xref: /openbmc/linux/fs/ecryptfs/crypto.c (revision 110e6f26)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <crypto/hash.h>
27 #include <crypto/skcipher.h>
28 #include <linux/fs.h>
29 #include <linux/mount.h>
30 #include <linux/pagemap.h>
31 #include <linux/random.h>
32 #include <linux/compiler.h>
33 #include <linux/key.h>
34 #include <linux/namei.h>
35 #include <linux/file.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <asm/unaligned.h>
39 #include "ecryptfs_kernel.h"
40 
41 #define DECRYPT		0
42 #define ENCRYPT		1
43 
44 /**
45  * ecryptfs_to_hex
46  * @dst: Buffer to take hex character representation of contents of
47  *       src; must be at least of size (src_size * 2)
48  * @src: Buffer to be converted to a hex string respresentation
49  * @src_size: number of bytes to convert
50  */
51 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
52 {
53 	int x;
54 
55 	for (x = 0; x < src_size; x++)
56 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
57 }
58 
59 /**
60  * ecryptfs_from_hex
61  * @dst: Buffer to take the bytes from src hex; must be at least of
62  *       size (src_size / 2)
63  * @src: Buffer to be converted from a hex string respresentation to raw value
64  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
65  */
66 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
67 {
68 	int x;
69 	char tmp[3] = { 0, };
70 
71 	for (x = 0; x < dst_size; x++) {
72 		tmp[0] = src[x * 2];
73 		tmp[1] = src[x * 2 + 1];
74 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
75 	}
76 }
77 
78 static int ecryptfs_hash_digest(struct crypto_shash *tfm,
79 				char *src, int len, char *dst)
80 {
81 	SHASH_DESC_ON_STACK(desc, tfm);
82 	int err;
83 
84 	desc->tfm = tfm;
85 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
86 	err = crypto_shash_digest(desc, src, len, dst);
87 	shash_desc_zero(desc);
88 	return err;
89 }
90 
91 /**
92  * ecryptfs_calculate_md5 - calculates the md5 of @src
93  * @dst: Pointer to 16 bytes of allocated memory
94  * @crypt_stat: Pointer to crypt_stat struct for the current inode
95  * @src: Data to be md5'd
96  * @len: Length of @src
97  *
98  * Uses the allocated crypto context that crypt_stat references to
99  * generate the MD5 sum of the contents of src.
100  */
101 static int ecryptfs_calculate_md5(char *dst,
102 				  struct ecryptfs_crypt_stat *crypt_stat,
103 				  char *src, int len)
104 {
105 	struct crypto_shash *tfm;
106 	int rc = 0;
107 
108 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
109 	tfm = crypt_stat->hash_tfm;
110 	if (!tfm) {
111 		tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
112 		if (IS_ERR(tfm)) {
113 			rc = PTR_ERR(tfm);
114 			ecryptfs_printk(KERN_ERR, "Error attempting to "
115 					"allocate crypto context; rc = [%d]\n",
116 					rc);
117 			goto out;
118 		}
119 		crypt_stat->hash_tfm = tfm;
120 	}
121 	rc = ecryptfs_hash_digest(tfm, src, len, dst);
122 	if (rc) {
123 		printk(KERN_ERR
124 		       "%s: Error computing crypto hash; rc = [%d]\n",
125 		       __func__, rc);
126 		goto out;
127 	}
128 out:
129 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
130 	return rc;
131 }
132 
133 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
134 						  char *cipher_name,
135 						  char *chaining_modifier)
136 {
137 	int cipher_name_len = strlen(cipher_name);
138 	int chaining_modifier_len = strlen(chaining_modifier);
139 	int algified_name_len;
140 	int rc;
141 
142 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
143 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
144 	if (!(*algified_name)) {
145 		rc = -ENOMEM;
146 		goto out;
147 	}
148 	snprintf((*algified_name), algified_name_len, "%s(%s)",
149 		 chaining_modifier, cipher_name);
150 	rc = 0;
151 out:
152 	return rc;
153 }
154 
155 /**
156  * ecryptfs_derive_iv
157  * @iv: destination for the derived iv vale
158  * @crypt_stat: Pointer to crypt_stat struct for the current inode
159  * @offset: Offset of the extent whose IV we are to derive
160  *
161  * Generate the initialization vector from the given root IV and page
162  * offset.
163  *
164  * Returns zero on success; non-zero on error.
165  */
166 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
167 		       loff_t offset)
168 {
169 	int rc = 0;
170 	char dst[MD5_DIGEST_SIZE];
171 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
172 
173 	if (unlikely(ecryptfs_verbosity > 0)) {
174 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
175 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
176 	}
177 	/* TODO: It is probably secure to just cast the least
178 	 * significant bits of the root IV into an unsigned long and
179 	 * add the offset to that rather than go through all this
180 	 * hashing business. -Halcrow */
181 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
182 	memset((src + crypt_stat->iv_bytes), 0, 16);
183 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
184 	if (unlikely(ecryptfs_verbosity > 0)) {
185 		ecryptfs_printk(KERN_DEBUG, "source:\n");
186 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
187 	}
188 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
189 				    (crypt_stat->iv_bytes + 16));
190 	if (rc) {
191 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
192 				"MD5 while generating IV for a page\n");
193 		goto out;
194 	}
195 	memcpy(iv, dst, crypt_stat->iv_bytes);
196 	if (unlikely(ecryptfs_verbosity > 0)) {
197 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
198 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
199 	}
200 out:
201 	return rc;
202 }
203 
204 /**
205  * ecryptfs_init_crypt_stat
206  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
207  *
208  * Initialize the crypt_stat structure.
209  */
210 void
211 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
212 {
213 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
214 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
215 	mutex_init(&crypt_stat->keysig_list_mutex);
216 	mutex_init(&crypt_stat->cs_mutex);
217 	mutex_init(&crypt_stat->cs_tfm_mutex);
218 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
219 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
220 }
221 
222 /**
223  * ecryptfs_destroy_crypt_stat
224  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
225  *
226  * Releases all memory associated with a crypt_stat struct.
227  */
228 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
229 {
230 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
231 
232 	crypto_free_skcipher(crypt_stat->tfm);
233 	crypto_free_shash(crypt_stat->hash_tfm);
234 	list_for_each_entry_safe(key_sig, key_sig_tmp,
235 				 &crypt_stat->keysig_list, crypt_stat_list) {
236 		list_del(&key_sig->crypt_stat_list);
237 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
238 	}
239 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
240 }
241 
242 void ecryptfs_destroy_mount_crypt_stat(
243 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
244 {
245 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
246 
247 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
248 		return;
249 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
250 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
251 				 &mount_crypt_stat->global_auth_tok_list,
252 				 mount_crypt_stat_list) {
253 		list_del(&auth_tok->mount_crypt_stat_list);
254 		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
255 			key_put(auth_tok->global_auth_tok_key);
256 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
257 	}
258 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
259 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
260 }
261 
262 /**
263  * virt_to_scatterlist
264  * @addr: Virtual address
265  * @size: Size of data; should be an even multiple of the block size
266  * @sg: Pointer to scatterlist array; set to NULL to obtain only
267  *      the number of scatterlist structs required in array
268  * @sg_size: Max array size
269  *
270  * Fills in a scatterlist array with page references for a passed
271  * virtual address.
