1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 ******************************************************************************* 4 ** 5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 6 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. 7 ** 8 ** 9 ******************************************************************************* 10 ******************************************************************************/ 11 12 /* 13 * lowcomms.c 14 * 15 * This is the "low-level" comms layer. 16 * 17 * It is responsible for sending/receiving messages 18 * from other nodes in the cluster. 19 * 20 * Cluster nodes are referred to by their nodeids. nodeids are 21 * simply 32 bit numbers to the locking module - if they need to 22 * be expanded for the cluster infrastructure then that is its 23 * responsibility. It is this layer's 24 * responsibility to resolve these into IP address or 25 * whatever it needs for inter-node communication. 26 * 27 * The comms level is two kernel threads that deal mainly with 28 * the receiving of messages from other nodes and passing them 29 * up to the mid-level comms layer (which understands the 30 * message format) for execution by the locking core, and 31 * a send thread which does all the setting up of connections 32 * to remote nodes and the sending of data. Threads are not allowed 33 * to send their own data because it may cause them to wait in times 34 * of high load. Also, this way, the sending thread can collect together 35 * messages bound for one node and send them in one block. 36 * 37 * lowcomms will choose to use either TCP or SCTP as its transport layer 38 * depending on the configuration variable 'protocol'. This should be set 39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a 40 * cluster-wide mechanism as it must be the same on all nodes of the cluster 41 * for the DLM to function. 42 * 43 */ 44 45 #include <asm/ioctls.h> 46 #include <net/sock.h> 47 #include <net/tcp.h> 48 #include <linux/pagemap.h> 49 #include <linux/file.h> 50 #include <linux/mutex.h> 51 #include <linux/sctp.h> 52 #include <linux/slab.h> 53 #include <net/sctp/sctp.h> 54 #include <net/ipv6.h> 55 56 #include "dlm_internal.h" 57 #include "lowcomms.h" 58 #include "midcomms.h" 59 #include "config.h" 60 61 #define NEEDED_RMEM (4*1024*1024) 62 #define CONN_HASH_SIZE 32 63 64 /* Number of messages to send before rescheduling */ 65 #define MAX_SEND_MSG_COUNT 25 66 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000) 67 68 struct connection { 69 struct socket *sock; /* NULL if not connected */ 70 uint32_t nodeid; /* So we know who we are in the list */ 71 struct mutex sock_mutex; 72 unsigned long flags; 73 #define CF_READ_PENDING 1 74 #define CF_WRITE_PENDING 2 75 #define CF_INIT_PENDING 4 76 #define CF_IS_OTHERCON 5 77 #define CF_CLOSE 6 78 #define CF_APP_LIMITED 7 79 #define CF_CLOSING 8 80 #define CF_SHUTDOWN 9 81 #define CF_CONNECTED 10 82 struct list_head writequeue; /* List of outgoing writequeue_entries */ 83 spinlock_t writequeue_lock; 84 void (*connect_action) (struct connection *); /* What to do to connect */ 85 void (*shutdown_action)(struct connection *con); /* What to do to shutdown */ 86 int retries; 87 #define MAX_CONNECT_RETRIES 3 88 struct hlist_node list; 89 struct connection *othercon; 90 struct work_struct rwork; /* Receive workqueue */ 91 struct work_struct swork; /* Send workqueue */ 92 wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */ 93 unsigned char *rx_buf; 94 int rx_buflen; 95 int rx_leftover; 96 struct rcu_head rcu; 97 }; 98 #define sock2con(x) ((struct connection *)(x)->sk_user_data) 99 100 struct listen_connection { 101 struct socket *sock; 102 struct work_struct rwork; 103 }; 104 105 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end) 106 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset) 107 108 /* An entry waiting to be sent */ 109 struct writequeue_entry { 110 struct list_head list; 111 struct page *page; 112 int offset; 113 int len; 114 int end; 115 int users; 116 struct connection *con; 117 }; 118 119 struct dlm_node_addr { 120 struct list_head list; 121 int nodeid; 122 int mark; 123 int addr_count; 124 int curr_addr_index; 125 struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT]; 126 }; 127 128 static struct listen_sock_callbacks { 129 void (*sk_error_report)(struct sock *); 130 void (*sk_data_ready)(struct sock *); 131 void (*sk_state_change)(struct sock *); 132 void (*sk_write_space)(struct sock *); 133 } listen_sock; 134 135 static LIST_HEAD(dlm_node_addrs); 136 static DEFINE_SPINLOCK(dlm_node_addrs_spin); 137 138 static struct listen_connection listen_con; 139 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT]; 140 static int dlm_local_count; 141 int dlm_allow_conn; 142 143 /* Work queues */ 144 static struct workqueue_struct *recv_workqueue; 145 static struct workqueue_struct *send_workqueue; 146 147 static struct hlist_head connection_hash[CONN_HASH_SIZE]; 148 static DEFINE_SPINLOCK(connections_lock); 149 DEFINE_STATIC_SRCU(connections_srcu); 150 151 static void process_recv_sockets(struct work_struct *work); 152 static void process_send_sockets(struct work_struct *work); 153 154 static void sctp_connect_to_sock(struct connection *con); 155 static void tcp_connect_to_sock(struct connection *con); 156 static void dlm_tcp_shutdown(struct connection *con); 157 158 /* This is deliberately very simple because most clusters have simple 159 sequential nodeids, so we should be able to go straight to a connection 160 struct in the array */ 161 static inline int nodeid_hash(int nodeid) 162 { 163 return nodeid & (CONN_HASH_SIZE-1); 164 } 165 166 static struct connection *__find_con(int nodeid) 167 { 168 int r, idx; 169 struct connection *con; 170 171 r = nodeid_hash(nodeid); 172 173 idx = srcu_read_lock(&connections_srcu); 174 hlist_for_each_entry_rcu(con, &connection_hash[r], list) { 175 if (con->nodeid == nodeid) { 176 srcu_read_unlock(&connections_srcu, idx); 177 return con; 178 } 179 } 180 srcu_read_unlock(&connections_srcu, idx); 181 182 return NULL; 183 } 184 185 static int dlm_con_init(struct