xref: /openbmc/linux/fs/dlm/lowcomms.c (revision dbb751ff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11 
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44 
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55 
56 #include <trace/events/dlm.h>
57 
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "memory.h"
62 #include "config.h"
63 
64 #define NEEDED_RMEM (4*1024*1024)
65 
66 struct connection {
67 	struct socket *sock;	/* NULL if not connected */
68 	uint32_t nodeid;	/* So we know who we are in the list */
69 	/* this semaphore is used to allow parallel recv/send in read
70 	 * lock mode. When we release a sock we need to held the write lock.
71 	 *
72 	 * However this is locking code and not nice. When we remove the
73 	 * othercon handling we can look into other mechanism to synchronize
74 	 * io handling to call sock_release() at the right time.
75 	 */
76 	struct rw_semaphore sock_lock;
77 	unsigned long flags;
78 #define CF_APP_LIMITED 0
79 #define CF_RECV_PENDING 1
80 #define CF_SEND_PENDING 2
81 #define CF_RECV_INTR 3
82 #define CF_IO_STOP 4
83 #define CF_IS_OTHERCON 5
84 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
85 	spinlock_t writequeue_lock;
86 	int retries;
87 	struct hlist_node list;
88 	/* due some connect()/accept() races we currently have this cross over
89 	 * connection attempt second connection for one node.
90 	 *
91 	 * There is a solution to avoid the race by introducing a connect
92 	 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
93 	 * connect. Otherside can connect but will only be considered that
94 	 * the other side wants to have a reconnect.
95 	 *
96 	 * However changing to this behaviour will break backwards compatible.
97 	 * In a DLM protocol major version upgrade we should remove this!
98 	 */
99 	struct connection *othercon;
100 	struct work_struct rwork; /* receive worker */
101 	struct work_struct swork; /* send worker */
102 	unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
103 	int rx_leftover;
104 	int mark;
105 	int addr_count;
106 	int curr_addr_index;
107 	struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
108 	spinlock_t addrs_lock;
109 	struct rcu_head rcu;
110 };
111 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
112 
113 struct listen_connection {
114 	struct socket *sock;
115 	struct work_struct rwork;
116 };
117 
118 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
119 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
120 
121 /* An entry waiting to be sent */
122 struct writequeue_entry {
123 	struct list_head list;
124 	struct page *page;
125 	int offset;
126 	int len;
127 	int end;
128 	int users;
129 	bool dirty;
130 	struct connection *con;
131 	struct list_head msgs;
132 	struct kref ref;
133 };
134 
135 struct dlm_msg {
136 	struct writequeue_entry *entry;
137 	struct dlm_msg *orig_msg;
138 	bool retransmit;
139 	void *ppc;
140 	int len;
141 	int idx; /* new()/commit() idx exchange */
142 
143 	struct list_head list;
144 	struct kref ref;
145 };
146 
147 struct processqueue_entry {
148 	unsigned char *buf;
149 	int nodeid;
150 	int buflen;
151 
152 	struct list_head list;
153 };
154 
155 struct dlm_proto_ops {
156 	bool try_new_addr;
157 	const char *name;
158 	int proto;
159 
160 	int (*connect)(struct connection *con, struct socket *sock,
161 		       struct sockaddr *addr, int addr_len);
162 	void (*sockopts)(struct socket *sock);
163 	int (*bind)(struct socket *sock);
164 	int (*listen_validate)(void);
165 	void (*listen_sockopts)(struct socket *sock);
166 	int (*listen_bind)(struct socket *sock);
167 };
168 
169 static struct listen_sock_callbacks {
170 	void (*sk_error_report)(struct sock *);
171 	void (*sk_data_ready)(struct sock *);
172 	void (*sk_state_change)(struct sock *);
173 	void (*sk_write_space)(struct sock *);
174 } listen_sock;
175 
176 static struct listen_connection listen_con;
177 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
178 static int dlm_local_count;
179 