272  *
273  * Returns the number of scatterlist structs in array used
274  */
275 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
276 			int sg_size)
277 {
278 	int i = 0;
279 	struct page *pg;
280 	int offset;
281 	int remainder_of_page;
282 
283 	sg_init_table(sg, sg_size);
284 
285 	while (size > 0 && i < sg_size) {
286 		pg = virt_to_page(addr);
287 		offset = offset_in_page(addr);
288 		sg_set_page(&sg[i], pg, 0, offset);
289 		remainder_of_page = PAGE_SIZE - offset;
290 		if (size >= remainder_of_page) {
291 			sg[i].length = remainder_of_page;
292 			addr += remainder_of_page;
293 			size -= remainder_of_page;
294 		} else {
295 			sg[i].length = size;
296 			addr += size;
297 			size = 0;
298 		}
299 		i++;
300 	}
301 	if (size > 0)
302 		return -ENOMEM;
303 	return i;
304 }
305 
306 struct extent_crypt_result {
307 	struct completion completion;
308 	int rc;
309 };
310 
311 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
312 {
313 	struct extent_crypt_result *ecr = req->data;
314 
315 	if (rc == -EINPROGRESS)
316 		return;
317 
318 	ecr->rc = rc;
319 	complete(&ecr->completion);
320 }
321 
322 /**
323  * crypt_scatterlist
324  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
325  * @dst_sg: Destination of the data after performing the crypto operation
326  * @src_sg: Data to be encrypted or decrypted
327  * @size: Length of data
328  * @iv: IV to use
329  * @op: ENCRYPT or DECRYPT to indicate the desired operation
330  *
331  * Returns the number of bytes encrypted or decrypted; negative value on error
332  */
333 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
334 			     struct scatterlist *dst_sg,
335 			     struct scatterlist *src_sg, int size,
336 			     unsigned char *iv, int op)
337 {
338 	struct skcipher_request *req = NULL;
339 	struct extent_crypt_result ecr;
340 	int rc = 0;
341 
342 	BUG_ON(!crypt_stat || !crypt_stat->tfm
343 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
344 	if (unlikely(ecryptfs_verbosity > 0)) {
345 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
346 				crypt_stat->key_size);
347 		ecryptfs_dump_hex(crypt_stat->key,
348 				  crypt_stat->key_size);
349 	}
350 
351 	init_completion(&ecr.completion);
352 
353 	mutex_lock(&crypt_stat->cs_tfm_mutex);
354 	req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
355 	if (!req) {
356 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
357 		rc = -ENOMEM;
358 		goto out;
359 	}
360 
361 	skcipher_request_set_callback(req,
362 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
363 			extent_crypt_complete, &ecr);
364 	/* Consider doing this once, when the file is opened */
365 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
366 		rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
367 					    crypt_stat->key_size);
368 		if (rc) {
369 			ecryptfs_printk(KERN_ERR,
370 					"Error setting key; rc = [%d]\n",
371 					rc);
372 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
373 			rc = -EINVAL;
374 			goto out;
375 		}
376 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
377 	}
378 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
379 	skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
380 	rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
381 			     crypto_skcipher_decrypt(req);
382 	if (rc == -EINPROGRESS || rc == -EBUSY) {
383 		struct extent_crypt_result *ecr = req->base.data;
384 
385 		wait_for_completion(&ecr->completion);
386 		rc = ecr->rc;
387 		reinit_completion(&ecr->completion);
388 	}
389 out:
390 	skcipher_request_free(req);
391 	return rc;
392 }
393 
394 /**
395  * lower_offset_for_page
396  *
397  * Convert an eCryptfs page index into a lower byte offset
398  */
399 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
400 				    struct page *page)
401 {
402 	return ecryptfs_lower_header_size(crypt_stat) +
403 	       ((loff_t)page->index << PAGE_SHIFT);
404 }
405 
406 /**
407  * crypt_extent
408  * @crypt_stat: crypt_stat containing cryptographic context for the
409  *              encryption operation
410  * @dst_page: The page to write the result into
411  * @src_page: The page to read from
412  * @extent_offset: Page extent offset for use in generating IV
413  * @op: ENCRYPT or DECRYPT to indicate the desired operation
414  *
415  * Encrypts or decrypts one extent of data.
416  *
417  * Return zero on success; non-zero otherwise
418  */
419 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
420 			struct page *dst_page,
421 			struct page *src_page,
422 			unsigned long extent_offset, int op)
423 {
424 	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
425 	loff_t extent_base;
426 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
427 	struct scatterlist src_sg, dst_sg;
428 	size_t extent_size = crypt_stat->extent_size;
429 	int rc;
430 
431 	extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
432 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
433 				(extent_base + extent_offset));
434 	if (rc) {
435 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
436 			"extent [0x%.16llx]; rc = [%d]\n",
437 			(unsigned long long)(extent_base + extent_offset), rc);
438 		goto out;
439 	}
440 
441 	sg_init_table(&src_sg, 1);
442 	sg_init_table(&dst_sg, 1);
443 
444 	sg_set_page(&src_sg, src_page, extent_size,
445 		    extent_offset * extent_size);
446 	sg_set_page(&dst_sg, dst_page, extent_size,
447 		    extent_offset * extent_size);
448 
449 	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
450 			       extent_iv, op);
451 	if (rc < 0) {
452 		printk(KERN_ERR "%s: Error attempting to crypt page with "
453 		       "page_index = [%ld], extent_offset = [%ld]; "
454 		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
455 		goto out;
456 	}
457 	rc = 0;
458 out:
459 	return rc;
460 }
461 
462 /**
463  * ecryptfs_encrypt_page
464  * @page: Page mapped from the eCryptfs inode for the file; contains
465  *        decrypted content that needs to be encrypted (to a temporary
466  *        page; not in place) and written out to the lower file
467  *
468  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
469  * that eCryptfs pages may straddle the lower pages -- for instance,
470  * if the file was created on a machine with an 8K page size
471  * (resulting in an 8K header), and then the file is copied onto a
472  * host with a 32K page size, then when reading page 0 of the eCryptfs
473  * file, 24K of page 0 of the lower file will be read and decrypted,
474  * and then 8K of page 1 of the lower file will be read and decrypted.
475  *
476  * Returns zero on success; negative on error
477  */
478 int ecryptfs_encrypt_page(struct page *page)
479 {
480 	struct inode *ecryptfs_inode;
481 	struct ecryptfs_crypt_stat *crypt_stat;
482 	char *enc_extent_virt;
483 	struct page *enc_extent_page = NULL;
484 	loff_t extent_offset;
485 	loff_t lower_offset;
486 	int rc = 0;
487 
488 	ecryptfs_inode = page->mapping->host;
489 	crypt_stat =
490 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
491 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
492 	enc_extent_page = alloc_page(GFP_USER);
493 	if (!enc_extent_page) {
494 		rc = -ENOMEM;
495 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
496 				"encrypted extent\n");
497 		goto out;
498 	}
499 
500 	for (extent_offset = 0;
501 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
502 	     extent_offset++) {
503 		rc = crypt_extent(crypt_stat, enc_extent_page, page,
504 				  extent_offset, ENCRYPT);
505 		if (rc) {
506 			printk(KERN_ERR "%s: Error encrypting extent; "
507 			       "rc = [%d]\n", __func__, rc);
508 			goto out;
509 		}
510 	}
511 
512 	lower_offset = lower_offset_for_page(crypt_stat, page);
513 	enc_extent_virt = kmap(enc_extent_page);
514 	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
515 				  PAGE_SIZE);
516 	kunmap(enc_extent_page);
517 	if (rc < 0) {
518 		ecryptfs_printk(KERN_ERR,
519 			"Error attempting to write lower page; rc = [%d]\n",
520 			rc);
521 		goto out;
522 	}
523 	rc = 0;
524 out:
525 	if (enc_extent_page) {
526 		__free_page(enc_extent_page);
527 	}
528 	return rc;
529 }
530 
531 /**
532  * ecryptfs_decrypt_page
533  * @page: Page mapped from the eCryptfs inode for the file; data read
534  *        and decrypted from the lower file will be written into this
535  *        page
536  *
537  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
538  * that eCryptfs pages may straddle the lower pages -- for instance,
539  * if the file was created on a machine with an 8K page size
540  * (resulting in an 8K header), and then the file is copied onto a
541  * host with a 32K page size, then when reading page 0 of the eCryptfs
542  * file, 24K of page 0 of the lower file will be read and decrypted,
543  * and then 8K of page 1 of the lower file will be read and decrypted.
