xref: /openbmc/linux/fs/dlm/lowcomms.c (revision ee44b4bc)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
57 
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62 
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65 
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68 
69 struct cbuf {
70 	unsigned int base;
71 	unsigned int len;
72 	unsigned int mask;
73 };
74 
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77 	cb->len += n;
78 }
79 
80 static int cbuf_data(struct cbuf *cb)
81 {
82 	return ((cb->base + cb->len) & cb->mask);
83 }
84 
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87 	cb->base = cb->len = 0;
88 	cb->mask = size-1;
89 }
90 
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93 	cb->len  -= n;
94 	cb->base += n;
95 	cb->base &= cb->mask;
96 }
97 
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100 	return cb->len == 0;
101 }
102 
103 struct connection {
104 	struct socket *sock;	/* NULL if not connected */
105 	uint32_t nodeid;	/* So we know who we are in the list */
106 	struct mutex sock_mutex;
107 	unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_CONNECT_PENDING 3
111 #define CF_INIT_PENDING 4
112 #define CF_IS_OTHERCON 5
113 #define CF_CLOSE 6
114 #define CF_APP_LIMITED 7
115 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
116 	spinlock_t writequeue_lock;
117 	int (*rx_action) (struct connection *);	/* What to do when active */
118 	void (*connect_action) (struct connection *);	/* What to do to connect */
119 	struct page *rx_page;
120 	struct cbuf cb;
121 	int retries;
122 #define MAX_CONNECT_RETRIES 3
123 	struct hlist_node list;
124 	struct connection *othercon;
125 	struct work_struct rwork; /* Receive workqueue */
126 	struct work_struct swork; /* Send workqueue */
127 };
128 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
129 
130 /* An entry waiting to be sent */
131 struct writequeue_entry {
132 	struct list_head list;
133 	struct page *page;
134 	int offset;
135 	int len;
136 	int end;
137 	int users;
138 	struct connection *con;
139 };
140 
141 struct dlm_node_addr {
142 	struct list_head list;
143 	int nodeid;
144 	int addr_count;
145 	int curr_addr_index;
146 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
147 };
148 
149 static LIST_HEAD(dlm_node_addrs);
150 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
151 
152 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
153 static int dlm_local_count;
154 static int dlm_allow_conn;
155 
156 /* Work queues */
157 static struct workqueue_struct *recv_workqueue;
158 static struct workqueue_struct *send_workqueue;
159 
160 static struct hlist_head connection_hash[CONN_HASH_SIZE];
161 static DEFINE_MUTEX(connections_lock);
162 static struct kmem_cache *con_cache;
163 
164 static void process_recv_sockets(struct work_struct *work);
165 static void process_send_sockets(struct work_struct *work);
166 
167 
168 /* This is deliberately very simple because most clusters have simple
169    sequential nodeids, so we should be able to go straight to a connection
170    struct in the array */
171 static inline int nodeid_hash(int nodeid)
172 {
173 	return nodeid & (CONN_HASH_SIZE-1);
174 }
175 
176 static struct connection *__find_con(int nodeid)
177 {
178 	int r;
179 	struct connection *con;
180 
181 	r = nodeid_hash(nodeid);
182 
183 	hlist_for_each_entry(con, &connection_hash[r], list) {
184 		if (con->nodeid == nodeid)
185 			return con;
186 	}
187 	return NULL;
188 }
189 
190 /*
191  * If 'allocation' is zero then we don't attempt to create a new
192  * connection structure for this node.
193  */
194 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
195 {
196 	struct connection *con = NULL;
197 	int r;
198 
199 	con = __find_con(nodeid);
200 	if (con || !alloc)
201 		return con;
202 
203 	con = kmem_cache_zalloc(con_cache, alloc);
204 	if (!con)
205 		return NULL;
206 
207 	r = nodeid_hash(nodeid);
208 	hlist_add_head(&con->list, &connection_hash[r]);
209 
210 	con->nodeid = nodeid;
211 	mutex_init(&con->sock_mutex);
212 	INIT_LIST_HEAD(&con->writequeue);
213 	spin_lock_init(&con->writequeue_lock);
214 	INIT_WORK(&con->swork, process_send_sockets);
215 	INIT_WORK(&con->rwork, process_recv_sockets);
216 
217 	/* Setup action pointers for child sockets */
218 	if (con->nodeid) {
219 		struct connection *zerocon = __find_con(0);
220 
221 		con->connect_action = zerocon->connect_action;
222 		if (!con->rx_action)
223 			con->rx_action = zerocon->rx_action;
224 	}
225 
226 	return con;
227 }
228 
229 /* Loop round all connections */
230 static void foreach_conn(void (*conn_func)(struct connection *c))
231 {
232 	int i;
233 	struct hlist_node *n;
234 	struct connection *con;
235 
236 	for (i = 0; i < CONN_HASH_SIZE; i++) {
237 		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
238 			conn_func(con);
239 	}
240 }
241 
242 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
243 {
244 	struct connection *con;
245 
246 	mutex_lock(&connections_lock);
247 	con = __nodeid2con(nodeid, allocation);
248 	mutex_unlock(&connections_lock);
249 
250 	return con;
251 }
252 
253 static struct dlm_node_addr *find_node_addr(int nodeid)