180 /* Work queues */
181 static struct workqueue_struct *io_workqueue;
182 static struct workqueue_struct *process_workqueue;
183 
184 static struct hlist_head connection_hash[CONN_HASH_SIZE];
185 static DEFINE_SPINLOCK(connections_lock);
186 DEFINE_STATIC_SRCU(connections_srcu);
187 
188 static const struct dlm_proto_ops *dlm_proto_ops;
189 
190 #define DLM_IO_SUCCESS 0
191 #define DLM_IO_END 1
192 #define DLM_IO_EOF 2
193 #define DLM_IO_RESCHED 3
194 
195 static void process_recv_sockets(struct work_struct *work);
196 static void process_send_sockets(struct work_struct *work);
197 static void process_dlm_messages(struct work_struct *work);
198 
199 static DECLARE_WORK(process_work, process_dlm_messages);
200 static DEFINE_SPINLOCK(processqueue_lock);
201 static bool process_dlm_messages_pending;
202 static LIST_HEAD(processqueue);
203 
204 bool dlm_lowcomms_is_running(void)
205 {
206 	return !!listen_con.sock;
207 }
208 
209 static void lowcomms_queue_swork(struct connection *con)
210 {
211 	WARN_ON_ONCE(!lockdep_is_held(&con->writequeue_lock));
212 
213 	if (!test_bit(CF_IO_STOP, &con->flags) &&
214 	    !test_bit(CF_APP_LIMITED, &con->flags) &&
215 	    !test_and_set_bit(CF_SEND_PENDING, &con->flags))
216 		queue_work(io_workqueue, &con->swork);
217 }
218 
219 static void lowcomms_queue_rwork(struct connection *con)
220 {
221 	WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
222 
223 	if (!test_bit(CF_IO_STOP, &con->flags) &&
224 	    !test_and_set_bit(CF_RECV_PENDING, &con->flags))
225 		queue_work(io_workqueue, &con->rwork);
226 }
227 
228 static void writequeue_entry_ctor(void *data)
229 {
230 	struct writequeue_entry *entry = data;
231 
232 	INIT_LIST_HEAD(&entry->msgs);
233 }
234 
235 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
236 {
237 	return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
238 				 0, 0, writequeue_entry_ctor);
239 }
240 
241 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
242 {
243 	return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
244 }
245 
246 /* need to held writequeue_lock */
247 static struct writequeue_entry *con_next_wq(struct connection *con)
248 {
249 	struct writequeue_entry *e;
250 
251 	e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
252 				     list);
253 	/* if len is zero nothing is to send, if there are users filling
254 	 * buffers we wait until the users are done so we can send more.
255 	 */
256 	if (!e || e->users || e->len == 0)
257 		return NULL;
258 
259 	return e;
260 }
261 
262 static struct connection *__find_con(int nodeid, int r)
263 {
264 	struct connection *con;
265 
266 	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
267 		if (con->nodeid == nodeid)
268 			return con;
269 	}
270 
271 	return NULL;
272 }
273 
274 static void dlm_con_init(struct connection *con, int nodeid)
275 {
276 	con->nodeid = nodeid;
277 	init_rwsem(&con->sock_lock);
278 	INIT_LIST_HEAD(&con->writequeue);
279 	spin_lock_init(&con->writequeue_lock);
280 	INIT_WORK(&con->swork, process_send_sockets);
281 	INIT_WORK(&con->rwork, process_recv_sockets);
282 	spin_lock_init(&con->addrs_lock);
283 }
284 
285 /*
286  * If 'allocation' is zero then we don't attempt to create a new
287  * connection structure for this node.
288  */
289 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
290 {
291 	struct connection *con, *tmp;
292 	int r;
293 
294 	r = nodeid_hash(nodeid);
295 	con = __find_con(nodeid, r);
296 	if (con || !alloc)
297 		return con;
298 
299 	con = kzalloc(sizeof(*con), alloc);
300 	if (!con)
301 		return NULL;
302 
303 	dlm_con_init(con, nodeid);
304 
305 	spin_lock(&connections_lock);
306 	/* Because multiple workqueues/threads calls this function it can
307 	 * race on multiple cpu's. Instead of locking hot path __find_con()
308 	 * we just check in rare cases of recently added nodes again
309 	 * under protection of connections_lock. If this is the case we
310 	 * abort our connection creation and return the existing connection.
