1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <crypto/hash.h> 27 #include <crypto/skcipher.h> 28 #include <linux/fs.h> 29 #include <linux/mount.h> 30 #include <linux/pagemap.h> 31 #include <linux/random.h> 32 #include <linux/compiler.h> 33 #include <linux/key.h> 34 #include <linux/namei.h> 35 #include <linux/file.h> 36 #include <linux/scatterlist.h> 37 #include <linux/slab.h> 38 #include <asm/unaligned.h> 39 #include <linux/kernel.h> 40 #include "ecryptfs_kernel.h" 41 42 #define DECRYPT 0 43 #define ENCRYPT 1 44 45 /** 46 * ecryptfs_from_hex 47 * @dst: Buffer to take the bytes from src hex; must be at least of 48 * size (src_size / 2) 49 * @src: Buffer to be converted from a hex string representation to raw value 50 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 51 */ 52 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 53 { 54 int x; 55 char tmp[3] = { 0, }; 56 57 for (x = 0; x < dst_size; x++) { 58 tmp[0] = src[x * 2]; 59 tmp[1] = src[x * 2 + 1]; 60 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 61 } 62 } 63 64 static int ecryptfs_hash_digest(struct crypto_shash *tfm, 65 char *src, int len, char *dst) 66 { 67 SHASH_DESC_ON_STACK(desc, tfm); 68 int err; 69 70 desc->tfm = tfm; 71 err = crypto_shash_digest(desc, src, len, dst); 72 shash_desc_zero(desc); 73 return err; 74 } 75 76 /** 77 * ecryptfs_calculate_md5 - calculates the md5 of @src 78 * @dst: Pointer to 16 bytes of allocated memory 79 * @crypt_stat: Pointer to crypt_stat struct for the current inode 80 * @src: Data to be md5'd 81 * @len: Length of @src 82 * 83 * Uses the allocated crypto context that crypt_stat references to 84 * generate the MD5 sum of the contents of src. 85 */ 86 static int ecryptfs_calculate_md5(char *dst, 87 struct ecryptfs_crypt_stat *crypt_stat, 88 char *src, int len) 89 { 90 struct crypto_shash *tfm; 91 int rc = 0; 92 93 tfm = crypt_stat->hash_tfm; 94 rc = ecryptfs_hash_digest(tfm, src, len, dst); 95 if (rc) { 96 printk(KERN_ERR 97 "%s: Error computing crypto hash; rc = [%d]\n", 98 __func__, rc); 99 goto out; 100 } 101 out: 102 return rc; 103 } 104 105 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 106 char *cipher_name, 107 char *chaining_modifier) 108 { 109 int cipher_name_len = strlen(cipher_name); 110 int chaining_modifier_len = strlen(chaining_modifier); 111 int algified_name_len; 112 int rc; 113 114 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 115 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 116 if (!(*algified_name)) { 117 rc = -ENOMEM; 118 goto out; 119 } 120 snprintf((*algified_name), algified_name_len, "%s(%s)", 121 chaining_modifier, cipher_name); 122 rc = 0; 123 out: 124 return rc; 125 } 126 127 /** 128 * ecryptfs_derive_iv 129 * @iv: destination for the derived iv vale 130 * @crypt_stat: Pointer to crypt_stat struct for the current inode 131 * @offset: Offset of the extent whose IV we are to derive 132 * 133 * Generate the initialization vector from the given root IV and page 134 * offset. 135 * 136 * Returns zero on success; non-zero on error. 137 */ 138 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 139 loff_t offset) 140 { 141 int rc = 0; 142 char dst[MD5_DIGEST_SIZE]; 143 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 144 145 if (unlikely(ecryptfs_verbosity > 0)) { 146 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 147 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 148 } 149 /* TODO: It is probably secure to just cast the least 150 * significant bits of the root IV into an unsigned long and 151 * add the offset to that rather than go through all this 152 * hashing business. -Halcrow */ 153 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 154 memset((src + crypt_stat->iv_bytes), 0, 16); 155 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 156 if (unlikely(ecryptfs_verbosity > 0)) { 157 ecryptfs_printk(KERN_DEBUG, "source:\n"); 158 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 159 } 160 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 161 (crypt_stat->iv_bytes + 16)); 162 if (rc) { 163 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 164 "MD5 while generating IV for a page\n"); 165 goto out; 166 } 167 memcpy(iv, dst, crypt_stat->iv_bytes); 168 if (unlikely(ecryptfs_verbosity > 0)) { 169 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 170 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 171 } 172 out: 173 return rc; 174 } 175 176 /** 177 * ecryptfs_init_crypt_stat 178 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 179 * 180 * Initialize the crypt_stat structure. 181 */ 182 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 183 { 184 struct crypto_shash *tfm; 185 int rc; 186 187 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0); 188 if (IS_ERR(tfm)) { 189 rc = PTR_ERR(tfm); 190 ecryptfs_printk(KERN_ERR, "Error attempting to " 191 "allocate crypto context; rc = [%d]\n", 192 rc); 193 return rc; 194 } 195 196 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 197 INIT_LIST_HEAD(&crypt_stat->keysig_list); 198 mutex_init(&crypt_stat->keysig_list_mutex); 199 mutex_init(&crypt_stat->cs_mutex); 200 mutex_init(&crypt_stat->cs_tfm_mutex); 201 crypt_stat->hash_tfm = tfm; 202 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 203 204 return 0; 205 } 206 207 /** 208 * ecryptfs_destroy_crypt_stat 209 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 210 * 211 * Releases all memory associated with a crypt_stat struct. 212 */ 213 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 214 { 215 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 216 217 crypto_free_skcipher(crypt_stat->tfm); 218 crypto_free_shash(crypt_stat->hash_tfm); 219 list_for_each_entry_safe(key_sig, key_sig_tmp, 220 &crypt_stat->keysig_list, crypt_stat_list) { 221 list_del(&key_sig->crypt_stat_list); 222 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 223 } 224 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 225 } 226 227 void ecryptfs_destroy_mount_crypt_stat( 228 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 229 { 230 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 231 232 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 233 return; 234 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 235 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 236 &mount_crypt_stat->global_auth_tok_list, 237 mount_crypt_stat_list) { 238 list_del(&auth_tok->mount_crypt_stat_list); 239 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 240 key_put(auth_tok->global_auth_tok_key); 241 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 242 } 243 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 244 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 245 } 246 247 /** 248 * virt_to_scatterlist 249 * @addr: Virtual address 250 * @size: Size of data; should be an even multiple of the block size 251 * @sg: Pointer to scatterlist array; set to NULL to obtain only 252 * the number of scatterlist structs required in array 253 * @sg_size: Max array size 254 * 255 * Fills in a scatterlist array with page references for a passed 256 * virtual address. 