigned char *iv, int op) 345 { 346 struct ablkcipher_request *req = NULL; 347 struct extent_crypt_result ecr; 348 int rc = 0; 349 350 BUG_ON(!crypt_stat || !crypt_stat->tfm 351 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 352 if (unlikely(ecryptfs_verbosity > 0)) { 353 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 354 crypt_stat->key_size); 355 ecryptfs_dump_hex(crypt_stat->key, 356 crypt_stat->key_size); 357 } 358 359 init_completion(&ecr.completion); 360 361 mutex_lock(&crypt_stat->cs_tfm_mutex); 362 req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 363 if (!req) { 364 mutex_unlock(&crypt_stat->cs_tfm_mutex); 365 rc = -ENOMEM; 366 goto out; 367 } 368 369 ablkcipher_request_set_callback(req, 370 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 371 extent_crypt_complete, &ecr); 372 /* Consider doing this once, when the file is opened */ 373 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 374 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 375 crypt_stat->key_size); 376 if (rc) { 377 ecryptfs_printk(KERN_ERR, 378 "Error setting key; rc = [%d]\n", 379 rc); 380 mutex_unlock(&crypt_stat->cs_tfm_mutex); 381 rc = -EINVAL; 382 goto out; 383 } 384 crypt_stat->flags |= ECRYPTFS_KEY_SET; 385 } 386 mutex_unlock(&crypt_stat->cs_tfm_mutex); 387 ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); 388 rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) : 389 crypto_ablkcipher_decrypt(req); 390 if (rc == -EINPROGRESS || rc == -EBUSY) { 391 struct extent_crypt_result *ecr = req->base.data; 392 393 wait_for_completion(&ecr->completion); 394 rc = ecr->rc; 395 INIT_COMPLETION(ecr->completion); 396 } 397 out: 398 ablkcipher_request_free(req); 399 return rc; 400 } 401 402 /** 403 * lower_offset_for_page 404 * 405 * Convert an eCryptfs page index into a lower byte offset 406 */ 407 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, 408 struct page *page) 409 { 410 return ecryptfs_lower_header_size(crypt_stat) + 411 ((loff_t)page->index << PAGE_CACHE_SHIFT); 412 } 413 414 /** 415 * crypt_extent 416 * @crypt_stat: crypt_stat containing cryptographic context for the 417 * encryption operation 418 * @dst_page: The page to write the result into 419 * @src_page: The page to read from 420 * @extent_offset: Page extent offset for use in generating IV 421 * @op: ENCRYPT or DECRYPT to indicate the desired operation 422 * 423 * Encrypts or decrypts one extent of data. 424 * 425 * Return zero on success; non-zero otherwise 426 */ 427 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, 428 struct page *dst_page, 429 struct page *src_page, 430 unsigned long extent_offset, int op) 431 { 432 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index; 433 loff_t extent_base; 434 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 435 struct scatterlist src_sg, dst_sg; 436 size_t extent_size = crypt_stat->extent_size; 437 int rc; 438 439 extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size)); 440 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 441 (extent_base + extent_offset)); 442 if (rc) { 443 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 444 "extent [0x%.16llx]; rc = [%d]\n", 445 (unsigned long long)(extent_base + extent_offset), rc); 446 goto out; 447 } 448 449 sg_init_table(&src_sg, 1); 450 sg_init_table(&dst_sg, 1); 451 452 sg_set_page(&src_sg, src_page, extent_size, 453 extent_offset * extent_size); 454 sg_set_page(&dst_sg, dst_page, extent_size, 455 extent_offset * extent_size); 456 457 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, 458 extent_iv, op); 459 if (rc < 0) { 460 printk(KERN_ERR "%s: Error attempting to crypt page with " 461 "page_index = [%ld], extent_offset = [%ld]; " 462 "rc = [%d]\n", __func__, page_index, extent_offset, rc); 463 goto out; 464 } 465 rc = 0; 466 out: 467 return rc; 468 } 469 470 /** 471 * ecryptfs_encrypt_page 472 * @page: Page mapped from the eCryptfs inode for the file; contains 473 * decrypted content that needs to be encrypted (to a temporary 474 * page; not in place) and written out to the lower file 475 * 476 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 477 * that eCryptfs pages may straddle the lower pages -- for instance, 478 * if the file was created on a machine with an 8K page size 479 * (resulting in an 8K header), and then the file is copied onto a 480 * host with a 32K page size, then when reading page 0 of the eCryptfs 481 * file, 24K of page 0 of the lower file will be read and decrypted, 482 * and then 8K of page 1 of the lower file will be read and decrypted. 483 * 484 * Returns zero on success; negative on error 485 */ 486 int ecryptfs_encrypt_page(struct page *page) 487 { 488 struct inode *ecryptfs_inode; 489 struct ecryptfs_crypt_stat *crypt_stat; 490 char *enc_extent_virt; 491 struct page *enc_extent_page = NULL; 492 loff_t extent_offset; 493 loff_t lower_offset; 494 int rc = 0; 495 496 ecryptfs_inode = page->mapping->host; 497 crypt_stat = 498 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 499 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 500 enc_extent_page = alloc_page(GFP_USER); 501 if (!enc_extent_page) { 502 rc = -ENOMEM; 503 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 504 "encrypted extent\n"); 505 goto out; 506 } 507 508 for (extent_offset = 0; 509 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 510 extent_offset++) { 511 rc = crypt_extent(crypt_stat, enc_extent_page, page, 512 extent_offset, ENCRYPT); 513 if (rc) { 514 printk(KERN_ERR "%s: Error encrypting extent; " 515 "rc = [%d]\n", __func__, rc); 516 goto out; 517 } 518 } 519 520 lower_offset = lower_offset_for_page(crypt_stat, page); 521 enc_extent_virt = kmap(enc_extent_page); 522 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, 523 PAGE_CACHE_SIZE); 524 kunmap(enc_extent_page); 525 if (rc < 0) { 526 ecryptfs_printk(KERN_ERR, 527 "Error attempting to write lower page; rc = [%d]\n", 528 rc); 529 goto out; 530 } 531 rc = 0; 532 out: 533 if (enc_extent_page) { 534 __free_page(enc_extent_page); 535 } 536 return rc; 537 } 538 539 /** 540 * ecryptfs_decrypt_page 541 * @page: Page mapped from the eCryptfs inode for the file; data read 542 * and decrypted from the lower file will be written into this 543 * page 544 * 545 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 546 * that eCryptfs pages may straddle the lower pages -- for instance, 547 * if the file was created on a machine with an 8K page size 548 * (resulting in an 8K header), and then the file is copied onto a 549 * host with a 32K page size, then when reading page 0 of the eCryptfs 550 * file, 24K of page 0 of the lower file will be read and decrypted, 551 * and then 8K of page 1 of the lower file will be read and decrypted. 