1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 ******************************************************************************* 4 ** 5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 6 ** Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 7 ** 8 ** 9 ******************************************************************************* 10 ******************************************************************************/ 11 12 #include "dlm_internal.h" 13 #include "lockspace.h" 14 #include "dir.h" 15 #include "config.h" 16 #include "ast.h" 17 #include "memory.h" 18 #include "rcom.h" 19 #include "lock.h" 20 #include "lowcomms.h" 21 #include "member.h" 22 #include "recover.h" 23 24 25 /* 26 * Recovery waiting routines: these functions wait for a particular reply from 27 * a remote node, or for the remote node to report a certain status. They need 28 * to abort if the lockspace is stopped indicating a node has failed (perhaps 29 * the one being waited for). 30 */ 31 32 /* 33 * Wait until given function returns non-zero or lockspace is stopped 34 * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes). When another 35 * function thinks it could have completed the waited-on task, they should wake 36 * up ls_wait_general to get an immediate response rather than waiting for the 37 * timeout. This uses a timeout so it can check periodically if the wait 38 * should abort due to node failure (which doesn't cause a wake_up). 39 * This should only be called by the dlm_recoverd thread. 40 */ 41 42 int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls)) 43 { 44 int error = 0; 45 int rv; 46 47 while (1) { 48 rv = wait_event_timeout(ls->ls_wait_general, 49 testfn(ls) || dlm_recovery_stopped(ls), 50 dlm_config.ci_recover_timer * HZ); 51 if (rv) 52 break; 53 if (test_bit(LSFL_RCOM_WAIT, &ls->ls_flags)) { 54 log_debug(ls, "dlm_wait_function timed out"); 55 return -ETIMEDOUT; 56 } 57 } 58 59 if (dlm_recovery_stopped(ls)) { 60 log_debug(ls, "dlm_wait_function aborted"); 61 error = -EINTR; 62 } 63 return error; 64 } 65 66 /* 67 * An efficient way for all nodes to wait for all others to have a certain 68 * status. The node with the lowest nodeid polls all the others for their 69 * status (wait_status_all) and all the others poll the node with the low id 70 * for its accumulated result (wait_status_low). When all nodes have set 71 * status flag X, then status flag X_ALL will be set on the low nodeid. 72 */ 73 74 uint32_t dlm_recover_status(struct dlm_ls *ls) 75 { 76 uint32_t status; 77 spin_lock(&ls->ls_recover_lock); 78 status = ls->ls_recover_status; 79 spin_unlock(&ls->ls_recover_lock); 80 return status; 81 } 82 83 static void _set_recover_status(struct dlm_ls *ls, uint32_t status) 84 { 85 ls->ls_recover_status |= status; 86 } 87 88 void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status) 89 { 90 spin_lock(&ls->ls_recover_lock); 91 _set_recover_status(ls, status); 92 spin_unlock(&ls->ls_recover_lock); 93 } 94 95 static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status, 96 int save_slots, uint64_t seq) 97 { 98 struct dlm_rcom *rc = ls->ls_recover_buf; 99 struct dlm_member *memb; 100 int error = 0, delay; 101 102 list_for_each_entry(memb, &ls->ls_nodes, list) { 103 