257 * 258 * Returns the number of scatterlist structs in array used 259 */ 260 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 261 int sg_size) 262 { 263 int i = 0; 264 struct page *pg; 265 int offset; 266 int remainder_of_page; 267 268 sg_init_table(sg, sg_size); 269 270 while (size > 0 && i < sg_size) { 271 pg = virt_to_page(addr); 272 offset = offset_in_page(addr); 273 sg_set_page(&sg[i], pg, 0, offset); 274 remainder_of_page = PAGE_SIZE - offset; 275 if (size >= remainder_of_page) { 276 sg[i].length = remainder_of_page; 277 addr += remainder_of_page; 278 size -= remainder_of_page; 279 } else { 280 sg[i].length = size; 281 addr += size; 282 size = 0; 283 } 284 i++; 285 } 286 if (size > 0) 287 return -ENOMEM; 288 return i; 289 } 290 291 struct extent_crypt_result { 292 struct completion completion; 293 int rc; 294 }; 295 296 static void extent_crypt_complete(struct crypto_async_request *req, int rc) 297 { 298 struct extent_crypt_result *ecr = req->data; 299 300 if (rc == -EINPROGRESS) 301 return; 302 303 ecr->rc = rc; 304 complete(&ecr->completion); 305 } 306 307 /** 308 * crypt_scatterlist 309 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 310 * @dst_sg: Destination of the data after performing the crypto operation 311 * @src_sg: Data to be encrypted or decrypted 312 * @size: Length of data 313 * @iv: IV to use 314 * @op: ENCRYPT or DECRYPT to indicate the desired operation 315 * 316 * Returns the number of bytes encrypted or decrypted; negative value on error 317 */ 318 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 319 struct scatterlist *dst_sg, 320 struct scatterlist *src_sg, int size, 321 unsigned char *iv, int op) 322 { 323 struct skcipher_request *req = NULL; 324 struct extent_crypt_result ecr; 325 int rc = 0; 326 327 BUG_ON(!crypt_stat || !crypt_stat->tfm 328 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 329 if (unlikely(ecryptfs_verbosity > 0)) { 330 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 331 crypt_stat->key_size); 332 ecryptfs_dump_hex(crypt_stat->key, 333 crypt_stat->key_size); 334 } 335 336 init_completion(&ecr.completion); 337 338 mutex_lock(&crypt_stat->cs_tfm_mutex); 339 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 340 if (!req) { 341 mutex_unlock(&crypt_stat->cs_tfm_mutex); 342 rc = -ENOMEM; 343 goto out; 344 } 345 346 skcipher_request_set_callback(req, 347 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 348 extent_crypt_complete, &ecr); 349 /* Consider doing this once, when the file is opened */ 350 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 351 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key, 352 crypt_stat->key_size); 353 if (rc) { 354 ecryptfs_printk(KERN_ERR, 355 "Error setting key; rc = [%d]\n", 356 rc); 357 mutex_unlock(&crypt_stat->cs_tfm_mutex); 358 rc = -EINVAL; 359 goto out; 360 } 361 crypt_stat->flags |= ECRYPTFS_KEY_SET; 362 } 363 mutex_unlock(&crypt_stat->cs_tfm_mutex); 364 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); 365 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) : 366 crypto_skcipher_decrypt(req); 367 if (rc == -EINPROGRESS || rc == -EBUSY) { 368 struct extent_crypt_result *ecr = req->base.data; 369 370 wait_for_completion(&ecr->completion); 371 rc = ecr->rc; 372 reinit_completion(&ecr->completion); 373 } 374 out: 375 skcipher_request_free(req); 376 return rc; 377 } 378 379 /** 380 * lower_offset_for_page 381 * 382 * Convert an eCryptfs page index into a lower byte offset 383 */ 384 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, 385 struct page *page) 386 { 387 return ecryptfs_lower_header_size(crypt_stat) + 388 ((loff_t)page->index << PAGE_SHIFT); 389 } 390 391 /** 392 * crypt_extent 393 * @crypt_stat: crypt_stat containing cryptographic context for the 394 * encryption operation 395 * @dst_page: The page to write the result into 396 * @src_page: The page to read from 397 * @extent_offset: Page extent offset for use in generating IV 398 * @op: ENCRYPT or DECRYPT to indicate the desired operation 399 * 400 * Encrypts or decrypts one extent of data. 401 * 402 * Return zero on success; non-zero otherwise 403 */ 404 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, 405 struct page *dst_page, 406 struct page *src_page, 407 unsigned long extent_offset, int op) 408 { 409 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index; 410 loff_t extent_base; 411 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 412 struct scatterlist src_sg, dst_sg; 413 size_t extent_size = crypt_stat->extent_size; 414 int rc; 415 416 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size)); 417 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 418 (extent_base + extent_offset)); 419 if (rc) { 420 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 421 "extent [0x%.16llx]; rc = [%d]\n", 422 (unsigned long long)(extent_base + extent_offset), rc); 423 goto out; 424 } 425 426 sg_init_table(&src_sg, 1); 427 sg_init_table(&dst_sg, 1); 428 429 sg_set_page(&src_sg, src_page, extent_size, 430 extent_offset * extent_size); 431 sg_set_page(&dst_sg, dst_page, extent_size, 432 extent_offset * extent_size); 433 434 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, 435 extent_iv, op); 436 if (rc < 0) { 437 printk(KERN_ERR "%s: Error attempting to crypt page with " 438 "page_index = [%ld], extent_offset = [%ld]; " 439 "rc = [%d]\n", __func__, page_index, extent_offset, rc); 440 goto out; 441 } 442 rc = 0; 443 out: 444 return rc; 445 } 446 447 /** 448 * ecryptfs_encrypt_page 449 * @page: Page mapped from the eCryptfs inode for the file; contains 450 * decrypted content that needs to be encrypted (to a temporary 451 * page; not in place) and written out to the lower file 452 * 453 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 454 * that eCryptfs pages may straddle the lower pages -- for instance, 455 * if the file was created on a machine with an 8K page size 456 * (resulting in an 8K header), and then the file is copied onto a 457 * host with a 32K page size, then when reading page 0 of the eCryptfs 458 * file, 24K of page 0 of the lower file will be read and decrypted, 459 * and then 8K of page 1 of the lower file will be read and decrypted. 460 * 461 * Returns zero on success; negative on error 462 */ 463 int ecryptfs_encrypt_page(struct page *page) 464 { 465 struct inode *ecryptfs_inode; 466 struct ecryptfs_crypt_stat *crypt_stat; 467 char *enc_extent_virt; 468 struct page *enc_extent_page = NULL; 469 loff_t extent_offset; 470 loff_t lower_offset; 471 int rc = 0; 472 473 ecryptfs_inode = page->mapping->host; 474 crypt_stat = 475 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 476 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 477 enc_extent_page = alloc_page(GFP_USER); 478 if (!enc_extent_page) { 479 rc = -ENOMEM; 480 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 481 "encrypted extent\n"); 482 goto out; 483 } 484 485 for (extent_offset = 0; 486 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 487 extent_offset++) { 488 rc = crypt_extent(crypt_stat, enc_extent_page, page, 489 extent_offset, ENCRYPT); 490 if (rc) { 491 printk(KERN_ERR "%s: Error encrypting extent; " 492 "rc = [%d]\n", __func__, rc); 493 goto out; 494 } 495 } 496 497 lower_offset = lower_offset_for_page(crypt_stat, page); 498 enc_extent_virt = kmap(enc_extent_page); 499 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, 500 PAGE_SIZE); 501 kunmap(enc_extent_page); 502 if (rc < 0) { 503 ecryptfs_printk(KERN_ERR, 504 "Error attempting to write lower page; rc = [%d]\n", 505 rc); 506 goto out; 507 } 508 rc = 0; 509 out: 510 if (enc_extent_page) { 511 __free_page(enc_extent_page); 512 } 513 return rc; 514 } 515 516 /** 517 * ecryptfs_decrypt_page 518 * @page: Page mapped from the eCryptfs inode for the file; data read 519 * and decrypted from the lower file will be written into this 520 * page 521 * 522 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 523 * that eCryptfs pages may straddle the lower pages -- for instance, 524 * if the file was created on a machine with an 8K page size 525 * (resulting in an 8K header), and then the file is copied onto a 526 * host with a 32K page size, then when reading page 0 of the eCryptfs 527 * file, 24K of page 0 of the lower file will be read and decrypted, 528 * and then 8K of page 1 of the lower file will be read and decrypted. 529 * 530 * Returns zero on success; negative on error 531 */ 532 int ecryptfs_decrypt_page(struct page *page) 533 { 534 struct inode *ecryptfs_inode; 535 struct ecryptfs_crypt_stat *crypt_stat; 536 char *page_virt; 537 unsigned long extent_offset; 538 loff_t lower_offset; 539 int rc = 0; 540 541 ecryptfs_inode = page->mapping->host; 542 crypt_stat = 543 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 544 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 545 546 lower_offset = lower_offset_for_page(crypt_stat, page); 547 page_virt = kmap(page); 548 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE, 549 ecryptfs_inode); 550 kunmap(page); 551 if (rc < 0) { 552 ecryptfs_printk(KERN_ERR, 553 "Error attempting to read lower page; rc = [%d]\n", 554 rc); 555 goto out; 556 } 557 558 for (extent_offset = 0; 559 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 560 extent_offset++) { 561 rc = crypt_extent(crypt_stat, page, page, 562 extent_offset, DECRYPT); 563 if (rc) { 564 printk(KERN_ERR "%s: Error encrypting extent; " 565 "rc = [%d]\n", __func__, rc); 566 goto out; 567 } 568 } 569 out: 570 return rc; 571 } 572 573 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 574 575 /** 576 * ecryptfs_init_crypt_ctx 577 * @crypt_stat: Uninitialized crypt stats structure 578 * 579 * Initialize the crypto context. 