xref: /openbmc/linux/fs/dlm/lowcomms.c (revision e0f6d1a5)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
57 
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62 
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65 
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68 
69 struct cbuf {
70 	unsigned int base;
71 	unsigned int len;
72 	unsigned int mask;
73 };
74 
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77 	cb->len += n;
78 }
79 
80 static int cbuf_data(struct cbuf *cb)
81 {
82 	return ((cb->base + cb->len) & cb->mask);
83 }
84 
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87 	cb->base = cb->len = 0;
88 	cb->mask = size-1;
89 }
90 
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93 	cb->len  -= n;
94 	cb->base += n;
95 	cb->base &= cb->mask;
96 }
97 
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100 	return cb->len == 0;
101 }
102 
103 struct connection {
104 	struct socket *sock;	/* NULL if not connected */
105 	uint32_t nodeid;	/* So we know who we are in the list */
106 	struct mutex sock_mutex;
107 	unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_INIT_PENDING 4
111 #define CF_IS_OTHERCON 5
112 #define CF_CLOSE 6
113 #define CF_APP_LIMITED 7
114 #define CF_CLOSING 8
115 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
116 	spinlock_t writequeue_lock;
117 	int (*rx_action) (struct connection *);	/* What to do when active */
118 	void (*connect_action) (struct connection *);	/* What to do to connect */
119 	struct page *rx_page;
120 	struct cbuf cb;
121 	int retries;
122 #define MAX_CONNECT_RETRIES 3
123 	struct hlist_node list;
124 	struct connection *othercon;
125 	struct work_struct rwork; /* Receive workqueue */
126 	struct work_struct swork; /* Send workqueue */
127 };
128 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
129 
130 /* An entry waiting to be sent */
131 struct writequeue_entry {
132 	struct list_head list;
133 	struct page *page;
134 	int offset;
135 	int len;
136 	int end;
137 	int users;
138 	struct connection *con;
139 };
140 
141 struct dlm_node_addr {
142 	struct list_head list;
143 	int nodeid;
144 	int addr_count;
145 	int curr_addr_index;
146 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
147 };
148 
149 static struct listen_sock_callbacks {
150 	void (*sk_error_report)(struct sock *);
151 	void (*sk_data_ready)(struct sock *);
152 	void (*sk_state_change)(struct sock *);
153 	void (*sk_write_space)(struct sock *);
154 } listen_sock;
155 
156 static LIST_HEAD(dlm_node_addrs);
157 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
158 
159 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
160 static int dlm_local_count;
161 static int dlm_allow_conn;
162 
163 /* Work queues */
164 static struct workqueue_struct *recv_workqueue;
165 static struct workqueue_struct *send_workqueue;
166 
167 static struct hlist_head connection_hash[CONN_HASH_SIZE];
168 static DEFINE_MUTEX(connections_lock);
169 static struct kmem_cache *con_cache;
170 
171 static void process_recv_sockets(struct work_struct *work);
172 static void process_send_sockets(struct work_struct *work);
173 
174 
175 /* This is deliberately very simple because most clusters have simple
176    sequential nodeids, so we should be able to go straight to a connection
177    struct in the array */
178 static inline int nodeid_hash(int nodeid)
179 {
180 	return nodeid & (CONN_HASH_SIZE-1);
181 }
182 
183 static struct connection *__find_con(int nodeid)
184 {
185 	int r;
186 	struct connection *con;
187 
188 	r = nodeid_hash(nodeid);
189 
190 	hlist_for_each_entry(con, &connection_hash[r], list) {
191 		if (con->nodeid == nodeid)
192 			return con;
193 	}
194 	return NULL;
195 }
196 
197 /*
198  * If 'allocation' is zero then we don't attempt to create a new
199  * connection structure for this node.
200  */
201 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
202 {
203 	struct connection *con = NULL;
204 	int r;
205 
206 	con = __find_con(nodeid);
207 	if (con || !alloc)
208 		return con;
209 
210 	con = kmem_cache_zalloc(con_cache, alloc);
211 	if (!con)
212 		return NULL;
213 
214 	r = nodeid_hash(nodeid);
215 	hlist_add_head(&con->list, &connection_hash[r]);
216 
217 	con->nodeid = nodeid;
218 	mutex_init(&con->sock_mutex);
219 	INIT_LIST_HEAD(&con->writequeue);
220 	spin_lock_init(&con->writequeue_lock);
221 	INIT_WORK(&con->swork, process_send_sockets);
222 	INIT_WORK(&con->rwork, process_recv_sockets);
223 
224 	/* Setup action pointers for child sockets */
225 	if (con->nodeid) {
226 		struct connection *zerocon = __find_con(0);
227 
228 		con->connect_action = zerocon->connect_action;
229 		if (!con->rx_action)
230 			con->rx_action = zerocon->rx_action;
231 	}
232 
233 	return con;
234 }
235 
236 /* Loop round all connections */
237 static void foreach_conn(void (*conn_func)(struct connection *c))
238 {
239 	int i;
240 	struct hlist_node *n;
241 	struct connection *con;
242 
243 	for (i = 0; i < CONN_HASH_SIZE; i++) {
244 		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
245 			conn_func(con);
246 	}
247 }
248 
249 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
250 {
251 	struct connection *con;
252 
253 	mutex_lock(&connections_lock);
254 	con = __nodeid2con(nodeid, allocation);
255 	mutex_unlock(&connections_lock);
256 
257 	return con;
258 }
259 
260 static struct dlm_node_addr *find_node_addr(int nodeid)
261 {
262 	struct dlm_node_addr *na;
263 
264 	list_for_each_entry(na, &dlm_node_addrs, list) {
265 		if (na->nodeid == nodeid)
266 			return na;
267 	}
268 	return NULL;
269 }
270 
271 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
272 {
273 	switch (x->ss_family) {
274 	case AF_INET: {
275 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
276 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
277 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
278 			return 0;
279 		if (sinx->sin_port != siny->sin_port)
280 			return 0;
281 		break;
282 	}
283 	case AF_INET6: {
284 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
285 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
286 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
287 			return 0;
288 		if (sinx->sin6_port != siny->sin6_port)
289 			return 0;
290 		break;
291 	}
292 	default:
293 		return 0;
294 	}
295 	return 1;
296 }
297 
298 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
299 			  struct sockaddr *sa_out, bool try_new_addr)
300 {
301 	struct sockaddr_storage sas;
302 	struct dlm_node_addr *na;
303 
304 	if (!dlm_local_count)
305 		return -1;
306 
307 	spin_lock(&dlm_node_addrs_spin);
308 	na = find_node_addr(nodeid);
309 	if (na && na->addr_count) {
310 		memcpy(&sas, na->addr[na->curr_addr_index],
311 		       sizeof(struct sockaddr_storage));
312 
313 		if (try_new_addr) {
314 			na->curr_addr_index++;
315 			if (na->curr_addr_index == na->addr_count)
316 				na->curr_addr_index = 0;