311 	 */
312 	tmp = __find_con(nodeid, r);
313 	if (tmp) {
314 		spin_unlock(&connections_lock);
315 		kfree(con);
316 		return tmp;
317 	}
318 
319 	hlist_add_head_rcu(&con->list, &connection_hash[r]);
320 	spin_unlock(&connections_lock);
321 
322 	return con;
323 }
324 
325 static int addr_compare(const struct sockaddr_storage *x,
326 			const struct sockaddr_storage *y)
327 {
328 	switch (x->ss_family) {
329 	case AF_INET: {
330 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
331 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
332 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
333 			return 0;
334 		if (sinx->sin_port != siny->sin_port)
335 			return 0;
336 		break;
337 	}
338 	case AF_INET6: {
339 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
340 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
341 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
342 			return 0;
343 		if (sinx->sin6_port != siny->sin6_port)
344 			return 0;
345 		break;
346 	}
347 	default:
348 		return 0;
349 	}
350 	return 1;
351 }
352 
353 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
354 			  struct sockaddr *sa_out, bool try_new_addr,
355 			  unsigned int *mark)
356 {
357 	struct sockaddr_storage sas;
358 	struct connection *con;
359 	int idx;
360 
361 	if (!dlm_local_count)
362 		return -1;
363 
364 	idx = srcu_read_lock(&connections_srcu);
365 	con = nodeid2con(nodeid, 0);
366 	if (!con) {
367 		srcu_read_unlock(&connections_srcu, idx);
368 		return -ENOENT;
369 	}
370 
371 	spin_lock(&con->addrs_lock);
372 	if (!con->addr_count) {
373 		spin_unlock(&con->addrs_lock);
374 		srcu_read_unlock(&connections_srcu, idx);
375 		return -ENOENT;
376 	}
377 
378 	memcpy(&sas, &con->addr[con->curr_addr_index],
379 	       sizeof(struct sockaddr_storage));
380 
381 	if (try_new_addr) {
382 		con->curr_addr_index++;
383 		if (con->curr_addr_index == con->addr_count)
384 			con->curr_addr_index = 0;
385 	}
386 
387 	*mark = con->mark;
388 	spin_unlock(&con->addrs_lock);
389 
390 	if (sas_out)
391 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
392 
393 	if (!sa_out) {
394 		srcu_read_unlock(&connections_srcu, idx);
395 		return 0;
396 	}
397 
398 	if (dlm_local_addr[0].ss_family == AF_INET) {
399 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
400 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
401 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
402 	} else {
403 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
404 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
405 		ret6->sin6_addr = in6->sin6_addr;
406 	}
407 
408 	srcu_read_unlock(&connections_srcu, idx);
409 	return 0;
410 }
411 
412 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
413 			  unsigned int *mark)
414 {
415 	struct connection *con;
416 	int i, idx, addr_i;
417 
418 	idx = srcu_read_lock(&connections_srcu);
419 	for (i = 0; i < CONN_HASH_SIZE; i++) {
420 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
421 			WARN_ON_ONCE(!con->addr_count);
422 
423 			spin_lock(&con->addrs_lock);
424 			for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
425 				if (addr_compare(&con->addr[addr_i], addr)) {
426 					*nodeid = con->nodeid;
427 					*mark = con->mark;
428 					spin_unlock(&con->addrs_lock);
429 					srcu_read_unlock(&connections_srcu, idx);
430 					return 0;
431 				}
432 			}
433 			spin_unlock(&con->addrs_lock);
434 		}
435 	}
436 	srcu_read_unlock(&connections_srcu, idx);
437 
438 	return -ENOENT;
439 }
440 
441 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