552 * 553 * Returns zero on success; negative on error 554 */ 555 int ecryptfs_decrypt_page(struct page *page) 556 { 557 struct inode *ecryptfs_inode; 558 struct ecryptfs_crypt_stat *crypt_stat; 559 char *page_virt; 560 unsigned long extent_offset; 561 loff_t lower_offset; 562 int rc = 0; 563 564 ecryptfs_inode = page->mapping->host; 565 crypt_stat = 566 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 567 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 568 569 lower_offset = lower_offset_for_page(crypt_stat, page); 570 page_virt = kmap(page); 571 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE, 572 ecryptfs_inode); 573 kunmap(page); 574 if (rc < 0) { 575 ecryptfs_printk(KERN_ERR, 576 "Error attempting to read lower page; rc = [%d]\n", 577 rc); 578 goto out; 579 } 580 581 for (extent_offset = 0; 582 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 583 extent_offset++) { 584 rc = crypt_extent(crypt_stat, page, page, 585 extent_offset, DECRYPT); 586 if (rc) { 587 printk(KERN_ERR "%s: Error encrypting extent; " 588 "rc = [%d]\n", __func__, rc); 589 goto out; 590 } 591 } 592 out: 593 return rc; 594 } 595 596 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 597 598 /** 599 * ecryptfs_init_crypt_ctx 600 * @crypt_stat: Uninitialized crypt stats structure 601 * 602 * Initialize the crypto context. 603 * 604 * TODO: Performance: Keep a cache of initialized cipher contexts; 605 * only init if needed 606 */ 607 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 608 { 609 char *full_alg_name; 610 int rc = -EINVAL; 611 612 ecryptfs_printk(KERN_DEBUG, 613 "Initializing cipher [%s]; strlen = [%d]; " 614 "key_size_bits = [%zd]\n", 615 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 616 crypt_stat->key_size << 3); 617 mutex_lock(&crypt_stat->cs_tfm_mutex); 618 if (crypt_stat->tfm) { 619 rc = 0; 620 goto out_unlock; 621 } 622 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 623 crypt_stat->cipher, "cbc"); 624 if (rc) 625 goto out_unlock; 626 crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0); 627 if (IS_ERR(crypt_stat->tfm)) { 628 rc = PTR_ERR(crypt_stat->tfm); 629 crypt_stat->tfm = NULL; 630 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 631 "Error initializing cipher [%s]\n", 632 full_alg_name); 633 goto out_free; 634 } 635 crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 636 rc = 0; 637 out_free: 638 kfree(full_alg_name); 639 out_unlock: 640 mutex_unlock(&crypt_stat->cs_tfm_mutex); 641 return rc; 642 } 643 644 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 645 { 646 int extent_size_tmp; 647 648 crypt_stat->extent_mask = 0xFFFFFFFF; 649 crypt_stat->extent_shift = 0; 650 if (crypt_stat->extent_size == 0) 651 return; 652 extent_size_tmp = crypt_stat->extent_size; 653 while ((extent_size_tmp & 0x01) == 0) { 654 extent_size_tmp >>= 1; 655 crypt_stat->extent_mask <<= 1; 656 crypt_stat->extent_shift++; 657 } 658 } 659 660 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 661 { 662 /* Default values; may be overwritten as we are parsing the 663 * packets. */ 664 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 665 set_extent_mask_and_shift(crypt_stat); 666 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 667 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 668 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 669 else { 670 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 671 crypt_stat->metadata_size = 672 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 673 else 674 crypt_stat->metadata_size = PAGE_CACHE_SIZE; 675 } 676 } 677 678 /** 679 * ecryptfs_compute_root_iv 680 * @crypt_stats 681 * 682 * On error, sets the root IV to all 0's. 683 */ 684 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 685 { 686 int rc = 0; 687 char dst[MD5_DIGEST_SIZE]; 688 689 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 690 BUG_ON(crypt_stat->iv_bytes <= 0); 691 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 692 rc = -EINVAL; 693 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 694 "cannot generate root IV\n"); 695 goto out; 696 } 697 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 698 crypt_stat->key_size); 699 if (rc) { 700 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 701 "MD5 while generating root IV\n"); 702 goto out; 703 } 704 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 705 out: 706 if (rc) { 707 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 708 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 709 } 710 return rc; 711 } 712 713 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 714 { 715 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 716 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 717 ecryptfs_compute_root_iv(crypt_stat); 718 if (unlikely(ecryptfs_verbosity > 0)) { 719 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 720 ecryptfs_dump_hex(crypt_stat->key, 721 crypt_stat->key_size); 722 } 723 } 724 725 /** 726 * ecryptfs_copy_mount_wide_flags_to_inode_flags 727 * @crypt_stat: The inode's cryptographic context 728 * @mount_crypt_stat: The mount point's cryptographic context 729 * 730 * This function propagates the mount-wide flags to individual inode 731 * flags. 732 */ 733 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 734 struct ecryptfs_crypt_stat *crypt_stat, 735 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 736 { 737 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 738 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 739 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 740 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 741 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 742 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 743 if (mount_crypt_stat->flags 744 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 745 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 746 else if (mount_crypt_stat->flags 747 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 748 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 749 } 750 } 751 752 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 753 struct ecryptfs_crypt_stat *crypt_stat, 754 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 755 { 756 struct ecryptfs_global_auth_tok *global_auth_tok; 757 int rc = 0; 758 759 mutex_lock(&crypt_stat->keysig_list_mutex); 760 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 761 762 list_for_each_entry(global_auth_tok, 763 &mount_crypt_stat->global_auth_tok_list, 764 mount_crypt_stat_list) { 765 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 766 continue; 767 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 768 if (rc) { 769 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 770 goto out; 771 } 772 } 773 774 out: 775 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 776 mutex_unlock(&crypt_stat->keysig_list_mutex); 777 return rc; 778 } 779 780 /** 781 * ecryptfs_set_default_crypt_stat_vals 782 * @crypt_stat: The inode's cryptographic context 783 * @mount_crypt_stat: The mount point's cryptographic context 784 * 785 * Default values in the event that policy does not override them. 786 */ 787 static void ecryptfs_set_default_crypt_stat_vals( 788 struct ecryptfs_crypt_stat *crypt_stat, 789 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 790 { 791 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 792 mount_crypt_stat); 793 ecryptfs_set_default_sizes(crypt_stat); 794 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 795 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 796 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 797 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 798 crypt_stat->mount_crypt_stat = mount_crypt_stat; 799 } 800 801 /** 802 * ecryptfs_new_file_context 803 * @ecryptfs_inode: The eCryptfs inode 804 * 805 * If the crypto context for the file has not yet been established, 806 * this is where we do that. Establishing a new crypto context 807 * involves the following decisions: 808 * - What cipher to use? 809 * - What set of authentication tokens to use? 810 * Here we just worry about getting enough information into the 811 * authentication tokens so that we know that they are available. 