317 		}
318 	}
319 	spin_unlock(&dlm_node_addrs_spin);
320 
321 	if (!na)
322 		return -EEXIST;
323 
324 	if (!na->addr_count)
325 		return -ENOENT;
326 
327 	if (sas_out)
328 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
329 
330 	if (!sa_out)
331 		return 0;
332 
333 	if (dlm_local_addr[0]->ss_family == AF_INET) {
334 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
335 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
336 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
337 	} else {
338 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
339 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
340 		ret6->sin6_addr = in6->sin6_addr;
341 	}
342 
343 	return 0;
344 }
345 
346 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
347 {
348 	struct dlm_node_addr *na;
349 	int rv = -EEXIST;
350 	int addr_i;
351 
352 	spin_lock(&dlm_node_addrs_spin);
353 	list_for_each_entry(na, &dlm_node_addrs, list) {
354 		if (!na->addr_count)
355 			continue;
356 
357 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
358 			if (addr_compare(na->addr[addr_i], addr)) {
359 				*nodeid = na->nodeid;
360 				rv = 0;
361 				goto unlock;
362 			}
363 		}
364 	}
365 unlock:
366 	spin_unlock(&dlm_node_addrs_spin);
367 	return rv;
368 }
369 
370 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
371 {
372 	struct sockaddr_storage *new_addr;
373 	struct dlm_node_addr *new_node, *na;
374 
375 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
376 	if (!new_node)
377 		return -ENOMEM;
378 
379 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
380 	if (!new_addr) {
381 		kfree(new_node);
382 		return -ENOMEM;
383 	}
384 
385 	memcpy(new_addr, addr, len);
386 
387 	spin_lock(&dlm_node_addrs_spin);
388 	na = find_node_addr(nodeid);
389 	if (!na) {
390 		new_node->nodeid = nodeid;
391 		new_node->addr[0] = new_addr;
392 		new_node->addr_count = 1;
393 		list_add(&new_node->list, &dlm_node_addrs);
394 		spin_unlock(&dlm_node_addrs_spin);
395 		return 0;
396 	}
397 
398 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
399 		spin_unlock(&dlm_node_addrs_spin);
400 		kfree(new_addr);
401 		kfree(new_node);
402 		return -ENOSPC;
403 	}
404 
405 	na->addr[na->addr_count++] = new_addr;
406 	spin_unlock(&dlm_node_addrs_spin);
407 	kfree(new_node);
408 	return 0;
409 }
410 
411 /* Data available on socket or listen socket received a connect */
412 static void lowcomms_data_ready(struct sock *sk)
413 {
414 	struct connection *con;
415 
416 	read_lock_bh(&sk->sk_callback_lock);
417 	con = sock2con(sk);
418 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
419 		queue_work(recv_workqueue, &con->rwork);
420 	read_unlock_bh(&sk->sk_callback_lock);
421 }
422 
423 static void lowcomms_write_space(struct sock *sk)
424 {
425 	struct connection *con;
426 
427 	read_lock_bh(&sk->sk_callback_lock);
428 	con = sock2con(sk);
429 	if (!con)
430 		goto out;
431 
432 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
433 
434 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
435 		con->sock->sk->sk_write_pending--;
436 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
437 	}
438 
439 	queue_work(send_workqueue, &con->swork);
440 out:
441 	read_unlock_bh(&sk->sk_callback_lock);
442 }
443 
444 static inline void lowcomms_connect_sock(struct connection *con)
445 {
446 	if (test_bit(CF_CLOSE, &con->flags))
447 		return;
448 	queue_work(send_workqueue, &con->swork);
449 	cond_resched();
450 }
451 
452 static void lowcomms_state_change(struct sock *sk)
453 {
454 	/* SCTP layer is not calling sk_data_ready when the connection
455 	 * is done, so we catch the signal through here. Also, it
456 	 * doesn't switch socket state when entering shutdown, so we
457 	 * skip the write in that case.
458 	 */
459 	if (sk->sk_shutdown) {
460 		if (sk->sk_shutdown == RCV_SHUTDOWN)
461 			lowcomms_data_ready(sk);
462 	} else if (sk->sk_state == TCP_ESTABLISHED) {
463 		lowcomms_write_space(sk);
464 	}
465 }
466 
467 int dlm_lowcomms_connect_node(int nodeid)
468 {
469 	struct connection *con;
470 
471 	if (nodeid == dlm_our_nodeid())
472 		return 0;
473 
474 	con = nodeid2con(nodeid, GFP_NOFS);
475 	if (!con)
476 		return -ENOMEM;
477 	lowcomms_connect_sock(con);
478 	return 0;
479 }
480 
481 static void lowcomms_error_report(struct sock *sk)
482 {
483 	struct connection *con;
484 	struct sockaddr_storage saddr;
485 	void (*orig_report)(struct sock *) = NULL;
486 
487 	read_lock_bh(&sk->sk_callback_lock);
488 	con = sock2con(sk);
489 	if (con == NULL)
490 		goto out;
491 
492 	orig_report = listen_sock.sk_error_report;
493 	if (con->sock == NULL ||
494 	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
495 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
496 				   "sending to node %d, port %d, "
497 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
498 				   con->nodeid, dlm_config.ci_tcp_port,
499 				   sk->sk_err, sk->sk_err_soft);
500 	} else if (saddr.ss_family == AF_INET) {
501 		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
502 
503 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
504 				   "sending to node %d at %pI4, port %d, "
505 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
506 				   con->nodeid, &sin4->sin_addr.s_addr,
507 				   dlm_config.ci_tcp_port, sk->sk_err,
508 				   sk->sk_err_soft);
509 	} else {
510 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
511 
512 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
513 				   "sending to node %d at %u.%u.%u.%u, "
514 				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
515 				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
516 				   sin6->sin6_addr.s6_addr32[1],
517 				   sin6->sin6_addr.s6_addr32[2],
518 				   sin6->sin6_addr.s6_addr32[3],
519 				   dlm_config.ci_tcp_port, sk->sk_err,
520 				   sk->sk_err_soft);
521 	}
522 out:
523 	read_unlock_bh(&sk->sk_callback_lock);
524 	if (orig_report)
525 		orig_report(sk);
526 }
527 
528 /* Note: sk_callback_lock must be locked before calling this function. */
529 static void save_listen_callbacks(struct socket *sock)
530 {
531 	struct sock *sk = sock->sk;
532 
533 	listen_sock.sk_data_ready = sk->sk_data_ready;
534 	listen_sock.sk_state_change = sk->sk_state_change;
535 	listen_sock.sk_write_space = sk->sk_write_space;
536 	listen_sock.sk_error_report = sk->sk_error_report;
537 }
538 
539 static void restore_callbacks(struct socket *sock)
540 {
541 	struct sock *sk = sock->sk;
542 
543 	write_lock_bh(&sk->sk_callback_lock);
544 	sk->sk_user_data = NULL;
545 	sk->sk_data_ready = listen_sock.sk_data_ready;
546 	sk->sk_state_change = listen_sock.sk_state_change;
547 	sk->sk_write_space = listen_sock.sk_write_space;
548 	sk->sk_error_report = listen_sock.sk_error_report;
549 	write_unlock_bh(&sk->sk_callback_lock);
550 }
551 
552 /* Make a socket active */
553 static void add_sock(struct socket *sock, struct connection *con)
