xref: /openbmc/linux/fs/dlm/lowcomms.c (revision e6f4c346)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11 
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44 
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55 
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60 
61 #define NEEDED_RMEM (4*1024*1024)
62 #define CONN_HASH_SIZE 32
63 
64 /* Number of messages to send before rescheduling */
65 #define MAX_SEND_MSG_COUNT 25
66 
67 struct cbuf {
68 	unsigned int base;
69 	unsigned int len;
70 	unsigned int mask;
71 };
72 
73 static void cbuf_add(struct cbuf *cb, int n)
74 {
75 	cb->len += n;
76 }
77 
78 static int cbuf_data(struct cbuf *cb)
79 {
80 	return ((cb->base + cb->len) & cb->mask);
81 }
82 
83 static void cbuf_init(struct cbuf *cb, int size)
84 {
85 	cb->base = cb->len = 0;
86 	cb->mask = size-1;
87 }
88 
89 static void cbuf_eat(struct cbuf *cb, int n)
90 {
91 	cb->len  -= n;
92 	cb->base += n;
93 	cb->base &= cb->mask;
94 }
95 
96 static bool cbuf_empty(struct cbuf *cb)
97 {
98 	return cb->len == 0;
99 }
100 
101 struct connection {
102 	struct socket *sock;	/* NULL if not connected */
103 	uint32_t nodeid;	/* So we know who we are in the list */
104 	struct mutex sock_mutex;
105 	unsigned long flags;
106 #define CF_READ_PENDING 1
107 #define CF_WRITE_PENDING 2
108 #define CF_INIT_PENDING 4
109 #define CF_IS_OTHERCON 5
110 #define CF_CLOSE 6
111 #define CF_APP_LIMITED 7
112 #define CF_CLOSING 8
113 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
114 	spinlock_t writequeue_lock;
115 	int (*rx_action) (struct connection *);	/* What to do when active */
116 	void (*connect_action) (struct connection *);	/* What to do to connect */
117 	struct page *rx_page;
118 	struct cbuf cb;
119 	int retries;
120 #define MAX_CONNECT_RETRIES 3
121 	struct hlist_node list;
122 	struct connection *othercon;
123 	struct work_struct rwork; /* Receive workqueue */
124 	struct work_struct swork; /* Send workqueue */
125 };
126 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
127 
128 /* An entry waiting to be sent */
129 struct writequeue_entry {
130 	struct list_head list;
131 	struct page *page;
132 	int offset;
133 	int len;
134 	int end;
135 	int users;
136 	struct connection *con;
137 };
138 
139 struct dlm_node_addr {
140 	struct list_head list;
141 	int nodeid;
142 	int addr_count;
143 	int curr_addr_index;
144 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
145 };
146 
147 static struct listen_sock_callbacks {
148 	void (*sk_error_report)(struct sock *);
149 	void (*sk_data_ready)(struct sock *);
150 	void (*sk_state_change)(struct sock *);
151 	void (*sk_write_space)(struct sock *);
152 } listen_sock;
153 
154 static LIST_HEAD(dlm_node_addrs);
155 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
156 
157 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
158 static int dlm_local_count;
159 static int dlm_allow_conn;
160 
161 /* Work queues */
162 static struct workqueue_struct *recv_workqueue;
163 static struct workqueue_struct *send_workqueue;
164 
165 static struct hlist_head connection_hash[CONN_HASH_SIZE];
166 static DEFINE_MUTEX(connections_lock);
167 static struct kmem_cache *con_cache;
168 
169 static void process_recv_sockets(struct work_struct *work);
170 static void process_send_sockets(struct work_struct *work);
171 
172 
173 /* This is deliberately very simple because most clusters have simple
174    sequential nodeids, so we should be able to go straight to a connection
175    struct in the array */
176 static inline int nodeid_hash(int nodeid)
177 {
178 	return nodeid & (CONN_HASH_SIZE-1);
179 }
180 
181 static struct connection *__find_con(int nodeid)
182 {
183 	int r;
184 	struct connection *con;
185 
186 	r = nodeid_hash(nodeid);
187 
188 	hlist_for_each_entry(con, &connection_hash[r], list) {
189 		if (con->nodeid == nodeid)
190 			return con;
191 	}
192 	return NULL;
193 }
194 
195 /*
196  * If 'allocation' is zero then we don't attempt to create a new
197  * connection structure for this node.
198  */
199 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
200 {
201 	struct connection *con = NULL;
202 	int r;
203 
204 	con = __find_con(nodeid);
205 	if (con || !alloc)
206 		return con;
207 
208 	con = kmem_cache_zalloc(con_cache, alloc);
209 	if (!con)
210 		return NULL;
211 
212 	r = nodeid_hash(nodeid);
213 	hlist_add_head(&con->list, &connection_hash[r]);
214 
215 	con->nodeid = nodeid;
216 	mutex_init(&con->sock_mutex);
217 	INIT_LIST_HEAD(&con->writequeue);
218 	spin_lock_init(&con->writequeue_lock);
219 	INIT_WORK(&con->swork, process_send_sockets);
220 	INIT_WORK(&con->rwork, process_recv_sockets);
221 
222 	/* Setup action pointers for child sockets */
223 	if (con->nodeid) {
224 		struct connection *zerocon = __find_con(0);
225 
226 		con->connect_action = zerocon->connect_action;
227 		if (!con->rx_action)
228 			con->rx_action = zerocon->rx_action;
229 	}
230 
231 	return con;
232 }
233 
234 /* Loop round all connections */
235 static void foreach_conn(void (*conn_func)(struct connection *c))
236 {
237 	int i;
238 	struct hlist_node *n;
239 	struct connection *con;
240 
241 	for (i = 0; i < CONN_HASH_SIZE; i++) {
242 		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
243 			conn_func(con);
244 	}
245 }
246 
247 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
248 {
249 	struct connection *con;
250 
251 	mutex_lock(&connections_lock);
252 	con = __nodeid2con(nodeid, allocation);
253 	mutex_unlock(&connections_lock);
254 
255 	return con;
256 }
257 
258 static struct dlm_node_addr *find_node_addr(int nodeid)
259 {
260 	struct dlm_node_addr *na;
261 
262 	list_for_each_entry(na, &dlm_node_addrs, list) {
263 		if (na->nodeid == nodeid)
264 			return na;
265 	}
266 	return NULL;
267 }
268 
269 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
270 {
271 	switch (x->ss_family) {
272 	case AF_INET: {
273 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
274 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
275 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
276 			return 0;
277 		if (sinx->sin_port != siny->sin_port)
278 			return 0;
279 		break;
280 	}
281 	case AF_INET6: {
282 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
283 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
284 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
285 			return 0;
286 		if (sinx->sin6_port != siny->sin6_port)
287 			return 0;
288 		break;
289 	}
290 	default:
291 		return 0;
292 	}
293 	return 1;
294 }
295 
296 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
297 			  struct sockaddr *sa_out, bool try_new_addr)
298 {
299 	struct sockaddr_storage sas;
300 	struct dlm_node_addr *na;
301 
302 	if (!dlm_local_count)
303 		return -1;
304 
305 	spin_lock(&dlm_node_addrs_spin);
306 	na = find_node_addr(nodeid);
307 	if (na && na->addr_count) {
308 		memcpy(&sas, na->addr[na->curr_addr_index],
309 		       sizeof(struct sockaddr_storage));