delay = 0; 104 for (;;) { 105 if (dlm_recovery_stopped(ls)) { 106 error = -EINTR; 107 goto out; 108 } 109 110 error = dlm_rcom_status(ls, memb->nodeid, 0, seq); 111 if (error) 112 goto out; 113 114 if (save_slots) 115 dlm_slot_save(ls, rc, memb); 116 117 if (le32_to_cpu(rc->rc_result) & wait_status) 118 break; 119 if (delay < 1000) 120 delay += 20; 121 msleep(delay); 122 } 123 } 124 out: 125 return error; 126 } 127 128 static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status, 129 uint32_t status_flags, uint64_t seq) 130 { 131 struct dlm_rcom *rc = ls->ls_recover_buf; 132 int error = 0, delay = 0, nodeid = ls->ls_low_nodeid; 133 134 for (;;) { 135 if (dlm_recovery_stopped(ls)) { 136 error = -EINTR; 137 goto out; 138 } 139 140 error = dlm_rcom_status(ls, nodeid, status_flags, seq); 141 if (error) 142 break; 143 144 if (le32_to_cpu(rc->rc_result) & wait_status) 145 break; 146 if (delay < 1000) 147 delay += 20; 148 msleep(delay); 149 } 150 out: 151 return error; 152 } 153 154 static int wait_status(struct dlm_ls *ls, uint32_t status, uint64_t seq) 155 { 156 uint32_t status_all = status << 1; 157 int error; 158 159 if (ls->ls_low_nodeid == dlm_our_nodeid()) { 160 error = wait_status_all(ls, status, 0, seq); 161 if (!error) 162 dlm_set_recover_status(ls, status_all); 163 } else 164 error = wait_status_low(ls, status_all, 0, seq); 165 166 return error; 167 } 168 169 int dlm_recover_members_wait(struct dlm_ls *ls, uint64_t seq) 170 { 171 struct dlm_member *memb; 172 struct dlm_slot *slots; 173 int num_slots, slots_size; 174 int error, rv; 175 uint32_t gen; 176 177 list_for_each_entry(memb, &ls->ls_nodes, list) { 178 memb->slot = -1; 179 memb->generation = 0; 180 } 181 182 if (ls->ls_low_nodeid == dlm_our_nodeid()) { 183 error = wait_status_all(ls, DLM_RS_NODES, 1, seq); 184 if (error) 185 goto out; 186 187 /* slots array is sparse, slots_size may be > num_slots */ 188 189 rv = dlm_slots_assign(ls, &num_slots, &slots_size, &slots, &gen); 190 if (!rv) { 191 spin_lock(&ls->ls_recover_lock); 192 _set_recover_status(ls, DLM_RS_NODES_ALL); 193 ls->ls_num_slots = num_slots; 194 ls->ls_slots_size = slots_size; 195 ls->ls_slots = slots; 196 ls->ls_generation = gen; 197 spin_unlock(&ls->ls_recover_lock); 198 } else { 199 dlm_set_recover_status(ls, DLM_RS_NODES_ALL); 200 } 201 } else { 202 error = wait_status_low(ls, DLM_RS_NODES_ALL, 203 DLM_RSF_NEED_SLOTS, seq); 204 if (error) 205 goto out; 206 207 dlm_slots_copy_in(ls); 208 } 209 out: 210 return error; 211 } 212 213 int dlm_recover_directory_wait(struct dlm_ls *ls, uint64_t seq) 214 { 215 return wait_status(ls, DLM_RS_DIR, seq); 216 } 217 218 int dlm_recover_locks_wait(struct dlm_ls *ls, uint64_t seq) 219 { 220 return wait_status(ls, DLM_RS_LOCKS, seq); 221 } 222 223 int dlm_recover_done_wait(struct dlm_ls *ls, uint64_t seq) 224 { 225 return wait_status(ls, DLM_RS_DONE, seq); 226 } 227 228 /* 229 * The recover_list contains all the rsb's for which we've requested the new 230 * master nodeid. As replies are returned from the resource directories the 231 * rsb's are removed from the list. When the list is empty we're done. 232 * 233 * The recover_list is later similarly used for all rsb's for which we've sent 234 * new lkb's and