554 {
555 	struct sock *sk = sock->sk;
556 
557 	write_lock_bh(&sk->sk_callback_lock);
558 	con->sock = sock;
559 
560 	sk->sk_user_data = con;
561 	/* Install a data_ready callback */
562 	sk->sk_data_ready = lowcomms_data_ready;
563 	sk->sk_write_space = lowcomms_write_space;
564 	sk->sk_state_change = lowcomms_state_change;
565 	sk->sk_allocation = GFP_NOFS;
566 	sk->sk_error_report = lowcomms_error_report;
567 	write_unlock_bh(&sk->sk_callback_lock);
568 }
569 
570 /* Add the port number to an IPv6 or 4 sockaddr and return the address
571    length */
572 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
573 			  int *addr_len)
574 {
575 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
576 	if (saddr->ss_family == AF_INET) {
577 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
578 		in4_addr->sin_port = cpu_to_be16(port);
579 		*addr_len = sizeof(struct sockaddr_in);
580 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
581 	} else {
582 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
583 		in6_addr->sin6_port = cpu_to_be16(port);
584 		*addr_len = sizeof(struct sockaddr_in6);
585 	}
586 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
587 }
588 
589 /* Close a remote connection and tidy up */
590 static void close_connection(struct connection *con, bool and_other,
591 			     bool tx, bool rx)
592 {
593 	bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
594 
595 	if (tx && !closing && cancel_work_sync(&con->swork)) {
596 		log_print("canceled swork for node %d", con->nodeid);
597 		clear_bit(CF_WRITE_PENDING, &con->flags);
598 	}
599 	if (rx && !closing && cancel_work_sync(&con->rwork)) {
600 		log_print("canceled rwork for node %d", con->nodeid);
601 		clear_bit(CF_READ_PENDING, &con->flags);
602 	}
603 
604 	mutex_lock(&con->sock_mutex);
605 	if (con->sock) {
606 		restore_callbacks(con->sock);
607 		sock_release(con->sock);
608 		con->sock = NULL;
609 	}
610 	if (con->othercon && and_other) {
611 		/* Will only re-enter once. */
612 		close_connection(con->othercon, false, true, true);
613 	}
614 	if (con->rx_page) {
615 		__free_page(con->rx_page);
616 		con->rx_page = NULL;
617 	}
618 
619 	con->retries = 0;
620 	mutex_unlock(&con->sock_mutex);
621 	clear_bit(CF_CLOSING, &con->flags);
622 }
623 
624 /* Data received from remote end */
625 static int receive_from_sock(struct connection *con)
626 {
627 	int ret = 0;
628 	struct msghdr msg = {};
629 	struct kvec iov[2];
630 	unsigned len;
631 	int r;
632 	int call_again_soon = 0;
633 	int nvec;
634 
635 	mutex_lock(&con->sock_mutex);
636 
637 	if (con->sock == NULL) {
638 		ret = -EAGAIN;
639 		goto out_close;
640 	}
641 	if (con->nodeid == 0) {
642 		ret = -EINVAL;
643 		goto out_close;
644 	}
645 
646 	if (con->rx_page == NULL) {
647 		/*
648 		 * This doesn't need to be atomic, but I think it should
649 		 * improve performance if it is.
650 		 */
651 		con->rx_page = alloc_page(GFP_ATOMIC);
652 		if (con->rx_page == NULL)
653 			goto out_resched;
654 		cbuf_init(&con->cb, PAGE_SIZE);
655 	}
656 
657 	/*
658 	 * iov[0] is the bit of the circular buffer between the current end
659 	 * point (cb.base + cb.len) and the end of the buffer.
660 	 */
661 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
662 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
663 	iov[1].iov_len = 0;
664 	nvec = 1;
665 
666 	/*
667 	 * iov[1] is the bit of the circular buffer between the start of the
668 	 * buffer and the start of the currently used section (cb.base)
669 	 */
670 	if (cbuf_data(&con->cb) >= con->cb.base) {
671 		iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
672 		iov[1].iov_len = con->cb.base;
673 		iov[1].iov_base = page_address(con->rx_page);
674 		nvec = 2;
675 	}
676 	len = iov[0].iov_len + iov[1].iov_len;
677 	iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, iov, nvec, len);
678 
679 	r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL);
680 	if (ret <= 0)
681 		goto out_close;
682 	else if (ret == len)
683 		call_again_soon = 1;
684 
685 	cbuf_add(&con->cb, ret);
686 	ret = dlm_process_incoming_buffer(con->nodeid,
687 					  page_address(con->rx_page),
688 					  con->cb.base, con->cb.len,
689 					  PAGE_SIZE);
690 	if (ret == -EBADMSG) {
691 		log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
692 			  page_address(con->rx_page), con->cb.base,
693 			  con->cb.len, r);
694 	}
695 	if (ret < 0)
696 		goto out_close;
697 	cbuf_eat(&con->cb, ret);
698 
699 	if (cbuf_empty(&con->cb) && !call_again_soon) {
700 		__free_page(con->rx_page);
701 		con->rx_page = NULL;
702 	}
703 
704 	if (call_again_soon)
705 		goto out_resched;
706 	mutex_unlock(&con->sock_mutex);
707 	return 0;
708 
709 out_resched:
710 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
711 		queue_work(recv_workqueue, &con->rwork);
712 	mutex_unlock(&con->sock_mutex);
713 	return -EAGAIN;
714 
715 out_close:
716 	mutex_unlock(&con->sock_mutex);
717 	if (ret != -EAGAIN) {
718 		close_connection(con, true, true, false);
719 		/* Reconnect when there is something to send */
720 	}
721 	/* Don't return success if we really got EOF */
722 	if (ret == 0)
723 		ret = -EAGAIN;
724 
725 	return ret;
726 }
727 
728 /* Listening socket is busy, accept a connection */
729 static int tcp_accept_from_sock(struct connection *con)
730 {
731 	int result;
732 	struct sockaddr_storage peeraddr;
733 	struct socket *newsock;
734 	int len;
735 	int nodeid;
736 	struct connection *newcon;
737 	struct connection *addcon;
738 
739 	mutex_lock(&connections_lock);
740 	if (!dlm_allow_conn) {
741 		mutex_unlock(&connections_lock);
742 		return -1;
743 	}
744 	mutex_unlock(&connections_lock);
745 
746 	mutex_lock_nested(&con->sock_mutex, 0);
747 
748 	if (!con->sock) {
749 		mutex_unlock(&con->sock_mutex);
750 		return -ENOTCONN;
751 	}
752 
753 	result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
754 	if (result < 0)
755 		goto accept_err;
756 
757 	/* Get the connected socket's peer */
758 	memset(&peeraddr, 0, sizeof(peeraddr));
759 	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
760 	if (len < 0) {
761 		result = -ECONNABORTED;
762 		goto accept_err;
763 	}
764 
765 	/* Get the new node's NODEID */
766 	make_sockaddr(&peeraddr, 0, &len);
767 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
768 		unsigned char *b=(unsigned char *)&peeraddr;
769 		log_print("connect from non cluster node");
770 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
771 				     b, sizeof(struct sockaddr_storage));
772 		sock_release(newsock);
773 		mutex_unlock(&con->sock_mutex);
774 		return -1;
775 	}
776 
777 	log_print("got connection from %d", nodeid);
778 
779 	/*  Check to see if we already have a connection to this node. This
780 	 *  could happen if the two nodes initiate a connection at roughly
781 	 *  the same time and the connections cross on the wire.