580 * 581 * TODO: Performance: Keep a cache of initialized cipher contexts; 582 * only init if needed 583 */ 584 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 585 { 586 char *full_alg_name; 587 int rc = -EINVAL; 588 589 ecryptfs_printk(KERN_DEBUG, 590 "Initializing cipher [%s]; strlen = [%d]; " 591 "key_size_bits = [%zd]\n", 592 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 593 crypt_stat->key_size << 3); 594 mutex_lock(&crypt_stat->cs_tfm_mutex); 595 if (crypt_stat->tfm) { 596 rc = 0; 597 goto out_unlock; 598 } 599 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 600 crypt_stat->cipher, "cbc"); 601 if (rc) 602 goto out_unlock; 603 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0); 604 if (IS_ERR(crypt_stat->tfm)) { 605 rc = PTR_ERR(crypt_stat->tfm); 606 crypt_stat->tfm = NULL; 607 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 608 "Error initializing cipher [%s]\n", 609 full_alg_name); 610 goto out_free; 611 } 612 crypto_skcipher_set_flags(crypt_stat->tfm, 613 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 614 rc = 0; 615 out_free: 616 kfree(full_alg_name); 617 out_unlock: 618 mutex_unlock(&crypt_stat->cs_tfm_mutex); 619 return rc; 620 } 621 622 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 623 { 624 int extent_size_tmp; 625 626 crypt_stat->extent_mask = 0xFFFFFFFF; 627 crypt_stat->extent_shift = 0; 628 if (crypt_stat->extent_size == 0) 629 return; 630 extent_size_tmp = crypt_stat->extent_size; 631 while ((extent_size_tmp & 0x01) == 0) { 632 extent_size_tmp >>= 1; 633 crypt_stat->extent_mask <<= 1; 634 crypt_stat->extent_shift++; 635 } 636 } 637 638 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 639 { 640 /* Default values; may be overwritten as we are parsing the 641 * packets. */ 642 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 643 set_extent_mask_and_shift(crypt_stat); 644 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 645 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 646 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 647 else { 648 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 649 crypt_stat->metadata_size = 650 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 651 else 652 crypt_stat->metadata_size = PAGE_SIZE; 653 } 654 } 655 656 /** 657 * ecryptfs_compute_root_iv 658 * @crypt_stats 659 * 660 * On error, sets the root IV to all 0's. 661 */ 662 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 663 { 664 int rc = 0; 665 char dst[MD5_DIGEST_SIZE]; 666 667 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 668 BUG_ON(crypt_stat->iv_bytes <= 0); 669 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 670 rc = -EINVAL; 671 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 672 "cannot generate root IV\n"); 673 goto out; 674 } 675 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 676 crypt_stat->key_size); 677 if (rc) { 678 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 679 "MD5 while generating root IV\n"); 680 goto out; 681 } 682 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 683 out: 684 if (rc) { 685 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 686 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 687 } 688 return rc; 689 } 690 691 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 692 { 693 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 694 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 695 ecryptfs_compute_root_iv(crypt_stat); 696 if (unlikely(ecryptfs_verbosity > 0)) { 697 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 698 ecryptfs_dump_hex(crypt_stat->key, 699 crypt_stat->key_size); 700 } 701 } 702 703 /** 704 * ecryptfs_copy_mount_wide_flags_to_inode_flags 705 * @crypt_stat: The inode's cryptographic context 706 * @mount_crypt_stat: The mount point's cryptographic context 707 * 708 * This function propagates the mount-wide flags to individual inode 709 * flags. 710 */ 711 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 712 struct ecryptfs_crypt_stat *crypt_stat, 713 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 714 { 715 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 716 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 717 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 718 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 719 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 720 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 721 if (mount_crypt_stat->flags 722 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 723 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 724 else if (mount_crypt_stat->flags 725 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 726 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 727 } 728 } 729 730 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 731 struct ecryptfs_crypt_stat *crypt_stat, 732 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 733 { 734 struct ecryptfs_global_auth_tok *global_auth_tok; 735 int rc = 0; 736 737 mutex_lock(&crypt_stat->keysig_list_mutex); 738 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 739 740 list_for_each_entry(global_auth_tok, 741 &mount_crypt_stat->global_auth_tok_list, 742 mount_crypt_stat_list) { 743 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 744 continue; 745 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 746 if (rc) { 747 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 748 goto out; 749 } 750 } 751 752 out: 753 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 754 mutex_unlock(&crypt_stat->keysig_list_mutex); 755 return rc; 756 } 757 758 /** 759 * ecryptfs_set_default_crypt_stat_vals 760 * @crypt_stat: The inode's cryptographic context 761 * @mount_crypt_stat: The mount point's cryptographic context 762 * 763 * Default values in the event that policy does not override them. 764 */ 765 static void ecryptfs_set_default_crypt_stat_vals( 766 struct ecryptfs_crypt_stat *crypt_stat, 767 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 768 { 769 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 770 mount_crypt_stat); 771 ecryptfs_set_default_sizes(crypt_stat); 772 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 773 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 774 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 775 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 776 crypt_stat->mount_crypt_stat = mount_crypt_stat; 777 } 778 779 /** 780 * ecryptfs_new_file_context 781 * @ecryptfs_inode: The eCryptfs inode 782 * 783 * If the crypto context for the file has not yet been established, 784 * this is where we do that. Establishing a new crypto context 785 * involves the following decisions: 786 * - What cipher to use? 787 * - What set of authentication tokens to use? 788 * Here we just worry about getting enough information into the 789 * authentication tokens so that we know that they are available. 790 * We associate the available authentication tokens with the new file 791 * via the set of signatures in the crypt_stat struct. Later, when 792 * the headers are actually written out, we may again defer to 793 * userspace to perform the encryption of the session key; for the 794 * foreseeable future, this will be the case with public key packets. 