812 * We associate the available authentication tokens with the new file 813 * via the set of signatures in the crypt_stat struct. Later, when 814 * the headers are actually written out, we may again defer to 815 * userspace to perform the encryption of the session key; for the 816 * foreseeable future, this will be the case with public key packets. 817 * 818 * Returns zero on success; non-zero otherwise 819 */ 820 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 821 { 822 struct ecryptfs_crypt_stat *crypt_stat = 823 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 824 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 825 &ecryptfs_superblock_to_private( 826 ecryptfs_inode->i_sb)->mount_crypt_stat; 827 int cipher_name_len; 828 int rc = 0; 829 830 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 831 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 832 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 833 mount_crypt_stat); 834 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 835 mount_crypt_stat); 836 if (rc) { 837 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 838 "to the inode key sigs; rc = [%d]\n", rc); 839 goto out; 840 } 841 cipher_name_len = 842 strlen(mount_crypt_stat->global_default_cipher_name); 843 memcpy(crypt_stat->cipher, 844 mount_crypt_stat->global_default_cipher_name, 845 cipher_name_len); 846 crypt_stat->cipher[cipher_name_len] = '\0'; 847 crypt_stat->key_size = 848 mount_crypt_stat->global_default_cipher_key_size; 849 ecryptfs_generate_new_key(crypt_stat); 850 rc = ecryptfs_init_crypt_ctx(crypt_stat); 851 if (rc) 852 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 853 "context for cipher [%s]: rc = [%d]\n", 854 crypt_stat->cipher, rc); 855 out: 856 return rc; 857 } 858 859 /** 860 * ecryptfs_validate_marker - check for the ecryptfs marker 861 * @data: The data block in which to check 862 * 863 * Returns zero if marker found; -EINVAL if not found 864 */ 865 static int ecryptfs_validate_marker(char *data) 866 { 867 u32 m_1, m_2; 868 869 m_1 = get_unaligned_be32(data); 870 m_2 = get_unaligned_be32(data + 4); 871 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 872 return 0; 873 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 874 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 875 MAGIC_ECRYPTFS_MARKER); 876 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 877 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 878 return -EINVAL; 879 } 880 881 struct ecryptfs_flag_map_elem { 882 u32 file_flag; 883 u32 local_flag; 884 }; 885 886 /* Add support for additional flags by adding elements here. */ 887 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 888 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 889 {0x00000002, ECRYPTFS_ENCRYPTED}, 890 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 891 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 892 }; 893 894 /** 895 * ecryptfs_process_flags 896 * @crypt_stat: The cryptographic context 897 * @page_virt: Source data to be parsed 898 * @bytes_read: Updated with the number of bytes read 899 * 900 * Returns zero on success; non-zero if the flag set is invalid 901 */ 902 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 903 char *page_virt, int *bytes_read) 904 { 905 int rc = 0; 906 int i; 907 u32 flags; 908 909 flags = get_unaligned_be32(page_virt); 910 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 911 / sizeof(struct ecryptfs_flag_map_elem))); i++) 912 if (flags & ecryptfs_flag_map[i].file_flag) { 913 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 914 } else 915 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 916 /* Version is in top 8 bits of the 32-bit flag vector */ 917 crypt_stat->file_version = ((flags >> 24) & 0xFF); 918 (*bytes_read) = 4; 919 return rc; 920 } 921 922 /** 923 * write_ecryptfs_marker 924 * @page_virt: The pointer to in a page to begin writing the marker 925 * @written: Number of bytes written 926 * 927 * Marker = 0x3c81b7f5 928 */ 929 static void write_ecryptfs_marker(char *page_virt, size_t *written) 930 { 931 u32 m_1, m_2; 932 933 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 934 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 935 put_unaligned_be32(m_1, page_virt); 936 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 937 put_unaligned_be32(m_2, page_virt); 938 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 939 } 940 941 void ecryptfs_write_crypt_stat_flags(char *page_virt, 942 struct ecryptfs_crypt_stat *crypt_stat, 943 size_t *written) 944 { 945 u32 flags = 0; 946 int i; 947 948 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 949 / sizeof(struct ecryptfs_flag_map_elem))); i++) 950 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 951 flags |= ecryptfs_flag_map[i].file_flag; 952 /* Version is in top 8 bits of the 32-bit flag vector */ 953 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 954 put_unaligned_be32(flags, page_virt); 955 (*written) = 4; 956 } 957 958 struct ecryptfs_cipher_code_str_map_elem { 959 char cipher_str[16]; 960 u8 cipher_code; 961 }; 962 963 /* Add support for additional ciphers by adding elements here. The 964 * cipher_code is whatever OpenPGP applicatoins use to identify the 965 * ciphers. List in order of probability. */ 966 static struct ecryptfs_cipher_code_str_map_elem 967 ecryptfs_cipher_code_str_map[] = { 968 {"aes",RFC2440_CIPHER_AES_128 }, 969 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 970 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 971 {"cast5", RFC2440_CIPHER_CAST_5}, 972 {"twofish", RFC2440_CIPHER_TWOFISH}, 973 {"cast6", RFC2440_CIPHER_CAST_6}, 974 {"aes", RFC2440_CIPHER_AES_192}, 975 {"aes", RFC2440_CIPHER_AES_256} 976 }; 977 978 /** 979 * ecryptfs_code_for_cipher_string 980 * @cipher_name: The string alias for the cipher 981 * @key_bytes: Length of key in bytes; used for AES code selection 982 * 983 * Returns zero on no match, or the cipher code on match 984 */ 985 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 986 { 987 int i; 988 u8 code = 0; 989 struct ecryptfs_cipher_code_str_map_elem *map = 990 ecryptfs_cipher_code_str_map; 991 992 if (strcmp(cipher_name, "aes") == 0) { 993 switch (key_bytes) { 994 case 16: 995 code = RFC2440_CIPHER_AES_128; 996 break; 997 case 24: 998 code = RFC2440_CIPHER_AES_192; 999 break; 1000 case 32: 1001 code = RFC2440_CIPHER_AES_256; 1002 } 1003 } else { 1004 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1005 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 1006 code = map[i].cipher_code; 1007 break; 1008 } 1009 } 1010 return code; 1011 } 1012 1013 /** 1014 * ecryptfs_cipher_code_to_string 1015 * @str: Destination to write out the cipher name 1016 * @cipher_code: The code to convert to cipher name string 1017 * 1018 * Returns zero on success 1019 */ 1020 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 1021 { 1022 int rc = 0; 1023 int i; 1024 1025 str[0] = '\0'; 1026 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1027 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1028 