782 	 *  In this case we store the incoming one in "othercon"
783 	 */
784 	newcon = nodeid2con(nodeid, GFP_NOFS);
785 	if (!newcon) {
786 		result = -ENOMEM;
787 		goto accept_err;
788 	}
789 	mutex_lock_nested(&newcon->sock_mutex, 1);
790 	if (newcon->sock) {
791 		struct connection *othercon = newcon->othercon;
792 
793 		if (!othercon) {
794 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
795 			if (!othercon) {
796 				log_print("failed to allocate incoming socket");
797 				mutex_unlock(&newcon->sock_mutex);
798 				result = -ENOMEM;
799 				goto accept_err;
800 			}
801 			othercon->nodeid = nodeid;
802 			othercon->rx_action = receive_from_sock;
803 			mutex_init(&othercon->sock_mutex);
804 			INIT_LIST_HEAD(&othercon->writequeue);
805 			spin_lock_init(&othercon->writequeue_lock);
806 			INIT_WORK(&othercon->swork, process_send_sockets);
807 			INIT_WORK(&othercon->rwork, process_recv_sockets);
808 			set_bit(CF_IS_OTHERCON, &othercon->flags);
809 		}
810 		mutex_lock_nested(&othercon->sock_mutex, 2);
811 		if (!othercon->sock) {
812 			newcon->othercon = othercon;
813 			add_sock(newsock, othercon);
814 			addcon = othercon;
815 			mutex_unlock(&othercon->sock_mutex);
816 		}
817 		else {
818 			printk("Extra connection from node %d attempted\n", nodeid);
819 			result = -EAGAIN;
820 			mutex_unlock(&othercon->sock_mutex);
821 			mutex_unlock(&newcon->sock_mutex);
822 			goto accept_err;
823 		}
824 	}
825 	else {
826 		newcon->rx_action = receive_from_sock;
827 		/* accept copies the sk after we've saved the callbacks, so we
828 		   don't want to save them a second time or comm errors will
829 		   result in calling sk_error_report recursively. */
830 		add_sock(newsock, newcon);
831 		addcon = newcon;
832 	}
833 
834 	mutex_unlock(&newcon->sock_mutex);
835 
836 	/*
837 	 * Add it to the active queue in case we got data
838 	 * between processing the accept adding the socket
839 	 * to the read_sockets list
840 	 */
841 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
842 		queue_work(recv_workqueue, &addcon->rwork);
843 	mutex_unlock(&con->sock_mutex);
844 
845 	return 0;
846 
847 accept_err:
848 	mutex_unlock(&con->sock_mutex);
849 	if (newsock)
850 		sock_release(newsock);
851 
852 	if (result != -EAGAIN)
853 		log_print("error accepting connection from node: %d", result);
854 	return result;
855 }
856 
857 static int sctp_accept_from_sock(struct connection *con)
858 {
859 	/* Check that the new node is in the lockspace */
860 	struct sctp_prim prim;
861 	int nodeid;
862 	int prim_len, ret;
863 	int addr_len;
864 	struct connection *newcon;
865 	struct connection *addcon;
866 	struct socket *newsock;
867 
868 	mutex_lock(&connections_lock);
869 	if (!dlm_allow_conn) {
870 		mutex_unlock(&connections_lock);
871 		return -1;
872 	}
873 	mutex_unlock(&connections_lock);
874 
875 	mutex_lock_nested(&con->sock_mutex, 0);
876 
877 	ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
878 	if (ret < 0)
879 		goto accept_err;
880 
881 	memset(&prim, 0, sizeof(struct sctp_prim));
882 	prim_len = sizeof(struct sctp_prim);
883 
884 	ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
885 				(char *)&prim, &prim_len);
886 	if (ret < 0) {
887 		log_print("getsockopt/sctp_primary_addr failed: %d", ret);
888 		goto accept_err;
889 	}
890 
891 	make_sockaddr(&prim.ssp_addr, 0, &addr_len);
892 	ret = addr_to_nodeid(&prim.ssp_addr, &nodeid);
893 	if (ret) {
894 		unsigned char *b = (unsigned char *)&prim.ssp_addr;
895 
896 		log_print("reject connect from unknown addr");
897 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
898 				     b, sizeof(struct sockaddr_storage));
899 		goto accept_err;
900 	}
901 
902 	newcon = nodeid2con(nodeid, GFP_NOFS);
903 	if (!newcon) {
904 		ret = -ENOMEM;
905 		goto accept_err;
906 	}
907 
908 	mutex_lock_nested(&newcon->sock_mutex, 1);
909 
910 	if (newcon->sock) {
911 		struct connection *othercon = newcon->othercon;
912 
913 		if (!othercon) {
914 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
915 			if (!othercon) {
916 				log_print("failed to allocate incoming socket");
917 				mutex_unlock(&newcon->sock_mutex);
918 				ret = -ENOMEM;
919 				goto accept_err;
920 			}
921 			othercon->nodeid = nodeid;
922 			othercon->rx_action = receive_from_sock;
923 			mutex_init(&othercon->sock_mutex);
924 			INIT_LIST_HEAD(&othercon->writequeue);
925 			spin_lock_init(&othercon->writequeue_lock);
926 			INIT_WORK(&othercon->swork, process_send_sockets);
927 			INIT_WORK(&othercon->rwork, process_recv_sockets);
928 			set_bit(CF_IS_OTHERCON, &othercon->flags);
929 		}
930 		mutex_lock_nested(&othercon->sock_mutex, 2);
931 		if (!othercon->sock) {
932 			newcon->othercon = othercon;