need to receive new corresponding lkid's. 235 * 236 * We use the address of the rsb struct as a simple local identifier for the 237 * rsb so we can match an rcom reply with the rsb it was sent for. 238 */ 239 240 static int recover_list_empty(struct dlm_ls *ls) 241 { 242 int empty; 243 244 spin_lock(&ls->ls_recover_list_lock); 245 empty = list_empty(&ls->ls_recover_list); 246 spin_unlock(&ls->ls_recover_list_lock); 247 248 return empty; 249 } 250 251 static void recover_list_add(struct dlm_rsb *r) 252 { 253 struct dlm_ls *ls = r->res_ls; 254 255 spin_lock(&ls->ls_recover_list_lock); 256 if (list_empty(&r->res_recover_list)) { 257 list_add_tail(&r->res_recover_list, &ls->ls_recover_list); 258 ls->ls_recover_list_count++; 259 dlm_hold_rsb(r); 260 } 261 spin_unlock(&ls->ls_recover_list_lock); 262 } 263 264 static void recover_list_del(struct dlm_rsb *r) 265 { 266 struct dlm_ls *ls = r->res_ls; 267 268 spin_lock(&ls->ls_recover_list_lock); 269 list_del_init(&r->res_recover_list); 270 ls->ls_recover_list_count--; 271 spin_unlock(&ls->ls_recover_list_lock); 272 273 dlm_put_rsb(r); 274 } 275 276 static void recover_list_clear(struct dlm_ls *ls) 277 { 278 struct dlm_rsb *r, *s; 279 280 spin_lock(&ls->ls_recover_list_lock); 281 list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) { 282 list_del_init(&r->res_recover_list); 283 r->res_recover_locks_count = 0; 284 dlm_put_rsb(r); 285 ls->ls_recover_list_count--; 286 } 287 288 if (ls->ls_recover_list_count != 0) { 289 log_error(ls, "warning: recover_list_count %d", 290 ls->ls_recover_list_count); 291 ls->ls_recover_list_count = 0; 292 } 293 spin_unlock(&ls->ls_recover_list_lock); 294 } 295 296 static int recover_idr_empty(struct dlm_ls *ls) 297 { 298 int empty = 1; 299 300 spin_lock(&ls->ls_recover_idr_lock); 301 if (ls->ls_recover_list_count) 302 empty = 0; 303 spin_unlock(&ls->ls_recover_idr_lock); 304 305 return empty; 306 } 307 308 static int recover_idr_add(struct dlm_rsb *r) 309 { 310 struct dlm_ls *ls = r->res_ls; 311 int rv; 312 313 idr_preload(GFP_NOFS); 314 spin_lock(&ls->ls_recover_idr_lock); 315 if (r->res_id) { 316 rv = -1; 317 goto out_unlock; 318 } 319 rv = idr_alloc(&ls->ls_recover_idr, r, 1, 0, GFP_NOWAIT); 320 if (rv < 0) 321 goto out_unlock; 322 323 r->res_id = rv; 324 ls->ls_recover_list_count++; 325 dlm_hold_rsb(r); 326 rv = 0; 327 out_unlock: 328 spin_unlock(&ls->ls_recover_idr_lock); 329 idr_preload_end(); 330 return rv; 331 } 332 333 static void recover_idr_del(struct dlm_rsb *r) 334 { 335 struct dlm_ls *ls = r->res_ls; 336 337 spin_lock(&ls->ls_recover_idr_lock); 338 idr_remove(&ls->ls_recover_idr, r->res_id); 339 r->res_id = 0; 340 ls->ls_recover_list_count--; 341 spin_unlock(&ls->ls_recover_idr_lock); 342 343 dlm_put_rsb(r); 344 } 345 346 static struct dlm_rsb *recover_idr_find(struct dlm_ls *ls, uint64_t id) 347 { 348 struct dlm_rsb *r; 349 350 spin_lock(&ls->ls_recover_idr_lock); 351 r = idr_find(&ls->ls_recover_idr, (int)id); 352 spin_unlock(&ls->ls_recover_idr_lock); 353 return r; 354 } 355 356 static void recover_idr_clear(struct dlm_ls *ls) 357 { 358 struct dlm_rsb *r; 359 int id; 360 361 spin_lock(&ls->ls_recover_idr_lock); 362 363 idr_for_each_entry(&ls->ls_recover_idr, r, id) { 364 idr_remove(&ls->ls_recover_idr, id); 365 r->res_id = 0; 366 r->res_recover_locks_count = 0; 367 ls->ls_recover_list_count--; 368 369 dlm_put_rsb(r); 370 } 371 372 if (ls->ls_recover_list_count != 0) { 373 log_error(ls, "warning: recover_list_count %d", 374 ls->ls_recover_list_count); 375 ls->ls_recover_list_count = 0; 376 } 377 spin_unlock(&ls->ls_recover_idr_lock); 378 } 379 380 381 /* Master recovery: find new master node for rsb's that were 382 mastered on nodes that have been removed. 