795 * 796 * Returns zero on success; non-zero otherwise 797 */ 798 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 799 { 800 struct ecryptfs_crypt_stat *crypt_stat = 801 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 802 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 803 &ecryptfs_superblock_to_private( 804 ecryptfs_inode->i_sb)->mount_crypt_stat; 805 int cipher_name_len; 806 int rc = 0; 807 808 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 809 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 810 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 811 mount_crypt_stat); 812 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 813 mount_crypt_stat); 814 if (rc) { 815 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 816 "to the inode key sigs; rc = [%d]\n", rc); 817 goto out; 818 } 819 cipher_name_len = 820 strlen(mount_crypt_stat->global_default_cipher_name); 821 memcpy(crypt_stat->cipher, 822 mount_crypt_stat->global_default_cipher_name, 823 cipher_name_len); 824 crypt_stat->cipher[cipher_name_len] = '\0'; 825 crypt_stat->key_size = 826 mount_crypt_stat->global_default_cipher_key_size; 827 ecryptfs_generate_new_key(crypt_stat); 828 rc = ecryptfs_init_crypt_ctx(crypt_stat); 829 if (rc) 830 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 831 "context for cipher [%s]: rc = [%d]\n", 832 crypt_stat->cipher, rc); 833 out: 834 return rc; 835 } 836 837 /** 838 * ecryptfs_validate_marker - check for the ecryptfs marker 839 * @data: The data block in which to check 840 * 841 * Returns zero if marker found; -EINVAL if not found 842 */ 843 static int ecryptfs_validate_marker(char *data) 844 { 845 u32 m_1, m_2; 846 847 m_1 = get_unaligned_be32(data); 848 m_2 = get_unaligned_be32(data + 4); 849 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 850 return 0; 851 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 852 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 853 MAGIC_ECRYPTFS_MARKER); 854 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 855 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 856 return -EINVAL; 857 } 858 859 struct ecryptfs_flag_map_elem { 860 u32 file_flag; 861 u32 local_flag; 862 }; 863 864 /* Add support for additional flags by adding elements here. */ 865 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 866 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 867 {0x00000002, ECRYPTFS_ENCRYPTED}, 868 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 869 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 870 }; 871 872 /** 873 * ecryptfs_process_flags 874 * @crypt_stat: The cryptographic context 875 * @page_virt: Source data to be parsed 876 * @bytes_read: Updated with the number of bytes read 877 * 878 * Returns zero on success; non-zero if the flag set is invalid 879 */ 880 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 881 char *page_virt, int *bytes_read) 882 { 883 int rc = 0; 884 int i; 885 u32 flags; 886 887 flags = get_unaligned_be32(page_virt); 888 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 889 if (flags & ecryptfs_flag_map[i].file_flag) { 890 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 891 } else 892 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 893 /* Version is in top 8 bits of the 32-bit flag vector */ 894 crypt_stat->file_version = ((flags >> 24) & 0xFF); 895 (*bytes_read) = 4; 896 return rc; 897 } 898 899 /** 900 * write_ecryptfs_marker 901 * @page_virt: The pointer to in a page to begin writing the marker 902 * @written: Number of bytes written 903 * 904 * Marker = 0x3c81b7f5 905 */ 906 static void write_ecryptfs_marker(char *page_virt, size_t *written) 907 { 908 u32 m_1, m_2; 909 910 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 911 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 912 put_unaligned_be32(m_1, page_virt); 913 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 914 put_unaligned_be32(m_2, page_virt); 915 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 916 } 917 918 void ecryptfs_write_crypt_stat_flags(char *page_virt, 919 struct ecryptfs_crypt_stat *crypt_stat, 920 size_t *written) 921 { 922 u32 flags = 0; 923 int i; 924 925 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 926 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 927 flags |= ecryptfs_flag_map[i].file_flag; 928 /* Version is in top 8 bits of the 32-bit flag vector */ 929 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 930 put_unaligned_be32(flags, page_virt); 931 (*written) = 4; 932 } 933 934 struct ecryptfs_cipher_code_str_map_elem { 935 char cipher_str[16]; 936 u8 cipher_code; 937 }; 938 939 /* Add support for additional ciphers by adding elements here. The 940 * cipher_code is whatever OpenPGP applications use to identify the 941 * ciphers. List in order of probability. */ 942 static struct ecryptfs_cipher_code_str_map_elem 943 ecryptfs_cipher_code_str_map[] = { 944 {"aes",RFC2440_CIPHER_AES_128 }, 945 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 946 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 947 {"cast5", RFC2440_CIPHER_CAST_5}, 948 {"twofish", RFC2440_CIPHER_TWOFISH}, 949 {"cast6", RFC2440_CIPHER_CAST_6}, 950 {"aes", RFC2440_CIPHER_AES_192}, 951 {"aes", RFC2440_CIPHER_AES_256} 952 }; 953 954 /** 955 * ecryptfs_code_for_cipher_string 956 * @cipher_name: The string alias for the cipher 957 * @key_bytes: Length of key in bytes; used for AES code selection 958 * 959 * Returns zero on no match, or the cipher code on match 960 */ 961 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 962 { 963 int i; 964 u8 code = 0; 965 struct ecryptfs_cipher_code_str_map_elem *map = 966 ecryptfs_cipher_code_str_map; 967 968 if (strcmp(cipher_name, "aes") == 0) { 969 switch (key_bytes) { 970 case 16: 971 code = RFC2440_CIPHER_AES_128; 972 break; 973 case 24: 974 code = RFC2440_CIPHER_AES_192; 975 break; 976 case 32: 977 code = RFC2440_CIPHER_AES_256; 978 } 979 } else { 980 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 981 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 982 code = map[i].cipher_code; 983 break; 984 } 985 } 986 return code; 987 } 988 989 /** 990 * ecryptfs_cipher_code_to_string 991 * @str: Destination to write out the cipher name 992 * @cipher_code: The code to convert to cipher name string 993 * 994 * Returns zero on success 995 */ 996 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 997 { 998 int rc = 0; 999 int i; 1000 1001 str[0] = '\0'; 1002 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1003 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1004 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1005 if (str[0] == '\0') { 1006 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1007 "[%d]\n", cipher_code); 1008 rc = -EINVAL; 1009 } 1010 return rc; 1011 } 1012 1013 int ecryptfs_read_and_validate_header_region(struct inode *inode) 1014 { 1015 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1016 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1017 int rc; 1018 1019 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 1020 inode); 1021 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1022 return rc >= 0 ? -EINVAL : rc; 1023 rc = ecryptfs_validate_marker(marker); 1024 if (!rc) 1025 ecryptfs_i_size_init(file_size, inode); 1026 return rc; 1027 } 1028 1029 void 1030 ecryptfs_write_header_metadata(char *virt, 1031 struct ecryptfs_crypt_stat *crypt_stat, 1032 size_t *written) 1033 { 1034 u32 header_extent_size; 1035 u16 num_header_extents_at_front; 1036 1037 header_extent_size = (u32)crypt_stat->extent_size; 1038 num_header_extents_at_front = 1039 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1040 put_unaligned_be32(header_extent_size, virt); 1041 virt += 4; 1042 put_unaligned_be16(num_header_extents_at_front, virt); 1043 (*written) = 6; 1044 } 1045 1046 struct kmem_cache *ecryptfs_header_cache; 1047 1048 /** 1049 * ecryptfs_write_headers_virt 1050 * @page_virt: The virtual address to write the headers to 1051 * @max: The size of memory allocated at page_virt 1052 * @size: Set to the number of bytes written by this function 1053 * @crypt_stat: The cryptographic context 1054 * @ecryptfs_dentry: The eCryptfs dentry 1055 * 1056 * Format version: 1 1057 * 1058 * Header Extent: 1059 * Octets 0-7: Unencrypted file size (big-endian) 1060 * Octets 8-15: eCryptfs special marker 1061 * Octets 16-19: Flags 1062 * Octet 16: File format version number (between 0 and 255) 1063 * Octets 17-18: Reserved 1064 * Octet 19: Bit 1 (lsb): Reserved 1065 * Bit 2: Encrypted? 1066 * Bits 3-8: Reserved 1067 * Octets 20-23: Header extent size (big-endian) 1068 * Octets 24-25: Number of header extents at front of file 1069 * (big-endian) 1070 * Octet 26: Begin RFC 2440 authentication token packet set 1071 * Data Extent 0: 1072 * Lower data (CBC encrypted) 1073 * Data Extent 1: 1074 * Lower data (CBC encrypted) 1075 * ... 