442 				      const struct sockaddr_storage *addr)
443 {
444 	int i;
445 
446 	for (i = 0; i < con->addr_count; i++) {
447 		if (addr_compare(&con->addr[i], addr))
448 			return true;
449 	}
450 
451 	return false;
452 }
453 
454 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
455 {
456 	struct connection *con;
457 	bool ret, idx;
458 
459 	idx = srcu_read_lock(&connections_srcu);
460 	con = nodeid2con(nodeid, GFP_NOFS);
461 	if (!con) {
462 		srcu_read_unlock(&connections_srcu, idx);
463 		return -ENOMEM;
464 	}
465 
466 	spin_lock(&con->addrs_lock);
467 	if (!con->addr_count) {
468 		memcpy(&con->addr[0], addr, sizeof(*addr));
469 		con->addr_count = 1;
470 		con->mark = dlm_config.ci_mark;
471 		spin_unlock(&con->addrs_lock);
472 		srcu_read_unlock(&connections_srcu, idx);
473 		return 0;
474 	}
475 
476 	ret = dlm_lowcomms_con_has_addr(con, addr);
477 	if (ret) {
478 		spin_unlock(&con->addrs_lock);
479 		srcu_read_unlock(&connections_srcu, idx);
480 		return -EEXIST;
481 	}
482 
483 	if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
484 		spin_unlock(&con->addrs_lock);
485 		srcu_read_unlock(&connections_srcu, idx);
486 		return -ENOSPC;
487 	}
488 
489 	memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
490 	srcu_read_unlock(&connections_srcu, idx);
491 	spin_unlock(&con->addrs_lock);
492 	return 0;
493 }
494 
495 /* Data available on socket or listen socket received a connect */
496 static void lowcomms_data_ready(struct sock *sk)
497 {
498 	struct connection *con = sock2con(sk);
499 
500 	set_bit(CF_RECV_INTR, &con->flags);
501 	lowcomms_queue_rwork(con);
502 }
503 
504 static void lowcomms_write_space(struct sock *sk)
505 {
506 	struct connection *con = sock2con(sk);
507 
508 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
509 
510 	spin_lock_bh(&con->writequeue_lock);
511 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
512 		con->sock->sk->sk_write_pending--;
513 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
514 	}
515 
516 	lowcomms_queue_swork(con);
517 	spin_unlock_bh(&con->writequeue_lock);
518 }
519 
520 static void lowcomms_state_change(struct sock *sk)
521 {
522 	/* SCTP layer is not calling sk_data_ready when the connection
523 	 * is done, so we catch the signal through here.
524 	 */
525 	if (sk->sk_shutdown == RCV_SHUTDOWN)
526 		lowcomms_data_ready(sk);
527 }
528 
529 static void lowcomms_listen_data_ready(struct sock *sk)
530 {
531 	queue_work(io_workqueue, &listen_con.rwork);
532 }
533 
534 int dlm_lowcomms_connect_node(int nodeid)
535 {
536 	struct connection *con;
537 	int idx;
538 
539 	if (nodeid == dlm_our_nodeid())
540 		return 0;
541 
542 	idx = srcu_read_lock(&connections_srcu);
543 	con = nodeid2con(nodeid, 0);
544 	if (WARN_ON_ONCE(!con)) {
545 		srcu_read_unlock(&connections_srcu, idx);
546 		return -ENOENT;
547 	}
548 
549 	down_read(&con->sock_lock);
550 	if (!con->sock) {
551 		spin_lock_bh(&con->writequeue_lock);
552 		lowcomms_queue_swork(con);
553 		spin_unlock_bh(&con->writequeue_lock);
554 	}
555 	up_read(&con->sock_lock);
556 	srcu_read_unlock(&connections_srcu, idx);
557 
558 	cond_resched();
559 	return 0;
560 }
561 
562 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
563 {
564 	struct connection *con;
565 	int idx;
566 
567 	idx = srcu_read_lock(&connections_srcu);
568 	con = nodeid2con(nodeid, 0);
569 	if (!con) {
570 		srcu_read_unlock(&connections_srcu, idx);
571 		return -ENOENT;
572 	}
573 
574 	spin_lock(&con->addrs_lock);
575 	con->mark = mark;
576 	spin_unlock(&con->addrs_lock);
577 	srcu_read_unlock(&connections_srcu, idx);
578 	return 0;