383 384 dlm_recover_masters 385 recover_master 386 dlm_send_rcom_lookup -> receive_rcom_lookup 387 dlm_dir_lookup 388 receive_rcom_lookup_reply <- 389 dlm_recover_master_reply 390 set_new_master 391 set_master_lkbs 392 set_lock_master 393 */ 394 395 /* 396 * Set the lock master for all LKBs in a lock queue 397 * If we are the new master of the rsb, we may have received new 398 * MSTCPY locks from other nodes already which we need to ignore 399 * when setting the new nodeid. 400 */ 401 402 static void set_lock_master(struct list_head *queue, int nodeid) 403 { 404 struct dlm_lkb *lkb; 405 406 list_for_each_entry(lkb, queue, lkb_statequeue) { 407 if (!test_bit(DLM_IFL_MSTCPY_BIT, &lkb->lkb_iflags)) { 408 lkb->lkb_nodeid = nodeid; 409 lkb->lkb_remid = 0; 410 } 411 } 412 } 413 414 static void set_master_lkbs(struct dlm_rsb *r) 415 { 416 set_lock_master(&r->res_grantqueue, r->res_nodeid); 417 set_lock_master(&r->res_convertqueue, r->res_nodeid); 418 set_lock_master(&r->res_waitqueue, r->res_nodeid); 419 } 420 421 /* 422 * Propagate the new master nodeid to locks 423 * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider. 424 * The NEW_MASTER2 flag tells recover_lvb() and recover_grant() which 425 * rsb's to consider. 426 */ 427 428 static void set_new_master(struct dlm_rsb *r) 429 { 430 set_master_lkbs(r); 431 rsb_set_flag(r, RSB_NEW_MASTER); 432 rsb_set_flag(r, RSB_NEW_MASTER2); 433 } 434 435 /* 436 * We do async lookups on rsb's that need new masters. The rsb's 437 * waiting for a lookup reply are kept on the recover_list. 438 * 439 * Another node recovering the master may have sent us a rcom lookup, 440 * and our dlm_master_lookup() set it as the new master, along with 441 * NEW_MASTER so that we'll recover it here (this implies dir_nodeid 442 * equals our_nodeid below). 443 */ 444 445 static int recover_master(struct dlm_rsb *r, unsigned int *count, uint64_t seq) 446 { 447 struct dlm_ls *ls = r->res_ls; 448 int our_nodeid, dir_nodeid; 449 int is_removed = 0; 450 int error; 451 452 if (is_master(r)) 453 return 0; 454 455 is_removed = dlm_is_removed(ls, r->res_nodeid); 456 457 if (!is_removed && !rsb_flag(r, RSB_NEW_MASTER)) 458 return 0; 459 460 our_nodeid = dlm_our_nodeid(); 461 dir_nodeid = dlm_dir_nodeid(r); 462 463 if (dir_nodeid == our_nodeid) { 464 if (is_removed) { 465 r->res_master_nodeid = our_nodeid; 466 r->res_nodeid = 0; 467 } 468 469 /* set master of lkbs to ourself when is_removed, or to 470 another new master which we set along with NEW_MASTER 471 in dlm_master_lookup */ 472 set_new_master(r); 473 error = 0; 474 } else { 475 recover_idr_add(r); 476 error = dlm_send_rcom_lookup(r, dir_nodeid, seq); 477 } 478 479 (*count)++; 480 return error; 481 } 482 483 /* 484 * All MSTCPY locks are