254 {
255 	struct dlm_node_addr *na;
256 
257 	list_for_each_entry(na, &dlm_node_addrs, list) {
258 		if (na->nodeid == nodeid)
259 			return na;
260 	}
261 	return NULL;
262 }
263 
264 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
265 {
266 	switch (x->ss_family) {
267 	case AF_INET: {
268 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
269 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
270 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
271 			return 0;
272 		if (sinx->sin_port != siny->sin_port)
273 			return 0;
274 		break;
275 	}
276 	case AF_INET6: {
277 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
278 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
279 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
280 			return 0;
281 		if (sinx->sin6_port != siny->sin6_port)
282 			return 0;
283 		break;
284 	}
285 	default:
286 		return 0;
287 	}
288 	return 1;
289 }
290 
291 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
292 			  struct sockaddr *sa_out, bool try_new_addr)
293 {
294 	struct sockaddr_storage sas;
295 	struct dlm_node_addr *na;
296 
297 	if (!dlm_local_count)
298 		return -1;
299 
300 	spin_lock(&dlm_node_addrs_spin);
301 	na = find_node_addr(nodeid);
302 	if (na && na->addr_count) {
303 		memcpy(&sas, na->addr[na->curr_addr_index],
304 		       sizeof(struct sockaddr_storage));
305 
306 		if (try_new_addr) {
307 			na->curr_addr_index++;
308 			if (na->curr_addr_index == na->addr_count)
309 				na->curr_addr_index = 0;
310 		}
311 	}
312 	spin_unlock(&dlm_node_addrs_spin);
313 
314 	if (!na)
315 		return -EEXIST;
316 
317 	if (!na->addr_count)
318 		return -ENOENT;
319 
320 	if (sas_out)
321 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
322 
323 	if (!sa_out)
324 		return 0;
325 
326 	if (dlm_local_addr[0]->ss_family == AF_INET) {
327 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
328 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
329 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
330 	} else {
331 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
332 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
333 		ret6->sin6_addr = in6->sin6_addr;
334 	}
335 
336 	return 0;
337 }
338 
339 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
340 {
341 	struct dlm_node_addr *na;
342 	int rv = -EEXIST;
343 	int addr_i;
344 
345 	spin_lock(&dlm_node_addrs_spin);
346 	list_for_each_entry(na, &dlm_node_addrs, list) {
347 		if (!na->addr_count)
348 			continue;
349 
350 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
351 			if (addr_compare(na->addr[addr_i], addr)) {
352 				*nodeid = na->nodeid;
353 				rv = 0;
354 				goto unlock;
355 			}
356 		}
357 	}
358 unlock:
359 	spin_unlock(&dlm_node_addrs_spin);
360 	return rv;
361 }
362 
363 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
364 {
365 	struct sockaddr_storage *new_addr;
366 	struct dlm_node_addr *new_node, *na;
367 
368 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
369 	if (!new_node)
370 		return -ENOMEM;
371 
372 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
373 	if (!new_addr) {
374 		kfree(new_node);
375 		return -ENOMEM;
376 	}
377 
378 	memcpy(new_addr, addr, len);
379 
380 	spin_lock(&dlm_node_addrs_spin);
381 	na = find_node_addr(nodeid);
382 	if (!na) {
383 		new_node->nodeid = nodeid;
384 		new_node->addr[0] = new_addr;
385 		new_node->addr_count = 1;
386 		list_add(&new_node->list, &dlm_node_addrs);
387 		spin_unlock(&dlm_node_addrs_spin);
388 		return 0;
389 	}
390 
391 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
392 		spin_unlock(&dlm_node_addrs_spin);
393 		kfree(new_addr);
394 		kfree(new_node);
395 		return -ENOSPC;
396 	}
397 
398 	na->addr[na->addr_count++] = new_addr;
399 	spin_unlock(&dlm_node_addrs_spin);
400 	kfree(new_node);
401 	return 0;
402 }
403 
404 /* Data available on socket or listen socket received a connect */
405 static void lowcomms_data_ready(struct sock *sk)
406 {
407 	struct connection *con = sock2con(sk);
408 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
409 		queue_work(recv_workqueue, &con->rwork);
410 }
411 
412 static void lowcomms_write_space(struct sock *sk)
413 {
414 	struct connection *con = sock2con(sk);
415 
416 	if (!con)
417 		return;
418 
419 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
420 
421 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
422 		con->sock->sk->sk_write_pending--;
423 		clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
424 	}
425 
426 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
427 		queue_work(send_workqueue, &con->swork);
428 }
429 
430 static inline void lowcomms_connect_sock(struct connection *con)
431 {
432 	if (test_bit(CF_CLOSE, &con->flags))
433 		return;
434 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
435 		queue_work(send_workqueue, &con->swork);
436 }
437 
438 static void lowcomms_state_change(struct sock *sk)
439 {
440 	/* SCTP layer is not calling sk_data_ready when the connection
441 	 * is done, so we catch the signal through here. Also, it
442 	 * doesn't switch socket state when entering shutdown, so we
443 	 * skip the write in that case.