connection *con, int nodeid) 186 { 187 con->rx_buflen = dlm_config.ci_buffer_size; 188 con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS); 189 if (!con->rx_buf) 190 return -ENOMEM; 191 192 con->nodeid = nodeid; 193 mutex_init(&con->sock_mutex); 194 INIT_LIST_HEAD(&con->writequeue); 195 spin_lock_init(&con->writequeue_lock); 196 INIT_WORK(&con->swork, process_send_sockets); 197 INIT_WORK(&con->rwork, process_recv_sockets); 198 init_waitqueue_head(&con->shutdown_wait); 199 200 if (dlm_config.ci_protocol == 0) { 201 con->connect_action = tcp_connect_to_sock; 202 con->shutdown_action = dlm_tcp_shutdown; 203 } else { 204 con->connect_action = sctp_connect_to_sock; 205 } 206 207 return 0; 208 } 209 210 /* 211 * If 'allocation' is zero then we don't attempt to create a new 212 * connection structure for this node. 213 */ 214 static struct connection *nodeid2con(int nodeid, gfp_t alloc) 215 { 216 struct connection *con, *tmp; 217 int r, ret; 218 219 con = __find_con(nodeid); 220 if (con || !alloc) 221 return con; 222 223 con = kzalloc(sizeof(*con), alloc); 224 if (!con) 225 return NULL; 226 227 ret = dlm_con_init(con, nodeid); 228 if (ret) { 229 kfree(con); 230 return NULL; 231 } 232 233 r = nodeid_hash(nodeid); 234 235 spin_lock(&connections_lock); 236 /* Because multiple workqueues/threads calls this function it can 237 * race on multiple cpu's. Instead of locking hot path __find_con() 238 * we just check in rare cases of recently added nodes again 239 * under protection of connections_lock. If this is the case we 240 * abort our connection creation and return the existing connection. 241 */ 242 tmp = __find_con(nodeid); 243 if (tmp) { 244 spin_unlock(&connections_lock); 245 kfree(con->rx_buf); 246 kfree(con); 247 return tmp; 248 } 249 250 hlist_add_head_rcu(&con->list, &connection_hash[r]); 251 spin_unlock(&connections_lock); 252 253 return con; 254 } 255 256 /* Loop round all connections */ 257 static void foreach_conn(void (*conn_func)(struct connection *c)) 258 { 259 int i, idx; 260 struct connection *con; 261 262 idx = srcu_read_lock(&connections_srcu); 263 for (i = 0; i < CONN_HASH_SIZE; i++) { 264 hlist_for_each_entry_rcu(con, &connection_hash[i], list) 265 conn_func(con); 266 } 267 srcu_read_unlock(&connections_srcu, idx); 268 } 269 270 static struct dlm_node_addr *find_node_addr(int nodeid) 271 { 272 struct dlm_node_addr *na; 273 274 list_for_each_entry(na, &dlm_node_addrs, list) { 275 if (na->nodeid == nodeid) 276 return na; 277 } 278 return NULL; 279 } 280 281 static int addr_compare(const struct sockaddr_storage *x, 282 const struct sockaddr_storage *y) 283 { 284 switch (x->ss_family) { 285 case AF_INET: { 286 struct sockaddr_in *sinx = (struct sockaddr_in *)x; 287 struct sockaddr_in *siny = (struct sockaddr_in *)y; 288 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr) 289 return 0; 290 if (sinx->sin_port != siny->sin_port) 291 return 0; 292 break; 293 } 294 case AF_INET6: { 295 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x; 296 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y; 297 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr)) 298 return 0; 299 if (sinx->sin6_port != siny->sin6_port) 300 return 0; 301 break; 302 } 303 default: 304 return 0; 305 } 306 return 1; 307 } 308 309 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out, 310 struct sockaddr *sa_out, bool try_new_addr, 311 unsigned int *mark) 312 { 313 struct sockaddr_storage sas; 314 struct dlm_node_addr *na; 315 316 if (!dlm_local_count) 317 return -1; 318 319 spin_lock(&dlm_node_addrs_spin); 320 na = find_node_addr(nodeid); 321 if (na && na->addr_count) { 322 memcpy(&sas, na->addr[na->curr_addr_index], 323 sizeof(struct sockaddr_storage)); 324 325 if (try_new_addr) { 326 na->curr_addr_index++; 327 if (na->curr_addr_index == na->addr_count) 328 na->curr_addr_index = 0; 329 } 330 } 331 spin_unlock(&dlm_node_addrs_spin); 332 333 if (!na) 334 return -EEXIST; 335 336 if (!na->addr_count) 337 return -ENOENT; 338 339 *mark = na->mark; 340 341 if (sas_out) 342 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage)); 343 344 if (!sa_out) 345 return 0; 346 347 if (dlm_local_addr[0]->ss_family == AF_INET) { 348 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas; 349 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out; 350 ret4->sin_addr.s_addr = in4->sin_addr.s_addr; 351 } else { 352 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas; 353 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out; 354 ret6->sin6_addr = in6->sin6_addr; 355 } 356 357 return 0; 358 } 359 360 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid, 361 unsigned int *mark) 362 { 363 struct dlm_node_addr *na; 364 int rv = -EEXIST; 365 int addr_i; 366 367 spin_lock(&dlm_node_addrs_spin); 368 list_for_each_entry(na, &dlm_node_addrs, list) { 369 if (!na->addr_count) 370 continue; 371 372 for (addr_i = 0; addr_i < na->addr_count; addr_i++) { 373 if (addr_compare(na->addr[addr_i], addr)) { 374 *nodeid = na->nodeid; 375 *mark = na->mark; 376 rv = 0; 377 goto unlock; 378 } 379 } 380 } 381 unlock: 382 spin_unlock(&dlm_node_addrs_spin); 383 return rv; 384 } 385 386 /* caller need to held dlm_node_addrs_spin lock */ 387 static bool dlm_lowcomms_na_has_addr(const struct dlm_node_addr *na, 388 const struct sockaddr_storage *addr) 389 { 390 int i; 391 392 for (i = 0; i < na->addr_count; i++) { 393 if (addr_compare(na->addr[i], addr)) 394 return true; 395 } 396 397 return false; 398 } 399 400 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len) 401 { 402 struct sockaddr_storage *new_addr; 403 struct dlm_node_addr *new_node, *na; 404 bool ret; 405 406 new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS); 407 if (!new_node) 408 return -ENOMEM; 409 410 new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS); 411 if (!new_addr) { 412 kfree(new_node); 413 return -ENOMEM; 414 } 415 416 memcpy(new_addr, addr, len); 417 418 spin_lock(&dlm_node_addrs_spin); 419 na = find_node_addr(nodeid); 420 if (!na) { 421 new_node->nodeid = nodeid; 422 new_node->addr[0] = new_addr; 423 new_node->addr_count = 1; 424 