544  *
545  * Returns zero on success; negative on error
546  */
547 int ecryptfs_decrypt_page(struct page *page)
548 {
549 	struct inode *ecryptfs_inode;
550 	struct ecryptfs_crypt_stat *crypt_stat;
551 	char *page_virt;
552 	unsigned long extent_offset;
553 	loff_t lower_offset;
554 	int rc = 0;
555 
556 	ecryptfs_inode = page->mapping->host;
557 	crypt_stat =
558 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
559 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
560 
561 	lower_offset = lower_offset_for_page(crypt_stat, page);
562 	page_virt = kmap(page);
563 	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
564 				 ecryptfs_inode);
565 	kunmap(page);
566 	if (rc < 0) {
567 		ecryptfs_printk(KERN_ERR,
568 			"Error attempting to read lower page; rc = [%d]\n",
569 			rc);
570 		goto out;
571 	}
572 
573 	for (extent_offset = 0;
574 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
575 	     extent_offset++) {
576 		rc = crypt_extent(crypt_stat, page, page,
577 				  extent_offset, DECRYPT);
578 		if (rc) {
579 			printk(KERN_ERR "%s: Error encrypting extent; "
580 			       "rc = [%d]\n", __func__, rc);
581 			goto out;
582 		}
583 	}
584 out:
585 	return rc;
586 }
587 
588 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
589 
590 /**
591  * ecryptfs_init_crypt_ctx
592  * @crypt_stat: Uninitialized crypt stats structure
593  *
594  * Initialize the crypto context.
595  *
596  * TODO: Performance: Keep a cache of initialized cipher contexts;
597  * only init if needed
598  */
599 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
600 {
601 	char *full_alg_name;
602 	int rc = -EINVAL;
603 
604 	ecryptfs_printk(KERN_DEBUG,
605 			"Initializing cipher [%s]; strlen = [%d]; "
606 			"key_size_bits = [%zd]\n",
607 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
608 			crypt_stat->key_size << 3);
609 	mutex_lock(&crypt_stat->cs_tfm_mutex);
610 	if (crypt_stat->tfm) {
611 		rc = 0;
612 		goto out_unlock;
613 	}
614 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
615 						    crypt_stat->cipher, "cbc");
616 	if (rc)
617 		goto out_unlock;
618 	crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
619 	if (IS_ERR(crypt_stat->tfm)) {
620 		rc = PTR_ERR(crypt_stat->tfm);
621 		crypt_stat->tfm = NULL;
622 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
623 				"Error initializing cipher [%s]\n",
624 				full_alg_name);
625 		goto out_free;
626 	}
627 	crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
628 	rc = 0;
629 out_free:
630 	kfree(full_alg_name);
631 out_unlock:
632 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
633 	return rc;
634 }
635 
636 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
637 {
638 	int extent_size_tmp;
639 
640 	crypt_stat->extent_mask = 0xFFFFFFFF;
641 	crypt_stat->extent_shift = 0;
642 	if (crypt_stat->extent_size == 0)
643 		return;
644 	extent_size_tmp = crypt_stat->extent_size;
645 	while ((extent_size_tmp & 0x01) == 0) {
646 		extent_size_tmp >>= 1;
647 		crypt_stat->extent_mask <<= 1;
648 		crypt_stat->extent_shift++;
649 	}
650 }
651 
652 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
653 {
654 	/* Default values; may be overwritten as we are parsing the
655 	 * packets. */
656 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
657 	set_extent_mask_and_shift(crypt_stat);
658 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
659 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
660 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
661 	else {
662 		if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
663 			crypt_stat->metadata_size =
664 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
665 		else
666 			crypt_stat->metadata_size = PAGE_SIZE;
667 	}
668 }
669 
670 /**
671  * ecryptfs_compute_root_iv
672  * @crypt_stats
673  *
674  * On error, sets the root IV to all 0's.
675  */
676 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
677 {
678 	int rc = 0;
679 	char dst[MD5_DIGEST_SIZE];
680 
681 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
682 	BUG_ON(crypt_stat->iv_bytes <= 0);
683 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
684 		rc = -EINVAL;
685 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
686 				"cannot generate root IV\n");
687 		goto out;
688 	}
689 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
690 				    crypt_stat->key_size);
691 	if (rc) {
692 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
693 				"MD5 while generating root IV\n");
694 		goto out;
695 	}
696 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
697 out:
698 	if (rc) {
699 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
700 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
701 	}
702 	return rc;
703 }
704 
705 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
706 {
707 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
708 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
709 	ecryptfs_compute_root_iv(crypt_stat);
710 	if (unlikely(ecryptfs_verbosity > 0)) {
711 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
712 		ecryptfs_dump_hex(crypt_stat->key,
713 				  crypt_stat->key_size);
714 	}
715 }
716 
717 /**
718  * ecryptfs_copy_mount_wide_flags_to_inode_flags
719  * @crypt_stat: The inode's cryptographic context
720  * @mount_crypt_stat: The mount point's cryptographic context
721  *
722  * This function propagates the mount-wide flags to individual inode
723  * flags.
724  */
725 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
726 	struct ecryptfs_crypt_stat *crypt_stat,
727 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
728 {
729 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
730 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
731 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
732 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
733 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
734 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
735 		if (mount_crypt_stat->flags
736 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
737 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
738 		else if (mount_crypt_stat->flags
739 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
740 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
741 	}
742 }
743 
744 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
745 	struct ecryptfs_crypt_stat *crypt_stat,
746 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
747 {
748 	struct ecryptfs_global_auth_tok *global_auth_tok;
749 	int rc = 0;
750 
751 	mutex_lock(&crypt_stat->keysig_list_mutex);
752 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
753 
754 	list_for_each_entry(global_auth_tok,
755 			    &mount_crypt_stat->global_auth_tok_list,
756 			    mount_crypt_stat_list) {
757 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
758 			continue;
759 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
760 		if (rc) {
761 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
762 			goto out;
763 		}
764 	}
765 
766 out:
767 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
768 	mutex_unlock(&crypt_stat->keysig_list_mutex);
769 	return rc;
770 }
771 
772 /**
773  * ecryptfs_set_default_crypt_stat_vals
774  * @crypt_stat: The inode's cryptographic context
775  * @mount_crypt_stat: The mount point's cryptographic context
776  *
777  * Default values in the event that policy does not override them.
778  */
779 static void ecryptfs_set_default_crypt_stat_vals(
780 	struct ecryptfs_crypt_stat *crypt_stat,
781 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
782 {
783 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
784 						      mount_crypt_stat);
785 	ecryptfs_set_default_sizes(crypt_stat);
786 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
787 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
788 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
789 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
790 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
791 }
792 
793 /**
794  * ecryptfs_new_file_context
795  * @ecryptfs_inode: The eCryptfs inode
796  *
797  * If the crypto context for the file has not yet been established,
798  * this is where we do that.  Establishing a new crypto context
799  * involves the following decisions:
800  *  - What cipher to use?
801  *  - What set of authentication tokens to use?
802  * Here we just worry about getting enough information into the
803  * authentication tokens so that we know that they are available.
804  * We associate the available authentication tokens with the new file
805  * via the set of signatures in the crypt_stat struct.  Later, when
806  * the headers are actually written out, we may again defer to
807  * userspace to perform the encryption of the session key; for the
808  * foreseeable future, this will be the case with public key packets.