310 
311 		if (try_new_addr) {
312 			na->curr_addr_index++;
313 			if (na->curr_addr_index == na->addr_count)
314 				na->curr_addr_index = 0;
315 		}
316 	}
317 	spin_unlock(&dlm_node_addrs_spin);
318 
319 	if (!na)
320 		return -EEXIST;
321 
322 	if (!na->addr_count)
323 		return -ENOENT;
324 
325 	if (sas_out)
326 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
327 
328 	if (!sa_out)
329 		return 0;
330 
331 	if (dlm_local_addr[0]->ss_family == AF_INET) {
332 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
333 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
334 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
335 	} else {
336 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
337 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
338 		ret6->sin6_addr = in6->sin6_addr;
339 	}
340 
341 	return 0;
342 }
343 
344 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
345 {
346 	struct dlm_node_addr *na;
347 	int rv = -EEXIST;
348 	int addr_i;
349 
350 	spin_lock(&dlm_node_addrs_spin);
351 	list_for_each_entry(na, &dlm_node_addrs, list) {
352 		if (!na->addr_count)
353 			continue;
354 
355 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
356 			if (addr_compare(na->addr[addr_i], addr)) {
357 				*nodeid = na->nodeid;
358 				rv = 0;
359 				goto unlock;
360 			}
361 		}
362 	}
363 unlock:
364 	spin_unlock(&dlm_node_addrs_spin);
365 	return rv;
366 }
367 
368 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
369 {
370 	struct sockaddr_storage *new_addr;
371 	struct dlm_node_addr *new_node, *na;
372 
373 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
374 	if (!new_node)
375 		return -ENOMEM;
376 
377 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
378 	if (!new_addr) {
379 		kfree(new_node);
380 		return -ENOMEM;
381 	}
382 
383 	memcpy(new_addr, addr, len);
384 
385 	spin_lock(&dlm_node_addrs_spin);
386 	na = find_node_addr(nodeid);
387 	if (!na) {
388 		new_node->nodeid = nodeid;
389 		new_node->addr[0] = new_addr;
390 		new_node->addr_count = 1;
391 		list_add(&new_node->list, &dlm_node_addrs);
392 		spin_unlock(&dlm_node_addrs_spin);
393 		return 0;
394 	}
395 
396 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
397 		spin_unlock(&dlm_node_addrs_spin);
398 		kfree(new_addr);
399 		kfree(new_node);
400 		return -ENOSPC;
401 	}
402 
403 	na->addr[na->addr_count++] = new_addr;
404 	spin_unlock(&dlm_node_addrs_spin);
405 	kfree(new_node);
406 	return 0;
407 }
408 
409 /* Data available on socket or listen socket received a connect */
410 static void lowcomms_data_ready(struct sock *sk)
411 {
412 	struct connection *con;
413 
414 	read_lock_bh(&sk->sk_callback_lock);
415 	con = sock2con(sk);
416 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
417 		queue_work(recv_workqueue, &con->rwork);
418 	read_unlock_bh(&sk->sk_callback_lock);
419 }
420 
421 static void lowcomms_write_space(struct sock *sk)
422 {
423 	struct connection *con;
424 
425 	read_lock_bh(&sk->sk_callback_lock);
426 	con = sock2con(sk);
427 	if (!con)
428 		goto out;
429 
430 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
431 
432 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
433 		con->sock->sk->sk_write_pending--;
434 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
435 	}
436 
437 	queue_work(send_workqueue, &con->swork);
438 out:
439 	read_unlock_bh(&sk->sk_callback_lock);
440 }
441 
442 static inline void lowcomms_connect_sock(struct connection *con)
443 {
444 	if (test_bit(CF_CLOSE, &con->flags))
445 		return;
446 	queue_work(send_workqueue, &con->swork);
447 	cond_resched();
448 }
449 
450 static void lowcomms_state_change(struct sock *sk)
451 {
452 	/* SCTP layer is not calling sk_data_ready when the connection
453 	 * is done, so we catch the signal through here. Also, it
454 	 * doesn't switch socket state when entering shutdown, so we
455 	 * skip the write in that case.
456 	 */
457 	if (sk->sk_shutdown) {
458 		if (sk->sk_shutdown == RCV_SHUTDOWN)
459 			lowcomms_data_ready(sk);
460 	} else if (sk->sk_state == TCP_ESTABLISHED) {
461 		lowcomms_write_space(sk);
462 	}
463 }
464 
465 int dlm_lowcomms_connect_node(int nodeid)
466 {
467 	struct connection *con;
468 
469 	if (nodeid == dlm_our_nodeid())
470 		return 0;
471 
472 	con = nodeid2con(nodeid, GFP_NOFS);
473 	if (!con)
474 		return -ENOMEM;
475 	lowcomms_connect_sock(con);
476 	return 0;
477 }
478 
479 static void lowcomms_error_report(struct sock *sk)
480 {
481 	struct connection *con;
482 	struct sockaddr_storage saddr;
483 	void (*orig_report)(struct sock *) = NULL;
484 
485 	read_lock_bh(&sk->sk_callback_lock);
486 	con = sock2con(sk);
487 	if (con == NULL)
488 		goto out;
489 
490 	orig_report = listen_sock.sk_error_report;
491 	if (con->sock == NULL ||
492 	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
493 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
494 				   "sending to node %d, port %d, "
495 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
496 				   con->nodeid, dlm_config.ci_tcp_port,
497 				   sk->sk_err, sk->sk_err_soft);
498 	} else if (saddr.ss_family == AF_INET) {
499 		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
500 
501 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
502 				   "sending to node %d at %pI4, port %d, "
503 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
504 				   con->nodeid, &sin4->sin_addr.s_addr,
505 				   dlm_config.ci_tcp_port, sk->sk_err,
506 				   sk->sk_err_soft);
507 	} else {
508 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
509 
510 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
511 				   "sending to node %d at %u.%u.%u.%u, "
512 				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
513 				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
514 				   sin6->sin6_addr.s6_addr32[1],
515 				   sin6->sin6_addr.s6_addr32[2],
516 				   sin6->sin6_addr.s6_addr32[3],
517 				   dlm_config.ci_tcp_port, sk->sk_err,
518 				   sk->sk_err_soft);
519 	}
520 out:
521 	read_unlock_bh(&sk->sk_callback_lock);
522 	if (orig_report)
523 		orig_report(sk);
524 }
525 
526 /* Note: sk_callback_lock must be locked before calling this function. */
527 static void save_listen_callbacks(struct socket *sock)
528 {
529 	struct sock *sk = sock->sk;
530 
531 	listen_sock.sk_data_ready = sk->sk_data_ready;
532 	listen_sock.sk_state_change = sk->sk_state_change;
533 	listen_sock.sk_write_space = sk->sk_write_space;
534 	listen_sock.sk_error_report = sk->sk_error_report;
535 }
536 
537 static void restore_callbacks(struct socket *sock)
538 {
539 	struct sock *sk = sock->sk;
540 
541 	write_lock_bh(&sk->sk_callback_lock);
542 	sk->sk_user_data = NULL;
543 	sk->sk_data_ready = listen_sock.sk_data_ready;
544 	sk->sk_state_change = listen_sock.sk_state_change;
545 	sk->sk_write_space = listen_sock.sk_write_space;
546 	sk->sk_error_report = listen_sock.sk_error_report;
547 	write_unlock_bh(&sk->sk_callback_lock);
548 }