933 			add_sock(newsock, othercon);
934 			addcon = othercon;
935 			mutex_unlock(&othercon->sock_mutex);
936 		} else {
937 			printk("Extra connection from node %d attempted\n", nodeid);
938 			ret = -EAGAIN;
939 			mutex_unlock(&othercon->sock_mutex);
940 			mutex_unlock(&newcon->sock_mutex);
941 			goto accept_err;
942 		}
943 	} else {
944 		newcon->rx_action = receive_from_sock;
945 		add_sock(newsock, newcon);
946 		addcon = newcon;
947 	}
948 
949 	log_print("connected to %d", nodeid);
950 
951 	mutex_unlock(&newcon->sock_mutex);
952 
953 	/*
954 	 * Add it to the active queue in case we got data
955 	 * between processing the accept adding the socket
956 	 * to the read_sockets list
957 	 */
958 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
959 		queue_work(recv_workqueue, &addcon->rwork);
960 	mutex_unlock(&con->sock_mutex);
961 
962 	return 0;
963 
964 accept_err:
965 	mutex_unlock(&con->sock_mutex);
966 	if (newsock)
967 		sock_release(newsock);
968 	if (ret != -EAGAIN)
969 		log_print("error accepting connection from node: %d", ret);
970 
971 	return ret;
972 }
973 
974 static void free_entry(struct writequeue_entry *e)
975 {
976 	__free_page(e->page);
977 	kfree(e);
978 }
979 
980 /*
981  * writequeue_entry_complete - try to delete and free write queue entry
982  * @e: write queue entry to try to delete
983  * @completed: bytes completed
984  *
985  * writequeue_lock must be held.
986  */
987 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
988 {
989 	e->offset += completed;
990 	e->len -= completed;
991 
992 	if (e->len == 0 && e->users == 0) {
993 		list_del(&e->list);
994 		free_entry(e);
995 	}
996 }
997 
998 /*
999  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1000  */
1001 static int sctp_bind_addrs(struct connection *con, uint16_t port)
1002 {
1003 	struct sockaddr_storage localaddr;
1004 	int i, addr_len, result = 0;
1005 
1006 	for (i = 0; i < dlm_local_count; i++) {
1007 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1008 		make_sockaddr(&localaddr, port, &addr_len);
1009 
1010 		if (!i)
1011 			result = kernel_bind(con->sock,
1012 					     (struct sockaddr *)&localaddr,
1013 					     addr_len);
1014 		else
1015 			result = kernel_setsockopt(con->sock, SOL_SCTP,
1016 						   SCTP_SOCKOPT_BINDX_ADD,
1017 						   (char *)&localaddr, addr_len);
1018 
1019 		if (result < 0) {
1020 			log_print("Can't bind to %d addr number %d, %d.\n",
1021 				  port, i + 1, result);
1022 			break;
1023 		}
1024 	}
1025 	return result;
1026 }
1027 
1028 /* Initiate an SCTP association.
1029    This is a special case of send_to_sock() in that we don't yet have a
1030    peeled-off socket for this association, so we use the listening socket
1031    and add the primary IP address of the remote node.
1032  */
1033 static void sctp_connect_to_sock(struct connection *con)
1034 {
1035 	struct sockaddr_storage daddr;
1036 	int one = 1;
1037 	int result;
1038 	int addr_len;
1039 	struct socket *sock;
1040 
1041 	if (con->nodeid == 0) {
1042 		log_print("attempt to connect sock 0 foiled");
1043 		return;
1044 	}
1045 
1046 	mutex_lock(&con->sock_mutex);
1047 
1048 	/* Some odd races can cause double-connects, ignore them */
1049 	if (con->retries++ > MAX_CONNECT_RETRIES)
1050 		goto out;
1051 
1052 	if (con->sock) {
1053 		log_print("node %d already connected.", con->nodeid);
1054 		goto out;
1055 	}
1056 
1057 	memset(&daddr, 0, sizeof(daddr));
1058 	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
1059 	if (result < 0) {
1060 		log_print("no address for nodeid %d", con->nodeid);
1061 		goto out;
1062 	}
1063 
1064 	/* Create a socket to communicate with */
1065 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1066 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1067 	if (result < 0)
1068 		goto socket_err;
1069 
1070 	con->rx_action = receive_from_sock;
1071 	con->connect_action = sctp_connect_to_sock;
1072 	add_sock(sock, con);
1073 
1074 	/* Bind to all addresses. */
1075 	if (sctp_bind_addrs(con, 0))
1076 		goto bind_err;
1077 
1078 	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1079 
1080 	log_print("connecting to %d", con->nodeid);
1081 
1082 	/* Turn off Nagle's algorithm */
1083 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1084 			  sizeof(one));
1085 
1086 	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1087 				   O_NONBLOCK);
1088 	if (result == -EINPROGRESS)
1089 		result = 0;
1090 	if (result == 0)
1091 		goto out;
1092 
1093 bind_err:
1094 	con->sock = NULL;
1095 	sock_release(sock);
1096 
1097 socket_err:
1098 	/*
1099 	 * Some errors are fatal and this list might need adjusting. For other
1100 	 * errors we try again until the max number of retries is reached.