444 	 */
445 	if (sk->sk_shutdown) {
446 		if (sk->sk_shutdown == RCV_SHUTDOWN)
447 			lowcomms_data_ready(sk);
448 	} else if (sk->sk_state == TCP_ESTABLISHED) {
449 		lowcomms_write_space(sk);
450 	}
451 }
452 
453 int dlm_lowcomms_connect_node(int nodeid)
454 {
455 	struct connection *con;
456 
457 	if (nodeid == dlm_our_nodeid())
458 		return 0;
459 
460 	con = nodeid2con(nodeid, GFP_NOFS);
461 	if (!con)
462 		return -ENOMEM;
463 	lowcomms_connect_sock(con);
464 	return 0;
465 }
466 
467 /* Make a socket active */
468 static void add_sock(struct socket *sock, struct connection *con)
469 {
470 	con->sock = sock;
471 
472 	/* Install a data_ready callback */
473 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
474 	con->sock->sk->sk_write_space = lowcomms_write_space;
475 	con->sock->sk->sk_state_change = lowcomms_state_change;
476 	con->sock->sk->sk_user_data = con;
477 	con->sock->sk->sk_allocation = GFP_NOFS;
478 }
479 
480 /* Add the port number to an IPv6 or 4 sockaddr and return the address
481    length */
482 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
483 			  int *addr_len)
484 {
485 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
486 	if (saddr->ss_family == AF_INET) {
487 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
488 		in4_addr->sin_port = cpu_to_be16(port);
489 		*addr_len = sizeof(struct sockaddr_in);
490 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
491 	} else {
492 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
493 		in6_addr->sin6_port = cpu_to_be16(port);
494 		*addr_len = sizeof(struct sockaddr_in6);
495 	}
496 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
497 }
498 
499 /* Close a remote connection and tidy up */
500 static void close_connection(struct connection *con, bool and_other,
501 			     bool tx, bool rx)
502 {
503 	clear_bit(CF_CONNECT_PENDING, &con->flags);
504 	clear_bit(CF_WRITE_PENDING, &con->flags);
505 	if (tx && cancel_work_sync(&con->swork))
506 		log_print("canceled swork for node %d", con->nodeid);
507 	if (rx && cancel_work_sync(&con->rwork))
508 		log_print("canceled rwork for node %d", con->nodeid);
509 
510 	mutex_lock(&con->sock_mutex);
511 	if (con->sock) {
512 		sock_release(con->sock);
513 		con->sock = NULL;
514 	}
515 	if (con->othercon && and_other) {
516 		/* Will only re-enter once. */
517 		close_connection(con->othercon, false, true, true);
518 	}
519 	if (con->rx_page) {
520 		__free_page(con->rx_page);
521 		con->rx_page = NULL;
522 	}
523 
524 	con->retries = 0;
525 	mutex_unlock(&con->sock_mutex);
526 }
527 
528 /* Data received from remote end */
529 static int receive_from_sock(struct connection *con)
530 {
531 	int ret = 0;
532 	struct msghdr msg = {};
533 	struct kvec iov[2];
534 	unsigned len;
535 	int r;
536 	int call_again_soon = 0;
537 	int nvec;
538 
539 	mutex_lock(&con->sock_mutex);
540 
541 	if (con->sock == NULL) {
542 		ret = -EAGAIN;
543 		goto out_close;
544 	}
545 
546 	if (con->rx_page == NULL) {
547 		/*
548 		 * This doesn't need to be atomic, but I think it should
549 		 * improve performance if it is.
550 		 */
551 		con->rx_page = alloc_page(GFP_ATOMIC);
552 		if (con->rx_page == NULL)
553 			goto out_resched;
554 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
555 	}
556 
557 	/*
558 	 * iov[0] is the bit of the circular buffer between the current end
559 	 * point (cb.base + cb.len) and the end of the buffer.
560 	 */
561 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
562 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
563 	iov[1].iov_len = 0;
564 	nvec = 1;
565 
566 	/*
567 	 * iov[1] is the bit of the circular buffer between the start of the
568 	 * buffer and the start of the currently used section (cb.base)
569 	 */
570 	if (cbuf_data(&con->cb) >= con->cb.base) {
571 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
572 		iov[1].iov_len = con->cb.base;
573 		iov[1].iov_base = page_address(con->rx_page);
574 		nvec = 2;
575 	}
576 	len = iov[0].iov_len + iov[1].iov_len;
577 
578 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
579 			       MSG_DONTWAIT | MSG_NOSIGNAL);
580 	if (ret <= 0)
581 		goto out_close;
582 	else if (ret == len)
583 		call_again_soon = 1;
584 
585 	BUG_ON(con->nodeid == 0);
586 
587 	cbuf_add(&con->cb, ret);
588 	ret = dlm_process_incoming_buffer(con->nodeid,
589 					  page_address(con->rx_page),
590 					  con->cb.base, con->cb.len,
591 					  PAGE_CACHE_SIZE);
592 	if (ret == -EBADMSG) {
593 		log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
594 			  page_address(con->rx_page), con->cb.base,
595 			  con->cb.len, r);
596 	}
597 	if (ret < 0)
598 		goto out_close;
599 	cbuf_eat(&con->cb, ret);
600 
601 	if (cbuf_empty(&con->cb) && !call_again_soon) {
602 		__free_page(con->rx_page);
603 		con->rx_page = NULL;
604 	}
605 
606 	if (call_again_soon)
607 		goto out_resched;
608 	mutex_unlock(&con->sock_mutex);
609 	return 0;
610 
611 out_resched:
612 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
613 		queue_work(recv_workqueue, &con->rwork);
614 	mutex_unlock(&con->sock_mutex);
615 	return -EAGAIN;
616 
617 out_close:
618 	mutex_unlock(&con->sock_mutex);
619 	if (ret != -EAGAIN) {
620 		close_connection(con, false, true, false);
621 		/* Reconnect when there is something to send */
622 	}
623 	/* Don't return success if we really got EOF */
624 	if (ret == 0)
625 		ret = -EAGAIN;
626 
627 	return ret;
628 }
629 
630 /* Listening socket is busy, accept a connection */
631 static int tcp_accept_from_sock(struct connection *con)
632 {
633 	int result;
634 	struct sockaddr_storage peeraddr;
635 	struct socket *newsock;
636 	int len;
637 	int nodeid;
638 	struct connection *newcon;
639 	struct connection *addcon;
640 
641 	mutex_lock(&connections_lock);
642 	if (!dlm_allow_conn) {
643 		mutex_unlock(&connections_lock);
644 		return -1;
645 	}
646 	mutex_unlock(&connections_lock);
647 
648 	memset(&peeraddr, 0, sizeof(peeraddr));
649 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
650 				  SOCK_STREAM, IPPROTO_TCP, &newsock);
651 	if (result < 0)
652 		return -ENOMEM;
653 
654 	mutex_lock_nested(&con->sock_mutex, 0);
655 
656 	result = -ENOTCONN;
657 	if (con->sock == NULL)
658 		goto accept_err;
659 
660 	newsock->type = con->sock->type;
661 	newsock->ops = con->sock->ops;
662 
663 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
664 	if (result < 0)
665 		goto accept_err;
666 
667 	/* Get the connected socket's peer */
668 	memset(&peeraddr, 0, sizeof(peeraddr));
669 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
670 				  &len, 2)) {
671 		result = -ECONNABORTED;
672 		goto accept_err;
673 	}
674 
675 	/* Get the new node's NODEID */
676 	make_sockaddr(&peeraddr, 0, &len);
677 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
678 		unsigned char *b=(unsigned char *)&peeraddr;
679 		log_print("connect from non cluster node");
680 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
681 				     b, sizeof(struct sockaddr_storage));
682 		sock_release(newsock);
683 		mutex_unlock(&con->sock_mutex);
684 		return -1;
685 	}
686 
687 	log_print("got connection from %d", nodeid);
688 
689 	/*  Check to see if we already have a connection to this node. This
690 	 *  could happen if the two nodes initiate a connection at roughly
691 	 *  the same time and the connections cross on the wire.