549 
550 /* Make a socket active */
551 static void add_sock(struct socket *sock, struct connection *con)
552 {
553 	struct sock *sk = sock->sk;
554 
555 	write_lock_bh(&sk->sk_callback_lock);
556 	con->sock = sock;
557 
558 	sk->sk_user_data = con;
559 	/* Install a data_ready callback */
560 	sk->sk_data_ready = lowcomms_data_ready;
561 	sk->sk_write_space = lowcomms_write_space;
562 	sk->sk_state_change = lowcomms_state_change;
563 	sk->sk_allocation = GFP_NOFS;
564 	sk->sk_error_report = lowcomms_error_report;
565 	write_unlock_bh(&sk->sk_callback_lock);
566 }
567 
568 /* Add the port number to an IPv6 or 4 sockaddr and return the address
569    length */
570 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
571 			  int *addr_len)
572 {
573 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
574 	if (saddr->ss_family == AF_INET) {
575 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
576 		in4_addr->sin_port = cpu_to_be16(port);
577 		*addr_len = sizeof(struct sockaddr_in);
578 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
579 	} else {
580 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
581 		in6_addr->sin6_port = cpu_to_be16(port);
582 		*addr_len = sizeof(struct sockaddr_in6);
583 	}
584 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
585 }
586 
587 /* Close a remote connection and tidy up */
588 static void close_connection(struct connection *con, bool and_other,
589 			     bool tx, bool rx)
590 {
591 	bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
592 
593 	if (tx && !closing && cancel_work_sync(&con->swork)) {
594 		log_print("canceled swork for node %d", con->nodeid);
595 		clear_bit(CF_WRITE_PENDING, &con->flags);
596 	}
597 	if (rx && !closing && cancel_work_sync(&con->rwork)) {
598 		log_print("canceled rwork for node %d", con->nodeid);
599 		clear_bit(CF_READ_PENDING, &con->flags);
600 	}
601 
602 	mutex_lock(&con->sock_mutex);
603 	if (con->sock) {
604 		restore_callbacks(con->sock);
605 		sock_release(con->sock);
606 		con->sock = NULL;
607 	}
608 	if (con->othercon && and_other) {
609 		/* Will only re-enter once. */
610 		close_connection(con->othercon, false, true, true);
611 	}
612 	if (con->rx_page) {
613 		__free_page(con->rx_page);
614 		con->rx_page = NULL;
615 	}
616 
617 	con->retries = 0;
618 	mutex_unlock(&con->sock_mutex);
619 	clear_bit(CF_CLOSING, &con->flags);
620 }
621 
622 /* Data received from remote end */
623 static int receive_from_sock(struct connection *con)
624 {
625 	int ret = 0;
626 	struct msghdr msg = {};
627 	struct kvec iov[2];
628 	unsigned len;
629 	int r;
630 	int call_again_soon = 0;
631 	int nvec;
632 
633 	mutex_lock(&con->sock_mutex);
634 
635 	if (con->sock == NULL) {
636 		ret = -EAGAIN;
637 		goto out_close;
638 	}
639 	if (con->nodeid == 0) {
640 		ret = -EINVAL;
641 		goto out_close;
642 	}
643 
644 	if (con->rx_page == NULL) {
645 		/*
646 		 * This doesn't need to be atomic, but I think it should
647 		 * improve performance if it is.
648 		 */
649 		con->rx_page = alloc_page(GFP_ATOMIC);
650 		if (con->rx_page == NULL)
651 			goto out_resched;
652 		cbuf_init(&con->cb, PAGE_SIZE);
653 	}
654 
655 	/*
656 	 * iov[0] is the bit of the circular buffer between the current end
657 	 * point (cb.base + cb.len) and the end of the buffer.
658 	 */
659 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
660 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
661 	iov[1].iov_len = 0;
662 	nvec = 1;
663 
664 	/*
665 	 * iov[1] is the bit of the circular buffer between the start of the
666 	 * buffer and the start of the currently used section (cb.base)
667 	 */
668 	if (cbuf_data(&con->cb) >= con->cb.base) {
669 		iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
670 		iov[1].iov_len = con->cb.base;
671 		iov[1].iov_base = page_address(con->rx_page);
672 		nvec = 2;
673 	}
674 	len = iov[0].iov_len + iov[1].iov_len;
675 	iov_iter_kvec(&msg.msg_iter, READ, iov, nvec, len);
676 
677 	r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL);
678 	if (ret <= 0)
679 		goto out_close;
680 	else if (ret == len)
681 		call_again_soon = 1;
682 
683 	cbuf_add(&con->cb, ret);
684 	ret = dlm_process_incoming_buffer(con->nodeid,
685 					  page_address(con->rx_page),
686 					  con->cb.base, con->cb.len,
687 					  PAGE_SIZE);
688 	if (ret == -EBADMSG) {
689 		log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
690 			  page_address(con->rx_page), con->cb.base,
691 			  con->cb.len, r);
692 	}
693 	if (ret < 0)
694 		goto out_close;
695 	cbuf_eat(&con->cb, ret);
696 
697 	if (cbuf_empty(&con->cb) && !call_again_soon) {
698 		__free_page(con->rx_page);
699 		con->rx_page = NULL;
700 	}
701 
702 	if (call_again_soon)
703 		goto out_resched;
704 	mutex_unlock(&con->sock_mutex);
705 	return 0;
706 
707 out_resched:
708 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
709 		queue_work(recv_workqueue, &con->rwork);
710 	mutex_unlock(&con->sock_mutex);
711 	return -EAGAIN;
712 
713 out_close:
714 	mutex_unlock(&con->sock_mutex);
715 	if (ret != -EAGAIN) {
716 		close_connection(con, true, true, false);
717 		/* Reconnect when there is something to send */
718 	}
719 	/* Don't return success if we really got EOF */
720 	if (ret == 0)
721 		ret = -EAGAIN;
722 
723 	return ret;
724 }
725 
726 /* Listening socket is busy, accept a connection */
727 static int tcp_accept_from_sock(struct connection *con)
728 {
729 	int result;
730 	struct sockaddr_storage peeraddr;
731 	struct socket *newsock;
732 	int len;
733 	int nodeid;
734 	struct connection *newcon;
735 	struct connection *addcon;
736 
737 	mutex_lock(&connections_lock);
738 	if (!dlm_allow_conn) {
739 		mutex_unlock(&connections_lock);
740 		return -1;
741 	}
742 	mutex_unlock(&connections_lock);
743 
744 	mutex_lock_nested(&con->sock_mutex, 0);
745 
746 	if (!con->sock) {
747 		mutex_unlock(&con->sock_mutex);
748 		return -ENOTCONN;
749 	}
750 
751 	result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
752 	if (result < 0)
753 		goto accept_err;
754 
755 	/* Get the connected socket's peer */
756 	memset(&peeraddr, 0, sizeof(peeraddr));
757 	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
758 	if (len < 0) {
759 		result = -ECONNABORTED;
760 		goto accept_err;
761 	}
762 
763 	/* Get the new node's NODEID */
764 	make_sockaddr(&peeraddr, 0, &len);
765 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
766 		unsigned char *b=(unsigned char *)&peeraddr;
767 		log_print("connect from non cluster node");
768 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
769 				     b, sizeof(struct sockaddr_storage));
770 		sock_release(newsock);
771 		mutex_unlock(&con->sock_mutex);
772 		return -1;
773 	}
774 
775 	log_print("got connection from %d", nodeid);
776 
777 	/*  Check to see if we already have a connection to this node. This
778 	 *  could happen if the two nodes initiate a connection at roughly
779 	 *  the same time and the connections cross on the wire.