1101 	 */
1102 	if (result != -EHOSTUNREACH &&
1103 	    result != -ENETUNREACH &&
1104 	    result != -ENETDOWN &&
1105 	    result != -EINVAL &&
1106 	    result != -EPROTONOSUPPORT) {
1107 		log_print("connect %d try %d error %d", con->nodeid,
1108 			  con->retries, result);
1109 		mutex_unlock(&con->sock_mutex);
1110 		msleep(1000);
1111 		lowcomms_connect_sock(con);
1112 		return;
1113 	}
1114 
1115 out:
1116 	mutex_unlock(&con->sock_mutex);
1117 }
1118 
1119 /* Connect a new socket to its peer */
1120 static void tcp_connect_to_sock(struct connection *con)
1121 {
1122 	struct sockaddr_storage saddr, src_addr;
1123 	int addr_len;
1124 	struct socket *sock = NULL;
1125 	int one = 1;
1126 	int result;
1127 
1128 	if (con->nodeid == 0) {
1129 		log_print("attempt to connect sock 0 foiled");
1130 		return;
1131 	}
1132 
1133 	mutex_lock(&con->sock_mutex);
1134 	if (con->retries++ > MAX_CONNECT_RETRIES)
1135 		goto out;
1136 
1137 	/* Some odd races can cause double-connects, ignore them */
1138 	if (con->sock)
1139 		goto out;
1140 
1141 	/* Create a socket to communicate with */
1142 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1143 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1144 	if (result < 0)
1145 		goto out_err;
1146 
1147 	memset(&saddr, 0, sizeof(saddr));
1148 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1149 	if (result < 0) {
1150 		log_print("no address for nodeid %d", con->nodeid);
1151 		goto out_err;
1152 	}
1153 
1154 	con->rx_action = receive_from_sock;
1155 	con->connect_action = tcp_connect_to_sock;
1156 	add_sock(sock, con);
1157 
1158 	/* Bind to our cluster-known address connecting to avoid
1159 	   routing problems */
1160 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1161 	make_sockaddr(&src_addr, 0, &addr_len);
1162 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1163 				 addr_len);
1164 	if (result < 0) {
1165 		log_print("could not bind for connect: %d", result);
1166 		/* This *may* not indicate a critical error */
1167 	}
1168 
1169 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1170 
1171 	log_print("connecting to %d", con->nodeid);
1172 
1173 	/* Turn off Nagle's algorithm */
1174 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1175 			  sizeof(one));
1176 
1177 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1178 				   O_NONBLOCK);
1179 	if (result == -EINPROGRESS)
1180 		result = 0;
1181 	if (result == 0)
1182 		goto out;
1183 
1184 out_err:
1185 	if (con->sock) {
1186 		sock_release(con->sock);
1187 		con->sock = NULL;
1188 	} else if (sock) {
1189 		sock_release(sock);
1190 	}
1191 	/*
1192 	 * Some errors are fatal and this list might need adjusting. For other
1193 	 * errors we try again until the max number of retries is reached.
1194 	 */
1195 	if (result != -EHOSTUNREACH &&
1196 	    result != -ENETUNREACH &&
1197 	    result != -ENETDOWN &&
1198 	    result != -EINVAL &&
1199 	    result != -EPROTONOSUPPORT) {
1200 		log_print("connect %d try %d error %d", con->nodeid,
1201 			  con->retries, result);
1202 		mutex_unlock(&con->sock_mutex);
1203 		msleep(1000);
1204 		lowcomms_connect_sock(con);
1205 		return;
1206 	}
1207 out:
1208 	mutex_unlock(&con->sock_mutex);
1209 	return;
1210 }
1211 
1212 static struct socket *tcp_create_listen_sock(struct connection *con,
1213 					     struct sockaddr_storage *saddr)
1214 {
1215 	struct socket *sock = NULL;
1216 	int result = 0;
1217 	int one = 1;
1218 	int addr_len;
1219 
1220 	if (dlm_local_addr[0]->ss_family == AF_INET)
1221 		addr_len = sizeof(struct sockaddr_in);
1222 	else
1223 		addr_len = sizeof(struct sockaddr_in6);
1224 
1225 	/* Create a socket to communicate with */
1226 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1227 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1228 	if (result < 0) {
1229 		log_print("Can't create listening comms socket");
1230 		goto create_out;
1231 	}
1232 
1233 	/* Turn off Nagle's algorithm */
1234 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1235 			  sizeof(one));
1236 
1237 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1238 				   (char *)&one, sizeof(one));
1239 
1240 	if (result < 0) {
1241 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1242 	}
1243 	write_lock_bh(&sock->sk->sk_callback_lock);
1244 	sock->sk->sk_user_data = con;
1245 	save_listen_callbacks(sock);
1246 	con->rx_action = tcp_accept_from_sock;
1247 	con->connect_action = tcp_connect_to_sock;
1248 	write_unlock_bh(&sock->sk->sk_callback_lock);
1249 
1250 	/* Bind to our port */
1251 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1252 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1253 	if (result < 0) {
1254 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1255 		sock_release(sock);
1256 		sock = NULL;
1257 		con->sock = NULL;
1258 		goto create_out;
1259 	}
1260 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1261 				 (char *)&one, sizeof(one));
1262 	if (result < 0) {
1263 		log_print("Set keepalive failed: %d", result);
1264 	}
1265 
1266 	result = sock->ops->listen(sock, 5);
1267 	if (result < 0) {
1268 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1269 		sock_release(sock);
1270 		sock = NULL;
1271 		goto create_out;
1272 	}
1273 
1274 create_out:
1275 	return sock;
1276 }
1277 
1278 /* Get local addresses */
1279 static void init_local(void)
1280 {
1281 	struct sockaddr_storage sas, *addr;
1282 	int i;
1283 
1284 	dlm_local_count = 0;
1285 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1286 		if (dlm_our_addr(&sas, i))
1287 			break;
1288 
1289 		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1290 		if (!addr)
1291 			break;
1292 		dlm_local_addr[dlm_local_count++] = addr;
1293 	}
1294 }
1295 
1296 /* Initialise SCTP socket and bind to all interfaces */
1297 static int sctp_listen_for_all(void)
1298 {
1299 	struct socket *sock = NULL;
1300 	int result = -EINVAL;
1301 	struct connection *con = nodeid2con(0, GFP_NOFS);
1302 	int bufsize = NEEDED_RMEM;
1303 	int one = 1;
1304 
1305 	if (!con)
1306 		return -ENOMEM;
1307 
1308 	log_print("Using SCTP for communications");
1309 
1310 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1311 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1312 	if (result < 0) {