purged and rebuilt, even if the master stayed the same. 485 * This is necessary because recovery can be started, aborted and restarted, 486 * causing the master nodeid to briefly change during the aborted recovery, and 487 * change back to the original value in the second recovery. The MSTCPY locks 488 * may or may not have been purged during the aborted recovery. Another node 489 * with an outstanding request in waiters list and a request reply saved in the 490 * requestqueue, cannot know whether it should ignore the reply and resend the 491 * request, or accept the reply and complete the request. It must do the 492 * former if the remote node purged MSTCPY locks, and it must do the later if 493 * the remote node did not. This is solved by always purging MSTCPY locks, in 494 * which case, the request reply would always be ignored and the request 495 * resent. 496 */ 497 498 static int recover_master_static(struct dlm_rsb *r, unsigned int *count) 499 { 500 int dir_nodeid = dlm_dir_nodeid(r); 501 int new_master = dir_nodeid; 502 503 if (dir_nodeid == dlm_our_nodeid()) 504 new_master = 0; 505 506 dlm_purge_mstcpy_locks(r); 507 r->res_master_nodeid = dir_nodeid; 508 r->res_nodeid = new_master; 509 set_new_master(r); 510 (*count)++; 511 return 0; 512 } 513 514 /* 515 * Go through local root resources and for each rsb which has a master which 516 * has departed, get the new master nodeid from the directory. The dir will 517 * assign mastery to the first node to look up the new master. That means 518 * we'll discover in this lookup if we're the new master of any rsb's. 519 * 520 * We fire off all the dir lookup requests individually and asynchronously to 521 * the correct dir node. 522 */ 523 524 int dlm_recover_masters(struct dlm_ls *ls, uint64_t seq) 525 { 526 struct dlm_rsb *r; 527 unsigned int total = 0; 528 unsigned int count = 0; 529 int nodir = dlm_no_directory(ls); 530 int error; 531 532 log_rinfo(ls, "dlm_recover_masters"); 533 534 down_read(&ls->ls_root_sem); 535 list_for_each_entry(r, &ls->ls_root_list, res_root_list) { 536 if (dlm_recovery_stopped(ls)) { 537 up_read(&ls->ls_root_sem); 538 error = -EINTR; 539 goto out; 540 } 541 542 lock_rsb(r); 543 if (nodir) 544 error = recover_master_static(r, &count); 545 else 546 error = recover_master(r, &count, seq); 547 unlock_rsb(r); 548 cond_resched(); 549 total++; 550 551 if (error) { 552 up_read(&ls->ls_root_sem); 553 goto out; 554 } 555 } 556 up_read(&ls->ls_root_sem); 557 558 log_rinfo(ls, "dlm_recover_masters %u of %u", count, total); 559 560 error = dlm_wait_function(ls, &recover_idr_empty); 561 out: 562 if (error) 563 recover_idr_clear(ls); 564 return error; 565 } 566 567 int dlm_recover_master_reply(struct dlm_ls *ls, const struct dlm_rcom *rc) 568 { 569 struct dlm_rsb *r; 570 int ret_nodeid, new_master; 571 572 r = recover_idr_find(ls, le64_to_cpu(rc->rc_id)); 573 if (!r) { 574 log_error(ls, "dlm_recover_master_reply no id %llx", 575 (unsigned long long)le64_to_cpu(rc->rc_id)); 576 goto out; 577 } 578 579 ret_nodeid = le32_to_cpu(rc->rc_result); 580 581 if (ret_nodeid == dlm_our_nodeid()) 582 new_master = 0; 583 else 584 new_master = ret_nodeid; 585 586 lock_rsb(r); 587 r->res_master_nodeid = ret_nodeid; 588 r->res_nodeid = new_master; 589 set_new_master(r); 590 unlock_rsb(r); 591 recover_idr_del(r); 592 593 if (recover_idr_empty(ls)) 594 wake_up(&ls->ls_wait_general); 595 out: 596 return 0; 597 } 598 599 600 /* Lock recovery: rebuild the process-copy locks we hold on a 601 remastered rsb on the new rsb master. 