new_node->mark = dlm_config.ci_mark; 425 list_add(&new_node->list, &dlm_node_addrs); 426 spin_unlock(&dlm_node_addrs_spin); 427 return 0; 428 } 429 430 ret = dlm_lowcomms_na_has_addr(na, addr); 431 if (ret) { 432 spin_unlock(&dlm_node_addrs_spin); 433 kfree(new_addr); 434 kfree(new_node); 435 return -EEXIST; 436 } 437 438 if (na->addr_count >= DLM_MAX_ADDR_COUNT) { 439 spin_unlock(&dlm_node_addrs_spin); 440 kfree(new_addr); 441 kfree(new_node); 442 return -ENOSPC; 443 } 444 445 na->addr[na->addr_count++] = new_addr; 446 spin_unlock(&dlm_node_addrs_spin); 447 kfree(new_node); 448 return 0; 449 } 450 451 /* Data available on socket or listen socket received a connect */ 452 static void lowcomms_data_ready(struct sock *sk) 453 { 454 struct connection *con; 455 456 read_lock_bh(&sk->sk_callback_lock); 457 con = sock2con(sk); 458 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags)) 459 queue_work(recv_workqueue, &con->rwork); 460 read_unlock_bh(&sk->sk_callback_lock); 461 } 462 463 static void lowcomms_listen_data_ready(struct sock *sk) 464 { 465 queue_work(recv_workqueue, &listen_con.rwork); 466 } 467 468 static void lowcomms_write_space(struct sock *sk) 469 { 470 struct connection *con; 471 472 read_lock_bh(&sk->sk_callback_lock); 473 con = sock2con(sk); 474 if (!con) 475 goto out; 476 477 if (!test_and_set_bit(CF_CONNECTED, &con->flags)) { 478 log_print("successful connected to node %d", con->nodeid); 479 queue_work(send_workqueue, &con->swork); 480 goto out; 481 } 482 483 clear_bit(SOCK_NOSPACE, &con->sock->flags); 484 485 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) { 486 con->sock->sk->sk_write_pending--; 487 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags); 488 } 489 490 queue_work(send_workqueue, &con->swork); 491 out: 492 read_unlock_bh(&sk->sk_callback_lock); 493 } 494 495 static inline void lowcomms_connect_sock(struct connection *con) 496 { 497 if (test_bit(CF_CLOSE, &con->flags)) 498 return; 499 queue_work(send_workqueue, &con->swork); 500 cond_resched(); 501 } 502 503 static void lowcomms_state_change(struct sock *sk) 504 { 505 /* SCTP layer is not calling sk_data_ready when the connection 506 * is done, so we catch the signal through here. Also, it 507 * doesn't switch socket state when entering shutdown, so we 508 * skip the write in that case. 509 */ 510 if (sk->sk_shutdown) { 511 if (sk->sk_shutdown == RCV_SHUTDOWN) 512 lowcomms_data_ready(sk); 513 } else if (sk->sk_state == TCP_ESTABLISHED) { 514 lowcomms_write_space(sk); 515 } 516 } 517 518 int dlm_lowcomms_connect_node(int nodeid) 519 { 520 struct connection *con; 521 522 if (nodeid == dlm_our_nodeid()) 523 return 0; 524 525 con = nodeid2con(nodeid, GFP_NOFS); 526 if (!con) 527 return -ENOMEM; 528 lowcomms_connect_sock(con); 529 return 0; 530 } 531 532 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark) 533 { 534 struct dlm_node_addr *na; 535 536 spin_lock(&dlm_node_addrs_spin); 537 na = find_node_addr(nodeid); 538 if (!na) { 539 spin_unlock(&dlm_node_addrs_spin); 540 return -ENOENT; 541 } 542 543 na->mark = mark; 544 spin_unlock(&dlm_node_addrs_spin); 545 546 return 0; 547 } 548 549 static void lowcomms_error_report(struct sock *sk) 550 { 551 struct connection *con; 552 struct sockaddr_storage saddr; 553 void (*orig_report)(struct sock *) = NULL; 554 555 read_lock_bh(&sk->sk_callback_lock); 556 con = sock2con(sk); 557 if (con == NULL) 558 goto out; 559 560 orig_report = listen_sock.sk_error_report; 561 if (con->sock == NULL || 562 kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) { 563 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 564 "sending to node %d, port %d, " 565 "sk_err=%d/%d\n", dlm_our_nodeid(), 566 con->nodeid, dlm_config.ci_tcp_port, 567 sk->sk_err, sk->sk_err_soft); 568 } else if (saddr.ss_family == AF_INET) { 569 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr; 570 571 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 572 "sending to node %d at %pI4, port %d, " 573 "sk_err=%d/%d\n", dlm_our_nodeid(), 574 con->nodeid, &sin4->sin_addr.s_addr, 575 dlm_config.ci_tcp_port, sk->sk_err, 576 sk->sk_err_soft); 577 } else { 578 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr; 579 580 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 581 "sending to node %d at %u.%u.%u.%u, " 582 "port %d, sk_err=%d/%d\n", dlm_our_nodeid(), 583 con->nodeid, sin6->sin6_addr.s6_addr32[0], 584 sin6->sin6_addr.s6_addr32[1], 585 sin6->sin6_addr.s6_addr32[2], 586 sin6->sin6_addr.s6_addr32[3], 587 dlm_config.ci_tcp_port, sk->sk_err, 588 sk->sk_err_soft); 589 } 590 out: 591 read_unlock_bh(&sk->sk_callback_lock); 592 if (orig_report) 593 orig_report(sk); 594 } 595 596 /* Note: sk_callback_lock must be locked before calling this function. */ 597 static void save_listen_callbacks(struct socket *sock) 598 { 599 struct sock *sk = sock->sk; 600 601 listen_sock.sk_data_ready = sk->sk_data_ready; 602 listen_sock.sk_state_change = sk->sk_state_change; 603 listen_sock.sk_write_space = sk->sk_write_space; 604 listen_sock.sk_error_report = sk->sk_error_report; 605 } 606 607 static void restore_callbacks(struct socket *sock) 608 { 609 struct sock *sk = sock->sk; 610 611 write_lock_bh(&sk->sk_callback_lock); 612 sk->sk_user_data = NULL; 613 sk->sk_data_ready = listen_sock.sk_data_ready; 614 sk->sk_state_change = listen_sock.sk_state_change; 615 sk->sk_write_space = listen_sock.sk_write_space; 616 sk->sk_error_report = listen_sock.sk_error_report; 617 write_unlock_bh(&sk->sk_callback_lock); 618 } 619 620 static void add_listen_sock(struct socket *sock, struct listen_connection *con) 621 { 622 struct sock *sk = sock->sk; 623 624 write_lock_bh(&sk->sk_callback_lock); 625 save_listen_callbacks(sock); 626 con->sock = sock; 627 628 sk->sk_user_data = con; 629 sk->sk_allocation = GFP_NOFS; 630 /* Install a data_ready callback */ 631 sk->sk_data_ready = lowcomms_listen_data_ready; 632 write_unlock_bh(&sk->sk_callback_lock); 633 } 634 635 /* Make a socket active */ 636 static void add_sock(struct socket *sock, struct connection *con) 637 { 638 struct sock *sk = sock->sk; 639 640 