1076 * 1077 * Returns zero on success 1078 */ 1079 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1080 size_t *size, 1081 struct ecryptfs_crypt_stat *crypt_stat, 1082 struct dentry *ecryptfs_dentry) 1083 { 1084 int rc; 1085 size_t written; 1086 size_t offset; 1087 1088 offset = ECRYPTFS_FILE_SIZE_BYTES; 1089 write_ecryptfs_marker((page_virt + offset), &written); 1090 offset += written; 1091 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1092 &written); 1093 offset += written; 1094 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1095 &written); 1096 offset += written; 1097 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1098 ecryptfs_dentry, &written, 1099 max - offset); 1100 if (rc) 1101 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1102 "set; rc = [%d]\n", rc); 1103 if (size) { 1104 offset += written; 1105 *size = offset; 1106 } 1107 return rc; 1108 } 1109 1110 static int 1111 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1112 char *virt, size_t virt_len) 1113 { 1114 int rc; 1115 1116 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1117 0, virt_len); 1118 if (rc < 0) 1119 printk(KERN_ERR "%s: Error attempting to write header " 1120 "information to lower file; rc = [%d]\n", __func__, rc); 1121 else 1122 rc = 0; 1123 return rc; 1124 } 1125 1126 static int 1127 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1128 struct inode *ecryptfs_inode, 1129 char *page_virt, size_t size) 1130 { 1131 int rc; 1132 1133 rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode, 1134 ECRYPTFS_XATTR_NAME, page_virt, size, 0); 1135 return rc; 1136 } 1137 1138 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1139 unsigned int order) 1140 { 1141 struct page *page; 1142 1143 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1144 if (page) 1145 return (unsigned long) page_address(page); 1146 return 0; 1147 } 1148 1149 /** 1150 * ecryptfs_write_metadata 1151 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1152 * @ecryptfs_inode: The newly created eCryptfs inode 1153 * 1154 * Write the file headers out. This will likely involve a userspace 1155 * callout, in which the session key is encrypted with one or more 1156 * public keys and/or the passphrase necessary to do the encryption is 1157 * retrieved via a prompt. Exactly what happens at this point should 1158 * be policy-dependent. 1159 * 1160 * Returns zero on success; non-zero on error 1161 */ 1162 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1163 struct inode *ecryptfs_inode) 1164 { 1165 struct ecryptfs_crypt_stat *crypt_stat = 1166 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1167 unsigned int order; 1168 char *virt; 1169 size_t virt_len; 1170 size_t size = 0; 1171 int rc = 0; 1172 1173 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1174 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1175 printk(KERN_ERR "Key is invalid; bailing out\n"); 1176 rc = -EINVAL; 1177 goto out; 1178 } 1179 } else { 1180 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1181 __func__); 1182 rc = -EINVAL; 1183 goto out; 1184 } 1185 virt_len = crypt_stat->metadata_size; 1186 order = get_order(virt_len); 1187 /* Released in this function */ 1188 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1189 if (!virt) { 1190 printk(KERN_ERR "%s: Out of memory\n", __func__); 1191 rc = -ENOMEM; 1192 goto out; 1193 } 1194 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1195 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1196 ecryptfs_dentry); 1197 if (unlikely(rc)) { 1198 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1199 __func__, rc); 1200 goto out_free; 1201 } 1202 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1203 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode, 1204 virt, size); 1205 else 1206 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1207 virt_len); 1208 if (rc) { 1209 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1210 "rc = [%d]\n", __func__, rc); 1211 goto out_free; 1212 } 1213 out_free: 1214 free_pages((unsigned long)virt, order); 1215 out: 1216 return rc; 1217 } 1218 1219 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1220 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1221 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1222 char *virt, int *bytes_read, 1223 int validate_header_size) 1224 { 1225 int rc = 0; 1226 u32 header_extent_size; 1227 u16 num_header_extents_at_front; 1228 1229 header_extent_size = get_unaligned_be32(virt); 1230 virt += sizeof(__be32); 1231 num_header_extents_at_front = get_unaligned_be16(virt); 1232 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1233 * (size_t)header_extent_size)); 1234 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1235 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1236 && (crypt_stat->metadata_size 1237 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1238 rc = -EINVAL; 1239 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1240 crypt_stat->metadata_size); 1241 } 1242 return rc; 1243 } 1244 1245 /** 1246 * set_default_header_data 1247 * @crypt_stat: The cryptographic context 1248 * 1249 * For version 0 file format; this function is only for backwards 1250 * compatibility for files created with the prior versions of 1251 * eCryptfs. 1252 */ 1253 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1254 { 1255 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1256 } 1257 1258 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1259 { 1260 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1261 struct ecryptfs_crypt_stat *crypt_stat; 1262 u64 file_size; 1263 1264 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1265 mount_crypt_stat = 1266 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1267 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1268 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1269 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1270 file_size += crypt_stat->metadata_size; 1271 } else 1272 file_size = get_unaligned_be64(page_virt); 1273 i_size_write(inode, (loff_t)file_size); 1274 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1275 } 1276 1277 /** 1278 * ecryptfs_read_headers_virt 1279 * @page_virt: The virtual address into which to read the headers 1280 * @crypt_stat: The cryptographic context 1281 * @ecryptfs_dentry: The eCryptfs dentry 1282 * @validate_header_size: Whether to validate the header size while reading 1283 * 1284 * Read/parse the header data. The header format is detailed in the 1285 * comment block for the ecryptfs_write_headers_virt() function. 1286 * 1287 * Returns zero on success 1288 */ 1289 static int ecryptfs_read_headers_virt(char *page_virt, 1290 struct ecryptfs_crypt_stat *crypt_stat, 1291 struct dentry *ecryptfs_dentry, 1292 int validate_header_size) 1293 { 1294 int rc = 0; 1295 int offset; 1296 int bytes_read; 1297 1298 ecryptfs_set_default_sizes(crypt_stat); 1299 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1300 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1301 offset = ECRYPTFS_FILE_SIZE_BYTES; 1302 rc = ecryptfs_validate_marker(page_virt + offset); 1303 if (rc) 1304 goto out; 1305 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1306 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry)); 1307 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1308 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1309 &bytes_read); 1310 if (rc) { 1311 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1312 goto out; 1313 } 1314 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1315 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1316 "file version [%d] is supported by this " 1317 "version of eCryptfs\n", 1318 crypt_stat->file_version, 1319 ECRYPTFS_SUPPORTED_FILE_VERSION); 1320 rc = -EINVAL; 1321 goto out; 1322 } 1323 offset += bytes_read; 1324 if (crypt_stat->file_version >= 1) { 1325 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1326 &bytes_read, validate_header_size); 1327 if (rc) { 1328 ecryptfs_printk(KERN_WARNING, "Error reading header " 1329 "metadata; rc = [%d]\n", rc); 1330 } 1331 offset += bytes_read; 1332 } else 1333 set_default_header_data(crypt_stat); 1334 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1335 ecryptfs_dentry); 1336 out: 1337 return rc; 1338 } 1339 1340 /** 1341 * ecryptfs_read_xattr_region 1342 * @page_virt: The vitual address into which to read the xattr data 1343 * @ecryptfs_inode: The eCryptfs inode 1344 * 1345 * Attempts to read the crypto metadata from the extended attribute 1346 * region of the lower file. 1347 * 1348 * Returns zero on success; non-zero on