692 	 *  In this case we store the incoming one in "othercon"
693 	 */
694 	newcon = nodeid2con(nodeid, GFP_NOFS);
695 	if (!newcon) {
696 		result = -ENOMEM;
697 		goto accept_err;
698 	}
699 	mutex_lock_nested(&newcon->sock_mutex, 1);
700 	if (newcon->sock) {
701 		struct connection *othercon = newcon->othercon;
702 
703 		if (!othercon) {
704 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
705 			if (!othercon) {
706 				log_print("failed to allocate incoming socket");
707 				mutex_unlock(&newcon->sock_mutex);
708 				result = -ENOMEM;
709 				goto accept_err;
710 			}
711 			othercon->nodeid = nodeid;
712 			othercon->rx_action = receive_from_sock;
713 			mutex_init(&othercon->sock_mutex);
714 			INIT_WORK(&othercon->swork, process_send_sockets);
715 			INIT_WORK(&othercon->rwork, process_recv_sockets);
716 			set_bit(CF_IS_OTHERCON, &othercon->flags);
717 		}
718 		if (!othercon->sock) {
719 			newcon->othercon = othercon;
720 			othercon->sock = newsock;
721 			newsock->sk->sk_user_data = othercon;
722 			add_sock(newsock, othercon);
723 			addcon = othercon;
724 		}
725 		else {
726 			printk("Extra connection from node %d attempted\n", nodeid);
727 			result = -EAGAIN;
728 			mutex_unlock(&newcon->sock_mutex);
729 			goto accept_err;
730 		}
731 	}
732 	else {
733 		newsock->sk->sk_user_data = newcon;
734 		newcon->rx_action = receive_from_sock;
735 		add_sock(newsock, newcon);
736 		addcon = newcon;
737 	}
738 
739 	mutex_unlock(&newcon->sock_mutex);
740 
741 	/*
742 	 * Add it to the active queue in case we got data
743 	 * between processing the accept adding the socket
744 	 * to the read_sockets list
745 	 */
746 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
747 		queue_work(recv_workqueue, &addcon->rwork);
748 	mutex_unlock(&con->sock_mutex);
749 
750 	return 0;
751 
752 accept_err:
753 	mutex_unlock(&con->sock_mutex);
754 	sock_release(newsock);
755 
756 	if (result != -EAGAIN)
757 		log_print("error accepting connection from node: %d", result);
758 	return result;
759 }
760 
761 int sctp_accept_from_sock(struct connection *con)
762 {
763 	/* Check that the new node is in the lockspace */
764 	struct sctp_prim prim;
765 	int nodeid;
766 	int prim_len, ret;
767 	int addr_len;
768 	struct connection *newcon;
769 	struct connection *addcon;
770 	struct socket *newsock;
771 
772 	mutex_lock(&connections_lock);
773 	if (!dlm_allow_conn) {
774 		mutex_unlock(&connections_lock);
775 		return -1;
776 	}
777 	mutex_unlock(&connections_lock);
778 
779 	mutex_lock_nested(&con->sock_mutex, 0);
780 
781 	ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
782 	if (ret < 0)
783 		goto accept_err;
784 
785 	memset(&prim, 0, sizeof(struct sctp_prim));
786 	prim_len = sizeof(struct sctp_prim);
787 
788 	ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
789 				(char *)&prim, &prim_len);
790 	if (ret < 0) {
791 		log_print("getsockopt/sctp_primary_addr failed: %d", ret);
792 		goto accept_err;
793 	}
794 
795 	make_sockaddr(&prim.ssp_addr, 0, &addr_len);
796 	if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
797 		unsigned char *b = (unsigned char *)&prim.ssp_addr;
798 
799 		log_print("reject connect from unknown addr");
800 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
801 				     b, sizeof(struct sockaddr_storage));
802 		goto accept_err;
803 	}
804 
805 	newcon = nodeid2con(nodeid, GFP_NOFS);
806 	if (!newcon) {
807 		ret = -ENOMEM;
808 		goto accept_err;
809 	}
810 
811 	mutex_lock_nested(&newcon->sock_mutex, 1);
812 
813 	if (newcon->sock) {
814 		struct connection *othercon = newcon->othercon;
815 
816 		if (!othercon) {
817 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
818 			if (!othercon) {
819 				log_print("failed to allocate incoming socket");
820 				mutex_unlock(&newcon->sock_mutex);
821 				ret = -ENOMEM;
822 				goto accept_err;
823 			}
824 			othercon->nodeid = nodeid;
825 			othercon->rx_action = receive_from_sock;
826 			mutex_init(&othercon->sock_mutex);
827 			INIT_WORK(&othercon->swork, process_send_sockets);
828 			INIT_WORK(&othercon->rwork, process_recv_sockets);
829 			set_bit(CF_IS_OTHERCON, &othercon->flags);
830 		}
831 		if (!othercon->sock) {
832 			newcon->othercon = othercon;
833 			othercon->sock = newsock;
834 			newsock->sk->sk_user_data = othercon;
835 			add_sock(newsock, othercon);
836 			addcon = othercon;
837 		} else {
838 			printk("Extra connection from node %d attempted\n", nodeid);
839 			ret = -EAGAIN;
840 			mutex_unlock(&newcon->sock_mutex);
841 			goto accept_err;
842 		}
843 	} else {
844 		newsock->sk->sk_user_data = newcon;
845 		newcon->rx_action = receive_from_sock;
846 		add_sock(newsock, newcon);
847 		addcon = newcon;
848 	}
849 
850 	log_print("connected to %d", nodeid);
851 
852 	mutex_unlock(&newcon->sock_mutex);
853 
854 	/*
855 	 * Add it to the active queue in case we got data
856 	 * between processing the accept adding the socket
857 	 * to the read_sockets list
858 	 */
859 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
860 		queue_work(recv_workqueue, &addcon->rwork);
861 	mutex_unlock(&con->sock_mutex);
862 
863 	return 0;
864 
865 accept_err:
866 	mutex_unlock(&con->sock_mutex);
867 	if (newsock)
868 		sock_release(newsock);
869 	if (ret != -EAGAIN)
870 		log_print("error accepting connection from node: %d", ret);
871 
872 	return ret;
873 }
874 
875 static void free_entry(struct writequeue_entry *e)
876 {
877 	__free_page(e->page);
878 	kfree(e);
879 }
880 
881 /*
882  * writequeue_entry_complete - try to delete and free write queue entry
883  * @e: write queue entry to try to delete
884  * @completed: bytes completed
885  *
886  * writequeue_lock must be held.