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1029 if (str[0] == '\0') { 1030 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1031 "[%d]\n", cipher_code); 1032 rc = -EINVAL; 1033 } 1034 return rc; 1035 } 1036 1037 int ecryptfs_read_and_validate_header_region(struct inode *inode) 1038 { 1039 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1040 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1041 int rc; 1042 1043 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 1044 inode); 1045 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1046 return rc >= 0 ? -EINVAL : rc; 1047 rc = ecryptfs_validate_marker(marker); 1048 if (!rc) 1049 ecryptfs_i_size_init(file_size, inode); 1050 return rc; 1051 } 1052 1053 void 1054 ecryptfs_write_header_metadata(char *virt, 1055 struct ecryptfs_crypt_stat *crypt_stat, 1056 size_t *written) 1057 { 1058 u32 header_extent_size; 1059 u16 num_header_extents_at_front; 1060 1061 header_extent_size = (u32)crypt_stat->extent_size; 1062 num_header_extents_at_front = 1063 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1064 put_unaligned_be32(header_extent_size, virt); 1065 virt += 4; 1066 put_unaligned_be16(num_header_extents_at_front, virt); 1067 (*written) = 6; 1068 } 1069 1070 struct kmem_cache *ecryptfs_header_cache; 1071 1072 /** 1073 * ecryptfs_write_headers_virt 1074 * @page_virt: The virtual address to write the headers to 1075 * @max: The size of memory allocated at page_virt 1076 * @size: Set to the number of bytes written by this function 1077 * @crypt_stat: The cryptographic context 1078 * @ecryptfs_dentry: The eCryptfs dentry 1079 * 1080 * Format version: 1 1081 * 1082 * Header Extent: 1083 * Octets 0-7: Unencrypted file size (big-endian) 1084 * Octets 8-15: eCryptfs special marker 1085 * Octets 16-19: Flags 1086 * Octet 16: File format version number (between 0 and 255) 1087 * Octets 17-18: Reserved 1088 * Octet 19: Bit 1 (lsb): Reserved 1089 * Bit 2: Encrypted? 1090 * Bits 3-8: Reserved 1091 * Octets 20-23: Header extent size (big-endian) 1092 * Octets 24-25: Number of header extents at front of file 1093 * (big-endian) 1094 * Octet 26: Begin RFC 2440 authentication token packet set 1095 * Data Extent 0: 1096 * Lower data (CBC encrypted) 1097 * Data Extent 1: 1098 * Lower data (CBC encrypted) 1099 * ... 1100 * 1101 * Returns zero on success 1102 */ 1103 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1104 size_t *size, 1105 struct ecryptfs_crypt_stat *crypt_stat, 1106 struct dentry *ecryptfs_dentry) 1107 { 1108 int rc; 1109 size_t written; 1110 size_t offset; 1111 1112 offset = ECRYPTFS_FILE_SIZE_BYTES; 1113 write_ecryptfs_marker((page_virt + offset), &written); 1114 offset += written; 1115 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1116 &written); 1117 offset += written; 1118 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1119 &written); 1120 offset += written; 1121 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1122 ecryptfs_dentry, &written, 1123 max - offset); 1124 if (rc) 1125 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1126 "set; rc = [%d]\n", rc); 1127 if (size) { 1128 offset += written; 1129 *size = offset; 1130 } 1131 return rc; 1132 } 1133 1134 static int 1135 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1136 char *virt, size_t virt_len) 1137 { 1138 int rc; 1139 1140 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1141 0, virt_len); 1142 if (rc < 0) 1143 printk(KERN_ERR "%s: Error attempting to write header " 1144 "information to lower file; rc = [%d]\n", __func__, rc); 1145 else 1146 rc = 0; 1147 return rc; 1148 } 1149 1150 static int 1151 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1152 char *page_virt, size_t size) 1153 { 1154 int rc; 1155 1156 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1157 size, 0); 1158 return rc; 1159 } 1160 1161 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1162 unsigned int order) 1163 { 1164 struct page *page; 1165 1166 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1167 if (page) 1168 return (unsigned long) page_address(page); 1169 return 0; 1170 } 1171 1172 /** 1173 * ecryptfs_write_metadata 1174 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1175 * @ecryptfs_inode: The newly created eCryptfs inode 1176 * 1177 * Write the file headers out. This will likely involve a userspace 1178 * callout, in which the session key is encrypted with one or more 1179 * public keys and/or the passphrase necessary to do the encryption is 1180 * retrieved via a prompt. Exactly what happens at this point should 1181 * be policy-dependent. 1182 * 1183 * Returns zero on success; non-zero on error 1184 */ 1185 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1186 struct inode *ecryptfs_inode) 1187 { 1188 struct ecryptfs_crypt_stat *crypt_stat = 1189 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1190 unsigned int order; 1191 char *virt; 1192 size_t virt_len; 1193 size_t size = 0; 1194 int rc = 0; 1195 1196 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1197 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1198 printk(KERN_ERR "Key is invalid; bailing out\n"); 1199 rc = -EINVAL; 1200 goto out; 1201 } 1202 } else { 1203 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1204 __func__); 1205 rc = -EINVAL; 1206 goto out; 1207 } 1208 virt_len = crypt_stat->metadata_size; 1209 order = get_order(virt_len); 1210 /* Released in this function */ 1211 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1212 if (!virt) { 1213 printk(KERN_ERR "%s: Out of memory\n", __func__); 1214 rc = -ENOMEM; 1215 goto out; 1216 } 1217 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1218 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1219 ecryptfs_dentry); 1220 if (unlikely(rc)) { 1221 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1222 __func__, rc); 1223 goto out_free; 1224 } 1225 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1226 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt, 1227 size); 1228 else 1229 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1230 virt_len); 1231 if (rc) { 1232 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1233 "rc = [%d]\n", __func__, rc); 1234 goto out_free; 1235 } 1236 out_free: 1237 free_pages((unsigned long)virt, order); 1238 out: 1239 return rc; 1240 } 1241 1242 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1243 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1244 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1245 char *virt, int *bytes_read, 1246 int validate_header_size) 1247 { 1248 int rc = 0; 1249 u32 header_extent_size; 1250 u16 num_header_extents_at_front; 1251 1252 header_extent_size = get_unaligned_be32(virt); 1253 virt += sizeof(__be32); 1254 num_header_extents_at_front = get_unaligned_be16(virt); 1255 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1256 * (size_t)header_extent_size)); 1257 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1258 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1259 && (crypt_stat->metadata_size 1260 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1261 rc = -EINVAL; 1262 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1263 crypt_stat->metadata_size); 1264 } 1265 return rc; 1266 } 1267 1268 /** 1269 * set_default_header_data 1270 * @crypt_stat: The cryptographic context 1271 * 1272 * For version 0 file format; this function is only for backwards 1273 * compatibility for files created with the prior versions of 1274 * eCryptfs. 