write_lock_bh(&sk->sk_callback_lock); 641 con->sock = sock; 642 643 sk->sk_user_data = con; 644 /* Install a data_ready callback */ 645 sk->sk_data_ready = lowcomms_data_ready; 646 sk->sk_write_space = lowcomms_write_space; 647 sk->sk_state_change = lowcomms_state_change; 648 sk->sk_allocation = GFP_NOFS; 649 sk->sk_error_report = lowcomms_error_report; 650 write_unlock_bh(&sk->sk_callback_lock); 651 } 652 653 /* Add the port number to an IPv6 or 4 sockaddr and return the address 654 length */ 655 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port, 656 int *addr_len) 657 { 658 saddr->ss_family = dlm_local_addr[0]->ss_family; 659 if (saddr->ss_family == AF_INET) { 660 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; 661 in4_addr->sin_port = cpu_to_be16(port); 662 *addr_len = sizeof(struct sockaddr_in); 663 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); 664 } else { 665 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; 666 in6_addr->sin6_port = cpu_to_be16(port); 667 *addr_len = sizeof(struct sockaddr_in6); 668 } 669 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); 670 } 671 672 static void dlm_close_sock(struct socket **sock) 673 { 674 if (*sock) { 675 restore_callbacks(*sock); 676 sock_release(*sock); 677 *sock = NULL; 678 } 679 } 680 681 /* Close a remote connection and tidy up */ 682 static void close_connection(struct connection *con, bool and_other, 683 bool tx, bool rx) 684 { 685 bool closing = test_and_set_bit(CF_CLOSING, &con->flags); 686 687 if (tx && !closing && cancel_work_sync(&con->swork)) { 688 log_print("canceled swork for node %d", con->nodeid); 689 clear_bit(CF_WRITE_PENDING, &con->flags); 690 } 691 if (rx && !closing && cancel_work_sync(&con->rwork)) { 692 log_print("canceled rwork for node %d", con->nodeid); 693 clear_bit(CF_READ_PENDING, &con->flags); 694 } 695 696 mutex_lock(&con->sock_mutex); 697 dlm_close_sock(&con->sock); 698 699 if (con->othercon && and_other) { 700 /* Will only re-enter once. */ 701 close_connection(con->othercon, false, true, true); 702 } 703 704 con->rx_leftover = 0; 705 con->retries = 0; 706 clear_bit(CF_CONNECTED, &con->flags); 707 mutex_unlock(&con->sock_mutex); 708 clear_bit(CF_CLOSING, &con->flags); 709 } 710 711 static void shutdown_connection(struct connection *con) 712 { 713 int ret; 714 715 if (cancel_work_sync(&con->swork)) { 716 log_print("canceled swork for node %d", con->nodeid); 717 clear_bit(CF_WRITE_PENDING, &con->flags); 718 } 719 720 mutex_lock(&con->sock_mutex); 721 /* nothing to shutdown */ 722 if (!con->sock) { 723 mutex_unlock(&con->sock_mutex); 724 return; 725 } 726 727 set_bit(CF_SHUTDOWN, &con->flags); 728 ret = kernel_sock_shutdown(con->sock, SHUT_WR); 729 mutex_unlock(&con->sock_mutex); 730 if (ret) { 731 log_print("Connection %p failed to shutdown: %d will force close", 732 con, ret); 733 goto force_close; 734 } else { 735 ret = wait_event_timeout(con->shutdown_wait, 736 !test_bit(CF_SHUTDOWN, &con->flags), 737 DLM_SHUTDOWN_WAIT_TIMEOUT); 738 if (ret == 0) { 739 log_print("Connection %p shutdown timed out, will force close", 740 con); 741 goto force_close; 742 } 743 } 744 745 return; 746 747 force_close: 748 clear_bit(CF_SHUTDOWN, &con->flags); 749 close_connection(con, false, true, true); 750 } 751 752 static void dlm_tcp_shutdown(struct connection *con) 753 { 754 if (con->othercon) 755 shutdown_connection(con->othercon); 756 shutdown_connection(con); 757 } 758 759 static int con_realloc_receive_buf(struct connection *con, int newlen) 760 { 761 unsigned char *newbuf; 762 763 newbuf = kmalloc(newlen, GFP_NOFS); 764 if (!newbuf) 765 return -ENOMEM; 766 767 /* copy any leftover from last receive */ 768 if (con->rx_leftover) 769 memmove(newbuf, con->rx_buf, con->rx_leftover); 770 771 /* swap to new buffer space */ 772 kfree(con->rx_buf); 773 con->rx_buflen = newlen; 774 con->rx_buf = newbuf; 775 776 return 0; 777 } 778 779 /* Data received from remote end */ 780 static int receive_from_sock(struct connection *con) 781 { 782 int call_again_soon = 0; 783 struct msghdr msg; 784 struct kvec iov; 785 int ret, buflen; 786 787 mutex_lock(&con->sock_mutex); 788 789 if (con->sock == NULL) { 790 ret = -EAGAIN; 791 goto out_close; 792 } 793 794 /* realloc if we get new buffer size to read out */ 795 buflen = dlm_config.ci_buffer_size; 796 if (con->rx_buflen != buflen && con->rx_leftover <= buflen) { 797 ret = con_realloc_receive_buf(con, buflen); 798 if (ret < 0) 799 goto out_resched; 800 } 801 802 /* calculate new buffer parameter regarding last receive and 803 * possible leftover bytes 804 */ 805 iov.iov_base = con->rx_buf + con->rx_leftover; 806 iov.iov_len = con->rx_buflen - con->rx_leftover; 807 808 memset(&msg, 0, sizeof(msg)); 809 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 810 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len, 811 msg.msg_flags); 812 if (ret <= 0) 813 goto out_close; 814 else if (ret == iov.iov_len) 815 call_again_soon = 1; 816 817 /* new buflen according readed bytes and leftover from last receive */ 818 buflen = ret + con->rx_leftover; 819 ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen); 820 if (ret < 0) 821 goto out_close; 822 823 /* calculate leftover bytes from process and put it into begin of 824 * the receive buffer, so next receive we have the full message 825 * at the start address of the receive buffer. 