1313 		log_print("Can't create comms socket, check SCTP is loaded");
1314 		goto out;
1315 	}
1316 
1317 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1318 				 (char *)&bufsize, sizeof(bufsize));
1319 	if (result)
1320 		log_print("Error increasing buffer space on socket %d", result);
1321 
1322 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1323 				   sizeof(one));
1324 	if (result < 0)
1325 		log_print("Could not set SCTP NODELAY error %d\n", result);
1326 
1327 	write_lock_bh(&sock->sk->sk_callback_lock);
1328 	/* Init con struct */
1329 	sock->sk->sk_user_data = con;
1330 	save_listen_callbacks(sock);
1331 	con->sock = sock;
1332 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1333 	con->rx_action = sctp_accept_from_sock;
1334 	con->connect_action = sctp_connect_to_sock;
1335 
1336 	write_unlock_bh(&sock->sk->sk_callback_lock);
1337 
1338 	/* Bind to all addresses. */
1339 	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1340 		goto create_delsock;
1341 
1342 	result = sock->ops->listen(sock, 5);
1343 	if (result < 0) {
1344 		log_print("Can't set socket listening");
1345 		goto create_delsock;
1346 	}
1347 
1348 	return 0;
1349 
1350 create_delsock:
1351 	sock_release(sock);
1352 	con->sock = NULL;
1353 out:
1354 	return result;
1355 }
1356 
1357 static int tcp_listen_for_all(void)
1358 {
1359 	struct socket *sock = NULL;
1360 	struct connection *con = nodeid2con(0, GFP_NOFS);
1361 	int result = -EINVAL;
1362 
1363 	if (!con)
1364 		return -ENOMEM;
1365 
1366 	/* We don't support multi-homed hosts */
1367 	if (dlm_local_addr[1] != NULL) {
1368 		log_print("TCP protocol can't handle multi-homed hosts, "
1369 			  "try SCTP");
1370 		return -EINVAL;
1371 	}
1372 
1373 	log_print("Using TCP for communications");
1374 
1375 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1376 	if (sock) {
1377 		add_sock(sock, con);
1378 		result = 0;
1379 	}
1380 	else {
1381 		result = -EADDRINUSE;
1382 	}
1383 
1384 	return result;
1385 }
1386 
1387 
1388 
1389 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1390 						     gfp_t allocation)
1391 {
1392 	struct writequeue_entry *entry;
1393 
1394 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1395 	if (!entry)
1396 		return NULL;
1397 
1398 	entry->page = alloc_page(allocation);
1399 	if (!entry->page) {
1400 		kfree(entry);
1401 		return NULL;
1402 	}
1403 
1404 	entry->offset = 0;
1405 	entry->len = 0;
1406 	entry->end = 0;
1407 	entry->users = 0;
1408 	entry->con = con;
1409 
1410 	return entry;
1411 }
1412 
1413 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1414 {
1415 	struct connection *con;
1416 	struct writequeue_entry *e;
1417 	int offset = 0;
1418 
1419 	con = nodeid2con(nodeid, allocation);
1420 	if (!con)
1421 		return NULL;
1422 
1423 	spin_lock(&con->writequeue_lock);
1424 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1425 	if ((&e->list == &con->writequeue) ||
1426 	    (PAGE_SIZE - e->end < len)) {
1427 		e = NULL;
1428 	} else {
1429 		offset = e->end;
1430 		e->end += len;
1431 		e->users++;
1432 	}
1433 	spin_unlock(&con->writequeue_lock);
1434 
1435 	if (e) {
1436 	got_one:
1437 		*ppc = page_address(e->page) + offset;
1438 		return e;
1439 	}
1440 
1441 	e = new_writequeue_entry(con, allocation);
1442 	if (e) {
1443 		spin_lock(&con->writequeue_lock);
1444 		offset = e->end;
1445 		e->end += len;
1446 		e->users++;
1447 		list_add_tail(&e->list, &con->writequeue);
1448 		spin_unlock(&con->writequeue_lock);
1449 		goto got_one;
1450 	}
1451 	return NULL;
1452 }
1453 
1454 void dlm_lowcomms_commit_buffer(void *mh)
1455 {
1456 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1457 	struct connection *con = e->con;
1458 	int users;
1459 
1460 	spin_lock(&con->writequeue_lock);
1461 	users = --e->users;
1462 	if (users)
1463 		goto out;
1464 	e->len = e->end - e->offset;
1465 	spin_unlock(&con->writequeue_lock);
1466 
1467 	queue_work(send_workqueue, &con->swork);
1468 	return;
1469 
1470 out:
1471 	spin_unlock(&con->writequeue_lock);
1472 	return;
1473 }
1474 
1475 /* Send a message */
1476 static void send_to_sock(struct connection *con)
1477 {
1478 	int ret = 0;
1479 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1480 	struct writequeue_entry *e;
1481 	int len, offset;
1482 	int count = 0;
1483 
1484 	mutex_lock(&con->sock_mutex);
1485 	if (con->sock == NULL)
1486 		goto out_connect;
1487 
1488 	spin_lock(&con->writequeue_lock);
1489 	for (;;) {
1490 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1491 			       list);
1492 		if ((struct list_head *) e == &con->writequeue)
1493 			break;
1494 
1495 		len = e->len;
1496 		offset = e->offset;
1497 		BUG_ON(len == 0 && e->users == 0);
1498 		spin_unlock(&con->writequeue_lock);
1499 
1500 		ret = 0;
1501 		if (len) {
1502 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1503 					      msg_flags);
1504 			if (ret == -EAGAIN || ret == 0) {
1505 				if (ret == -EAGAIN &&
1506 				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1507 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1508 					/* Notify TCP that we're limited by the
1509 					 * application window size.
1510 					 */
1511 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1512 					con->sock->sk->sk_write_pending++;
1513 				}
1514 				cond_resched();
1515 				goto out;
1516 			} else if (ret < 0)
1517 				goto send_error;
1518 		}
1519 
1520 		/* Don't starve people filling buffers */
1521 		if (++count >= MAX_SEND_MSG_COUNT) {
1522 			cond_resched();
1523 			count = 0;
1524 		}
1525 
1526 		spin_lock(&con->writequeue_lock);
1527 		writequeue_entry_complete(e, ret);
1528 	}
1529 	spin_unlock(&con->writequeue_lock);
1530 out:
1531 	mutex_unlock(&con->sock_mutex);
1532 	return;
1533 
1534 send_error:
1535 	mutex_unlock(&con->sock_mutex);
1536 	close_connection(con, true, false, true);
1537 	/* Requeue the send work. When the work daemon runs again, it will try
1538 	   a new connection, then call this function again. */
1539 	queue_work(send_workqueue, &con->swork);
1540 	return;
1541 
1542 out_connect:
1543 	mutex_unlock(&con->sock_mutex);
1544 	queue_work(send_workqueue, &con->swork);
1545 	cond_resched();
1546 }
1547 
1548 static void clean_one_writequeue(struct connection *con)
1549 {
1550 	struct writequeue_entry *e, *safe;
1551 