887  */
888 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
889 {
890 	e->offset += completed;
891 	e->len -= completed;
892 
893 	if (e->len == 0 && e->users == 0) {
894 		list_del(&e->list);
895 		free_entry(e);
896 	}
897 }
898 
899 /*
900  * sctp_bind_addrs - bind a SCTP socket to all our addresses
901  */
902 static int sctp_bind_addrs(struct connection *con, uint16_t port)
903 {
904 	struct sockaddr_storage localaddr;
905 	int i, addr_len, result = 0;
906 
907 	for (i = 0; i < dlm_local_count; i++) {
908 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
909 		make_sockaddr(&localaddr, port, &addr_len);
910 
911 		if (!i)
912 			result = kernel_bind(con->sock,
913 					     (struct sockaddr *)&localaddr,
914 					     addr_len);
915 		else
916 			result = kernel_setsockopt(con->sock, SOL_SCTP,
917 						   SCTP_SOCKOPT_BINDX_ADD,
918 						   (char *)&localaddr, addr_len);
919 
920 		if (result < 0) {
921 			log_print("Can't bind to %d addr number %d, %d.\n",
922 				  port, i + 1, result);
923 			break;
924 		}
925 	}
926 	return result;
927 }
928 
929 /* Initiate an SCTP association.
930    This is a special case of send_to_sock() in that we don't yet have a
931    peeled-off socket for this association, so we use the listening socket
932    and add the primary IP address of the remote node.
933  */
934 static void sctp_connect_to_sock(struct connection *con)
935 {
936 	struct sockaddr_storage daddr;
937 	int one = 1;
938 	int result;
939 	int addr_len;
940 	struct socket *sock;
941 
942 	if (con->nodeid == 0) {
943 		log_print("attempt to connect sock 0 foiled");
944 		return;
945 	}
946 
947 	mutex_lock(&con->sock_mutex);
948 
949 	/* Some odd races can cause double-connects, ignore them */
950 	if (con->retries++ > MAX_CONNECT_RETRIES)
951 		goto out;
952 
953 	if (con->sock) {
954 		log_print("node %d already connected.", con->nodeid);
955 		goto out;
956 	}
957 
958 	memset(&daddr, 0, sizeof(daddr));
959 	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
960 	if (result < 0) {
961 		log_print("no address for nodeid %d", con->nodeid);
962 		goto out;
963 	}
964 
965 	/* Create a socket to communicate with */
966 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
967 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
968 	if (result < 0)
969 		goto socket_err;
970 
971 	sock->sk->sk_user_data = con;
972 	con->rx_action = receive_from_sock;
973 	con->connect_action = sctp_connect_to_sock;
974 	add_sock(sock, con);
975 
976 	/* Bind to all addresses. */
977 	if (sctp_bind_addrs(con, 0))
978 		goto bind_err;
979 
980 	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
981 
982 	log_print("connecting to %d", con->nodeid);
983 
984 	/* Turn off Nagle's algorithm */
985 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
986 			  sizeof(one));
987 
988 	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
989 				   O_NONBLOCK);
990 	if (result == -EINPROGRESS)
991 		result = 0;
992 	if (result == 0)
993 		goto out;
994 
995 
996 bind_err:
997 	con->sock = NULL;
998 	sock_release(sock);
999 
1000 socket_err:
1001 	/*
1002 	 * Some errors are fatal and this list might need adjusting. For other
1003 	 * errors we try again until the max number of retries is reached.