error 1349 */ 1350 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1351 { 1352 struct dentry *lower_dentry = 1353 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry; 1354 ssize_t size; 1355 int rc = 0; 1356 1357 size = ecryptfs_getxattr_lower(lower_dentry, 1358 ecryptfs_inode_to_lower(ecryptfs_inode), 1359 ECRYPTFS_XATTR_NAME, 1360 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1361 if (size < 0) { 1362 if (unlikely(ecryptfs_verbosity > 0)) 1363 printk(KERN_INFO "Error attempting to read the [%s] " 1364 "xattr from the lower file; return value = " 1365 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1366 rc = -EINVAL; 1367 goto out; 1368 } 1369 out: 1370 return rc; 1371 } 1372 1373 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1374 struct inode *inode) 1375 { 1376 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1377 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1378 int rc; 1379 1380 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1381 ecryptfs_inode_to_lower(inode), 1382 ECRYPTFS_XATTR_NAME, file_size, 1383 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1384 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1385 return rc >= 0 ? -EINVAL : rc; 1386 rc = ecryptfs_validate_marker(marker); 1387 if (!rc) 1388 ecryptfs_i_size_init(file_size, inode); 1389 return rc; 1390 } 1391 1392 /** 1393 * ecryptfs_read_metadata 1394 * 1395 * Common entry point for reading file metadata. From here, we could 1396 * retrieve the header information from the header region of the file, 1397 * the xattr region of the file, or some other repository that is 1398 * stored separately from the file itself. The current implementation 1399 * supports retrieving the metadata information from the file contents 1400 * and from the xattr region. 1401 * 1402 * Returns zero if valid headers found and parsed; non-zero otherwise 1403 */ 1404 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1405 { 1406 int rc; 1407 char *page_virt; 1408 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry); 1409 struct ecryptfs_crypt_stat *crypt_stat = 1410 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1411 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1412 &ecryptfs_superblock_to_private( 1413 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1414 1415 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1416 mount_crypt_stat); 1417 /* Read the first page from the underlying file */ 1418 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1419 if (!page_virt) { 1420 rc = -ENOMEM; 1421 goto out; 1422 } 1423 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1424 ecryptfs_inode); 1425 if (rc >= 0) 1426 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1427 ecryptfs_dentry, 1428 ECRYPTFS_VALIDATE_HEADER_SIZE); 1429 if (rc) { 1430 /* metadata is not in the file header, so try xattrs */ 1431 memset(page_virt, 0, PAGE_SIZE); 1432 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1433 if (rc) { 1434 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1435 "file header region or xattr region, inode %lu\n", 1436 ecryptfs_inode->i_ino); 1437 rc = -EINVAL; 1438 goto out; 1439 } 1440 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1441 ecryptfs_dentry, 1442 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1443 if (rc) { 1444 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1445 "file xattr region either, inode %lu\n", 1446 ecryptfs_inode->i_ino); 1447 rc = -EINVAL; 1448 } 1449 if (crypt_stat->mount_crypt_stat->flags 1450 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1451 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1452 } else { 1453 printk(KERN_WARNING "Attempt to access file with " 1454 "crypto metadata only in the extended attribute " 1455 "region, but eCryptfs was mounted without " 1456 "xattr support enabled. eCryptfs will not treat " 1457 "this like an encrypted file, inode %lu\n", 1458 ecryptfs_inode->i_ino); 1459 rc = -EINVAL; 1460 } 1461 } 1462 out: 1463 if (page_virt) { 1464 memset(page_virt, 0, PAGE_SIZE); 1465 kmem_cache_free(ecryptfs_header_cache, page_virt); 1466 } 1467 return rc; 1468 } 1469 1470 /** 1471 * ecryptfs_encrypt_filename - encrypt filename 1472 * 1473 * CBC-encrypts the filename. We do not want to encrypt the same 1474 * filename with the same key and IV, which may happen with hard 1475 * links, so we prepend random bits to each filename. 1476 * 1477 * Returns zero on success; non-zero otherwise 1478 */ 1479 static int 1480 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1481 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1482 { 1483 int rc = 0; 1484 1485 filename->encrypted_filename = NULL; 1486 filename->encrypted_filename_size = 0; 1487 if (mount_crypt_stat && (mount_crypt_stat->flags 1488 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1489 size_t packet_size; 1490 size_t remaining_bytes; 1491 1492 rc = ecryptfs_write_tag_70_packet( 1493 NULL, NULL, 1494 &filename->encrypted_filename_size, 1495 mount_crypt_stat, NULL, 1496 filename->filename_size); 1497 if (rc) { 1498 printk(KERN_ERR "%s: Error attempting to get packet " 1499 "size for tag 72; rc = [%d]\n", __func__, 1500 rc); 1501 filename->encrypted_filename_size = 0; 1502 goto out; 1503 } 1504 filename->encrypted_filename = 1505 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1506 if (!filename->encrypted_filename) { 1507 rc = -ENOMEM; 1508 goto out; 1509 } 1510 remaining_bytes = filename->encrypted_filename_size; 1511 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1512 &remaining_bytes, 1513 &packet_size, 1514 mount_crypt_stat, 1515 filename->filename, 1516 filename->filename_size); 1517 if (rc) { 1518 printk(KERN_ERR "%s: Error attempting to generate " 1519 "tag 70 packet; rc = [%d]\n", __func__, 1520 rc); 1521 kfree(filename->encrypted_filename); 1522 filename->encrypted_filename = NULL; 1523 filename->encrypted_filename_size = 0; 1524 goto out; 1525 } 1526 filename->encrypted_filename_size = packet_size; 1527 } else { 1528 printk(KERN_ERR "%s: No support for requested filename " 1529 "encryption method in this release\n", __func__); 1530 rc = -EOPNOTSUPP; 1531 goto out; 1532 } 1533 out: 1534 return rc; 1535 } 1536 1537 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1538 const char *name, size_t name_size) 1539 { 1540 int rc = 0; 1541 1542 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1543 if (!(*copied_name)) { 1544 rc = -ENOMEM; 1545 goto out; 1546 } 1547 memcpy((void *)(*copied_name), (void *)name, name_size); 1548 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1549 * in printing out the 1550 * string in debug 1551 * messages */ 1552 (*copied_name_size) = name_size; 1553 out: 1554 return rc; 1555 } 1556 1557 /** 1558 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1559 * @key_tfm: Crypto context for key material, set by this function 1560 * @cipher_name: Name of the cipher 1561 * @key_size: Size of the key in bytes 1562 * 1563 * Returns zero on success. Any crypto_tfm structs allocated here 1564 * should be released by other functions, such as on a superblock put 1565 * event, regardless of whether this function succeeds for fails. 