780 	 *  In this case we store the incoming one in "othercon"
781 	 */
782 	newcon = nodeid2con(nodeid, GFP_NOFS);
783 	if (!newcon) {
784 		result = -ENOMEM;
785 		goto accept_err;
786 	}
787 	mutex_lock_nested(&newcon->sock_mutex, 1);
788 	if (newcon->sock) {
789 		struct connection *othercon = newcon->othercon;
790 
791 		if (!othercon) {
792 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
793 			if (!othercon) {
794 				log_print("failed to allocate incoming socket");
795 				mutex_unlock(&newcon->sock_mutex);
796 				result = -ENOMEM;
797 				goto accept_err;
798 			}
799 			othercon->nodeid = nodeid;
800 			othercon->rx_action = receive_from_sock;
801 			mutex_init(&othercon->sock_mutex);
802 			INIT_LIST_HEAD(&othercon->writequeue);
803 			spin_lock_init(&othercon->writequeue_lock);
804 			INIT_WORK(&othercon->swork, process_send_sockets);
805 			INIT_WORK(&othercon->rwork, process_recv_sockets);
806 			set_bit(CF_IS_OTHERCON, &othercon->flags);
807 		}
808 		mutex_lock_nested(&othercon->sock_mutex, 2);
809 		if (!othercon->sock) {
810 			newcon->othercon = othercon;
811 			add_sock(newsock, othercon);
812 			addcon = othercon;
813 			mutex_unlock(&othercon->sock_mutex);
814 		}
815 		else {
816 			printk("Extra connection from node %d attempted\n", nodeid);
817 			result = -EAGAIN;
818 			mutex_unlock(&othercon->sock_mutex);
819 			mutex_unlock(&newcon->sock_mutex);
820 			goto accept_err;
821 		}
822 	}
823 	else {
824 		newcon->rx_action = receive_from_sock;
825 		/* accept copies the sk after we've saved the callbacks, so we
826 		   don't want to save them a second time or comm errors will
827 		   result in calling sk_error_report recursively. */
828 		add_sock(newsock, newcon);
829 		addcon = newcon;
830 	}
831 
832 	mutex_unlock(&newcon->sock_mutex);
833 
834 	/*
835 	 * Add it to the active queue in case we got data
836 	 * between processing the accept adding the socket
837 	 * to the read_sockets list
838 	 */
839 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
840 		queue_work(recv_workqueue, &addcon->rwork);
841 	mutex_unlock(&con->sock_mutex);
842 
843 	return 0;
844 
845 accept_err:
846 	mutex_unlock(&con->sock_mutex);
847 	if (newsock)
848 		sock_release(newsock);
849 
850 	if (result != -EAGAIN)
851 		log_print("error accepting connection from node: %d", result);
852 	return result;
853 }
854 
855 static int sctp_accept_from_sock(struct connection *con)
856 {
857 	/* Check that the new node is in the lockspace */
858 	struct sctp_prim prim;
859 	int nodeid;
860 	int prim_len, ret;
861 	int addr_len;
862 	struct connection *newcon;
863 	struct connection *addcon;
864 	struct socket *newsock;
865 
866 	mutex_lock(&connections_lock);
867 	if (!dlm_allow_conn) {
868 		mutex_unlock(&connections_lock);
869 		return -1;
870 	}
871 	mutex_unlock(&connections_lock);
872 
873 	mutex_lock_nested(&con->sock_mutex, 0);
874 
875 	ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
876 	if (ret < 0)
877 		goto accept_err;
878 
879 	memset(&prim, 0, sizeof(struct sctp_prim));
880 	prim_len = sizeof(struct sctp_prim);
881 
882 	ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
883 				(char *)&prim, &prim_len);
884 	if (ret < 0) {
885 		log_print("getsockopt/sctp_primary_addr failed: %d", ret);
886 		goto accept_err;
887 	}
888 
889 	make_sockaddr(&prim.ssp_addr, 0, &addr_len);
890 	ret = addr_to_nodeid(&prim.ssp_addr, &nodeid);
891 	if (ret) {
892 		unsigned char *b = (unsigned char *)&prim.ssp_addr;
893 
894 		log_print("reject connect from unknown addr");
895 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
896 				     b, sizeof(struct sockaddr_storage));
897 		goto accept_err;
898 	}
899 
900 	newcon = nodeid2con(nodeid, GFP_NOFS);
901 	if (!newcon) {
902 		ret = -ENOMEM;
903 		goto accept_err;
904 	}
905 
906 	mutex_lock_nested(&newcon->sock_mutex, 1);
907 
908 	if (newcon->sock) {
909 		struct connection *othercon = newcon->othercon;
910 
911 		if (!othercon) {
912 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
913 			if (!othercon) {
914 				log_print("failed to allocate incoming socket");
915 				mutex_unlock(&newcon->sock_mutex);
916 				ret = -ENOMEM;
917 				goto accept_err;
918 			}
919 			othercon->nodeid = nodeid;
920 			othercon->rx_action = receive_from_sock;
921 			mutex_init(&othercon->sock_mutex);
922 			INIT_LIST_HEAD(&othercon->writequeue);
923 			spin_lock_init(&othercon->writequeue_lock);
924 			INIT_WORK(&othercon->swork, process_send_sockets);
925 			INIT_WORK(&othercon->rwork, process_recv_sockets);
926 			set_bit(CF_IS_OTHERCON, &othercon->flags);
927 		}
928 		mutex_lock_nested(&othercon->sock_mutex, 2);
929 		if (!othercon->sock) {
930 			newcon->othercon = othercon;
931 			add_sock(newsock, othercon);
932 			addcon = othercon;
933 			mutex_unlock(&othercon->sock_mutex);
934 		} else {
935 			printk("Extra connection from node %d attempted\n", nodeid);
936 			ret = -EAGAIN;
937 			mutex_unlock(&othercon->sock_mutex);
938 			mutex_unlock(&newcon->sock_mutex);
939 			goto accept_err;
940 		}
941 	} else {
942 		newcon->rx_action = receive_from_sock;
943 		add_sock(newsock, newcon);
944 		addcon = newcon;
945 	}
946 
947 	log_print("connected to %d", nodeid);
948 
949 	mutex_unlock(&newcon->sock_mutex);
950 
951 	/*
952 	 * Add it to the active queue in case we got data
953 	 * between processing the accept adding the socket
954 	 * to the read_sockets list
955 	 */
956 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
957 		queue_work(recv_workqueue, &addcon->rwork);
958 	mutex_unlock(&con->sock_mutex);
959 
960 	return 0;
961 
962 accept_err:
963 	mutex_unlock(&con->sock_mutex);
964 	if (newsock)
965 		sock_release(newsock);
966 	if (ret != -EAGAIN)
967 		log_print("error accepting connection from node: %d", ret);
968 
969 	return ret;
970 }
971 
972 static void free_entry(struct writequeue_entry *e)
973 {
974 	__free_page(e->page);
975 	kfree(e);
976 }
977 
978 /*
979  * writequeue_entry_complete - try to delete and free write queue entry
980  * @e: write queue entry to try to delete
981  * @completed: bytes completed
982  *
983  * writequeue_lock must be held.