602 603 dlm_recover_locks 604 recover_locks 605 recover_locks_queue 606 dlm_send_rcom_lock -> receive_rcom_lock 607 dlm_recover_master_copy 608 receive_rcom_lock_reply <- 609 dlm_recover_process_copy 610 */ 611 612 613 /* 614 * keep a count of the number of lkb's we send to the new master; when we get 615 * an equal number of replies then recovery for the rsb is done 616 */ 617 618 static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head, 619 uint64_t seq) 620 { 621 struct dlm_lkb *lkb; 622 int error = 0; 623 624 list_for_each_entry(lkb, head, lkb_statequeue) { 625 error = dlm_send_rcom_lock(r, lkb, seq); 626 if (error) 627 break; 628 r->res_recover_locks_count++; 629 } 630 631 return error; 632 } 633 634 static int recover_locks(struct dlm_rsb *r, uint64_t seq) 635 { 636 int error = 0; 637 638 lock_rsb(r); 639 640 DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r);); 641 642 error = recover_locks_queue(r, &r->res_grantqueue, seq); 643 if (error) 644 goto out; 645 error = recover_locks_queue(r, &r->res_convertqueue, seq); 646 if (error) 647 goto out; 648 error = recover_locks_queue(r, &r->res_waitqueue, seq); 649 if (error) 650 goto out; 651 652 if (r->res_recover_locks_count) 653 recover_list_add(r); 654 else 655 rsb_clear_flag(r, RSB_NEW_MASTER); 656 out: 657 unlock_rsb(r); 658 return error; 659 } 660 661 int dlm_recover_locks(struct dlm_ls *ls, uint64_t seq) 662 { 663 struct dlm_rsb *r; 664 int error, count = 0; 665 666 down_read(&ls->ls_root_sem); 667 list_for_each_entry(r, &ls->ls_root_list, res_root_list) { 668 if (is_master(r)) { 669 rsb_clear_flag(r, RSB_NEW_MASTER); 670 continue; 671 } 672 673 if (!rsb_flag(r, RSB_NEW_MASTER)) 674 continue; 675 676 if (dlm_recovery_stopped(ls)) { 677 error = -EINTR; 678 up_read(&ls->ls_root_sem); 679 goto out; 680 } 681 682 error = recover_locks(r, seq); 683 if (error) { 684 up_read(&ls->ls_root_sem); 685 goto out; 686 } 687 688 count += r->res_recover_locks_count; 689 } 690 up_read(&ls->ls_root_sem); 691 692 log_rinfo(ls, "dlm_recover_locks %d out", count); 693 694 error = dlm_wait_function(ls, &recover_list_empty); 695 out: 696 if (error) 697 recover_list_clear(ls); 698 return error; 699 } 700 701 void dlm_recovered_lock(struct dlm_rsb *r) 702 { 703 DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r);); 704 705 r->res_recover_locks_count--; 706 if (!r->res_recover_locks_count) { 707 rsb_clear_flag(r, RSB_NEW_MASTER); 708 recover_list_del(r); 709 } 710 711 if (recover_list_empty(r->res_ls)) 712 wake_up(&r->res_ls->ls_wait_general); 713 } 714 715 /* 716 * The lvb needs to be recovered on all master rsb's. This includes setting 717 * the VALNOTVALID flag if necessary, and determining the correct lvb contents 718 * based on the lvb's of the locks held on the rsb. 719 * 720 * RSB_VALNOTVALID is set in two cases: 721 * 722 * 1. we are master, but not new, and we purged an EX/PW lock held by a 723 * failed node (in