809  *
810  * Returns zero on success; non-zero otherwise
811  */
812 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
813 {
814 	struct ecryptfs_crypt_stat *crypt_stat =
815 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
816 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
817 	    &ecryptfs_superblock_to_private(
818 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
819 	int cipher_name_len;
820 	int rc = 0;
821 
822 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
823 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
824 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
825 						      mount_crypt_stat);
826 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
827 							 mount_crypt_stat);
828 	if (rc) {
829 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
830 		       "to the inode key sigs; rc = [%d]\n", rc);
831 		goto out;
832 	}
833 	cipher_name_len =
834 		strlen(mount_crypt_stat->global_default_cipher_name);
835 	memcpy(crypt_stat->cipher,
836 	       mount_crypt_stat->global_default_cipher_name,
837 	       cipher_name_len);
838 	crypt_stat->cipher[cipher_name_len] = '\0';
839 	crypt_stat->key_size =
840 		mount_crypt_stat->global_default_cipher_key_size;
841 	ecryptfs_generate_new_key(crypt_stat);
842 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
843 	if (rc)
844 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
845 				"context for cipher [%s]: rc = [%d]\n",
846 				crypt_stat->cipher, rc);
847 out:
848 	return rc;
849 }
850 
851 /**
852  * ecryptfs_validate_marker - check for the ecryptfs marker
853  * @data: The data block in which to check
854  *
855  * Returns zero if marker found; -EINVAL if not found
856  */
857 static int ecryptfs_validate_marker(char *data)
858 {
859 	u32 m_1, m_2;
860 
861 	m_1 = get_unaligned_be32(data);
862 	m_2 = get_unaligned_be32(data + 4);
863 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
864 		return 0;
865 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
866 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
867 			MAGIC_ECRYPTFS_MARKER);
868 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
869 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
870 	return -EINVAL;
871 }
872 
873 struct ecryptfs_flag_map_elem {
874 	u32 file_flag;
875 	u32 local_flag;
876 };
877 
878 /* Add support for additional flags by adding elements here. */
879 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
880 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
881 	{0x00000002, ECRYPTFS_ENCRYPTED},
882 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
883 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
884 };
885 
886 /**
887  * ecryptfs_process_flags
888  * @crypt_stat: The cryptographic context
889  * @page_virt: Source data to be parsed
890  * @bytes_read: Updated with the number of bytes read
891  *
892  * Returns zero on success; non-zero if the flag set is invalid
893  */
894 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
895 				  char *page_virt, int *bytes_read)
896 {
897 	int rc = 0;
898 	int i;
899 	u32 flags;
900 
901 	flags = get_unaligned_be32(page_virt);
902 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
903 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
904 		if (flags & ecryptfs_flag_map[i].file_flag) {
905 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
906 		} else
907 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
908 	/* Version is in top 8 bits of the 32-bit flag vector */
909 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
910 	(*bytes_read) = 4;
911 	return rc;
912 }
913 
914 /**
915  * write_ecryptfs_marker
916  * @page_virt: The pointer to in a page to begin writing the marker
917  * @written: Number of bytes written
918  *
919  * Marker = 0x3c81b7f5
920  */
921 static void write_ecryptfs_marker(char *page_virt, size_t *written)
922 {
923 	u32 m_1, m_2;
924 
925 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
926 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
927 	put_unaligned_be32(m_1, page_virt);
928 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
929 	put_unaligned_be32(m_2, page_virt);
930 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
931 }
932 
933 void ecryptfs_write_crypt_stat_flags(char *page_virt,
934 				     struct ecryptfs_crypt_stat *crypt_stat,
935 				     size_t *written)
936 {
937 	u32 flags = 0;
938 	int i;
939 
940 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
941 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
942 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
943 			flags |= ecryptfs_flag_map[i].file_flag;
944 	/* Version is in top 8 bits of the 32-bit flag vector */
945 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
946 	put_unaligned_be32(flags, page_virt);
947 	(*written) = 4;
948 }
949 
950 struct ecryptfs_cipher_code_str_map_elem {
951 	char cipher_str[16];
952 	u8 cipher_code;
953 };
954 
955 /* Add support for additional ciphers by adding elements here. The
956  * cipher_code is whatever OpenPGP applicatoins use to identify the
957  * ciphers. List in order of probability. */
958 static struct ecryptfs_cipher_code_str_map_elem
959 ecryptfs_cipher_code_str_map[] = {
960 	{"aes",RFC2440_CIPHER_AES_128 },
961 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
962 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
963 	{"cast5", RFC2440_CIPHER_CAST_5},
964 	{"twofish", RFC2440_CIPHER_TWOFISH},
965 	{"cast6", RFC2440_CIPHER_CAST_6},
966 	{"aes", RFC2440_CIPHER_AES_192},
967 	{"aes", RFC2440_CIPHER_AES_256}
968 };
969 
970 /**
971  * ecryptfs_code_for_cipher_string
972  * @cipher_name: The string alias for the cipher
973  * @key_bytes: Length of key in bytes; used for AES code selection
974  *
975  * Returns zero on no match, or the cipher code on match
976  */
977 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
978 {
979 	int i;
980 	u8 code = 0;
981 	struct ecryptfs_cipher_code_str_map_elem *map =
982 		ecryptfs_cipher_code_str_map;
983 
984 	if (strcmp(cipher_name, "aes") == 0) {
985 		switch (key_bytes) {
986 		case 16:
987 			code = RFC2440_CIPHER_AES_128;
988 			break;
989 		case 24:
990 			code = RFC2440_CIPHER_AES_192;
991 			break;
992 		case 32:
993 			code = RFC2440_CIPHER_AES_256;
994 		}
995 	} else {
996 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
997 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
998 				code = map[i].cipher_code;
999 				break;
1000 			}
1001 	}
1002 	return code;
1003 }
1004 
1005 /**
1006  * ecryptfs_cipher_code_to_string
1007  * @str: Destination to write out the cipher name
1008  * @cipher_code: The code to convert to cipher name string
1009  *
1010  * Returns zero on success
1011  */
1012 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1013 {
1014 	int rc = 0;
1015 	int i;
1016 
1017 	str[0] = '\0';
1018 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1019 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1020 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1021 	if (str[0] == '\0') {
1022 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1023 				"[%d]\n", cipher_code);
1024 		rc = -EINVAL;
1025 	}
1026 	return rc;
1027 }
1028 
1029 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1030 {
1031 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1032 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1033 	int rc;
1034 
1035 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1036 				 inode);
1037 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1038 		return rc >= 0 ? -EINVAL : rc;
1039 	rc = ecryptfs_validate_marker(marker);
1040 	if (!rc)
1041 		ecryptfs_i_size_init(file_size, inode);
1042 	return rc;
1043 }
1044 
1045 void
1046 ecryptfs_write_header_metadata(char *virt,
1047 			       struct ecryptfs_crypt_stat *crypt_stat,
1048 			       size_t *written)
1049 {
1050 	u32 header_extent_size;
1051 	u16 num_header_extents_at_front;
1052 
1053 	header_extent_size = (u32)crypt_stat->extent_size;
1054 	num_header_extents_at_front =
1055 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1056 	put_unaligned_be32(header_extent_size, virt);
1057 	virt += 4;
1058 	put_unaligned_be16(num_header_extents_at_front, virt);
1059 	(*written) = 6;
1060 }
1061 
1062 struct kmem_cache *ecryptfs_header_cache;
1063 
1064 /**
1065  * ecryptfs_write_headers_virt
1066  * @page_virt: The virtual address to write the headers to
1067  * @max: The size of memory allocated at page_virt
1068  * @size: Set to the number of bytes written by this function
1069  * @crypt_stat: The cryptographic context
1070  * @ecryptfs_dentry: The eCryptfs dentry
1071  *
1072  * Format version: 1
1073  *
1074  *   Header Extent:
1075  *     Octets 0-7:        Unencrypted file size (big-endian)
1076  *     Octets 8-15:       eCryptfs special marker
1077  *     Octets 16-19:      Flags
1078  *      Octet 16:         File format version number (between 0 and 255)
1079  *      Octets 17-18:     Reserved
1080  *      Octet 19:         Bit 1 (lsb): Reserved
1081  *                        Bit 2: Encrypted?