984  */
985 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
986 {
987 	e->offset += completed;
988 	e->len -= completed;
989 
990 	if (e->len == 0 && e->users == 0) {
991 		list_del(&e->list);
992 		free_entry(e);
993 	}
994 }
995 
996 /*
997  * sctp_bind_addrs - bind a SCTP socket to all our addresses
998  */
999 static int sctp_bind_addrs(struct connection *con, uint16_t port)
1000 {
1001 	struct sockaddr_storage localaddr;
1002 	int i, addr_len, result = 0;
1003 
1004 	for (i = 0; i < dlm_local_count; i++) {
1005 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1006 		make_sockaddr(&localaddr, port, &addr_len);
1007 
1008 		if (!i)
1009 			result = kernel_bind(con->sock,
1010 					     (struct sockaddr *)&localaddr,
1011 					     addr_len);
1012 		else
1013 			result = kernel_setsockopt(con->sock, SOL_SCTP,
1014 						   SCTP_SOCKOPT_BINDX_ADD,
1015 						   (char *)&localaddr, addr_len);
1016 
1017 		if (result < 0) {
1018 			log_print("Can't bind to %d addr number %d, %d.\n",
1019 				  port, i + 1, result);
1020 			break;
1021 		}
1022 	}
1023 	return result;
1024 }
1025 
1026 /* Initiate an SCTP association.
1027    This is a special case of send_to_sock() in that we don't yet have a
1028    peeled-off socket for this association, so we use the listening socket
1029    and add the primary IP address of the remote node.
1030  */
1031 static void sctp_connect_to_sock(struct connection *con)
1032 {
1033 	struct sockaddr_storage daddr;
1034 	int one = 1;
1035 	int result;
1036 	int addr_len;
1037 	struct socket *sock;
1038 	struct timeval tv = { .tv_sec = 5, .tv_usec = 0 };
1039 
1040 	if (con->nodeid == 0) {
1041 		log_print("attempt to connect sock 0 foiled");
1042 		return;
1043 	}
1044 
1045 	mutex_lock(&con->sock_mutex);
1046 
1047 	/* Some odd races can cause double-connects, ignore them */
1048 	if (con->retries++ > MAX_CONNECT_RETRIES)
1049 		goto out;
1050 
1051 	if (con->sock) {
1052 		log_print("node %d already connected.", con->nodeid);
1053 		goto out;
1054 	}
1055 
1056 	memset(&daddr, 0, sizeof(daddr));
1057 	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
1058 	if (result < 0) {
1059 		log_print("no address for nodeid %d", con->nodeid);
1060 		goto out;
1061 	}
1062 
1063 	/* Create a socket to communicate with */
1064 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1065 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1066 	if (result < 0)
1067 		goto socket_err;
1068 
1069 	con->rx_action = receive_from_sock;
1070 	con->connect_action = sctp_connect_to_sock;
1071 	add_sock(sock, con);
1072 
1073 	/* Bind to all addresses. */
1074 	if (sctp_bind_addrs(con, 0))
1075 		goto bind_err;
1076 
1077 	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1078 
1079 	log_print("connecting to %d", con->nodeid);
1080 
1081 	/* Turn off Nagle's algorithm */
1082 	kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1083 			  sizeof(one));
1084 
1085 	/*
1086 	 * Make sock->ops->connect() function return in specified time,
1087 	 * since O_NONBLOCK argument in connect() function does not work here,
1088 	 * then, we should restore the default value of this attribute.
1089 	 */
1090 	kernel_setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO_OLD, (char *)&tv,
1091 			  sizeof(tv));
1092 	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1093 				   0);
1094 	memset(&tv, 0, sizeof(tv));
1095 	kernel_setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO_OLD, (char *)&tv,
1096 			  sizeof(tv));
1097 
1098 	if (result == -EINPROGRESS)
1099 		result = 0;
1100 	if (result == 0)
1101 		goto out;
1102 
1103 bind_err:
1104 	con->sock = NULL;
1105 	sock_release(sock);
1106 
1107 socket_err:
1108 	/*
1109 	 * Some errors are fatal and this list might need adjusting. For other
1110 	 * errors we try again until the max number of retries is reached.