1004 	 */
1005 	if (result != -EHOSTUNREACH &&
1006 	    result != -ENETUNREACH &&
1007 	    result != -ENETDOWN &&
1008 	    result != -EINVAL &&
1009 	    result != -EPROTONOSUPPORT) {
1010 		log_print("connect %d try %d error %d", con->nodeid,
1011 			  con->retries, result);
1012 		mutex_unlock(&con->sock_mutex);
1013 		msleep(1000);
1014 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1015 		lowcomms_connect_sock(con);
1016 		return;
1017 	}
1018 
1019 out:
1020 	mutex_unlock(&con->sock_mutex);
1021 }
1022 
1023 /* Connect a new socket to its peer */
1024 static void tcp_connect_to_sock(struct connection *con)
1025 {
1026 	struct sockaddr_storage saddr, src_addr;
1027 	int addr_len;
1028 	struct socket *sock = NULL;
1029 	int one = 1;
1030 	int result;
1031 
1032 	if (con->nodeid == 0) {
1033 		log_print("attempt to connect sock 0 foiled");
1034 		return;
1035 	}
1036 
1037 	mutex_lock(&con->sock_mutex);
1038 	if (con->retries++ > MAX_CONNECT_RETRIES)
1039 		goto out;
1040 
1041 	/* Some odd races can cause double-connects, ignore them */
1042 	if (con->sock)
1043 		goto out;
1044 
1045 	/* Create a socket to communicate with */
1046 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1047 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1048 	if (result < 0)
1049 		goto out_err;
1050 
1051 	memset(&saddr, 0, sizeof(saddr));
1052 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1053 	if (result < 0) {
1054 		log_print("no address for nodeid %d", con->nodeid);
1055 		goto out_err;
1056 	}
1057 
1058 	sock->sk->sk_user_data = con;
1059 	con->rx_action = receive_from_sock;
1060 	con->connect_action = tcp_connect_to_sock;
1061 	add_sock(sock, con);
1062 
1063 	/* Bind to our cluster-known address connecting to avoid
1064 	   routing problems */
1065 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1066 	make_sockaddr(&src_addr, 0, &addr_len);
1067 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1068 				 addr_len);
1069 	if (result < 0) {
1070 		log_print("could not bind for connect: %d", result);
1071 		/* This *may* not indicate a critical error */
1072 	}
1073 
1074 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1075 
1076 	log_print("connecting to %d", con->nodeid);
1077 
1078 	/* Turn off Nagle's algorithm */
1079 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1080 			  sizeof(one));
1081 
1082 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1083 				   O_NONBLOCK);
1084 	if (result == -EINPROGRESS)
1085 		result = 0;
1086 	if (result == 0)
1087 		goto out;
1088 
1089 out_err:
1090 	if (con->sock) {
1091 		sock_release(con->sock);
1092 		con->sock = NULL;
1093 	} else if (sock) {
1094 		sock_release(sock);
1095 	}
1096 	/*
1097 	 * Some errors are fatal and this list might need adjusting. For other
1098 	 * errors we try again until the max number of retries is reached.
1099 	 */
1100 	if (result != -EHOSTUNREACH &&
1101 	    result != -ENETUNREACH &&
1102 	    result != -ENETDOWN &&
1103 	    result != -EINVAL &&
1104 	    result != -EPROTONOSUPPORT) {
1105 		log_print("connect %d try %d error %d", con->nodeid,
1106 			  con->retries, result);
1107 		mutex_unlock(&con->sock_mutex);
1108 		msleep(1000);
1109 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1110 		lowcomms_connect_sock(con);
1111 		return;
1112 	}
1113 out:
1114 	mutex_unlock(&con->sock_mutex);
1115 	return;
1116 }
1117 
1118 static struct socket *tcp_create_listen_sock(struct connection *con,
1119 					     struct sockaddr_storage *saddr)
1120 {
1121 	struct socket *sock = NULL;
1122 	int result = 0;
1123 	int one = 1;
1124 	int addr_len;
1125 
1126 	if (dlm_local_addr[0]->ss_family == AF_INET)
1127 		addr_len = sizeof(struct sockaddr_in);
1128 	else
1129 		addr_len = sizeof(struct sockaddr_in6);
1130 
1131 	/* Create a socket to communicate with */
1132 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1133 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1134 	if (result < 0) {
1135 		log_print("Can't create listening comms socket");
1136 		goto create_out;
1137 	}
1138 
1139 	/* Turn off Nagle's algorithm */
1140 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1141 			  sizeof(one));
1142 
1143 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1144 				   (char *)&one, sizeof(one));
1145 
1146 	if (result < 0) {
1147 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1148 	}
1149 	con->rx_action = tcp_accept_from_sock;
1150 	con->connect_action = tcp_connect_to_sock;
1151 
1152 	/* Bind to our port */
1153 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1154 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1155 	if (result < 0) {
1156 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1157 		sock_release(sock);
1158 		sock = NULL;
1159 		con->sock = NULL;
1160 		goto create_out;
1161 	}
1162 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1163 				 (char *)&one, sizeof(one));
1164 	if (result < 0) {
1165 		log_print("Set keepalive failed: %d", result);
1166 	}
1167 
1168 	result = sock->ops->listen(sock, 5);
1169 	if (result < 0) {
1170 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1171 		sock_release(sock);
1172 		sock = NULL;
1173 		goto create_out;
1174 	}
1175 
1176 create_out:
1177 	return sock;
1178 }
1179 
1180 /* Get local addresses */
1181 static void init_local(void)
1182 {
1183 	struct sockaddr_storage sas, *addr;
1184 	int i;
1185 
1186 	dlm_local_count = 0;
1187 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1188 		if (dlm_our_addr(&sas, i))
1189 			break;
1190 
1191 		addr = kmalloc(sizeof(*addr), GFP_NOFS);
1192 		if (!addr)
1193 			break;
1194 		memcpy(addr, &sas, sizeof(*addr));