1082  *                        Bits 3-8: Reserved
1083  *     Octets 20-23:      Header extent size (big-endian)
1084  *     Octets 24-25:      Number of header extents at front of file
1085  *                        (big-endian)
1086  *     Octet  26:         Begin RFC 2440 authentication token packet set
1087  *   Data Extent 0:
1088  *     Lower data (CBC encrypted)
1089  *   Data Extent 1:
1090  *     Lower data (CBC encrypted)
1091  *   ...
1092  *
1093  * Returns zero on success
1094  */
1095 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1096 				       size_t *size,
1097 				       struct ecryptfs_crypt_stat *crypt_stat,
1098 				       struct dentry *ecryptfs_dentry)
1099 {
1100 	int rc;
1101 	size_t written;
1102 	size_t offset;
1103 
1104 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1105 	write_ecryptfs_marker((page_virt + offset), &written);
1106 	offset += written;
1107 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1108 					&written);
1109 	offset += written;
1110 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1111 				       &written);
1112 	offset += written;
1113 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1114 					      ecryptfs_dentry, &written,
1115 					      max - offset);
1116 	if (rc)
1117 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1118 				"set; rc = [%d]\n", rc);
1119 	if (size) {
1120 		offset += written;
1121 		*size = offset;
1122 	}
1123 	return rc;
1124 }
1125 
1126 static int
1127 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1128 				    char *virt, size_t virt_len)
1129 {
1130 	int rc;
1131 
1132 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1133 				  0, virt_len);
1134 	if (rc < 0)
1135 		printk(KERN_ERR "%s: Error attempting to write header "
1136 		       "information to lower file; rc = [%d]\n", __func__, rc);
1137 	else
1138 		rc = 0;
1139 	return rc;
1140 }
1141 
1142 static int
1143 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1144 				 char *page_virt, size_t size)
1145 {
1146 	int rc;
1147 
1148 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1149 			       size, 0);
1150 	return rc;
1151 }
1152 
1153 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1154 					       unsigned int order)
1155 {
1156 	struct page *page;
1157 
1158 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1159 	if (page)
1160 		return (unsigned long) page_address(page);
1161 	return 0;
1162 }
1163 
1164 /**
1165  * ecryptfs_write_metadata
1166  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1167  * @ecryptfs_inode: The newly created eCryptfs inode
1168  *
1169  * Write the file headers out.  This will likely involve a userspace
1170  * callout, in which the session key is encrypted with one or more
1171  * public keys and/or the passphrase necessary to do the encryption is
1172  * retrieved via a prompt.  Exactly what happens at this point should
1173  * be policy-dependent.
1174  *
1175  * Returns zero on success; non-zero on error
1176  */
1177 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1178 			    struct inode *ecryptfs_inode)
1179 {
1180 	struct ecryptfs_crypt_stat *crypt_stat =
1181 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1182 	unsigned int order;
1183 	char *virt;
1184 	size_t virt_len;
1185 	size_t size = 0;
1186 	int rc = 0;
1187 
1188 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1189 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1190 			printk(KERN_ERR "Key is invalid; bailing out\n");
1191 			rc = -EINVAL;
1192 			goto out;
1193 		}
1194 	} else {
1195 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1196 		       __func__);
1197 		rc = -EINVAL;
1198 		goto out;
1199 	}
1200 	virt_len = crypt_stat->metadata_size;
1201 	order = get_order(virt_len);
1202 	/* Released in this function */
1203 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1204 	if (!virt) {
1205 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1206 		rc = -ENOMEM;
1207 		goto out;
1208 	}
1209 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1210 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1211 					 ecryptfs_dentry);
1212 	if (unlikely(rc)) {
1213 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1214 		       __func__, rc);
1215 		goto out_free;
1216 	}
1217 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1218 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1219 						      size);
1220 	else
1221 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1222 							 virt_len);
1223 	if (rc) {
1224 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1225 		       "rc = [%d]\n", __func__, rc);
1226 		goto out_free;
1227 	}
1228 out_free:
1229 	free_pages((unsigned long)virt, order);
1230 out:
1231 	return rc;
1232 }
1233 
1234 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1235 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1236 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1237 				 char *virt, int *bytes_read,
1238 				 int validate_header_size)
1239 {
1240 	int rc = 0;
1241 	u32 header_extent_size;
1242 	u16 num_header_extents_at_front;
1243 
1244 	header_extent_size = get_unaligned_be32(virt);
1245 	virt += sizeof(__be32);
1246 	num_header_extents_at_front = get_unaligned_be16(virt);
1247 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1248 				     * (size_t)header_extent_size));
1249 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1250 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1251 	    && (crypt_stat->metadata_size
1252 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1253 		rc = -EINVAL;
1254 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1255 		       crypt_stat->metadata_size);
1256 	}
1257 	return rc;
1258 }
1259 
1260 /**
1261  * set_default_header_data
1262  * @crypt_stat: The cryptographic context
1263  *
1264  * For version 0 file format; this function is only for backwards
1265  * compatibility for files created with the prior versions of
1266  * eCryptfs.
1267  */
1268 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1269 {
1270 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1271 }
1272 
1273 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1274 {
1275 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1276 	struct ecryptfs_crypt_stat *crypt_stat;
1277 	u64 file_size;
1278 
1279 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1280 	mount_crypt_stat =
1281 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1282 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1283 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1284 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1285 			file_size += crypt_stat->metadata_size;
1286 	} else
1287 		file_size = get_unaligned_be64(page_virt);
1288 	i_size_write(inode, (loff_t)file_size);
1289 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1290 }
1291 
1292 /**
1293  * ecryptfs_read_headers_virt
1294  * @page_virt: The virtual address into which to read the headers
1295  * @crypt_stat: The cryptographic context
1296  * @ecryptfs_dentry: The eCryptfs dentry
1297  * @validate_header_size: Whether to validate the header size while reading
1298  *
1299  * Read/parse the header data. The header format is detailed in the
1300  * comment block for the ecryptfs_write_headers_virt() function.
1301  *
1302  * Returns zero on success
1303  */
1304 static int ecryptfs_read_headers_virt(char *page_virt,
1305 				      struct ecryptfs_crypt_stat *crypt_stat,
1306 				      struct dentry *ecryptfs_dentry,
1307 				      int validate_header_size)
1308 {
1309 	int rc = 0;
1310 	int offset;
1311 	int bytes_read;
1312 
1313 	ecryptfs_set_default_sizes(crypt_stat);
1314 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1315 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1316 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1317 	rc = ecryptfs_validate_marker(page_virt + offset);
1318 	if (rc)
1319 		goto out;
1320 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1321 		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1322 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1323 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1324 				    &bytes_read);
1325 	if (rc) {
1326 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1327 		goto out;
1328 	}
1329 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1330 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1331 				"file version [%d] is supported by this "
1332 				"version of eCryptfs\n",
1333 				crypt_stat->file_version,
1334 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1335 		rc = -EINVAL;
1336 		goto out;
1337 	}
1338 	offset += bytes_read;
1339 	if (crypt_stat->file_version >= 1) {
1340 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1341 					   &bytes_read, validate_header_size);
1342 		if (rc) {
1343 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1344 					"metadata; rc = [%d]\n", rc);
1345 		}
1346 		offset += bytes_read;
1347 	} else
1348 		set_default_header_data(crypt_stat);
1349 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1350 				       ecryptfs_dentry);
1351 out:
1352 	return rc;
1353 }
1354 
1355 /**
1356  * ecryptfs_read_xattr_region
1357  * @page_virt: The vitual address into which to read the xattr data
1358  * @ecryptfs_inode: The eCryptfs inode
1359  *
1360  * Attempts to read the crypto metadata from the extended attribute
1361  * region of the lower file.