1111 	 */
1112 	if (result != -EHOSTUNREACH &&
1113 	    result != -ENETUNREACH &&
1114 	    result != -ENETDOWN &&
1115 	    result != -EINVAL &&
1116 	    result != -EPROTONOSUPPORT) {
1117 		log_print("connect %d try %d error %d", con->nodeid,
1118 			  con->retries, result);
1119 		mutex_unlock(&con->sock_mutex);
1120 		msleep(1000);
1121 		lowcomms_connect_sock(con);
1122 		return;
1123 	}
1124 
1125 out:
1126 	mutex_unlock(&con->sock_mutex);
1127 }
1128 
1129 /* Connect a new socket to its peer */
1130 static void tcp_connect_to_sock(struct connection *con)
1131 {
1132 	struct sockaddr_storage saddr, src_addr;
1133 	int addr_len;
1134 	struct socket *sock = NULL;
1135 	int one = 1;
1136 	int result;
1137 
1138 	if (con->nodeid == 0) {
1139 		log_print("attempt to connect sock 0 foiled");
1140 		return;
1141 	}
1142 
1143 	mutex_lock(&con->sock_mutex);
1144 	if (con->retries++ > MAX_CONNECT_RETRIES)
1145 		goto out;
1146 
1147 	/* Some odd races can cause double-connects, ignore them */
1148 	if (con->sock)
1149 		goto out;
1150 
1151 	/* Create a socket to communicate with */
1152 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1153 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1154 	if (result < 0)
1155 		goto out_err;
1156 
1157 	memset(&saddr, 0, sizeof(saddr));
1158 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1159 	if (result < 0) {
1160 		log_print("no address for nodeid %d", con->nodeid);
1161 		goto out_err;
1162 	}
1163 
1164 	con->rx_action = receive_from_sock;
1165 	con->connect_action = tcp_connect_to_sock;
1166 	add_sock(sock, con);
1167 
1168 	/* Bind to our cluster-known address connecting to avoid
1169 	   routing problems */
1170 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1171 	make_sockaddr(&src_addr, 0, &addr_len);
1172 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1173 				 addr_len);
1174 	if (result < 0) {
1175 		log_print("could not bind for connect: %d", result);
1176 		/* This *may* not indicate a critical error */
1177 	}
1178 
1179 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1180 
1181 	log_print("connecting to %d", con->nodeid);
1182 
1183 	/* Turn off Nagle's algorithm */
1184 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1185 			  sizeof(one));
1186 
1187 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1188 				   O_NONBLOCK);
1189 	if (result == -EINPROGRESS)
1190 		result = 0;
1191 	if (result == 0)
1192 		goto out;
1193 
1194 out_err:
1195 	if (con->sock) {
1196 		sock_release(con->sock);
1197 		con->sock = NULL;
1198 	} else if (sock) {
1199 		sock_release(sock);
1200 	}
1201 	/*
1202 	 * Some errors are fatal and this list might need adjusting. For other
1203 	 * errors we try again until the max number of retries is reached.
1204 	 */
1205 	if (result != -EHOSTUNREACH &&
1206 	    result != -ENETUNREACH &&
1207 	    result != -ENETDOWN &&
1208 	    result != -EINVAL &&
1209 	    result != -EPROTONOSUPPORT) {
1210 		log_print("connect %d try %d error %d", con->nodeid,
1211 			  con->retries, result);
1212 		mutex_unlock(&con->sock_mutex);
1213 		msleep(1000);
1214 		lowcomms_connect_sock(con);
1215 		return;
1216 	}
1217 out:
1218 	mutex_unlock(&con->sock_mutex);
1219 	return;
1220 }
1221 
1222 static struct socket *tcp_create_listen_sock(struct connection *con,
1223 					     struct sockaddr_storage *saddr)
1224 {
1225 	struct socket *sock = NULL;
1226 	int result = 0;
1227 	int one = 1;
1228 	int addr_len;
1229 
1230 	if (dlm_local_addr[0]->ss_family == AF_INET)
1231 		addr_len = sizeof(struct sockaddr_in);
1232 	else
1233 		addr_len = sizeof(struct sockaddr_in6);
1234 
1235 	/* Create a socket to communicate with */
1236 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1237 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1238 	if (result < 0) {
1239 		log_print("Can't create listening comms socket");
1240 		goto create_out;
1241 	}
1242 
1243 	/* Turn off Nagle's algorithm */
1244 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1245 			  sizeof(one));
1246 
1247 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1248 				   (char *)&one, sizeof(one));
1249 
1250 	if (result < 0) {
1251 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1252 	}
1253 	write_lock_bh(&sock->sk->sk_callback_lock);
1254 	sock->sk->sk_user_data = con;
1255 	save_listen_callbacks(sock);
1256 	con->rx_action = tcp_accept_from_sock;
1257 	con->connect_action = tcp_connect_to_sock;
1258 	write_unlock_bh(&sock->sk->sk_callback_lock);
1259 
1260 	/* Bind to our port */
1261 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1262 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1263 	if (result < 0) {
1264 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1265 		sock_release(sock);
1266 		sock = NULL;
1267 		con->sock = NULL;
1268 		goto create_out;
1269 	}
1270 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1271 				 (char *)&one, sizeof(one));
1272 	if (result < 0) {
1273 		log_print("Set keepalive failed: %d", result);
1274 	}
1275 
1276 	result = sock->ops->listen(sock, 5);
1277 	if (result < 0) {
1278 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1279 		sock_release(sock);
1280 		sock = NULL;
1281 		goto create_out;
1282 	}
1283 
1284 create_out:
1285 	return sock;
1286 }
1287 
1288 /* Get local addresses */
1289 static void init_local(void)
1290 {
1291 	struct sockaddr_storage sas, *addr;
1292 	int i;
1293 
1294 	dlm_local_count = 0;
1295 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1296 		if (dlm_our_addr(&sas, i))
1297 			break;
1298 
1299 		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1300 		if (!addr)
1301 			break;
1302 		dlm_local_addr[dlm_local_count++] = addr;
1303 	}
1304 }
1305 
1306 /* Initialise SCTP socket and bind to all interfaces */
1307 static int sctp_listen_for_all(void)
1308 {
1309 	struct socket *sock = NULL;
1310 	int result = -EINVAL;
1311 	struct connection *con = nodeid2con(0, GFP_NOFS);
1312 	int bufsize = NEEDED_RMEM;
1313 	int one = 1;
1314 
1315 	if (!con)
1316 		return -ENOMEM;
1317 
1318 	log_print("Using SCTP for communications");
1319 
1320 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1321 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1322 	if (result < 0) {
1323 		log_print("Can't create comms socket, check SCTP is loaded");
1324 		goto out;