826 */ 827 con->rx_leftover = buflen - ret; 828 if (con->rx_leftover) { 829 memmove(con->rx_buf, con->rx_buf + ret, 830 con->rx_leftover); 831 call_again_soon = true; 832 } 833 834 if (call_again_soon) 835 goto out_resched; 836 837 mutex_unlock(&con->sock_mutex); 838 return 0; 839 840 out_resched: 841 if (!test_and_set_bit(CF_READ_PENDING, &con->flags)) 842 queue_work(recv_workqueue, &con->rwork); 843 mutex_unlock(&con->sock_mutex); 844 return -EAGAIN; 845 846 out_close: 847 mutex_unlock(&con->sock_mutex); 848 if (ret != -EAGAIN) { 849 /* Reconnect when there is something to send */ 850 close_connection(con, false, true, false); 851 if (ret == 0) { 852 log_print("connection %p got EOF from %d", 853 con, con->nodeid); 854 /* handling for tcp shutdown */ 855 clear_bit(CF_SHUTDOWN, &con->flags); 856 wake_up(&con->shutdown_wait); 857 /* signal to breaking receive worker */ 858 ret = -1; 859 } 860 } 861 return ret; 862 } 863 864 /* Listening socket is busy, accept a connection */ 865 static int accept_from_sock(struct listen_connection *con) 866 { 867 int result; 868 struct sockaddr_storage peeraddr; 869 struct socket *newsock; 870 int len; 871 int nodeid; 872 struct connection *newcon; 873 struct connection *addcon; 874 unsigned int mark; 875 876 if (!dlm_allow_conn) { 877 return -1; 878 } 879 880 if (!con->sock) 881 return -ENOTCONN; 882 883 result = kernel_accept(con->sock, &newsock, O_NONBLOCK); 884 if (result < 0) 885 goto accept_err; 886 887 /* Get the connected socket's peer */ 888 memset(&peeraddr, 0, sizeof(peeraddr)); 889 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2); 890 if (len < 0) { 891 result = -ECONNABORTED; 892 goto accept_err; 893 } 894 895 /* Get the new node's NODEID */ 896 make_sockaddr(&peeraddr, 0, &len); 897 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) { 898 unsigned char *b=(unsigned char *)&peeraddr; 899 log_print("connect from non cluster node"); 900 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 901 b, sizeof(struct sockaddr_storage)); 902 sock_release(newsock); 903 return -1; 904 } 905 906 log_print("got connection from %d", nodeid); 907 908 /* Check to see if we already have a connection to this node. This 909 * could happen if the two nodes initiate a connection at roughly 910 * the same time and the connections cross on the wire. 911 * In this case we store the incoming one in "othercon" 912 */ 913 newcon = nodeid2con(nodeid, GFP_NOFS); 914 if (!newcon) { 915 result = -ENOMEM; 916 goto accept_err; 917 } 918 919 sock_set_mark(newsock->sk, mark); 920 921 mutex_lock(&newcon->sock_mutex); 922 if (newcon->sock) { 923 struct connection *othercon = newcon->othercon; 924 925 if (!othercon) { 926 othercon = kzalloc(sizeof(*othercon), GFP_NOFS); 927 if (!othercon) { 928 log_print("failed to allocate incoming socket"); 929 mutex_unlock(&newcon->sock_mutex); 930 result = -ENOMEM; 931 goto accept_err; 932 } 933 934 result = dlm_con_init(othercon, nodeid); 935 if (result < 0) { 936 kfree(othercon); 937 goto accept_err; 938 } 939 940 lockdep_set_subclass(&othercon->sock_mutex, 1); 941 newcon->othercon = othercon; 942 } else { 943 /* close other sock con if we have something new */ 944 close_connection(othercon, false, true, false); 945 } 946 947 mutex_lock(&othercon->sock_mutex); 948 add_sock(newsock, othercon); 949 addcon = othercon; 950 mutex_unlock(&othercon->sock_mutex); 951 } 952 else { 953 /* accept copies the sk after we've saved the callbacks, so we 954 don't want to save them a second time or comm errors will 955 result in calling sk_error_report recursively. */ 956 add_sock(newsock, newcon); 957 addcon = newcon; 958 } 959 960 set_bit(CF_CONNECTED, &addcon->flags); 961 mutex_unlock(&newcon->sock_mutex); 962 963 /* 964 * Add it to the active queue in case we got data 965 * between processing the accept adding the socket 966 * to the read_sockets list 967 */ 968 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags)) 969 queue_work(recv_workqueue, &addcon->rwork); 970 971 return 0; 972 973 accept_err: 974 if (newsock) 975 sock_release(newsock); 976 977 if (result != -EAGAIN) 978 log_print("error accepting connection from node: %d", result); 979 return result; 980 } 981 982 static void free_entry(struct writequeue_entry *e) 983 { 984 __free_page(e->page); 985 kfree(e); 986 } 987 988 /* 989 * writequeue_entry_complete - try to delete and free write queue entry 990 * @e: write queue entry to try to delete 991 * @completed: bytes completed 992 * 993 * writequeue_lock must be held. 994 */ 995 static void writequeue_entry_complete(struct writequeue_entry *e, int completed) 996 { 997 e->offset += completed; 998 e->len -= completed; 999 1000 if (e->len == 0 && e->users == 0) { 1001 list_del(&e->list); 1002 free_entry(e); 1003 } 1004 } 1005 1006 /* 1007 * sctp_bind_addrs - bind a SCTP socket to all our addresses 1008 */ 1009 static int sctp_bind_addrs(struct socket *sock, uint16_t port) 1010 { 1011 struct sockaddr_storage localaddr; 1012 struct sockaddr *addr = (struct sockaddr *)&localaddr; 1013 int i, addr_len, result = 0; 1014 1015 for (i = 0; i < dlm_local_count; i++) { 1016 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr)); 1017 make_sockaddr(&localaddr, port, &addr_len); 1018 1019 if (!i) 1020 result = kernel_bind(sock, addr, addr_len); 1021 else 1022 result = sock_bind_add(sock->sk, addr, addr_len); 1023 1024 if (result < 0) { 1025 log_print("Can't bind to %d addr number %d, %d.\n", 1026 port, i + 1, result); 1027 break; 1028 } 1029 } 1030 return result; 1031 } 1032 1033 /* Initiate an SCTP association. 1034 This is a special case of send_to_sock() in that we don't yet have a 1035 peeled-off socket for this association, so we use the listening socket 1036 and add the primary IP address of the remote node. 1037 */ 1038 static void sctp_connect_to_sock(struct connection *con) 1039 { 1040 struct sockaddr_storage daddr; 1041 int result; 1042 int addr_len; 1043 struct socket *sock; 1044 unsigned int mark; 1045 1046 mutex_lock(&con->sock_mutex); 1047 1048 /* Some odd races can cause double-connects, ignore them */ 1049 if (con->retries++ > MAX_CONNECT_RETRIES) 1050 goto out; 1051 1052 if (con->sock) { 1053 log_print("node %d already connected.", con->nodeid); 1054 goto out; 1055 } 1056 1057 memset(&daddr, 0, sizeof(daddr)); 1058 result = nodeid_to_addr(con->nodeid, &daddr, NULL, true, &mark); 1059 if (result < 0) { 1060 log_print("no address for nodeid %d", con->nodeid); 1061 goto out; 1062 } 1063 1064 /* Create a socket to communicate with */ 1065 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1066 SOCK_STREAM, IPPROTO_SCTP, &sock); 1067 if (result < 0) 1068 goto socket_err; 1069 1070 sock_set_mark(sock->sk, mark); 1071 1072 add_sock(sock, con); 1073 1074 /* Bind to all addresses. */ 1075 if (sctp_bind_addrs(con->sock, 0)) 1076 goto bind_err; 1077 1078 make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len); 1079 1080 log_print("connecting to %d", con->nodeid); 1081 1082 /* Turn off Nagle's algorithm */ 1083 sctp_sock_set_nodelay(sock->sk); 1084 1085 /* 1086 * Make sock->ops->connect() function return in specified time, 1087 * since O_NONBLOCK argument in connect() function does not work here, 1088 * then, we should restore the default value of this attribute. 