1195 		dlm_local_addr[dlm_local_count++] = addr;
1196 	}
1197 }
1198 
1199 /* Initialise SCTP socket and bind to all interfaces */
1200 static int sctp_listen_for_all(void)
1201 {
1202 	struct socket *sock = NULL;
1203 	int result = -EINVAL;
1204 	struct connection *con = nodeid2con(0, GFP_NOFS);
1205 	int bufsize = NEEDED_RMEM;
1206 	int one = 1;
1207 
1208 	if (!con)
1209 		return -ENOMEM;
1210 
1211 	log_print("Using SCTP for communications");
1212 
1213 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1214 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1215 	if (result < 0) {
1216 		log_print("Can't create comms socket, check SCTP is loaded");
1217 		goto out;
1218 	}
1219 
1220 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1221 				 (char *)&bufsize, sizeof(bufsize));
1222 	if (result)
1223 		log_print("Error increasing buffer space on socket %d", result);
1224 
1225 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1226 				   sizeof(one));
1227 	if (result < 0)
1228 		log_print("Could not set SCTP NODELAY error %d\n", result);
1229 
1230 	/* Init con struct */
1231 	sock->sk->sk_user_data = con;
1232 	con->sock = sock;
1233 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1234 	con->rx_action = sctp_accept_from_sock;
1235 	con->connect_action = sctp_connect_to_sock;
1236 
1237 	/* Bind to all addresses. */
1238 	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1239 		goto create_delsock;
1240 
1241 	result = sock->ops->listen(sock, 5);
1242 	if (result < 0) {
1243 		log_print("Can't set socket listening");
1244 		goto create_delsock;
1245 	}
1246 
1247 	return 0;
1248 
1249 create_delsock:
1250 	sock_release(sock);
1251 	con->sock = NULL;
1252 out:
1253 	return result;
1254 }
1255 
1256 static int tcp_listen_for_all(void)
1257 {
1258 	struct socket *sock = NULL;
1259 	struct connection *con = nodeid2con(0, GFP_NOFS);
1260 	int result = -EINVAL;
1261 
1262 	if (!con)
1263 		return -ENOMEM;
1264 
1265 	/* We don't support multi-homed hosts */
1266 	if (dlm_local_addr[1] != NULL) {
1267 		log_print("TCP protocol can't handle multi-homed hosts, "
1268 			  "try SCTP");
1269 		return -EINVAL;
1270 	}
1271 
1272 	log_print("Using TCP for communications");
1273 
1274 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1275 	if (sock) {
1276 		add_sock(sock, con);
1277 		result = 0;
1278 	}
1279 	else {
1280 		result = -EADDRINUSE;
1281 	}
1282 
1283 	return result;
1284 }
1285 
1286 
1287 
1288 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1289 						     gfp_t allocation)
1290 {
1291 	struct writequeue_entry *entry;
1292 
1293 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1294 	if (!entry)
1295 		return NULL;
1296 
1297 	entry->page = alloc_page(allocation);
1298 	if (!entry->page) {
1299 		kfree(entry);
1300 		return NULL;
1301 	}
1302 
1303 	entry->offset = 0;
1304 	entry->len = 0;
1305 	entry->end = 0;
1306 	entry->users = 0;
1307 	entry->con = con;
1308 
1309 	return entry;
1310 }
1311 
1312 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1313 {
1314 	struct connection *con;
1315 	struct writequeue_entry *e;
1316 	int offset = 0;
1317 
1318 	con = nodeid2con(nodeid, allocation);
1319 	if (!con)
1320 		return NULL;
1321 
1322 	spin_lock(&con->writequeue_lock);
1323 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1324 	if ((&e->list == &con->writequeue) ||
1325 	    (PAGE_CACHE_SIZE - e->end < len)) {
1326 		e = NULL;
1327 	} else {
1328 		offset = e->end;
1329 		e->end += len;
1330 		e->users++;
1331 	}
1332 	spin_unlock(&con->writequeue_lock);
1333 
1334 	if (e) {
1335 	got_one:
1336 		*ppc = page_address(e->page) + offset;
1337 		return e;
1338 	}
1339 
1340 	e = new_writequeue_entry(con, allocation);
1341 	if (e) {
1342 		spin_lock(&con->writequeue_lock);
1343 		offset = e->end;
1344 		e->end += len;
1345 		e->users++;
1346 		list_add_tail(&e->list, &con->writequeue);
1347 		spin_unlock(&con->writequeue_lock);
1348 		goto got_one;
1349 	}
1350 	return NULL;
1351 }
1352 
1353 void dlm_lowcomms_commit_buffer(void *mh)
1354 {
1355 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1356 	struct connection *con = e->con;
1357 	int users;
1358 
1359 	spin_lock(&con->writequeue_lock);
1360 	users = --e->users;
1361 	if (users)
1362 		goto out;
1363 	e->len = e->end - e->offset;
1364 	spin_unlock(&con->writequeue_lock);
1365 
1366 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1367 		queue_work(send_workqueue, &con->swork);
1368 	}
1369 	return;
1370 
1371 out:
1372 	spin_unlock(&con->writequeue_lock);
1373 	return;
1374 }
1375 
1376 /* Send a message */
1377 static void send_to_sock(struct connection *con)
1378 {
1379 	int ret = 0;
1380 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1381 	struct writequeue_entry *e;
1382 	int len, offset;
1383 	int count = 0;
1384 
1385 	mutex_lock(&con->sock_mutex);
1386 	if (con->sock == NULL)
1387 		goto out_connect;
1388 
1389 	spin_lock(&con->writequeue_lock);
1390 	for (;;) {
1391 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1392 			       list);
1393 		if ((struct list_head *) e == &con->writequeue)
1394 			break;
1395 
1396 		len = e->len;
1397 		offset = e->offset;
1398 		BUG_ON(len == 0 && e->users == 0);
1399 		spin_unlock(&con->writequeue_lock);
1400 
1401 		ret = 0;
1402 		if (len) {
1403 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1404 					      msg_flags);
1405 			if (ret == -EAGAIN || ret == 0) {
1406 				if (ret == -EAGAIN &&
1407 				    test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1408 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1409 					/* Notify TCP that we're limited by the
1410 					 * application window size.