1566 */ 1567 static int 1568 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, 1569 char *cipher_name, size_t *key_size) 1570 { 1571 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1572 char *full_alg_name = NULL; 1573 int rc; 1574 1575 *key_tfm = NULL; 1576 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1577 rc = -EINVAL; 1578 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1579 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1580 goto out; 1581 } 1582 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1583 "ecb"); 1584 if (rc) 1585 goto out; 1586 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1587 if (IS_ERR(*key_tfm)) { 1588 rc = PTR_ERR(*key_tfm); 1589 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1590 "[%s]; rc = [%d]\n", full_alg_name, rc); 1591 goto out; 1592 } 1593 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 1594 if (*key_size == 0) 1595 *key_size = crypto_skcipher_default_keysize(*key_tfm); 1596 get_random_bytes(dummy_key, *key_size); 1597 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size); 1598 if (rc) { 1599 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1600 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1601 rc); 1602 rc = -EINVAL; 1603 goto out; 1604 } 1605 out: 1606 kfree(full_alg_name); 1607 return rc; 1608 } 1609 1610 struct kmem_cache *ecryptfs_key_tfm_cache; 1611 static struct list_head key_tfm_list; 1612 struct mutex key_tfm_list_mutex; 1613 1614 int __init ecryptfs_init_crypto(void) 1615 { 1616 mutex_init(&key_tfm_list_mutex); 1617 INIT_LIST_HEAD(&key_tfm_list); 1618 return 0; 1619 } 1620 1621 /** 1622 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1623 * 1624 * Called only at module unload time 1625 */ 1626 int ecryptfs_destroy_crypto(void) 1627 { 1628 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1629 1630 mutex_lock(&key_tfm_list_mutex); 1631 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1632 key_tfm_list) { 1633 list_del(&key_tfm->key_tfm_list); 1634 crypto_free_skcipher(key_tfm->key_tfm); 1635 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1636 } 1637 mutex_unlock(&key_tfm_list_mutex); 1638 return 0; 1639 } 1640 1641 int 1642 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1643 size_t key_size) 1644 { 1645 struct ecryptfs_key_tfm *tmp_tfm; 1646 int rc = 0; 1647 1648 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1649 1650 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1651 if (key_tfm) 1652 (*key_tfm) = tmp_tfm; 1653 if (!tmp_tfm) { 1654 rc = -ENOMEM; 1655 goto out; 1656 } 1657 mutex_init(&tmp_tfm->key_tfm_mutex); 1658 strncpy(tmp_tfm->cipher_name, cipher_name, 1659 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1660 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1661 tmp_tfm->key_size = key_size; 1662 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1663 tmp_tfm->cipher_name, 1664 &tmp_tfm->key_size); 1665 if (rc) { 1666 printk(KERN_ERR "Error attempting to initialize key TFM " 1667 "cipher with name = [%s]; rc = [%d]\n", 1668 tmp_tfm->cipher_name, rc); 1669 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1670 if (key_tfm) 1671 (*key_tfm) = NULL; 1672 goto out; 1673 } 1674 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1675 out: 1676 return rc; 1677 } 1678 1679 /** 1680 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1681 * @cipher_name: the name of the cipher to search for 1682 * @key_tfm: set to corresponding tfm if found 1683 * 1684 * Searches for cached key_tfm matching @cipher_name 1685 * Must be called with &key_tfm_list_mutex held 1686 * Returns 1 if found, with @key_tfm set 1687 * Returns 0 if not found, with @key_tfm set to NULL 1688 */ 1689 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1690 { 1691 struct ecryptfs_key_tfm *tmp_key_tfm; 1692 1693 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1694 1695 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1696 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1697 if (key_tfm) 1698 (*key_tfm) = tmp_key_tfm; 1699 return 1; 1700 } 1701 } 1702 if (key_tfm) 1703 (*key_tfm) = NULL; 1704 return 0; 1705 } 1706 1707 /** 1708 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1709 * 1710 * @tfm: set to cached tfm found, or new tfm created 1711 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1712 * @cipher_name: the name of the cipher to search for and/or add 1713 * 1714 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1715 * Searches for cached item first, and creates new if not found. 1716 * Returns 0 on success, non-zero if adding new cipher failed 1717 */ 1718 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, 1719 struct mutex **tfm_mutex, 1720 char *cipher_name) 1721 { 1722 struct ecryptfs_key_tfm *key_tfm; 1723 int rc = 0; 1724 1725 (*tfm) = NULL; 1726 (*tfm_mutex) = NULL; 1727 1728 mutex_lock(&key_tfm_list_mutex); 1729 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1730 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1731 if (rc) { 1732 printk(KERN_ERR "Error adding new key_tfm to list; " 1733 "rc = [%d]\n", rc); 1734 goto out; 1735 } 1736 } 1737 (*tfm) = key_tfm->key_tfm; 1738 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1739 out: 1740 mutex_unlock(&key_tfm_list_mutex); 1741 return rc; 1742 } 1743 1744 /* 64 characters forming a 6-bit target field */ 1745 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1746 "EFGHIJKLMNOPQRST" 1747 "UVWXYZabcdefghij" 1748 "klmnopqrstuvwxyz"); 1749 1750 /* We could either offset on every reverse map or just pad some 0x00's 1751 * at the front here */ 1752 static const unsigned char filename_rev_map[256] = { 1753 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1754 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1755 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1756 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1757 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1758 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1759 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1760 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1761 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1762 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1763 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1764 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1765 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1766 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1767 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1768 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1769 }; 1770 1771 /** 1772 * ecryptfs_encode_for_filename 1773 * @dst: Destination location for encoded filename 1774 * @dst_size: Size of the encoded filename in bytes 1775 * @src: Source location for the filename to encode 1776 * @src_size: Size of the source in bytes 1777 */ 1778 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1779 unsigned char *src, size_t src_size) 1780 { 1781 size_t num_blocks; 1782 size_t block_num = 0; 1783 size_t dst_offset = 0; 1784 unsigned char last_block[3]; 1785 1786 if (src_size == 0) { 1787 (*dst_size) = 0; 1788 goto out; 1789 } 1790 num_blocks = (src_size / 3); 1791 if ((src_size % 3) == 0) { 1792 memcpy(last_block, (&src[src_size - 3]), 3); 1793 } else { 1794 num_blocks++; 1795 last_block[2] = 0x00; 1796 switch (src_size % 3) { 1797 case 1: 1798 last_block[0] = src[src_size - 1]; 1799 last_block[1] = 0x00; 1800 break; 1801 case 2: 1802 last_block[0] = src[src_size - 2]; 1803 last_block[1] = src[src_size - 1]; 1804 } 1805 } 1806 (*dst_size) = (num_blocks * 4); 1807 if (!dst) 1808 goto out; 1809 while (block_num < num_blocks) { 1810 unsigned char *src_block; 1811 unsigned char dst_block[4]; 1812 1813 if (block_num == (num_blocks - 1)) 1814 src_block = last_block; 1815 else 1816 src_block = &src[block_num * 3]; 1817 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1818 dst_block[1] = (((src_block[0] << 4) & 0x30) 1819 | ((src_block[1] >> 4) & 0x0F)); 1820 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1821 | ((src_block[2] >> 6) & 0x03)); 1822 dst_block[3] = (src_block[2] & 0x3F); 1823 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1824 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1825 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1826 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1827 block_num++; 1828 } 1829 out: 1830 return; 1831 } 1832 1833 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1834 { 1835 /* Not exact; conservatively long. Every block of 4 1836 * encoded characters decodes into a block of 3 1837 * decoded characters. This segment of code provides 1838 * the caller with the maximum amount of allocated 1839 * space that @dst will need to point to in a 1840 * subsequent call. */ 1841 return ((encoded_size + 1) * 3) / 4; 1842 } 1843 1844 /** 1845 * ecryptfs_decode_from_filename 1846 * @dst: If NULL, this function only sets @dst_size and returns. If 1847 * non-NULL, this function decodes the encoded octets in @src 1848 * into the memory that @dst points to. 1849 * @dst_size: Set to the size of the decoded string. 1850 * @src: The encoded set of octets to decode. 1851 * @src_size: The size of the encoded set of octets to decode. 