579 }
580 
581 static void lowcomms_error_report(struct sock *sk)
582 {
583 	struct connection *con = sock2con(sk);
584 	struct inet_sock *inet;
585 
586 	inet = inet_sk(sk);
587 	switch (sk->sk_family) {
588 	case AF_INET:
589 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
590 				   "sending to node %d at %pI4, dport %d, "
591 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
592 				   con->nodeid, &inet->inet_daddr,
593 				   ntohs(inet->inet_dport), sk->sk_err,
594 				   sk->sk_err_soft);
595 		break;
596 #if IS_ENABLED(CONFIG_IPV6)
597 	case AF_INET6:
598 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
599 				   "sending to node %d at %pI6c, "
600 				   "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
601 				   con->nodeid, &sk->sk_v6_daddr,
602 				   ntohs(inet->inet_dport), sk->sk_err,
603 				   sk->sk_err_soft);
604 		break;
605 #endif
606 	default:
607 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
608 				   "invalid socket family %d set, "
609 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
610 				   sk->sk_family, sk->sk_err, sk->sk_err_soft);
611 		break;
612 	}
613 
614 	dlm_midcomms_unack_msg_resend(con->nodeid);
615 
616 	listen_sock.sk_error_report(sk);
617 }
618 
619 static void restore_callbacks(struct sock *sk)
620 {
621 	WARN_ON_ONCE(!lockdep_sock_is_held(sk));
622 
623 	sk->sk_user_data = NULL;
624 	sk->sk_data_ready = listen_sock.sk_data_ready;
625 	sk->sk_state_change = listen_sock.sk_state_change;
626 	sk->sk_write_space = listen_sock.sk_write_space;
627 	sk->sk_error_report = listen_sock.sk_error_report;
628 }
629 
630 /* Make a socket active */
631 static void add_sock(struct socket *sock, struct connection *con)
632 {
633 	struct sock *sk = sock->sk;
634 
635 	lock_sock(sk);
636 	con->sock = sock;
637 
638 	sk->sk_user_data = con;
639 	sk->sk_data_ready = lowcomms_data_ready;
640 	sk->sk_write_space = lowcomms_write_space;
641 	if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
642 		sk->sk_state_change = lowcomms_state_change;
643 	sk->sk_allocation = GFP_NOFS;
644 	sk->sk_error_report = lowcomms_error_report;
645 	release_sock(sk);
646 }
647 
648 /* Add the port number to an IPv6 or 4 sockaddr and return the address
649    length */
650 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
651 			  int *addr_len)
652 {
653 	saddr->ss_family =  dlm_local_addr[0].ss_family;
654 	if (saddr->ss_family == AF_INET) {
655 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
656 		in4_addr->sin_port = cpu_to_be16(port);
657 		*addr_len = sizeof(struct sockaddr_in);
658 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
659 	} else {
660 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
661 		in6_addr->sin6_port = cpu_to_be16(port);
662 		*addr_len = sizeof(struct sockaddr_in6);
663 	}
664 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
665 }
666 
667 static void dlm_page_release(struct kref *kref)
668 {
669 	struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
670 						  ref);
671 
672 	__free_page(e->page);
673 	dlm_free_writequeue(e);
674 }
675 
676 static void dlm_msg_release(struct kref *kref)
677 {
678 	struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
679 
680 	kref_put(&msg->entry->ref, dlm_page_release);
681 	dlm_free_msg(msg);
682 }
683 
684 static void free_entry(struct writequeue_entry *e)
685 {
686 	struct dlm_msg *msg, *tmp;
687 
688 	list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
689 		if (msg->orig_msg) {
690 			msg->orig_msg->retransmit = false;
691 			kref_put(&msg->orig_msg->ref, dlm_msg_release);