1275 */ 1276 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1277 { 1278 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1279 } 1280 1281 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1282 { 1283 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1284 struct ecryptfs_crypt_stat *crypt_stat; 1285 u64 file_size; 1286 1287 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1288 mount_crypt_stat = 1289 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1290 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1291 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1292 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1293 file_size += crypt_stat->metadata_size; 1294 } else 1295 file_size = get_unaligned_be64(page_virt); 1296 i_size_write(inode, (loff_t)file_size); 1297 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1298 } 1299 1300 /** 1301 * ecryptfs_read_headers_virt 1302 * @page_virt: The virtual address into which to read the headers 1303 * @crypt_stat: The cryptographic context 1304 * @ecryptfs_dentry: The eCryptfs dentry 1305 * @validate_header_size: Whether to validate the header size while reading 1306 * 1307 * Read/parse the header data. The header format is detailed in the 1308 * comment block for the ecryptfs_write_headers_virt() function. 1309 * 1310 * Returns zero on success 1311 */ 1312 static int ecryptfs_read_headers_virt(char *page_virt, 1313 struct ecryptfs_crypt_stat *crypt_stat, 1314 struct dentry *ecryptfs_dentry, 1315 int validate_header_size) 1316 { 1317 int rc = 0; 1318 int offset; 1319 int bytes_read; 1320 1321 ecryptfs_set_default_sizes(crypt_stat); 1322 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1323 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1324 offset = ECRYPTFS_FILE_SIZE_BYTES; 1325 rc = ecryptfs_validate_marker(page_virt + offset); 1326 if (rc) 1327 goto out; 1328 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1329 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode); 1330 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1331 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1332 &bytes_read); 1333 if (rc) { 1334 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1335 goto out; 1336 } 1337 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1338 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1339 "file version [%d] is supported by this " 1340 "version of eCryptfs\n", 1341 crypt_stat->file_version, 1342 ECRYPTFS_SUPPORTED_FILE_VERSION); 1343 rc = -EINVAL; 1344 goto out; 1345 } 1346 offset += bytes_read; 1347 if (crypt_stat->file_version >= 1) { 1348 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1349 &bytes_read, validate_header_size); 1350 if (rc) { 1351 ecryptfs_printk(KERN_WARNING, "Error reading header " 1352 "metadata; rc = [%d]\n", rc); 1353 } 1354 offset += bytes_read; 1355 } else 1356 set_default_header_data(crypt_stat); 1357 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1358 ecryptfs_dentry); 1359 out: 1360 return rc; 1361 } 1362 1363 /** 1364 * ecryptfs_read_xattr_region 1365 * @page_virt: The vitual address into which to read the xattr data 1366 * @ecryptfs_inode: The eCryptfs inode 1367 * 1368 * Attempts to read the crypto metadata from the extended attribute 1369 * region of the lower file. 1370 * 1371 * Returns zero on success; non-zero on error 1372 */ 1373 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1374 { 1375 struct dentry *lower_dentry = 1376 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1377 ssize_t size; 1378 int rc = 0; 1379 1380 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1381 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1382 if (size < 0) { 1383 if (unlikely(ecryptfs_verbosity > 0)) 1384 printk(KERN_INFO "Error attempting to read the [%s] " 1385 "xattr from the lower file; return value = " 1386 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1387 rc = -EINVAL; 1388 goto out; 1389 } 1390 out: 1391 return rc; 1392 } 1393 1394 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1395 struct inode *inode) 1396 { 1397 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1398 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1399 int rc; 1400 1401 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1402 ECRYPTFS_XATTR_NAME, file_size, 1403 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1404 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1405 return rc >= 0 ? -EINVAL : rc; 1406 rc = ecryptfs_validate_marker(marker); 1407 if (!rc) 1408 ecryptfs_i_size_init(file_size, inode); 1409 return rc; 1410 } 1411 1412 /** 1413 * ecryptfs_read_metadata 1414 * 1415 * Common entry point for reading file metadata. From here, we could 1416 * retrieve the header information from the header region of the file, 1417 * the xattr region of the file, or some other repostory that is 1418 * stored separately from the file itself. The current implementation 1419 * supports retrieving the metadata information from the file contents 1420 * and from the xattr region. 1421 * 1422 * Returns zero if valid headers found and parsed; non-zero otherwise 1423 */ 1424 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1425 { 1426 int rc; 1427 char *page_virt; 1428 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1429 struct ecryptfs_crypt_stat *crypt_stat = 1430 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1431 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1432 &ecryptfs_superblock_to_private( 1433 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1434 1435 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1436 mount_crypt_stat); 1437 /* Read the first page from the underlying file */ 1438 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1439 if (!page_virt) { 1440 rc = -ENOMEM; 1441 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1442 __func__); 1443 goto out; 1444 } 1445 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1446 ecryptfs_inode); 1447 if (rc >= 0) 1448 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1449 ecryptfs_dentry, 1450 ECRYPTFS_VALIDATE_HEADER_SIZE); 1451 if (rc) { 1452 /* metadata is not in the file header, so try xattrs */ 1453 memset(page_virt, 0, PAGE_CACHE_SIZE); 1454 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1455 if (rc) { 1456 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1457 "file header region or xattr region, inode %lu\n", 1458 ecryptfs_inode->i_ino); 1459 rc = -EINVAL; 1460 goto out; 1461 } 1462 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1463 ecryptfs_dentry, 1464 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1465 if (rc) { 1466 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1467 "file xattr region either, inode %lu\n", 1468 ecryptfs_inode->i_ino); 1469 rc = -EINVAL; 1470 } 1471 if (crypt_stat->mount_crypt_stat->flags 1472 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1473 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1474 } else { 1475 printk(KERN_WARNING "Attempt to access file with " 1476 "crypto metadata only in the extended attribute " 1477 "region, but eCryptfs was mounted without " 1478 "xattr support enabled. eCryptfs will not treat " 1479 "this like an encrypted file, inode %lu\n", 1480 ecryptfs_inode->i_ino); 1481 rc = -EINVAL; 1482 } 1483 } 1484 out: 1485 if (page_virt) { 1486 memset(page_virt, 0, PAGE_CACHE_SIZE); 1487 kmem_cache_free(ecryptfs_header_cache, page_virt); 1488 } 1489 return rc; 1490 } 1491 1492 /** 1493 * ecryptfs_encrypt_filename - encrypt filename 1494 * 1495 * CBC-encrypts the filename. We do not want to encrypt the same 1496 * filename with the same key and IV, which may happen with hard 1497 * links, so we prepend random bits to each filename. 