1325 	}
1326 
1327 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1328 				 (char *)&bufsize, sizeof(bufsize));
1329 	if (result)
1330 		log_print("Error increasing buffer space on socket %d", result);
1331 
1332 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1333 				   sizeof(one));
1334 	if (result < 0)
1335 		log_print("Could not set SCTP NODELAY error %d\n", result);
1336 
1337 	write_lock_bh(&sock->sk->sk_callback_lock);
1338 	/* Init con struct */
1339 	sock->sk->sk_user_data = con;
1340 	save_listen_callbacks(sock);
1341 	con->sock = sock;
1342 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1343 	con->rx_action = sctp_accept_from_sock;
1344 	con->connect_action = sctp_connect_to_sock;
1345 
1346 	write_unlock_bh(&sock->sk->sk_callback_lock);
1347 
1348 	/* Bind to all addresses. */
1349 	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1350 		goto create_delsock;
1351 
1352 	result = sock->ops->listen(sock, 5);
1353 	if (result < 0) {
1354 		log_print("Can't set socket listening");
1355 		goto create_delsock;
1356 	}
1357 
1358 	return 0;
1359 
1360 create_delsock:
1361 	sock_release(sock);
1362 	con->sock = NULL;
1363 out:
1364 	return result;
1365 }
1366 
1367 static int tcp_listen_for_all(void)
1368 {
1369 	struct socket *sock = NULL;
1370 	struct connection *con = nodeid2con(0, GFP_NOFS);
1371 	int result = -EINVAL;
1372 
1373 	if (!con)
1374 		return -ENOMEM;
1375 
1376 	/* We don't support multi-homed hosts */
1377 	if (dlm_local_addr[1] != NULL) {
1378 		log_print("TCP protocol can't handle multi-homed hosts, "
1379 			  "try SCTP");
1380 		return -EINVAL;
1381 	}
1382 
1383 	log_print("Using TCP for communications");
1384 
1385 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1386 	if (sock) {
1387 		add_sock(sock, con);
1388 		result = 0;
1389 	}
1390 	else {
1391 		result = -EADDRINUSE;
1392 	}
1393 
1394 	return result;
1395 }
1396 
1397 
1398 
1399 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1400 						     gfp_t allocation)
1401 {
1402 	struct writequeue_entry *entry;
1403 
1404 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1405 	if (!entry)
1406 		return NULL;
1407 
1408 	entry->page = alloc_page(allocation);
1409 	if (!entry->page) {
1410 		kfree(entry);
1411 		return NULL;
1412 	}
1413 
1414 	entry->offset = 0;
1415 	entry->len = 0;
1416 	entry->end = 0;
1417 	entry->users = 0;
1418 	entry->con = con;
1419 
1420 	return entry;
1421 }
1422 
1423 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1424 {
1425 	struct connection *con;
1426 	struct writequeue_entry *e;
1427 	int offset = 0;
1428 
1429 	con = nodeid2con(nodeid, allocation);
1430 	if (!con)
1431 		return NULL;
1432 
1433 	spin_lock(&con->writequeue_lock);
1434 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1435 	if ((&e->list == &con->writequeue) ||
1436 	    (PAGE_SIZE - e->end < len)) {
1437 		e = NULL;
1438 	} else {
1439 		offset = e->end;
1440 		e->end += len;
1441 		e->users++;
1442 	}
1443 	spin_unlock(&con->writequeue_lock);
1444 
1445 	if (e) {
1446 	got_one:
1447 		*ppc = page_address(e->page) + offset;
1448 		return e;
1449 	}
1450 
1451 	e = new_writequeue_entry(con, allocation);
1452 	if (e) {
1453 		spin_lock(&con->writequeue_lock);
1454 		offset = e->end;
1455 		e->end += len;
1456 		e->users++;
1457 		list_add_tail(&e->list, &con->writequeue);
1458 		spin_unlock(&con->writequeue_lock);
1459 		goto got_one;
1460 	}
1461 	return NULL;
1462 }
1463 
1464 void dlm_lowcomms_commit_buffer(void *mh)
1465 {
1466 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1467 	struct connection *con = e->con;
1468 	int users;
1469 
1470 	spin_lock(&con->writequeue_lock);
1471 	users = --e->users;
1472 	if (users)
1473 		goto out;
1474 	e->len = e->end - e->offset;
1475 	spin_unlock(&con->writequeue_lock);
1476 
1477 	queue_work(send_workqueue, &con->swork);
1478 	return;
1479 
1480 out:
1481 	spin_unlock(&con->writequeue_lock);
1482 	return;
1483 }
1484 
1485 /* Send a message */
1486 static void send_to_sock(struct connection *con)
1487 {
1488 	int ret = 0;
1489 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1490 	struct writequeue_entry *e;
1491 	int len, offset;
1492 	int count = 0;
1493 
1494 	mutex_lock(&con->sock_mutex);
1495 	if (con->sock == NULL)
1496 		goto out_connect;
1497 
1498 	spin_lock(&con->writequeue_lock);
1499 	for (;;) {
1500 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1501 			       list);
1502 		if ((struct list_head *) e == &con->writequeue)
1503 			break;
1504 
1505 		len = e->len;
1506 		offset = e->offset;
1507 		BUG_ON(len == 0 && e->users == 0);
1508 		spin_unlock(&con->writequeue_lock);
1509 
1510 		ret = 0;
1511 		if (len) {
1512 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1513 					      msg_flags);
1514 			if (ret == -EAGAIN || ret == 0) {
1515 				if (ret == -EAGAIN &&
1516 				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1517 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1518 					/* Notify TCP that we're limited by the
1519 					 * application window size.
1520 					 */
1521 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1522 					con->sock->sk->sk_write_pending++;
1523 				}
1524 				cond_resched();
1525 				goto out;
1526 			} else if (ret < 0)
1527 				goto send_error;
1528 		}
1529 
1530 		/* Don't starve people filling buffers */
1531 		if (++count >= MAX_SEND_MSG_COUNT) {
1532 			cond_resched();
1533 			count = 0;
1534 		}
1535 
1536 		spin_lock(&con->writequeue_lock);
1537 		writequeue_entry_complete(e, ret);
1538 	}
1539 	spin_unlock(&con->writequeue_lock);
1540 out:
1541 	mutex_unlock(&con->sock_mutex);
1542 	return;
1543 
1544 send_error:
1545 	mutex_unlock(&con->sock_mutex);
1546 	close_connection(con, true, false, true);
1547 	/* Requeue the send work. When the work daemon runs again, it will try
1548 	   a new connection, then call this function again. */
1549 	queue_work(send_workqueue, &con->swork);
1550 	return;
1551 
1552 out_connect:
1553 	mutex_unlock(&con->sock_mutex);
1554 	queue_work(send_workqueue, &con->swork);
1555 	cond_resched();
1556 }
1557 
1558 static void clean_one_writequeue(struct connection *con)
1559 {
1560 	struct writequeue_entry *e, *safe;
1561 
1562 	spin_lock(&con->writequeue_lock);
1563 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1564 		list_del(&e->list);