1411 					 */
1412 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1413 					con->sock->sk->sk_write_pending++;
1414 				}
1415 				cond_resched();
1416 				goto out;
1417 			} else if (ret < 0)
1418 				goto send_error;
1419 		}
1420 
1421 		/* Don't starve people filling buffers */
1422 		if (++count >= MAX_SEND_MSG_COUNT) {
1423 			cond_resched();
1424 			count = 0;
1425 		}
1426 
1427 		spin_lock(&con->writequeue_lock);
1428 		writequeue_entry_complete(e, ret);
1429 	}
1430 	spin_unlock(&con->writequeue_lock);
1431 out:
1432 	mutex_unlock(&con->sock_mutex);
1433 	return;
1434 
1435 send_error:
1436 	mutex_unlock(&con->sock_mutex);
1437 	close_connection(con, false, false, true);
1438 	lowcomms_connect_sock(con);
1439 	return;
1440 
1441 out_connect:
1442 	mutex_unlock(&con->sock_mutex);
1443 	lowcomms_connect_sock(con);
1444 }
1445 
1446 static void clean_one_writequeue(struct connection *con)
1447 {
1448 	struct writequeue_entry *e, *safe;
1449 
1450 	spin_lock(&con->writequeue_lock);
1451 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1452 		list_del(&e->list);
1453 		free_entry(e);
1454 	}
1455 	spin_unlock(&con->writequeue_lock);
1456 }
1457 
1458 /* Called from recovery when it knows that a node has
1459    left the cluster */
1460 int dlm_lowcomms_close(int nodeid)
1461 {
1462 	struct connection *con;
1463 	struct dlm_node_addr *na;
1464 
1465 	log_print("closing connection to node %d", nodeid);
1466 	con = nodeid2con(nodeid, 0);
1467 	if (con) {
1468 		set_bit(CF_CLOSE, &con->flags);
1469 		close_connection(con, true, true, true);
1470 		clean_one_writequeue(con);
1471 	}
1472 
1473 	spin_lock(&dlm_node_addrs_spin);
1474 	na = find_node_addr(nodeid);
1475 	if (na) {
1476 		list_del(&na->list);
1477 		while (na->addr_count--)
1478 			kfree(na->addr[na->addr_count]);
1479 		kfree(na);
1480 	}
1481 	spin_unlock(&dlm_node_addrs_spin);
1482 
1483 	return 0;
1484 }
1485 
1486 /* Receive workqueue function */
1487 static void process_recv_sockets(struct work_struct *work)
1488 {
1489 	struct connection *con = container_of(work, struct connection, rwork);
1490 	int err;
1491 
1492 	clear_bit(CF_READ_PENDING, &con->flags);
1493 	do {
1494 		err = con->rx_action(con);
1495 	} while (!err);
1496 }
1497 
1498 /* Send workqueue function */
1499 static void process_send_sockets(struct work_struct *work)
1500 {
1501 	struct connection *con = container_of(work, struct connection, swork);
1502 
1503 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1504 		con->connect_action(con);
1505 		set_bit(CF_WRITE_PENDING, &con->flags);
1506 	}
1507 	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1508 		send_to_sock(con);
1509 }
1510 
1511 
1512 /* Discard all entries on the write queues */
1513 static void clean_writequeues(void)
1514 {
1515 	foreach_conn(clean_one_writequeue);
1516 }
1517 
1518 static void work_stop(void)
1519 {
1520 	destroy_workqueue(recv_workqueue);
1521 	destroy_workqueue(send_workqueue);
1522 }
1523 
1524 static int work_start(void)
1525 {
1526 	recv_workqueue = alloc_workqueue("dlm_recv",
1527 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1528 	if (!recv_workqueue) {
1529 		log_print("can't start dlm_recv");
1530 		return -ENOMEM;
1531 	}
1532 
1533 	send_workqueue = alloc_workqueue("dlm_send",
1534 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1535 	if (!send_workqueue) {
1536 		log_print("can't start dlm_send");
1537 		destroy_workqueue(recv_workqueue);
1538 		return -ENOMEM;
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 static void stop_conn(struct connection *con)
1545 {
1546 	con->flags |= 0x0F;
1547 	if (con->sock && con->sock->sk)
1548 		con->sock->sk->sk_user_data = NULL;
1549 }
1550 
1551 static void free_conn(struct connection *con)
1552 {
1553 	close_connection(con, true, true, true);
1554 	if (con->othercon)
1555 		kmem_cache_free(con_cache, con->othercon);
1556 	hlist_del(&con->list);
1557 	kmem_cache_free(con_cache, con);
1558 }
1559 
1560 void dlm_lowcomms_stop(void)
1561 {
1562 	/* Set all the flags to prevent any
1563 	   socket activity.
1564 	*/
1565 	mutex_lock(&connections_lock);
1566 	dlm_allow_conn = 0;
1567 	foreach_conn(stop_conn);
1568 	mutex_unlock(&connections_lock);
1569 
1570 	work_stop();
1571 
1572 	mutex_lock(&connections_lock);
1573 	clean_writequeues();
1574 
1575 	foreach_conn(free_conn);
1576 
1577 	mutex_unlock(&connections_lock);
1578 	kmem_cache_destroy(con_cache);
1579 }
1580 
1581 int dlm_lowcomms_start(void)
1582 {
1583 	int error = -EINVAL;
1584 	struct connection *con;
1585 	int i;
1586 
1587 	for (i = 0; i < CONN_HASH_SIZE; i++)
1588 		INIT_HLIST_HEAD(&connection_hash[i]);
1589 
1590 	init_local();
1591 	if (!dlm_local_count) {
1592 		error = -ENOTCONN;
1593 		log_print("no local IP address has been set");
1594 		goto fail;
1595 	}
1596 
1597 	error = -ENOMEM;
1598 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1599 				      __alignof__(struct connection), 0,
1600 				      NULL);
1601 	if (!con_cache)
1602 		goto fail;
1603 
1604 	error = work_start();
1605 	if (error)
1606 		goto fail_destroy;
1607 
1608 	dlm_allow_conn = 1;
1609 
1610 	/* Start listening */
1611 	if (dlm_config.ci_protocol == 0)
1612 		error = tcp_listen_for_all();
1613 	else
1614 		error = sctp_listen_for_all();
1615 	if (error)
1616 		goto fail_unlisten;
1617 
1618 	return 0;
1619 
1620 fail_unlisten:
1621 	dlm_allow_conn = 0;
1622 	con = nodeid2con(0,0);
1623 	if (con) {
1624 		close_connection(con, false, true, true);
1625 		kmem_cache_free(con_cache, con);
1626 	}
1627 fail_destroy:
1628 	kmem_cache_destroy(con_cache);
1629 fail:
1630 	return error;
1631 }
1632 
1633 void dlm_lowcomms_exit(void)
1634 {
1635 	struct dlm_node_addr *na, *safe;
1636 
1637 	spin_lock(&dlm_node_addrs_spin);
1638 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1639 		list_del(&na->list);
1640 		while (na->addr_count--)
1641 			kfree(na->addr[na->addr_count]);
1642 		kfree(na);
1643 	}
1644 	spin_unlock(&dlm_node_addrs_spin);
1645 }
1646