1498 * 1499 * Returns zero on success; non-zero otherwise 1500 */ 1501 static int 1502 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1503 struct ecryptfs_crypt_stat *crypt_stat, 1504 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1505 { 1506 int rc = 0; 1507 1508 filename->encrypted_filename = NULL; 1509 filename->encrypted_filename_size = 0; 1510 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1511 || (mount_crypt_stat && (mount_crypt_stat->flags 1512 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 1513 size_t packet_size; 1514 size_t remaining_bytes; 1515 1516 rc = ecryptfs_write_tag_70_packet( 1517 NULL, NULL, 1518 &filename->encrypted_filename_size, 1519 mount_crypt_stat, NULL, 1520 filename->filename_size); 1521 if (rc) { 1522 printk(KERN_ERR "%s: Error attempting to get packet " 1523 "size for tag 72; rc = [%d]\n", __func__, 1524 rc); 1525 filename->encrypted_filename_size = 0; 1526 goto out; 1527 } 1528 filename->encrypted_filename = 1529 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1530 if (!filename->encrypted_filename) { 1531 printk(KERN_ERR "%s: Out of memory whilst attempting " 1532 "to kmalloc [%zd] bytes\n", __func__, 1533 filename->encrypted_filename_size); 1534 rc = -ENOMEM; 1535 goto out; 1536 } 1537 remaining_bytes = filename->encrypted_filename_size; 1538 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1539 &remaining_bytes, 1540 &packet_size, 1541 mount_crypt_stat, 1542 filename->filename, 1543 filename->filename_size); 1544 if (rc) { 1545 printk(KERN_ERR "%s: Error attempting to generate " 1546 "tag 70 packet; rc = [%d]\n", __func__, 1547 rc); 1548 kfree(filename->encrypted_filename); 1549 filename->encrypted_filename = NULL; 1550 filename->encrypted_filename_size = 0; 1551 goto out; 1552 } 1553 filename->encrypted_filename_size = packet_size; 1554 } else { 1555 printk(KERN_ERR "%s: No support for requested filename " 1556 "encryption method in this release\n", __func__); 1557 rc = -EOPNOTSUPP; 1558 goto out; 1559 } 1560 out: 1561 return rc; 1562 } 1563 1564 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1565 const char *name, size_t name_size) 1566 { 1567 int rc = 0; 1568 1569 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1570 if (!(*copied_name)) { 1571 rc = -ENOMEM; 1572 goto out; 1573 } 1574 memcpy((void *)(*copied_name), (void *)name, name_size); 1575 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1576 * in printing out the 1577 * string in debug 1578 * messages */ 1579 (*copied_name_size) = name_size; 1580 out: 1581 return rc; 1582 } 1583 1584 /** 1585 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1586 * @key_tfm: Crypto context for key material, set by this function 1587 * @cipher_name: Name of the cipher 1588 * @key_size: Size of the key in bytes 1589 * 1590 * Returns zero on success. Any crypto_tfm structs allocated here 1591 * should be released by other functions, such as on a superblock put 1592 * event, regardless of whether this function succeeds for fails. 1593 */ 1594 static int 1595 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1596 char *cipher_name, size_t *key_size) 1597 { 1598 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1599 char *full_alg_name = NULL; 1600 int rc; 1601 1602 *key_tfm = NULL; 1603 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1604 rc = -EINVAL; 1605 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1606 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1607 goto out; 1608 } 1609 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1610 "ecb"); 1611 if (rc) 1612 goto out; 1613 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1614 if (IS_ERR(*key_tfm)) { 1615 rc = PTR_ERR(*key_tfm); 1616 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1617 "[%s]; rc = [%d]\n", full_alg_name, rc); 1618 goto out; 1619 } 1620 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1621 if (*key_size == 0) { 1622 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1623 1624 *key_size = alg->max_keysize; 1625 } 1626 get_random_bytes(dummy_key, *key_size); 1627 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1628 if (rc) { 1629 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1630 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1631 rc); 1632 rc = -EINVAL; 1633 goto out; 1634 } 1635 out: 1636 kfree(full_alg_name); 1637 return rc; 1638 } 1639 1640 struct kmem_cache *ecryptfs_key_tfm_cache; 1641 static struct list_head key_tfm_list; 1642 struct mutex key_tfm_list_mutex; 1643 1644 int __init ecryptfs_init_crypto(void) 1645 { 1646 mutex_init(&key_tfm_list_mutex); 1647 INIT_LIST_HEAD(&key_tfm_list); 1648 return 0; 1649 } 1650 1651 /** 1652 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1653 * 1654 * Called only at module unload time 1655 */ 1656 int ecryptfs_destroy_crypto(void) 1657 { 1658 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1659 1660 mutex_lock(&key_tfm_list_mutex); 1661 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1662 key_tfm_list) { 1663 list_del(&key_tfm->key_tfm_list); 1664 if (key_tfm->key_tfm) 1665 crypto_free_blkcipher(key_tfm->key_tfm); 1666 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1667 } 1668 mutex_unlock(&key_tfm_list_mutex); 1669 return 0; 1670 } 1671 1672 int 1673 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1674 size_t key_size) 1675 { 1676 struct ecryptfs_key_tfm *tmp_tfm; 1677 int rc = 0; 1678 1679 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1680 1681 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1682 if (key_tfm != NULL) 1683 (*key_tfm) = tmp_tfm; 1684 if (!tmp_tfm) { 1685 rc = -ENOMEM; 1686 printk(KERN_ERR "Error attempting to allocate from " 1687 "ecryptfs_key_tfm_cache\n"); 1688 goto out; 1689 } 1690 mutex_init(&tmp_tfm->key_tfm_mutex); 1691 strncpy(tmp_tfm->cipher_name, cipher_name, 1692 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1693 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1694 tmp_tfm->key_size = key_size; 1695 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1696 tmp_tfm->cipher_name, 1697 &tmp_tfm->key_size); 1698 if (rc) { 1699 printk(KERN_ERR "Error attempting to initialize key TFM " 1700 "cipher with name = [%s]; rc = [%d]\n", 1701 tmp_tfm->cipher_name, rc); 1702 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1703 if (key_tfm != NULL) 1704 (*key_tfm) = NULL; 1705 goto out; 1706 } 1707 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1708 out: 1709 return rc; 1710 } 1711 1712 /** 1713 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1714 * @cipher_name: the name of the cipher to search for 1715 * @key_tfm: set to corresponding tfm if found 1716 * 1717 * Searches for cached key_tfm matching @cipher_name 1718 * Must be called with &key_tfm_list_mutex held 1719 * Returns 1 if found, with @key_tfm set 1720 * Returns 0 if not found, with @key_tfm set to NULL 1721 */ 1722 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1723 { 1724 struct ecryptfs_key_tfm *tmp_key_tfm; 1725 1726 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1727 1728 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1729 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1730 if (key_tfm) 1731 (*key_tfm) = tmp_key_tfm; 1732 return 1; 1733 } 1734 } 1735 if (key_tfm) 1736 (*key_tfm) = NULL; 1737 return 0; 1738 } 1739 1740 /** 1741 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1742 * 1743 * @tfm: set to cached tfm found, or new tfm created 1744 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1745 * @cipher_name: the name of the cipher to search for and/or add 1746 * 1747 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1748 * Searches for cached item first, and creates new if not found. 