dlm_recover_purge which set RSB_RECOVER_LVB_INVAL) 724 * 725 * 2. we are a new master, and there are only NL/CR locks left. 726 * (We could probably improve this by only invaliding in this way when 727 * the previous master left uncleanly. VMS docs mention that.) 728 * 729 * The LVB contents are only considered for changing when this is a new master 730 * of the rsb (NEW_MASTER2). Then, the rsb's lvb is taken from any lkb with 731 * mode > CR. If no lkb's exist with mode above CR, the lvb contents are taken 732 * from the lkb with the largest lvb sequence number. 733 */ 734 735 static void recover_lvb(struct dlm_rsb *r) 736 { 737 struct dlm_lkb *big_lkb = NULL, *iter, *high_lkb = NULL; 738 uint32_t high_seq = 0; 739 int lock_lvb_exists = 0; 740 int lvblen = r->res_ls->ls_lvblen; 741 742 if (!rsb_flag(r, RSB_NEW_MASTER2) && 743 rsb_flag(r, RSB_RECOVER_LVB_INVAL)) { 744 /* case 1 above */ 745 rsb_set_flag(r, RSB_VALNOTVALID); 746 return; 747 } 748 749 if (!rsb_flag(r, RSB_NEW_MASTER2)) 750 return; 751 752 /* we are the new master, so figure out if VALNOTVALID should 753 be set, and set the rsb lvb from the best lkb available. */ 754 755 list_for_each_entry(iter, &r->res_grantqueue, lkb_statequeue) { 756 if (!(iter->lkb_exflags & DLM_LKF_VALBLK)) 757 continue; 758 759 lock_lvb_exists = 1; 760 761 if (iter->lkb_grmode > DLM_LOCK_CR) { 762 big_lkb = iter; 763 goto setflag; 764 } 765 766 if (((int)iter->lkb_lvbseq - (int)high_seq) >= 0) { 767 high_lkb = iter; 768 high_seq = iter->lkb_lvbseq; 769 } 770 } 771 772 list_for_each_entry(iter, &r->res_convertqueue, lkb_statequeue) { 773 if (!(iter->lkb_exflags & DLM_LKF_VALBLK)) 774 continue; 775 776 lock_lvb_exists = 1; 777 778 if (iter->lkb_grmode > DLM_LOCK_CR) { 779 big_lkb = iter; 780 goto setflag; 781 } 782 783 if (((int)iter->lkb_lvbseq - (int)high_seq) >= 0) { 784 high_lkb = iter; 785 high_seq = iter->lkb_lvbseq; 786 } 787 } 788 789 setflag: 790 if (!lock_lvb_exists) 791 goto out; 792 793 /* lvb is invalidated if only NL/CR locks remain */ 794 if (!big_lkb) 795 rsb_set_flag(r, RSB_VALNOTVALID); 796 797 if (!r->res_lvbptr) { 798 r->res_lvbptr = dlm_allocate_lvb(r->res_ls); 799 if (!r->res_lvbptr) 800 goto out; 801 } 802 803 if (big_lkb) { 804 r->res_lvbseq = big_lkb->lkb_lvbseq; 805 memcpy(r->res_lvbptr, big_lkb->lkb_lvbptr, lvblen); 806 } else if (high_lkb) { 807 r->res_lvbseq = high_lkb->lkb_lvbseq; 808 memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen); 809 } else { 810 r->res_lvbseq = 0; 811 memset(r->res_lvbptr, 0, lvblen); 812 } 813 out: 814 return; 815 } 816 817 /* All master rsb's flagged RECOVER_CONVERT need to be looked at. The locks 818 converting PR->CW or CW->PR need to have their lkb_grmode set. */ 819 820 static void recover_conversion(struct dlm_rsb *r) 821 { 822 struct dlm_ls *ls = r->res_ls; 823 struct dlm_lkb *lkb; 824 int grmode = -1; 825 826 list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) { 827 if (lkb->lkb_grmode == DLM_LOCK_PR || 828 lkb->lkb_grmode == DLM_LOCK_CW) { 829 grmode = lkb->lkb_grmode; 830 break; 831 } 832 } 833 834 list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) { 835 if (lkb->lkb_grmode != DLM_LOCK_IV) 836 continue; 837 if (grmode == -1) { 838 log_debug(ls, "recover_conversion %x set gr to rq %d", 839 lkb->lkb_id, lkb->lkb_rqmode); 840 lkb->lkb_grmode = lkb->lkb_rqmode; 841 } else { 842 log_debug(ls, "recover_conversion %x set gr %d", 843 lkb->lkb_id, grmode); 844 lkb->lkb_grmode = grmode; 845 } 846 } 847 } 848 849 /* We've become the new master for this rsb and waiting/converting locks may 850 need to be granted in dlm_recover_grant() due to locks that may have 851 existed from a removed node. */ 852 853 static void recover_grant(struct dlm_rsb *r) 854 { 855 if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue)) 856 rsb_set_flag(r, RSB_RECOVER_GRANT); 857 } 858 859 void dlm_recover_rsbs(struct dlm_ls *ls) 860 { 861 struct dlm_rsb *r; 862 unsigned int count = 0; 863 864 down_read(&ls->ls_root_sem); 865 list_for_each_entry(r, &ls->ls_root_list, res_root_list) { 866 lock_rsb(r); 867 if (is_master(r)) { 868 if (rsb_flag(r, RSB_RECOVER_CONVERT)) 869 recover_conversion(r); 870 871 /* recover lvb before granting locks so the updated 872 lvb/VALNOTVALID is presented in the completion */ 873 recover_lvb(r); 874 875 if (rsb_flag(r, RSB_NEW_MASTER2)) 876 recover_grant(r); 877 count++; 878 } else { 879 rsb_clear_flag(r, RSB_VALNOTVALID); 880 } 881 rsb_clear_flag(r, RSB_RECOVER_CONVERT); 882 rsb_clear_flag(r, RSB_RECOVER_LVB_INVAL); 883 rsb_clear_flag(r, RSB_NEW_MASTER2); 884 unlock_rsb(r); 885 } 886 up_read(&ls->ls_root_sem); 887 888 if (count) 889 log_rinfo(ls, "dlm_recover_rsbs %d done", count); 890 } 891 892 /* Create a single list of all root rsb's to be used during recovery */ 893 894 int dlm_create_root_list(struct dlm_ls *ls) 895 { 896 struct rb_node *n; 897 struct dlm_rsb *r; 898 int i, error = 0; 899 900 down_write(&ls->ls_root_sem); 901 if (!list_empty(&ls->ls_root_list)) { 902 log_error(ls, "root list not empty"); 903 error = -EINVAL; 904 goto out; 905 } 906 907 for (i = 0; i < ls->ls_rsbtbl_size; i++) { 908 spin_lock(&ls->ls_rsbtbl[i].lock); 909 for (n = rb_first(&ls->ls_rsbtbl[i].keep); n; n = rb_next(n)) { 910 r = rb_entry(n, struct dlm_rsb, res_hashnode); 911 list_add(&r->res_root_list, &ls->ls_root_list); 912 dlm_hold_rsb(r); 913 } 914 915 if (!RB_EMPTY_ROOT(&ls->ls_rsbtbl[i].toss)) 916 log_error(ls, "dlm_create_root_list toss not empty"); 917 spin_unlock(&ls->ls_rsbtbl[i].lock); 918 } 919 out: 920 up_write(&ls->ls_root_sem); 921 return error; 922 } 923 924 void dlm_release_root_list(struct dlm_ls *ls) 925 { 926 struct dlm_rsb *r, *safe; 927 928 down_write(&ls->ls_root_sem); 929 list_for_each_entry_safe(r, safe, &ls->ls_root_list, res_root_list) { 930 list_del_init(&r->res_root_list); 931 dlm_put_rsb(r); 932 } 933 up_write(&ls->ls_root_sem); 934 } 935 936 void dlm_clear_toss(struct dlm_ls *ls) 937 { 938 struct rb_node *n, *next; 939 struct dlm_rsb *r; 940 unsigned int count = 0; 941 int i; 942 943 for (i = 0; i < ls->ls_rsbtbl_size; i++) { 944 spin_lock(&ls->ls_rsbtbl[i].lock); 945 for (n = rb_first(&ls->ls_rsbtbl[i].toss); n; n = next) { 946 next = rb_next(n); 947 r = rb_entry(n, struct dlm_rsb, res_hashnode); 948 rb_erase(n, &ls->ls_rsbtbl[i].toss); 949 dlm_free_rsb(r); 950 count++; 951 } 952 spin_unlock(&ls->ls_rsbtbl[i].lock); 953 } 954 955 if (count) 956 log_rinfo(ls, "dlm_clear_toss %u done", count); 957 } 958 959