1089 */ 1090 sock_set_sndtimeo(sock->sk, 5); 1091 result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len, 1092 0); 1093 sock_set_sndtimeo(sock->sk, 0); 1094 1095 if (result == -EINPROGRESS) 1096 result = 0; 1097 if (result == 0) { 1098 if (!test_and_set_bit(CF_CONNECTED, &con->flags)) 1099 log_print("successful connected to node %d", con->nodeid); 1100 goto out; 1101 } 1102 1103 bind_err: 1104 con->sock = NULL; 1105 sock_release(sock); 1106 1107 socket_err: 1108 /* 1109 * Some errors are fatal and this list might need adjusting. For other 1110 * errors we try again until the max number of retries is reached. 1111 */ 1112 if (result != -EHOSTUNREACH && 1113 result != -ENETUNREACH && 1114 result != -ENETDOWN && 1115 result != -EINVAL && 1116 result != -EPROTONOSUPPORT) { 1117 log_print("connect %d try %d error %d", con->nodeid, 1118 con->retries, result); 1119 mutex_unlock(&con->sock_mutex); 1120 msleep(1000); 1121 lowcomms_connect_sock(con); 1122 return; 1123 } 1124 1125 out: 1126 mutex_unlock(&con->sock_mutex); 1127 } 1128 1129 /* Connect a new socket to its peer */ 1130 static void tcp_connect_to_sock(struct connection *con) 1131 { 1132 struct sockaddr_storage saddr, src_addr; 1133 unsigned int mark; 1134 int addr_len; 1135 struct socket *sock = NULL; 1136 int result; 1137 1138 mutex_lock(&con->sock_mutex); 1139 if (con->retries++ > MAX_CONNECT_RETRIES) 1140 goto out; 1141 1142 /* Some odd races can cause double-connects, ignore them */ 1143 if (con->sock) 1144 goto out; 1145 1146 /* Create a socket to communicate with */ 1147 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1148 SOCK_STREAM, IPPROTO_TCP, &sock); 1149 if (result < 0) 1150 goto out_err; 1151 1152 memset(&saddr, 0, sizeof(saddr)); 1153 result = nodeid_to_addr(con->nodeid, &saddr, NULL, false, &mark); 1154 if (result < 0) { 1155 log_print("no address for nodeid %d", con->nodeid); 1156 goto out_err; 1157 } 1158 1159 sock_set_mark(sock->sk, mark); 1160 1161 add_sock(sock, con); 1162 1163 /* Bind to our cluster-known address connecting to avoid 1164 routing problems */ 1165 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr)); 1166 make_sockaddr(&src_addr, 0, &addr_len); 1167 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr, 1168 addr_len); 1169 if (result < 0) { 1170 log_print("could not bind for connect: %d", result); 1171 /* This *may* not indicate a critical error */ 1172 } 1173 1174 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len); 1175 1176 log_print("connecting to %d", con->nodeid); 1177 1178 /* Turn off Nagle's algorithm */ 1179 tcp_sock_set_nodelay(sock->sk); 1180 1181 result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len, 1182 O_NONBLOCK); 1183 if (result == -EINPROGRESS) 1184 result = 0; 1185 if (result == 0) 1186 goto out; 1187 1188 out_err: 1189 if (con->sock) { 1190 sock_release(con->sock); 1191 con->sock = NULL; 1192 } else if (sock) { 1193 sock_release(sock); 1194 } 1195 /* 1196 * Some errors are fatal and this list might need adjusting. For other 1197 * errors we try again until the max number of retries is reached. 1198 */ 1199 if (result != -EHOSTUNREACH && 1200 result != -ENETUNREACH && 1201 result != -ENETDOWN && 1202 result != -EINVAL && 1203 result != -EPROTONOSUPPORT) { 1204 log_print("connect %d try %d error %d", con->nodeid, 1205 con->retries, result); 1206 mutex_unlock(&con->sock_mutex); 1207 msleep(1000); 1208 lowcomms_connect_sock(con); 1209 return; 1210 } 1211 out: 1212 mutex_unlock(&con->sock_mutex); 1213 return; 1214 } 1215 1216 /* On error caller must run dlm_close_sock() for the 1217 * listen connection socket. 1218 */ 1219 static int tcp_create_listen_sock(struct listen_connection *con, 1220 struct sockaddr_storage *saddr) 1221 { 1222 struct socket *sock = NULL; 1223 int result = 0; 1224 int addr_len; 1225 1226 if (dlm_local_addr[0]->ss_family == AF_INET) 1227 addr_len = sizeof(struct sockaddr_in); 1228 else 1229 addr_len = sizeof(struct sockaddr_in6); 1230 1231 /* Create a socket to communicate with */ 1232 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1233 SOCK_STREAM, IPPROTO_TCP, &sock); 1234 if (result < 0) { 1235 log_print("Can't create listening comms socket"); 1236 goto create_out; 1237 } 1238 1239 sock_set_mark(sock->sk, dlm_config.ci_mark); 1240 1241 /* Turn off Nagle's algorithm */ 1242 tcp_sock_set_nodelay(sock->sk); 1243 1244 sock_set_reuseaddr(sock->sk); 1245 1246 add_listen_sock(sock, con); 1247 1248 /* Bind to our port */ 1249 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len); 1250 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len); 1251 if (result < 0) { 1252 log_print("Can't bind to port %d", dlm_config.ci_tcp_port); 1253 goto create_out; 1254 } 1255 sock_set_keepalive(sock->sk); 1256 1257 result = sock->ops->listen(sock, 5); 1258 if (result < 0) { 1259 log_print("Can't listen on port %d", dlm_config.ci_tcp_port); 1260 goto create_out; 1261 } 1262 1263 return 0; 1264 1265 create_out: 1266 return result; 1267 } 1268 1269 /* Get local addresses */ 1270 static void init_local(void) 1271 { 1272 struct sockaddr_storage sas, *addr; 1273 int i; 1274 1275 dlm_local_count = 0; 1276 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) { 1277 if (dlm_our_addr(&sas, i)) 1278 break; 1279 1280 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS); 1281 if (!addr) 1282 break; 1283 dlm_local_addr[dlm_local_count++] = addr; 1284 } 1285 } 1286 1287 static void deinit_local(void) 1288 { 1289 int i; 1290 1291 for (i = 0; i < dlm_local_count; i++) 1292 kfree(dlm_local_addr[i]); 1293 } 1294 1295 /* Initialise SCTP socket and bind to all interfaces 1296 * On error caller must run dlm_close_sock() for the 1297 * listen connection socket. 