1749 * Returns 0 on success, non-zero if adding new cipher failed 1750 */ 1751 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1752 struct mutex **tfm_mutex, 1753 char *cipher_name) 1754 { 1755 struct ecryptfs_key_tfm *key_tfm; 1756 int rc = 0; 1757 1758 (*tfm) = NULL; 1759 (*tfm_mutex) = NULL; 1760 1761 mutex_lock(&key_tfm_list_mutex); 1762 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1763 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1764 if (rc) { 1765 printk(KERN_ERR "Error adding new key_tfm to list; " 1766 "rc = [%d]\n", rc); 1767 goto out; 1768 } 1769 } 1770 (*tfm) = key_tfm->key_tfm; 1771 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1772 out: 1773 mutex_unlock(&key_tfm_list_mutex); 1774 return rc; 1775 } 1776 1777 /* 64 characters forming a 6-bit target field */ 1778 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1779 "EFGHIJKLMNOPQRST" 1780 "UVWXYZabcdefghij" 1781 "klmnopqrstuvwxyz"); 1782 1783 /* We could either offset on every reverse map or just pad some 0x00's 1784 * at the front here */ 1785 static const unsigned char filename_rev_map[256] = { 1786 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1787 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1788 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1789 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1790 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1791 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1792 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1793 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1794 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1795 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1796 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1797 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1798 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1799 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1800 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1801 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1802 }; 1803 1804 /** 1805 * ecryptfs_encode_for_filename 1806 * @dst: Destination location for encoded filename 1807 * @dst_size: Size of the encoded filename in bytes 1808 * @src: Source location for the filename to encode 1809 * @src_size: Size of the source in bytes 1810 */ 1811 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1812 unsigned char *src, size_t src_size) 1813 { 1814 size_t num_blocks; 1815 size_t block_num = 0; 1816 size_t dst_offset = 0; 1817 unsigned char last_block[3]; 1818 1819 if (src_size == 0) { 1820 (*dst_size) = 0; 1821 goto out; 1822 } 1823 num_blocks = (src_size / 3); 1824 if ((src_size % 3) == 0) { 1825 memcpy(last_block, (&src[src_size - 3]), 3); 1826 } else { 1827 num_blocks++; 1828 last_block[2] = 0x00; 1829 switch (src_size % 3) { 1830 case 1: 1831 last_block[0] = src[src_size - 1]; 1832 last_block[1] = 0x00; 1833 break; 1834 case 2: 1835 last_block[0] = src[src_size - 2]; 1836 last_block[1] = src[src_size - 1]; 1837 } 1838 } 1839 (*dst_size) = (num_blocks * 4); 1840 if (!dst) 1841 goto out; 1842 while (block_num < num_blocks) { 1843 unsigned char *src_block; 1844 unsigned char dst_block[4]; 1845 1846 if (block_num == (num_blocks - 1)) 1847 src_block = last_block; 1848 else 1849 src_block = &src[block_num * 3]; 1850 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1851 dst_block[1] = (((src_block[0] << 4) & 0x30) 1852 | ((src_block[1] >> 4) & 0x0F)); 1853 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1854 | ((src_block[2] >> 6) & 0x03)); 1855 dst_block[3] = (src_block[2] & 0x3F); 1856 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1857 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1858 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1859 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1860 block_num++; 1861 } 1862 out: 1863 return; 1864 } 1865 1866 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1867 { 1868 /* Not exact; conservatively long. Every block of 4 1869 * encoded characters decodes into a block of 3 1870 * decoded characters. This segment of code provides 1871 * the caller with the maximum amount of allocated 1872 * space that @dst will need to point to in a 1873 * subsequent call. */ 1874 return ((encoded_size + 1) * 3) / 4; 1875 } 1876 1877 /** 1878 * ecryptfs_decode_from_filename 1879 * @dst: If NULL, this function only sets @dst_size and returns. If 1880 * non-NULL, this function decodes the encoded octets in @src 1881 * into the memory that @dst points to. 1882 * @dst_size: Set to the size of the decoded string. 1883 * @src: The encoded set of octets to decode. 1884 * @src_size: The size of the encoded set of octets to decode. 1885 */ 1886 static void 1887 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 1888 const unsigned char *src, size_t src_size) 1889 { 1890 u8 current_bit_offset = 0; 1891 size_t src_byte_offset = 0; 1892 size_t dst_byte_offset = 0; 1893 1894 if (dst == NULL) { 1895 (*dst_size) = ecryptfs_max_decoded_size(src_size); 1896 goto out; 1897 } 1898 while (src_byte_offset < src_size) { 1899 unsigned char src_byte = 1900 filename_rev_map[(int)src[src_byte_offset]]; 1901 1902 switch (current_bit_offset) { 1903 case 0: 1904 dst[dst_byte_offset] = (src_byte << 2); 1905 current_bit_offset = 6; 1906 break; 1907 case 6: 1908 dst[dst_byte_offset++] |= (src_byte >> 4); 1909 dst[dst_byte_offset] = ((src_byte & 0xF) 1910 << 4); 1911 current_bit_offset = 4; 1912 break; 1913 case 4: 1914 dst[dst_byte_offset++] |= (src_byte >> 2); 1915 dst[dst_byte_offset] = (src_byte << 6); 1916 current_bit_offset = 2; 1917 break; 1918 case 2: 1919 dst[dst_byte_offset++] |= (src_byte); 1920 dst[dst_byte_offset] = 0; 1921 current_bit_offset = 0; 1922 break; 1923 } 1924 src_byte_offset++; 1925 } 1926 (*dst_size) = dst_byte_offset; 1927 out: 1928 return; 1929 } 1930 1931 /** 1932 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 1933 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 1934 * @name: The plaintext name 1935 * @length: The length of the plaintext 1936 * @encoded_name: The encypted name 1937 * 1938 * Encrypts and encodes a filename into something that constitutes a 1939 * valid filename for a filesystem, with printable characters. 