1552 	spin_lock(&con->writequeue_lock);
1553 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1554 		list_del(&e->list);
1555 		free_entry(e);
1556 	}
1557 	spin_unlock(&con->writequeue_lock);
1558 }
1559 
1560 /* Called from recovery when it knows that a node has
1561    left the cluster */
1562 int dlm_lowcomms_close(int nodeid)
1563 {
1564 	struct connection *con;
1565 	struct dlm_node_addr *na;
1566 
1567 	log_print("closing connection to node %d", nodeid);
1568 	con = nodeid2con(nodeid, 0);
1569 	if (con) {
1570 		set_bit(CF_CLOSE, &con->flags);
1571 		close_connection(con, true, true, true);
1572 		clean_one_writequeue(con);
1573 	}
1574 
1575 	spin_lock(&dlm_node_addrs_spin);
1576 	na = find_node_addr(nodeid);
1577 	if (na) {
1578 		list_del(&na->list);
1579 		while (na->addr_count--)
1580 			kfree(na->addr[na->addr_count]);
1581 		kfree(na);
1582 	}
1583 	spin_unlock(&dlm_node_addrs_spin);
1584 
1585 	return 0;
1586 }
1587 
1588 /* Receive workqueue function */
1589 static void process_recv_sockets(struct work_struct *work)
1590 {
1591 	struct connection *con = container_of(work, struct connection, rwork);
1592 	int err;
1593 
1594 	clear_bit(CF_READ_PENDING, &con->flags);
1595 	do {
1596 		err = con->rx_action(con);
1597 	} while (!err);
1598 }
1599 
1600 /* Send workqueue function */
1601 static void process_send_sockets(struct work_struct *work)
1602 {
1603 	struct connection *con = container_of(work, struct connection, swork);
1604 
1605 	clear_bit(CF_WRITE_PENDING, &con->flags);
1606 	if (con->sock == NULL) /* not mutex protected so check it inside too */
1607 		con->connect_action(con);
1608 	if (!list_empty(&con->writequeue))
1609 		send_to_sock(con);
1610 }
1611 
1612 
1613 /* Discard all entries on the write queues */
1614 static void clean_writequeues(void)
1615 {
1616 	foreach_conn(clean_one_writequeue);
1617 }
1618 
1619 static void work_stop(void)
1620 {
1621 	destroy_workqueue(recv_workqueue);
1622 	destroy_workqueue(send_workqueue);
1623 }
1624 
1625 static int work_start(void)
1626 {
1627 	recv_workqueue = alloc_workqueue("dlm_recv",
1628 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1629 	if (!recv_workqueue) {
1630 		log_print("can't start dlm_recv");
1631 		return -ENOMEM;
1632 	}
1633 
1634 	send_workqueue = alloc_workqueue("dlm_send",
1635 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1636 	if (!send_workqueue) {
1637 		log_print("can't start dlm_send");
1638 		destroy_workqueue(recv_workqueue);
1639 		return -ENOMEM;
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 static void _stop_conn(struct connection *con, bool and_other)
1646 {
1647 	mutex_lock(&con->sock_mutex);
1648 	set_bit(CF_CLOSE, &con->flags);
1649 	set_bit(CF_READ_PENDING, &con->flags);
1650 	set_bit(CF_WRITE_PENDING, &con->flags);
1651 	if (con->sock && con->sock->sk) {
1652 		write_lock_bh(&con->sock->sk->sk_callback_lock);
1653 		con->sock->sk->sk_user_data = NULL;
1654 		write_unlock_bh(&con->sock->sk->sk_callback_lock);
1655 	}
1656 	if (con->othercon && and_other)
1657 		_stop_conn(con->othercon, false);
1658 	mutex_unlock(&con->sock_mutex);
1659 }
1660 
1661 static void stop_conn(struct connection *con)
1662 {
1663 	_stop_conn(con, true);
1664 }
1665 
1666 static void free_conn(struct connection *con)
1667 {
1668 	close_connection(con, true, true, true);
1669 	if (con->othercon)
1670 		kmem_cache_free(con_cache, con->othercon);
1671 	hlist_del(&con->list);
1672 	kmem_cache_free(con_cache, con);
1673 }
1674 
1675 static void work_flush(void)
1676 {
1677 	int ok;
1678 	int i;
1679 	struct hlist_node *n;
1680 	struct connection *con;
1681 
1682 	flush_workqueue(recv_workqueue);
1683 	flush_workqueue(send_workqueue);
1684 	do {
1685 		ok = 1;
1686 		foreach_conn(stop_conn);
1687 		flush_workqueue(recv_workqueue);
1688 		flush_workqueue(send_workqueue);
1689 		for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1690 			hlist_for_each_entry_safe(con, n,
1691 						  &connection_hash[i], list) {
1692 				ok &= test_bit(CF_READ_PENDING, &con->flags);
1693 				ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1694 				if (con->othercon) {
1695 					ok &= test_bit(CF_READ_PENDING,
1696 						       &con->othercon->flags);
1697 					ok &= test_bit(CF_WRITE_PENDING,
1698 						       &con->othercon->flags);
1699 				}
1700 			}
1701 		}
1702 	} while (!ok);
1703 }
1704 
1705 void dlm_lowcomms_stop(void)
1706 {
1707 	/* Set all the flags to prevent any
1708 	   socket activity.
1709 	*/
1710 	mutex_lock(&connections_lock);
1711 	dlm_allow_conn = 0;
1712 	mutex_unlock(&connections_lock);
1713 	work_flush();
1714 	clean_writequeues();
1715 	foreach_conn(free_conn);
1716 	work_stop();
1717 
1718 	kmem_cache_destroy(con_cache);
1719 }
1720 
1721 int dlm_lowcomms_start(void)
1722 {
1723 	int error = -EINVAL;
1724 	struct connection *con;
1725 	int i;
1726 
1727 	for (i = 0; i < CONN_HASH_SIZE; i++)
1728 		INIT_HLIST_HEAD(&connection_hash[i]);
1729 
1730 	init_local();
1731 	if (!dlm_local_count) {
1732 		error = -ENOTCONN;
1733 		log_print("no local IP address has been set");
1734 		goto fail;
1735 	}
1736 
1737 	error = -ENOMEM;
1738 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1739 				      __alignof__(struct connection), 0,
1740 				      NULL);
1741 	if (!con_cache)
1742 		goto fail;
1743 
1744 	error = work_start();
1745 	if (error)
1746 		goto fail_destroy;
1747 
1748 	dlm_allow_conn = 1;
1749 
1750 	/* Start listening */
1751 	if (dlm_config.ci_protocol == 0)
1752 		error = tcp_listen_for_all();
1753 	else
1754 		error = sctp_listen_for_all();
1755 	if (error)
1756 		goto fail_unlisten;
1757 
1758 	return 0;
1759 
1760 fail_unlisten:
1761 	dlm_allow_conn = 0;
1762 	con = nodeid2con(0,0);
1763 	if (con) {
1764 		close_connection(con, false, true, true);
1765 		kmem_cache_free(con_cache, con);
1766 	}
1767 fail_destroy:
1768 	kmem_cache_destroy(con_cache);
1769 fail:
1770 	return error;
1771 }
1772 
1773 void dlm_lowcomms_exit(void)
1774 {
1775 	struct dlm_node_addr *na, *safe;
1776 
1777 	spin_lock(&dlm_node_addrs_spin);
1778 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1779 		list_del(&na->list);
1780 		while (na->addr_count--)
1781 			kfree(na->addr[na->addr_count]);
1782 		kfree(na);
1783 	}
1784 	spin_unlock(&dlm_node_addrs_spin);
1785 }
1786