1298 */ 1299 static int sctp_listen_for_all(struct listen_connection *con) 1300 { 1301 struct socket *sock = NULL; 1302 int result = -EINVAL; 1303 1304 log_print("Using SCTP for communications"); 1305 1306 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1307 SOCK_STREAM, IPPROTO_SCTP, &sock); 1308 if (result < 0) { 1309 log_print("Can't create comms socket, check SCTP is loaded"); 1310 goto out; 1311 } 1312 1313 sock_set_rcvbuf(sock->sk, NEEDED_RMEM); 1314 sock_set_mark(sock->sk, dlm_config.ci_mark); 1315 sctp_sock_set_nodelay(sock->sk); 1316 1317 add_listen_sock(sock, con); 1318 1319 /* Bind to all addresses. */ 1320 result = sctp_bind_addrs(con->sock, dlm_config.ci_tcp_port); 1321 if (result < 0) 1322 goto out; 1323 1324 result = sock->ops->listen(sock, 5); 1325 if (result < 0) { 1326 log_print("Can't set socket listening"); 1327 goto out; 1328 } 1329 1330 return 0; 1331 1332 out: 1333 return result; 1334 } 1335 1336 static int tcp_listen_for_all(void) 1337 { 1338 /* We don't support multi-homed hosts */ 1339 if (dlm_local_count > 1) { 1340 log_print("TCP protocol can't handle multi-homed hosts, " 1341 "try SCTP"); 1342 return -EINVAL; 1343 } 1344 1345 log_print("Using TCP for communications"); 1346 1347 return tcp_create_listen_sock(&listen_con, dlm_local_addr[0]); 1348 } 1349 1350 1351 1352 static struct writequeue_entry *new_writequeue_entry(struct connection *con, 1353 gfp_t allocation) 1354 { 1355 struct writequeue_entry *entry; 1356 1357 entry = kzalloc(sizeof(*entry), allocation); 1358 if (!entry) 1359 return NULL; 1360 1361 entry->page = alloc_page(allocation | __GFP_ZERO); 1362 if (!entry->page) { 1363 kfree(entry); 1364 return NULL; 1365 } 1366 1367 entry->con = con; 1368 entry->users = 1; 1369 1370 return entry; 1371 } 1372 1373 static struct writequeue_entry *new_wq_entry(struct connection *con, int len, 1374 gfp_t allocation, char **ppc) 1375 { 1376 struct writequeue_entry *e; 1377 1378 spin_lock(&con->writequeue_lock); 1379 if (!list_empty(&con->writequeue)) { 1380 e = list_last_entry(&con->writequeue, struct writequeue_entry, list); 1381 if (DLM_WQ_REMAIN_BYTES(e) >= len) { 1382 *ppc = page_address(e->page) + e->end; 1383 e->end += len; 1384 e->users++; 1385 spin_unlock(&con->writequeue_lock); 1386 1387 return e; 1388 } 1389 } 1390 spin_unlock(&con->writequeue_lock); 1391 1392 e = new_writequeue_entry(con, allocation); 1393 if (!e) 1394 return NULL; 1395 1396 *ppc = page_address(e->page); 1397 e->end += len; 1398 1399 spin_lock(&con->writequeue_lock); 1400 list_add_tail(&e->list, &con->writequeue); 1401 spin_unlock(&con->writequeue_lock); 1402 1403 return e; 1404 }; 1405 1406 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc) 1407 { 1408 struct connection *con; 1409 1410 if (len > DEFAULT_BUFFER_SIZE || 1411 len < sizeof(struct dlm_header)) { 1412 BUILD_BUG_ON(PAGE_SIZE < DEFAULT_BUFFER_SIZE); 1413 log_print("failed to allocate a buffer of size %d", len); 1414 WARN_ON(1); 1415 return NULL; 1416 } 1417 1418 con = nodeid2con(nodeid, allocation); 1419 if (!con) 1420 return NULL; 1421 1422 return new_wq_entry(con, len, allocation, ppc); 1423 } 1424 1425 void dlm_lowcomms_commit_buffer(void *mh) 1426 { 1427 struct writequeue_entry *e = (struct writequeue_entry *)mh; 1428 struct connection *con = e->con; 1429 int users; 1430 1431 spin_lock(&con->writequeue_lock); 1432 users = --e->users; 1433 if (users) 1434 goto out; 1435 1436 e->len = DLM_WQ_LENGTH_BYTES(e); 1437 spin_unlock(&con->writequeue_lock); 1438 1439 queue_work(send_workqueue, &con->swork); 1440 return; 1441 1442 out: 1443 spin_unlock(&con->writequeue_lock); 1444 return; 1445 } 1446 1447 /* Send a message */ 1448 static void send_to_sock(struct connection *con) 1449 { 1450 int ret = 0; 1451 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1452 struct writequeue_entry *e; 1453 int len, offset; 1454 int count = 0; 1455 1456 mutex_lock(&con->sock_mutex); 1457 if (con->sock == NULL) 1458 goto out_connect; 1459 1460 spin_lock(&con->writequeue_lock); 1461 for (;;) { 1462 if (list_empty(&con->writequeue)) 1463 break; 1464 1465 e = list_first_entry(&con->writequeue, struct writequeue_entry, list); 1466 len = e->len; 1467 offset = e->offset; 1468 BUG_ON(len == 0 && e->users == 0); 1469 spin_unlock(&con->writequeue_lock); 1470 1471 ret = 0; 1472 if (len) { 1473 ret = kernel_sendpage(con->sock, e->page, offset, len, 1474 msg_flags); 1475 if (ret == -EAGAIN || ret == 0) { 1476 if (ret == -EAGAIN && 1477 test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) && 1478 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) { 1479 /* Notify TCP that we're limited by the 1480 * application window size. 1481 */ 1482 set_bit(SOCK_NOSPACE, &con->sock->flags); 1483 con->sock->sk->sk_write_pending++; 1484 } 1485 cond_resched(); 1486 goto out; 1487 } else if (ret < 0) 1488 goto send_error; 1489 } 1490 1491 /* Don't starve people filling buffers */ 1492 if (++count >= MAX_SEND_MSG_COUNT) { 1493 cond_resched(); 1494 count = 0; 1495 } 1496 1497 spin_lock(&con->writequeue_lock); 1498 writequeue_entry_complete(e, ret); 1499 } 1500 spin_unlock(&con->writequeue_lock); 1501 out: 1502 mutex_unlock(&con->sock_mutex); 1503 return; 1504 1505 send_error: 1506 mutex_unlock(&con->sock_mutex); 1507 close_connection(con, false, false, true); 1508 /* Requeue the send work. When the work daemon runs again, it will try 1509 a new connection, then call this function again. */ 1510 queue_work(send_workqueue, &con->swork); 1511 return; 1512 1513 out_connect: 1514 mutex_unlock(&con->sock_mutex); 1515 queue_work(send_workqueue, &con->swork); 1516 cond_resched(); 1517 } 1518 1519 static void clean_one_writequeue(struct connection *con) 1520 { 1521 struct writequeue_entry *e, *safe; 1522 1523 spin_lock(&con->writequeue_lock); 1524 list_for_each_entry_safe(e, safe, &con->writequeue, list) { 1525 list_del(&e->list); 1526 free_entry(e); 1527 } 1528 spin_unlock(&con->writequeue_lock); 1529 } 1530 1531 /* Called from recovery when it knows that a node has 1532 left the cluster */ 1533 int dlm_lowcomms_close(int nodeid) 1534 { 1535 