1940 * 1941 * We assume that we have a properly initialized crypto context, 1942 * pointed to by crypt_stat->tfm. 1943 * 1944 * Returns zero on success; non-zero on otherwise 1945 */ 1946 int ecryptfs_encrypt_and_encode_filename( 1947 char **encoded_name, 1948 size_t *encoded_name_size, 1949 struct ecryptfs_crypt_stat *crypt_stat, 1950 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 1951 const char *name, size_t name_size) 1952 { 1953 size_t encoded_name_no_prefix_size; 1954 int rc = 0; 1955 1956 (*encoded_name) = NULL; 1957 (*encoded_name_size) = 0; 1958 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES)) 1959 || (mount_crypt_stat && (mount_crypt_stat->flags 1960 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) { 1961 struct ecryptfs_filename *filename; 1962 1963 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 1964 if (!filename) { 1965 printk(KERN_ERR "%s: Out of memory whilst attempting " 1966 "to kzalloc [%zd] bytes\n", __func__, 1967 sizeof(*filename)); 1968 rc = -ENOMEM; 1969 goto out; 1970 } 1971 filename->filename = (char *)name; 1972 filename->filename_size = name_size; 1973 rc = ecryptfs_encrypt_filename(filename, crypt_stat, 1974 mount_crypt_stat); 1975 if (rc) { 1976 printk(KERN_ERR "%s: Error attempting to encrypt " 1977 "filename; rc = [%d]\n", __func__, rc); 1978 kfree(filename); 1979 goto out; 1980 } 1981 ecryptfs_encode_for_filename( 1982 NULL, &encoded_name_no_prefix_size, 1983 filename->encrypted_filename, 1984 filename->encrypted_filename_size); 1985 if ((crypt_stat && (crypt_stat->flags 1986 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1987 || (mount_crypt_stat 1988 && (mount_crypt_stat->flags 1989 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) 1990 (*encoded_name_size) = 1991 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1992 + encoded_name_no_prefix_size); 1993 else 1994 (*encoded_name_size) = 1995 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1996 + encoded_name_no_prefix_size); 1997 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 1998 if (!(*encoded_name)) { 1999 printk(KERN_ERR "%s: Out of memory whilst attempting " 2000 "to kzalloc [%zd] bytes\n", __func__, 2001 (*encoded_name_size)); 2002 rc = -ENOMEM; 2003 kfree(filename->encrypted_filename); 2004 kfree(filename); 2005 goto out; 2006 } 2007 if ((crypt_stat && (crypt_stat->flags 2008 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2009 || (mount_crypt_stat 2010 && (mount_crypt_stat->flags 2011 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 2012 memcpy((*encoded_name), 2013 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2014 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 2015 ecryptfs_encode_for_filename( 2016 ((*encoded_name) 2017 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 2018 &encoded_name_no_prefix_size, 2019 filename->encrypted_filename, 2020 filename->encrypted_filename_size); 2021 (*encoded_name_size) = 2022 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2023 + encoded_name_no_prefix_size); 2024 (*encoded_name)[(*encoded_name_size)] = '\0'; 2025 } else { 2026 rc = -EOPNOTSUPP; 2027 } 2028 if (rc) { 2029 printk(KERN_ERR "%s: Error attempting to encode " 2030 "encrypted filename; rc = [%d]\n", __func__, 2031 rc); 2032 kfree((*encoded_name)); 2033 (*encoded_name) = NULL; 2034 (*encoded_name_size) = 0; 2035 } 2036 kfree(filename->encrypted_filename); 2037 kfree(filename); 2038 } else { 2039 rc = ecryptfs_copy_filename(encoded_name, 2040 encoded_name_size, 2041 name, name_size); 2042 } 2043 out: 2044 return rc; 2045 } 2046 2047 /** 2048 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2049 * @plaintext_name: The plaintext name 2050 * @plaintext_name_size: The plaintext name size 2051 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2052 * @name: The filename in cipher text 2053 * @name_size: The cipher text name size 2054 * 2055 * Decrypts and decodes the filename. 2056 * 2057 * Returns zero on error; non-zero otherwise 2058 */ 2059 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2060 size_t *plaintext_name_size, 2061 struct super_block *sb, 2062 const char *name, size_t name_size) 2063 { 2064 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2065 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 2066 char *decoded_name; 2067 size_t decoded_name_size; 2068 size_t packet_size; 2069 int rc = 0; 2070 2071 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 2072 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 2073 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) 2074 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2075 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) { 2076 const char *orig_name = name; 2077 size_t orig_name_size = name_size; 2078 2079 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2080 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2081 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2082 name, name_size); 2083 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2084 if (!decoded_name) { 2085 printk(KERN_ERR "%s: Out of memory whilst attempting " 2086 "to kmalloc [%zd] bytes\n", __func__, 2087 decoded_name_size); 2088 rc = -ENOMEM; 2089 goto out; 2090 } 2091 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2092 name, name_size); 2093 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2094 plaintext_name_size, 2095 &packet_size, 2096 mount_crypt_stat, 2097 decoded_name, 2098 decoded_name_size); 2099 if (rc) { 2100 printk(KERN_INFO "%s: Could not parse tag 70 packet " 2101 "from filename; copying through filename " 2102 "as-is\n", __func__); 2103 rc = ecryptfs_copy_filename(plaintext_name, 2104 plaintext_name_size, 2105 orig_name, orig_name_size); 2106 goto out_free; 2107 } 2108 } else { 2109 rc = ecryptfs_copy_filename(plaintext_name, 2110 plaintext_name_size, 2111 name, name_size); 2112 goto out; 2113 } 2114 out_free: 2115 kfree(decoded_name); 2116 out: 2117 return rc; 2118 } 2119 2120 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2121 2122 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2123 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2124 { 2125 struct blkcipher_desc desc; 2126 struct mutex *tfm_mutex; 2127 size_t cipher_blocksize; 2128 int rc; 2129 2130 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2131 (*namelen) = lower_namelen; 2132 return 0; 2133 } 2134 2135 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex, 2136 mount_crypt_stat->global_default_fn_cipher_name); 2137 if (unlikely(rc)) { 2138 (*namelen) = 0; 2139 return rc; 2140 } 2141 2142 mutex_lock(tfm_mutex); 2143 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm); 2144 mutex_unlock(tfm_mutex); 2145 2146 /* Return an exact amount for the common cases */ 2147 if (lower_namelen == NAME_MAX 2148 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2149 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2150 return 0; 2151 } 2152 2153 /* Return a safe estimate for the uncommon cases */ 2154 (*namelen) = lower_namelen; 2155 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2156 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2157 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2158 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2159 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2160 /* Worst case is that the filename is padded nearly a full block size */ 2161 (*namelen) -= cipher_blocksize - 1; 2162 2163 if ((*namelen) < 0) 2164 (*namelen) = 0; 2165 2166 return 0; 2167 } 2168