1362  *
1363  * Returns zero on success; non-zero on error
1364  */
1365 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1366 {
1367 	struct dentry *lower_dentry =
1368 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1369 	ssize_t size;
1370 	int rc = 0;
1371 
1372 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1373 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1374 	if (size < 0) {
1375 		if (unlikely(ecryptfs_verbosity > 0))
1376 			printk(KERN_INFO "Error attempting to read the [%s] "
1377 			       "xattr from the lower file; return value = "
1378 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1379 		rc = -EINVAL;
1380 		goto out;
1381 	}
1382 out:
1383 	return rc;
1384 }
1385 
1386 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1387 					    struct inode *inode)
1388 {
1389 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1390 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1391 	int rc;
1392 
1393 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1394 				     ECRYPTFS_XATTR_NAME, file_size,
1395 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1396 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1397 		return rc >= 0 ? -EINVAL : rc;
1398 	rc = ecryptfs_validate_marker(marker);
1399 	if (!rc)
1400 		ecryptfs_i_size_init(file_size, inode);
1401 	return rc;
1402 }
1403 
1404 /**
1405  * ecryptfs_read_metadata
1406  *
1407  * Common entry point for reading file metadata. From here, we could
1408  * retrieve the header information from the header region of the file,
1409  * the xattr region of the file, or some other repostory that is
1410  * stored separately from the file itself. The current implementation
1411  * supports retrieving the metadata information from the file contents
1412  * and from the xattr region.
1413  *
1414  * Returns zero if valid headers found and parsed; non-zero otherwise
1415  */
1416 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1417 {
1418 	int rc;
1419 	char *page_virt;
1420 	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1421 	struct ecryptfs_crypt_stat *crypt_stat =
1422 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1423 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1424 		&ecryptfs_superblock_to_private(
1425 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1426 
1427 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1428 						      mount_crypt_stat);
1429 	/* Read the first page from the underlying file */
1430 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1431 	if (!page_virt) {
1432 		rc = -ENOMEM;
1433 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1434 		       __func__);
1435 		goto out;
1436 	}
1437 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1438 				 ecryptfs_inode);
1439 	if (rc >= 0)
1440 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1441 						ecryptfs_dentry,
1442 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1443 	if (rc) {
1444 		/* metadata is not in the file header, so try xattrs */
1445 		memset(page_virt, 0, PAGE_SIZE);
1446 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1447 		if (rc) {
1448 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1449 			       "file header region or xattr region, inode %lu\n",
1450 				ecryptfs_inode->i_ino);
1451 			rc = -EINVAL;
1452 			goto out;
1453 		}
1454 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1455 						ecryptfs_dentry,
1456 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1457 		if (rc) {
1458 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1459 			       "file xattr region either, inode %lu\n",
1460 				ecryptfs_inode->i_ino);
1461 			rc = -EINVAL;
1462 		}
1463 		if (crypt_stat->mount_crypt_stat->flags
1464 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1465 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1466 		} else {
1467 			printk(KERN_WARNING "Attempt to access file with "
1468 			       "crypto metadata only in the extended attribute "
1469 			       "region, but eCryptfs was mounted without "
1470 			       "xattr support enabled. eCryptfs will not treat "
1471 			       "this like an encrypted file, inode %lu\n",
1472 				ecryptfs_inode->i_ino);
1473 			rc = -EINVAL;
1474 		}
1475 	}
1476 out:
1477 	if (page_virt) {
1478 		memset(page_virt, 0, PAGE_SIZE);
1479 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1480 	}
1481 	return rc;
1482 }
1483 
1484 /**
1485  * ecryptfs_encrypt_filename - encrypt filename
1486  *
1487  * CBC-encrypts the filename. We do not want to encrypt the same
1488  * filename with the same key and IV, which may happen with hard
1489  * links, so we prepend random bits to each filename.
1490  *
1491  * Returns zero on success; non-zero otherwise
1492  */
1493 static int
1494 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1495 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1496 {
1497 	int rc = 0;
1498 
1499 	filename->encrypted_filename = NULL;
1500 	filename->encrypted_filename_size = 0;
1501 	if (mount_crypt_stat && (mount_crypt_stat->flags
1502 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1503 		size_t packet_size;
1504 		size_t remaining_bytes;
1505 
1506 		rc = ecryptfs_write_tag_70_packet(
1507 			NULL, NULL,
1508 			&filename->encrypted_filename_size,
1509 			mount_crypt_stat, NULL,
1510 			filename->filename_size);
1511 		if (rc) {
1512 			printk(KERN_ERR "%s: Error attempting to get packet "
1513 			       "size for tag 72; rc = [%d]\n", __func__,
1514 			       rc);
1515 			filename->encrypted_filename_size = 0;
1516 			goto out;
1517 		}
1518 		filename->encrypted_filename =
1519 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1520 		if (!filename->encrypted_filename) {
1521 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1522 			       "to kmalloc [%zd] bytes\n", __func__,
1523 			       filename->encrypted_filename_size);
1524 			rc = -ENOMEM;
1525 			goto out;
1526 		}
1527 		remaining_bytes = filename->encrypted_filename_size;
1528 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1529 						  &remaining_bytes,
1530 						  &packet_size,
1531 						  mount_crypt_stat,
1532 						  filename->filename,
1533 						  filename->filename_size);
1534 		if (rc) {
1535 			printk(KERN_ERR "%s: Error attempting to generate "
1536 			       "tag 70 packet; rc = [%d]\n", __func__,
1537 			       rc);
1538 			kfree(filename->encrypted_filename);
1539 			filename->encrypted_filename = NULL;
1540 			filename->encrypted_filename_size = 0;
1541 			goto out;
1542 		}
1543 		filename->encrypted_filename_size = packet_size;
1544 	} else {
1545 		printk(KERN_ERR "%s: No support for requested filename "
1546 		       "encryption method in this release\n", __func__);
1547 		rc = -EOPNOTSUPP;
1548 		goto out;
1549 	}
1550 out:
1551 	return rc;
1552 }
1553 
1554 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1555 				  const char *name, size_t name_size)
1556 {
1557 	int rc = 0;
1558 
1559 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1560 	if (!(*copied_name)) {
1561 		rc = -ENOMEM;
1562 		goto out;
1563 	}
1564 	memcpy((void *)(*copied_name), (void *)name, name_size);
1565 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1566 						 * in printing out the
1567 						 * string in debug
1568 						 * messages */
1569 	(*copied_name_size) = name_size;
1570 out:
1571 	return rc;
1572 }
1573 
1574 /**
1575  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1576  * @key_tfm: Crypto context for key material, set by this function
1577  * @cipher_name: Name of the cipher
1578  * @key_size: Size of the key in bytes
1579  *
1580  * Returns zero on success. Any crypto_tfm structs allocated here
1581  * should be released by other functions, such as on a superblock put
1582  * event, regardless of whether this function succeeds for fails.