struct connection *con; 1536 struct dlm_node_addr *na; 1537 1538 log_print("closing connection to node %d", nodeid); 1539 con = nodeid2con(nodeid, 0); 1540 if (con) { 1541 set_bit(CF_CLOSE, &con->flags); 1542 close_connection(con, true, true, true); 1543 clean_one_writequeue(con); 1544 if (con->othercon) 1545 clean_one_writequeue(con->othercon); 1546 } 1547 1548 spin_lock(&dlm_node_addrs_spin); 1549 na = find_node_addr(nodeid); 1550 if (na) { 1551 list_del(&na->list); 1552 while (na->addr_count--) 1553 kfree(na->addr[na->addr_count]); 1554 kfree(na); 1555 } 1556 spin_unlock(&dlm_node_addrs_spin); 1557 1558 return 0; 1559 } 1560 1561 /* Receive workqueue function */ 1562 static void process_recv_sockets(struct work_struct *work) 1563 { 1564 struct connection *con = container_of(work, struct connection, rwork); 1565 int err; 1566 1567 clear_bit(CF_READ_PENDING, &con->flags); 1568 do { 1569 err = receive_from_sock(con); 1570 } while (!err); 1571 } 1572 1573 static void process_listen_recv_socket(struct work_struct *work) 1574 { 1575 accept_from_sock(&listen_con); 1576 } 1577 1578 /* Send workqueue function */ 1579 static void process_send_sockets(struct work_struct *work) 1580 { 1581 struct connection *con = container_of(work, struct connection, swork); 1582 1583 clear_bit(CF_WRITE_PENDING, &con->flags); 1584 if (con->sock == NULL) /* not mutex protected so check it inside too */ 1585 con->connect_action(con); 1586 if (!list_empty(&con->writequeue)) 1587 send_to_sock(con); 1588 } 1589 1590 static void work_stop(void) 1591 { 1592 if (recv_workqueue) 1593 destroy_workqueue(recv_workqueue); 1594 if (send_workqueue) 1595 destroy_workqueue(send_workqueue); 1596 } 1597 1598 static int work_start(void) 1599 { 1600 recv_workqueue = alloc_workqueue("dlm_recv", 1601 WQ_UNBOUND | WQ_MEM_RECLAIM, 1); 1602 if (!recv_workqueue) { 1603 log_print("can't start dlm_recv"); 1604 return -ENOMEM; 1605 } 1606 1607 send_workqueue = alloc_workqueue("dlm_send", 1608 WQ_UNBOUND | WQ_MEM_RECLAIM, 1); 1609 if (!send_workqueue) { 1610 log_print("can't start dlm_send"); 1611 destroy_workqueue(recv_workqueue); 1612 return -ENOMEM; 1613 } 1614 1615 return 0; 1616 } 1617 1618 static void _stop_conn(struct connection *con, bool and_other) 1619 { 1620 mutex_lock(&con->sock_mutex); 1621 set_bit(CF_CLOSE, &con->flags); 1622 set_bit(CF_READ_PENDING, &con->flags); 1623 set_bit(CF_WRITE_PENDING, &con->flags); 1624 if (con->sock && con->sock->sk) { 1625 write_lock_bh(&con->sock->sk->sk_callback_lock); 1626 con->sock->sk->sk_user_data = NULL; 1627 write_unlock_bh(&con->sock->sk->sk_callback_lock); 1628 } 1629 if (con->othercon && and_other) 1630 _stop_conn(con->othercon, false); 1631 mutex_unlock(&con->sock_mutex); 1632 } 1633 1634 static void stop_conn(struct connection *con) 1635 { 1636 _stop_conn(con, true); 1637 } 1638 1639 static void shutdown_conn(struct connection *con) 1640 { 1641 if (con->shutdown_action) 1642 con->shutdown_action(con); 1643 } 1644 1645 static void connection_release(struct rcu_head *rcu) 1646 { 1647 struct connection *con = container_of(rcu, struct connection, rcu); 1648 1649 kfree(con->rx_buf); 1650 kfree(con); 1651 } 1652 1653 static void free_conn(struct connection *con) 1654 { 1655 close_connection(con, true, true, true); 1656 spin_lock(&connections_lock); 1657 hlist_del_rcu(&con->list); 1658 spin_unlock(&connections_lock); 1659 if (con->othercon) { 1660 clean_one_writequeue(con->othercon); 1661 call_srcu(&connections_srcu, &con->othercon->rcu, 1662 connection_release); 1663 } 1664 clean_one_writequeue(con); 1665 call_srcu(&connections_srcu, &con->rcu, connection_release); 1666 } 1667 1668 static void work_flush(void) 1669 { 1670 int ok, idx; 1671 int i; 1672 struct connection *con; 1673 1674 do { 1675 ok = 1; 1676 foreach_conn(stop_conn); 1677 if (recv_workqueue) 1678 flush_workqueue(recv_workqueue); 1679 if (send_workqueue) 1680 flush_workqueue(send_workqueue); 1681 idx = srcu_read_lock(&connections_srcu); 1682 for (i = 0; i < CONN_HASH_SIZE && ok; i++) { 1683 hlist_for_each_entry_rcu(con, &connection_hash[i], 1684 list) { 1685 ok &= test_bit(CF_READ_PENDING, &con->flags); 1686 ok &= test_bit(CF_WRITE_PENDING, &con->flags); 1687 if (con->othercon) { 1688 ok &= test_bit(CF_READ_PENDING, 1689 &con->othercon->flags); 1690 ok &= test_bit(CF_WRITE_PENDING, 1691 &con->othercon->flags); 1692 } 1693 } 1694 } 1695 srcu_read_unlock(&connections_srcu, idx); 1696 } while (!ok); 1697 } 1698 1699 void dlm_lowcomms_stop(void) 1700 { 1701 /* Set all the flags to prevent any 1702 socket activity. 1703 */ 1704 dlm_allow_conn = 0; 1705 1706 if (recv_workqueue) 1707 flush_workqueue(recv_workqueue); 1708 if (send_workqueue) 1709 flush_workqueue(send_workqueue); 1710 1711 dlm_close_sock(&listen_con.sock); 1712 1713 foreach_conn(shutdown_conn); 1714 work_flush(); 1715 foreach_conn(free_conn); 1716 work_stop(); 1717 deinit_local(); 1718 } 1719 1720 int dlm_lowcomms_start(void) 1721 { 1722 int error = -EINVAL; 1723 int i; 1724 1725 for (i = 0; i < CONN_HASH_SIZE; i++) 1726 INIT_HLIST_HEAD(&connection_hash[i]); 1727 1728 init_local(); 1729 if (!dlm_local_count) { 1730 error = -ENOTCONN; 1731 log_print("no local IP address has been set"); 1732 goto fail; 1733 } 1734 1735 INIT_WORK(&listen_con.rwork, process_listen_recv_socket); 1736 1737 error = work_start(); 1738 if (error) 1739 goto fail; 1740 1741 dlm_allow_conn = 1; 1742 1743 /* Start listening */ 1744 if (dlm_config.ci_protocol == 0) 1745 error = tcp_listen_for_all(); 1746 else 1747 error = sctp_listen_for_all(&listen_con); 1748 if (error) 1749 goto fail_unlisten; 1750 1751 return 0; 1752 1753 fail_unlisten: 1754 dlm_allow_conn = 0; 1755 dlm_close_sock(&listen_con.sock); 1756 fail: 1757 return error; 1758 } 1759 1760 void dlm_lowcomms_exit(void) 1761 { 1762 struct dlm_node_addr *na, *safe; 1763 1764 spin_lock(&dlm_node_addrs_spin); 1765 list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) { 1766 list_del(&na->list); 1767 while (na->addr_count--) 1768 kfree(na->addr[na->addr_count]); 1769 kfree(na); 1770 } 1771 spin_unlock(&dlm_node_addrs_spin); 1772 } 1773