1852 */ 1853 static void 1854 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 1855 const unsigned char *src, size_t src_size) 1856 { 1857 u8 current_bit_offset = 0; 1858 size_t src_byte_offset = 0; 1859 size_t dst_byte_offset = 0; 1860 1861 if (!dst) { 1862 (*dst_size) = ecryptfs_max_decoded_size(src_size); 1863 goto out; 1864 } 1865 while (src_byte_offset < src_size) { 1866 unsigned char src_byte = 1867 filename_rev_map[(int)src[src_byte_offset]]; 1868 1869 switch (current_bit_offset) { 1870 case 0: 1871 dst[dst_byte_offset] = (src_byte << 2); 1872 current_bit_offset = 6; 1873 break; 1874 case 6: 1875 dst[dst_byte_offset++] |= (src_byte >> 4); 1876 dst[dst_byte_offset] = ((src_byte & 0xF) 1877 << 4); 1878 current_bit_offset = 4; 1879 break; 1880 case 4: 1881 dst[dst_byte_offset++] |= (src_byte >> 2); 1882 dst[dst_byte_offset] = (src_byte << 6); 1883 current_bit_offset = 2; 1884 break; 1885 case 2: 1886 dst[dst_byte_offset++] |= (src_byte); 1887 current_bit_offset = 0; 1888 break; 1889 } 1890 src_byte_offset++; 1891 } 1892 (*dst_size) = dst_byte_offset; 1893 out: 1894 return; 1895 } 1896 1897 /** 1898 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 1899 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 1900 * @name: The plaintext name 1901 * @length: The length of the plaintext 1902 * @encoded_name: The encypted name 1903 * 1904 * Encrypts and encodes a filename into something that constitutes a 1905 * valid filename for a filesystem, with printable characters. 1906 * 1907 * We assume that we have a properly initialized crypto context, 1908 * pointed to by crypt_stat->tfm. 1909 * 1910 * Returns zero on success; non-zero on otherwise 1911 */ 1912 int ecryptfs_encrypt_and_encode_filename( 1913 char **encoded_name, 1914 size_t *encoded_name_size, 1915 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 1916 const char *name, size_t name_size) 1917 { 1918 size_t encoded_name_no_prefix_size; 1919 int rc = 0; 1920 1921 (*encoded_name) = NULL; 1922 (*encoded_name_size) = 0; 1923 if (mount_crypt_stat && (mount_crypt_stat->flags 1924 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 1925 struct ecryptfs_filename *filename; 1926 1927 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 1928 if (!filename) { 1929 rc = -ENOMEM; 1930 goto out; 1931 } 1932 filename->filename = (char *)name; 1933 filename->filename_size = name_size; 1934 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat); 1935 if (rc) { 1936 printk(KERN_ERR "%s: Error attempting to encrypt " 1937 "filename; rc = [%d]\n", __func__, rc); 1938 kfree(filename); 1939 goto out; 1940 } 1941 ecryptfs_encode_for_filename( 1942 NULL, &encoded_name_no_prefix_size, 1943 filename->encrypted_filename, 1944 filename->encrypted_filename_size); 1945 if (mount_crypt_stat 1946 && (mount_crypt_stat->flags 1947 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) 1948 (*encoded_name_size) = 1949 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1950 + encoded_name_no_prefix_size); 1951 else 1952 (*encoded_name_size) = 1953 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1954 + encoded_name_no_prefix_size); 1955 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 1956 if (!(*encoded_name)) { 1957 rc = -ENOMEM; 1958 kfree(filename->encrypted_filename); 1959 kfree(filename); 1960 goto out; 1961 } 1962 if (mount_crypt_stat 1963 && (mount_crypt_stat->flags 1964 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1965 memcpy((*encoded_name), 1966 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 1967 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 1968 ecryptfs_encode_for_filename( 1969 ((*encoded_name) 1970 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 1971 &encoded_name_no_prefix_size, 1972 filename->encrypted_filename, 1973 filename->encrypted_filename_size); 1974 (*encoded_name_size) = 1975 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1976 + encoded_name_no_prefix_size); 1977 (*encoded_name)[(*encoded_name_size)] = '\0'; 1978 } else { 1979 rc = -EOPNOTSUPP; 1980 } 1981 if (rc) { 1982 printk(KERN_ERR "%s: Error attempting to encode " 1983 "encrypted filename; rc = [%d]\n", __func__, 1984 rc); 1985 kfree((*encoded_name)); 1986 (*encoded_name) = NULL; 1987 (*encoded_name_size) = 0; 1988 } 1989 kfree(filename->encrypted_filename); 1990 kfree(filename); 1991 } else { 1992 rc = ecryptfs_copy_filename(encoded_name, 1993 encoded_name_size, 1994 name, name_size); 1995 } 1996 out: 1997 return rc; 1998 } 1999 2000 static bool is_dot_dotdot(const char *name, size_t name_size) 2001 { 2002 if (name_size == 1 && name[0] == '.') 2003 return true; 2004 else if (name_size == 2 && name[0] == '.' && name[1] == '.') 2005 return true; 2006 2007 return false; 2008 } 2009 2010 /** 2011 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2012 * @plaintext_name: The plaintext name 2013 * @plaintext_name_size: The plaintext name size 2014 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2015 * @name: The filename in cipher text 2016 * @name_size: The cipher text name size 2017 * 2018 * Decrypts and decodes the filename. 2019 * 2020 * Returns zero on error; non-zero otherwise 2021 */ 2022 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2023 size_t *plaintext_name_size, 2024 struct super_block *sb, 2025 const char *name, size_t name_size) 2026 { 2027 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2028 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 2029 char *decoded_name; 2030 size_t decoded_name_size; 2031 size_t packet_size; 2032 int rc = 0; 2033 2034 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) && 2035 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) { 2036 if (is_dot_dotdot(name, name_size)) { 2037 rc = ecryptfs_copy_filename(plaintext_name, 2038 plaintext_name_size, 2039 name, name_size); 2040 goto out; 2041 } 2042 2043 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE || 2044 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2045 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) { 2046 rc = -EINVAL; 2047 goto out; 2048 } 2049 2050 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2051 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2052 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2053 name, name_size); 2054 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2055 if (!decoded_name) { 2056 rc = -ENOMEM; 2057 goto out; 2058 } 2059 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2060 name, name_size); 2061 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2062 plaintext_name_size, 2063 &packet_size, 2064 mount_crypt_stat, 2065 decoded_name, 2066 decoded_name_size); 2067 if (rc) { 2068 ecryptfs_printk(KERN_DEBUG, 2069 "%s: Could not parse tag 70 packet from filename\n", 2070 __func__); 2071 goto out_free; 2072 } 2073 } else { 2074 rc = ecryptfs_copy_filename(plaintext_name, 2075 plaintext_name_size, 2076 name, name_size); 2077 goto out; 2078 } 2079 out_free: 2080 kfree(decoded_name); 2081 out: 2082 return rc; 2083 } 2084 2085 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2086 2087 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2088 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2089 { 2090 struct crypto_skcipher *tfm; 2091 struct mutex *tfm_mutex; 2092 size_t cipher_blocksize; 2093 int rc; 2094 2095 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2096 (*namelen) = lower_namelen; 2097 return 0; 2098 } 2099 2100 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, 2101 mount_crypt_stat->global_default_fn_cipher_name); 2102 if (unlikely(rc)) { 2103 (*namelen) = 0; 2104 return rc; 2105 } 2106 2107 mutex_lock(tfm_mutex); 2108 cipher_blocksize = crypto_skcipher_blocksize(tfm); 2109 mutex_unlock(tfm_mutex); 2110 2111 /* Return an exact amount for the common cases */ 2112 if (lower_namelen == NAME_MAX 2113 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2114 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2115 return 0; 2116 } 2117 2118 /* Return a safe estimate for the uncommon cases */ 2119 (*namelen) = lower_namelen; 2120 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2121 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2122 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2123 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2124 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2125 /* Worst case is that the filename is padded nearly a full block size */ 2126 (*namelen) -= cipher_blocksize - 1; 2127 2128 if ((*namelen) < 0) 2129 (*namelen) = 0; 2130 2131 return 0; 2132 } 2133