1583  */
1584 static int
1585 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1586 			    char *cipher_name, size_t *key_size)
1587 {
1588 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1589 	char *full_alg_name = NULL;
1590 	int rc;
1591 
1592 	*key_tfm = NULL;
1593 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1594 		rc = -EINVAL;
1595 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1596 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1597 		goto out;
1598 	}
1599 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1600 						    "ecb");
1601 	if (rc)
1602 		goto out;
1603 	*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1604 	if (IS_ERR(*key_tfm)) {
1605 		rc = PTR_ERR(*key_tfm);
1606 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1607 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1608 		goto out;
1609 	}
1610 	crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1611 	if (*key_size == 0)
1612 		*key_size = crypto_skcipher_default_keysize(*key_tfm);
1613 	get_random_bytes(dummy_key, *key_size);
1614 	rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1615 	if (rc) {
1616 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1617 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1618 		       rc);
1619 		rc = -EINVAL;
1620 		goto out;
1621 	}
1622 out:
1623 	kfree(full_alg_name);
1624 	return rc;
1625 }
1626 
1627 struct kmem_cache *ecryptfs_key_tfm_cache;
1628 static struct list_head key_tfm_list;
1629 struct mutex key_tfm_list_mutex;
1630 
1631 int __init ecryptfs_init_crypto(void)
1632 {
1633 	mutex_init(&key_tfm_list_mutex);
1634 	INIT_LIST_HEAD(&key_tfm_list);
1635 	return 0;
1636 }
1637 
1638 /**
1639  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1640  *
1641  * Called only at module unload time
1642  */
1643 int ecryptfs_destroy_crypto(void)
1644 {
1645 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1646 
1647 	mutex_lock(&key_tfm_list_mutex);
1648 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1649 				 key_tfm_list) {
1650 		list_del(&key_tfm->key_tfm_list);
1651 		crypto_free_skcipher(key_tfm->key_tfm);
1652 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1653 	}
1654 	mutex_unlock(&key_tfm_list_mutex);
1655 	return 0;
1656 }
1657 
1658 int
1659 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1660 			 size_t key_size)
1661 {
1662 	struct ecryptfs_key_tfm *tmp_tfm;
1663 	int rc = 0;
1664 
1665 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1666 
1667 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1668 	if (key_tfm != NULL)
1669 		(*key_tfm) = tmp_tfm;
1670 	if (!tmp_tfm) {
1671 		rc = -ENOMEM;
1672 		printk(KERN_ERR "Error attempting to allocate from "
1673 		       "ecryptfs_key_tfm_cache\n");
1674 		goto out;
1675 	}
1676 	mutex_init(&tmp_tfm->key_tfm_mutex);
1677 	strncpy(tmp_tfm->cipher_name, cipher_name,
1678 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1679 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1680 	tmp_tfm->key_size = key_size;
1681 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1682 					 tmp_tfm->cipher_name,
1683 					 &tmp_tfm->key_size);
1684 	if (rc) {
1685 		printk(KERN_ERR "Error attempting to initialize key TFM "
1686 		       "cipher with name = [%s]; rc = [%d]\n",
1687 		       tmp_tfm->cipher_name, rc);
1688 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1689 		if (key_tfm != NULL)
1690 			(*key_tfm) = NULL;
1691 		goto out;
1692 	}
1693 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1694 out:
1695 	return rc;
1696 }
1697 
1698 /**
1699  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1700  * @cipher_name: the name of the cipher to search for
1701  * @key_tfm: set to corresponding tfm if found
1702  *
1703  * Searches for cached key_tfm matching @cipher_name
1704  * Must be called with &key_tfm_list_mutex held
1705  * Returns 1 if found, with @key_tfm set
1706  * Returns 0 if not found, with @key_tfm set to NULL
1707  */
1708 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1709 {
1710 	struct ecryptfs_key_tfm *tmp_key_tfm;
1711 
1712 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1713 
1714 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1715 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1716 			if (key_tfm)
1717 				(*key_tfm) = tmp_key_tfm;
1718 			return 1;
1719 		}
1720 	}
1721 	if (key_tfm)
1722 		(*key_tfm) = NULL;
1723 	return 0;
1724 }
1725 
1726 /**
1727  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1728  *
1729  * @tfm: set to cached tfm found, or new tfm created
1730  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1731  * @cipher_name: the name of the cipher to search for and/or add
1732  *
1733  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1734  * Searches for cached item first, and creates new if not found.
1735  * Returns 0 on success, non-zero if adding new cipher failed
1736  */
1737 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1738 					       struct mutex **tfm_mutex,
1739 					       char *cipher_name)
1740 {
1741 	struct ecryptfs_key_tfm *key_tfm;
1742 	int rc = 0;
1743 
1744 	(*tfm) = NULL;
1745 	(*tfm_mutex) = NULL;
1746 
1747 	mutex_lock(&key_tfm_list_mutex);
1748 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1749 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1750 		if (rc) {
1751 			printk(KERN_ERR "Error adding new key_tfm to list; "
1752 					"rc = [%d]\n", rc);
1753 			goto out;
1754 		}
1755 	}
1756 	(*tfm) = key_tfm->key_tfm;
1757 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1758 out:
1759 	mutex_unlock(&key_tfm_list_mutex);
1760 	return rc;
1761 }
1762 
1763 /* 64 characters forming a 6-bit target field */
1764 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1765 						 "EFGHIJKLMNOPQRST"
1766 						 "UVWXYZabcdefghij"
1767 						 "klmnopqrstuvwxyz");
1768 
1769 /* We could either offset on every reverse map or just pad some 0x00's
1770  * at the front here */
1771 static const unsigned char filename_rev_map[256] = {
1772 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1773 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1774 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1775 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1776 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1777 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1778 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1779 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1780 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1781 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1782 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1783 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1784 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1785 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1786 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1787 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1788 };
1789 
1790 /**
1791  * ecryptfs_encode_for_filename
1792  * @dst: Destination location for encoded filename
1793  * @dst_size: Size of the encoded filename in bytes
1794  * @src: Source location for the filename to encode
1795  * @src_size: Size of the source in bytes
1796  */
1797 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1798 				  unsigned char *src, size_t src_size)
1799 {
1800 	size_t num_blocks;
1801 	size_t block_num = 0;
1802 	size_t dst_offset = 0;
1803 	unsigned char last_block[3];
1804 
1805 	if (src_size == 0) {
1806 		(*dst_size) = 0;
1807 		goto out;
1808 	}
1809 	num_blocks = (src_size / 3);
1810 	if ((src_size % 3) == 0) {
1811 		memcpy(last_block, (&src[src_size - 3]), 3);
1812 	} else {
1813 		num_blocks++;
1814 		last_block[2] = 0x00;
1815 		switch (src_size % 3) {
1816 		case 1:
1817 			last_block[0] = src[src_size - 1];
1818 			last_block[1] = 0x00;
1819 			break;
1820 		case 2:
1821 			last_block[0] = src[src_size - 2];
1822 			last_block[1] = src[src_size - 1];
1823 		}
1824 	}
1825 	(*dst_size) = (num_blocks * 4);
1826 	if (!dst)
1827 		goto out;
1828 	while (block_num < num_blocks) {
1829 		unsigned char *src_block;
1830 		unsigned char dst_block[4];
1831 
1832 		if (block_num == (num_blocks - 1))
1833 			src_block = last_block;
1834 		else
1835 			src_block = &src[block_num * 3];
1836 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1837 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1838 				| ((src_block[1] >> 4) & 0x0F));
1839 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1840 				| ((src_block[2] >> 6) & 0x03));
1841 		dst_block[3] = (src_block[2] & 0x3F);
1842 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1843 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1844 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1845 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1846 		block_num++;
1847 	}
1848 out:
1849 	return;
1850 }
1851 
1852 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1853 {
1854 	/* Not exact; conservatively long. Every block of 4
1855 	 * encoded characters decodes into a block of 3
1856 	 * decoded characters. This segment of code provides
1857 	 * the caller with the maximum amount of allocated
1858 	 * space that @dst will need to point to in a
1859 	 * subsequent call. */
1860 	return ((encoded_size + 1) * 3) / 4;
1861 }
1862 
1863 /**
1864  * ecryptfs_decode_from_filename
1865  * @dst: If NULL, this function only sets @dst_size and returns. If
1866  *       non-NULL, this function decodes the encoded octets in @src
1867  *       into the memory that @dst points to.
1868  * @dst_size: Set to the size of the decoded string.
1869  * @src: The encoded set of octets to decode.
1870  * @src_size: The size of the encoded set of octets to decode.