1565 		free_entry(e);
1566 	}
1567 	spin_unlock(&con->writequeue_lock);
1568 }
1569 
1570 /* Called from recovery when it knows that a node has
1571    left the cluster */
1572 int dlm_lowcomms_close(int nodeid)
1573 {
1574 	struct connection *con;
1575 	struct dlm_node_addr *na;
1576 
1577 	log_print("closing connection to node %d", nodeid);
1578 	con = nodeid2con(nodeid, 0);
1579 	if (con) {
1580 		set_bit(CF_CLOSE, &con->flags);
1581 		close_connection(con, true, true, true);
1582 		clean_one_writequeue(con);
1583 	}
1584 
1585 	spin_lock(&dlm_node_addrs_spin);
1586 	na = find_node_addr(nodeid);
1587 	if (na) {
1588 		list_del(&na->list);
1589 		while (na->addr_count--)
1590 			kfree(na->addr[na->addr_count]);
1591 		kfree(na);
1592 	}
1593 	spin_unlock(&dlm_node_addrs_spin);
1594 
1595 	return 0;
1596 }
1597 
1598 /* Receive workqueue function */
1599 static void process_recv_sockets(struct work_struct *work)
1600 {
1601 	struct connection *con = container_of(work, struct connection, rwork);
1602 	int err;
1603 
1604 	clear_bit(CF_READ_PENDING, &con->flags);
1605 	do {
1606 		err = con->rx_action(con);
1607 	} while (!err);
1608 }
1609 
1610 /* Send workqueue function */
1611 static void process_send_sockets(struct work_struct *work)
1612 {
1613 	struct connection *con = container_of(work, struct connection, swork);
1614 
1615 	clear_bit(CF_WRITE_PENDING, &con->flags);
1616 	if (con->sock == NULL) /* not mutex protected so check it inside too */
1617 		con->connect_action(con);
1618 	if (!list_empty(&con->writequeue))
1619 		send_to_sock(con);
1620 }
1621 
1622 
1623 /* Discard all entries on the write queues */
1624 static void clean_writequeues(void)
1625 {
1626 	foreach_conn(clean_one_writequeue);
1627 }
1628 
1629 static void work_stop(void)
1630 {
1631 	if (recv_workqueue)
1632 		destroy_workqueue(recv_workqueue);
1633 	if (send_workqueue)
1634 		destroy_workqueue(send_workqueue);
1635 }
1636 
1637 static int work_start(void)
1638 {
1639 	recv_workqueue = alloc_workqueue("dlm_recv",
1640 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1641 	if (!recv_workqueue) {
1642 		log_print("can't start dlm_recv");
1643 		return -ENOMEM;
1644 	}
1645 
1646 	send_workqueue = alloc_workqueue("dlm_send",
1647 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1648 	if (!send_workqueue) {
1649 		log_print("can't start dlm_send");
1650 		destroy_workqueue(recv_workqueue);
1651 		return -ENOMEM;
1652 	}
1653 
1654 	return 0;
1655 }
1656 
1657 static void _stop_conn(struct connection *con, bool and_other)
1658 {
1659 	mutex_lock(&con->sock_mutex);
1660 	set_bit(CF_CLOSE, &con->flags);
1661 	set_bit(CF_READ_PENDING, &con->flags);
1662 	set_bit(CF_WRITE_PENDING, &con->flags);
1663 	if (con->sock && con->sock->sk) {
1664 		write_lock_bh(&con->sock->sk->sk_callback_lock);
1665 		con->sock->sk->sk_user_data = NULL;
1666 		write_unlock_bh(&con->sock->sk->sk_callback_lock);
1667 	}
1668 	if (con->othercon && and_other)
1669 		_stop_conn(con->othercon, false);
1670 	mutex_unlock(&con->sock_mutex);
1671 }
1672 
1673 static void stop_conn(struct connection *con)
1674 {
1675 	_stop_conn(con, true);
1676 }
1677 
1678 static void free_conn(struct connection *con)
1679 {
1680 	close_connection(con, true, true, true);
1681 	if (con->othercon)
1682 		kmem_cache_free(con_cache, con->othercon);
1683 	hlist_del(&con->list);
1684 	kmem_cache_free(con_cache, con);
1685 }
1686 
1687 static void work_flush(void)
1688 {
1689 	int ok;
1690 	int i;
1691 	struct hlist_node *n;
1692 	struct connection *con;
1693 
1694 	if (recv_workqueue)
1695 		flush_workqueue(recv_workqueue);
1696 	if (send_workqueue)
1697 		flush_workqueue(send_workqueue);
1698 	do {
1699 		ok = 1;
1700 		foreach_conn(stop_conn);
1701 		if (recv_workqueue)
1702 			flush_workqueue(recv_workqueue);
1703 		if (send_workqueue)
1704 			flush_workqueue(send_workqueue);
1705 		for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1706 			hlist_for_each_entry_safe(con, n,
1707 						  &connection_hash[i], list) {
1708 				ok &= test_bit(CF_READ_PENDING, &con->flags);
1709 				ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1710 				if (con->othercon) {
1711 					ok &= test_bit(CF_READ_PENDING,
1712 						       &con->othercon->flags);
1713 					ok &= test_bit(CF_WRITE_PENDING,
1714 						       &con->othercon->flags);
1715 				}
1716 			}
1717 		}
1718 	} while (!ok);
1719 }
1720 
1721 void dlm_lowcomms_stop(void)
1722 {
1723 	/* Set all the flags to prevent any
1724 	   socket activity.
1725 	*/
1726 	mutex_lock(&connections_lock);
1727 	dlm_allow_conn = 0;
1728 	mutex_unlock(&connections_lock);
1729 	work_flush();
1730 	clean_writequeues();
1731 	foreach_conn(free_conn);
1732 	work_stop();
1733 
1734 	kmem_cache_destroy(con_cache);
1735 }
1736 
1737 int dlm_lowcomms_start(void)
1738 {
1739 	int error = -EINVAL;
1740 	struct connection *con;
1741 	int i;
1742 
1743 	for (i = 0; i < CONN_HASH_SIZE; i++)
1744 		INIT_HLIST_HEAD(&connection_hash[i]);
1745 
1746 	init_local();
1747 	if (!dlm_local_count) {
1748 		error = -ENOTCONN;
1749 		log_print("no local IP address has been set");
1750 		goto fail;
1751 	}
1752 
1753 	error = -ENOMEM;
1754 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1755 				      __alignof__(struct connection), 0,
1756 				      NULL);
1757 	if (!con_cache)
1758 		goto fail;
1759 
1760 	error = work_start();
1761 	if (error)
1762 		goto fail_destroy;
1763 
1764 	dlm_allow_conn = 1;
1765 
1766 	/* Start listening */
1767 	if (dlm_config.ci_protocol == 0)
1768 		error = tcp_listen_for_all();
1769 	else
1770 		error = sctp_listen_for_all();
1771 	if (error)
1772 		goto fail_unlisten;
1773 
1774 	return 0;
1775 
1776 fail_unlisten:
1777 	dlm_allow_conn = 0;
1778 	con = nodeid2con(0,0);
1779 	if (con) {
1780 		close_connection(con, false, true, true);
1781 		kmem_cache_free(con_cache, con);
1782 	}
1783 fail_destroy:
1784 	kmem_cache_destroy(con_cache);
1785 fail:
1786 	return error;
1787 }
1788 
1789 void dlm_lowcomms_exit(void)
1790 {
1791 	struct dlm_node_addr *na, *safe;
1792 
1793 	spin_lock(&dlm_node_addrs_spin);
1794 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1795 		list_del(&na->list);
1796 		while (na->addr_count--)
1797 			kfree(na->addr[na->addr_count]);
1798 		kfree(na);
1799 	}
1800 	spin_unlock(&dlm_node_addrs_spin);
1801 }
1802