1871  */
1872 static void
1873 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1874 			      const unsigned char *src, size_t src_size)
1875 {
1876 	u8 current_bit_offset = 0;
1877 	size_t src_byte_offset = 0;
1878 	size_t dst_byte_offset = 0;
1879 
1880 	if (dst == NULL) {
1881 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1882 		goto out;
1883 	}
1884 	while (src_byte_offset < src_size) {
1885 		unsigned char src_byte =
1886 				filename_rev_map[(int)src[src_byte_offset]];
1887 
1888 		switch (current_bit_offset) {
1889 		case 0:
1890 			dst[dst_byte_offset] = (src_byte << 2);
1891 			current_bit_offset = 6;
1892 			break;
1893 		case 6:
1894 			dst[dst_byte_offset++] |= (src_byte >> 4);
1895 			dst[dst_byte_offset] = ((src_byte & 0xF)
1896 						 << 4);
1897 			current_bit_offset = 4;
1898 			break;
1899 		case 4:
1900 			dst[dst_byte_offset++] |= (src_byte >> 2);
1901 			dst[dst_byte_offset] = (src_byte << 6);
1902 			current_bit_offset = 2;
1903 			break;
1904 		case 2:
1905 			dst[dst_byte_offset++] |= (src_byte);
1906 			current_bit_offset = 0;
1907 			break;
1908 		}
1909 		src_byte_offset++;
1910 	}
1911 	(*dst_size) = dst_byte_offset;
1912 out:
1913 	return;
1914 }
1915 
1916 /**
1917  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1918  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1919  * @name: The plaintext name
1920  * @length: The length of the plaintext
1921  * @encoded_name: The encypted name
1922  *
1923  * Encrypts and encodes a filename into something that constitutes a
1924  * valid filename for a filesystem, with printable characters.
1925  *
1926  * We assume that we have a properly initialized crypto context,
1927  * pointed to by crypt_stat->tfm.
1928  *
1929  * Returns zero on success; non-zero on otherwise
1930  */
1931 int ecryptfs_encrypt_and_encode_filename(
1932 	char **encoded_name,
1933 	size_t *encoded_name_size,
1934 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1935 	const char *name, size_t name_size)
1936 {
1937 	size_t encoded_name_no_prefix_size;
1938 	int rc = 0;
1939 
1940 	(*encoded_name) = NULL;
1941 	(*encoded_name_size) = 0;
1942 	if (mount_crypt_stat && (mount_crypt_stat->flags
1943 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1944 		struct ecryptfs_filename *filename;
1945 
1946 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1947 		if (!filename) {
1948 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1949 			       "to kzalloc [%zd] bytes\n", __func__,
1950 			       sizeof(*filename));
1951 			rc = -ENOMEM;
1952 			goto out;
1953 		}
1954 		filename->filename = (char *)name;
1955 		filename->filename_size = name_size;
1956 		rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1957 		if (rc) {
1958 			printk(KERN_ERR "%s: Error attempting to encrypt "
1959 			       "filename; rc = [%d]\n", __func__, rc);
1960 			kfree(filename);
1961 			goto out;
1962 		}
1963 		ecryptfs_encode_for_filename(
1964 			NULL, &encoded_name_no_prefix_size,
1965 			filename->encrypted_filename,
1966 			filename->encrypted_filename_size);
1967 		if (mount_crypt_stat
1968 			&& (mount_crypt_stat->flags
1969 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1970 			(*encoded_name_size) =
1971 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1972 				 + encoded_name_no_prefix_size);
1973 		else
1974 			(*encoded_name_size) =
1975 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1976 				 + encoded_name_no_prefix_size);
1977 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1978 		if (!(*encoded_name)) {
1979 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1980 			       "to kzalloc [%zd] bytes\n", __func__,
1981 			       (*encoded_name_size));
1982 			rc = -ENOMEM;
1983 			kfree(filename->encrypted_filename);
1984 			kfree(filename);
1985 			goto out;
1986 		}
1987 		if (mount_crypt_stat
1988 			&& (mount_crypt_stat->flags
1989 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1990 			memcpy((*encoded_name),
1991 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1992 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1993 			ecryptfs_encode_for_filename(
1994 			    ((*encoded_name)
1995 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1996 			    &encoded_name_no_prefix_size,
1997 			    filename->encrypted_filename,
1998 			    filename->encrypted_filename_size);
1999 			(*encoded_name_size) =
2000 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2001 				 + encoded_name_no_prefix_size);
2002 			(*encoded_name)[(*encoded_name_size)] = '\0';
2003 		} else {
2004 			rc = -EOPNOTSUPP;
2005 		}
2006 		if (rc) {
2007 			printk(KERN_ERR "%s: Error attempting to encode "
2008 			       "encrypted filename; rc = [%d]\n", __func__,
2009 			       rc);
2010 			kfree((*encoded_name));
2011 			(*encoded_name) = NULL;
2012 			(*encoded_name_size) = 0;
2013 		}
2014 		kfree(filename->encrypted_filename);
2015 		kfree(filename);
2016 	} else {
2017 		rc = ecryptfs_copy_filename(encoded_name,
2018 					    encoded_name_size,
2019 					    name, name_size);
2020 	}
2021 out:
2022 	return rc;
2023 }
2024 
2025 /**
2026  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2027  * @plaintext_name: The plaintext name
2028  * @plaintext_name_size: The plaintext name size
2029  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2030  * @name: The filename in cipher text
2031  * @name_size: The cipher text name size
2032  *
2033  * Decrypts and decodes the filename.
2034  *
2035  * Returns zero on error; non-zero otherwise
2036  */
2037 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2038 					 size_t *plaintext_name_size,
2039 					 struct super_block *sb,
2040 					 const char *name, size_t name_size)
2041 {
2042 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2043 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2044 	char *decoded_name;
2045 	size_t decoded_name_size;
2046 	size_t packet_size;
2047 	int rc = 0;
2048 
2049 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2050 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2051 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2052 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2053 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2054 		const char *orig_name = name;
2055 		size_t orig_name_size = name_size;
2056 
2057 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2058 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2059 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2060 					      name, name_size);
2061 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2062 		if (!decoded_name) {
2063 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2064 			       "to kmalloc [%zd] bytes\n", __func__,
2065 			       decoded_name_size);
2066 			rc = -ENOMEM;
2067 			goto out;
2068 		}
2069 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2070 					      name, name_size);
2071 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2072 						  plaintext_name_size,
2073 						  &packet_size,
2074 						  mount_crypt_stat,
2075 						  decoded_name,
2076 						  decoded_name_size);
2077 		if (rc) {
2078 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2079 			       "from filename; copying through filename "
2080 			       "as-is\n", __func__);
2081 			rc = ecryptfs_copy_filename(plaintext_name,
2082 						    plaintext_name_size,
2083 						    orig_name, orig_name_size);
2084 			goto out_free;
2085 		}
2086 	} else {
2087 		rc = ecryptfs_copy_filename(plaintext_name,
2088 					    plaintext_name_size,
2089 					    name, name_size);
2090 		goto out;
2091 	}
2092 out_free:
2093 	kfree(decoded_name);
2094 out:
2095 	return rc;
2096 }
2097 
2098 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2099 
2100 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2101 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2102 {
2103 	struct crypto_skcipher *tfm;
2104 	struct mutex *tfm_mutex;
2105 	size_t cipher_blocksize;
2106 	int rc;
2107 
2108 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2109 		(*namelen) = lower_namelen;
2110 		return 0;
2111 	}
2112 
2113 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2114 			mount_crypt_stat->global_default_fn_cipher_name);
2115 	if (unlikely(rc)) {
2116 		(*namelen) = 0;
2117 		return rc;
2118 	}
2119 
2120 	mutex_lock(tfm_mutex);
2121 	cipher_blocksize = crypto_skcipher_blocksize(tfm);
2122 	mutex_unlock(tfm_mutex);
2123 
2124 	/* Return an exact amount for the common cases */
2125 	if (lower_namelen == NAME_MAX
2126 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2127 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2128 		return 0;
2129 	}
2130 
2131 	/* Return a safe estimate for the uncommon cases */
2132 	(*namelen) = lower_namelen;
2133 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2134 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2135 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2136 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2137 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2138 	/* Worst case is that the filename is padded nearly a full block size */
2139 	(*namelen) -= cipher_blocksize - 1;
2140 
2141 	if ((*namelen) < 0)
2142 		(*namelen) = 0;
2143 
2144 	return 0;
2145 }
2146