692 		}
693 
694 		list_del(&msg->list);
695 		kref_put(&msg->ref, dlm_msg_release);
696 	}
697 
698 	list_del(&e->list);
699 	kref_put(&e->ref, dlm_page_release);
700 }
701 
702 static void dlm_close_sock(struct socket **sock)
703 {
704 	lock_sock((*sock)->sk);
705 	restore_callbacks((*sock)->sk);
706 	release_sock((*sock)->sk);
707 
708 	sock_release(*sock);
709 	*sock = NULL;
710 }
711 
712 static void allow_connection_io(struct connection *con)
713 {
714 	if (con->othercon)
715 		clear_bit(CF_IO_STOP, &con->othercon->flags);
716 	clear_bit(CF_IO_STOP, &con->flags);
717 }
718 
719 static void stop_connection_io(struct connection *con)
720 {
721 	if (con->othercon)
722 		stop_connection_io(con->othercon);
723 
724 	down_write(&con->sock_lock);
725 	if (con->sock) {
726 		lock_sock(con->sock->sk);
727 		restore_callbacks(con->sock->sk);
728 
729 		spin_lock_bh(&con->writequeue_lock);
730 		set_bit(CF_IO_STOP, &con->flags);
731 		spin_unlock_bh(&con->writequeue_lock);
732 		release_sock(con->sock->sk);
733 	} else {
734 		spin_lock_bh(&con->writequeue_lock);
735 		set_bit(CF_IO_STOP, &con->flags);
736 		spin_unlock_bh(&con->writequeue_lock);
737 	}
738 	up_write(&con->sock_lock);
739 
740 	cancel_work_sync(&con->swork);
741 	cancel_work_sync(&con->rwork);
742 }
743 
744 /* Close a remote connection and tidy up */
745 static void close_connection(struct connection *con, bool and_other)
746 {
747 	struct writequeue_entry *e;
748 
749 	if (con->othercon && and_other)
750 		close_connection(con->othercon, false);
751 
752 	down_write(&con->sock_lock);
753 	if (!con->sock) {
754 		up_write(&con->sock_lock);
755 		return;
756 	}
757 
758 	dlm_close_sock(&con->sock);
759 
760 	/* if we send a writequeue entry only a half way, we drop the
761 	 * whole entry because reconnection and that we not start of the
762 	 * middle of a msg which will confuse the other end.
763 	 *
764 	 * we can always drop messages because retransmits, but what we
765 	 * cannot allow is to transmit half messages which may be processed
766 	 * at the other side.
767 	 *
768 	 * our policy is to start on a clean state when disconnects, we don't
769 	 * know what's send/received on transport layer in this case.
770 	 */
771 	spin_lock_bh(&con->writequeue_lock);
772 	if (!list_empty(&con->writequeue)) {
773 		e = list_first_entry(&con->writequeue, struct writequeue_entry,
774 				     list);
775 		if (e->dirty)
776 			free_entry(e);
777 	}
778 	spin_unlock_bh(&con->writequeue_lock);
779 
780 	con->rx_leftover = 0;
781 	con->retries = 0;
782 	clear_bit(CF_APP_LIMITED, &con->flags);
783 	clear_bit(CF_RECV_PENDING, &con->flags);
784 	clear_bit(CF_SEND_PENDING, &con->flags);
785 	up_write(&con->sock_lock);
786 }
787 
788 static struct processqueue_entry *new_processqueue_entry(int nodeid,
789 							 int buflen)
790 {
791 	struct processqueue_entry *pentry;
792 
793 	pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
794 	if (!pentry)
795 		return NULL;
796 
797 	pentry->buf = kmalloc(buflen, GFP_NOFS);
798 	if (!pentry->buf) {
799 		kfree(pentry);
800 		return NULL;
801 	}
802 
803 	pentry->nodeid = nodeid;
804 	return pentry;
805 }
806 
807 static void free_processqueue_entry(struct processqueue_entry *pentry)
808 {
809 	kfree(pentry->buf);
810 	kfree(pentry);
811 }
812 
813 struct dlm_processed_nodes {
814 	int nodeid;
815 
816 	struct list_head list;
817 };
818 
819 static void add_processed_node(int nodeid, struct list_head *processed_nodes)
820 {
821 	struct dlm_processed_nodes *n;
822 
823 	list_for_each_entry(n, processed_nodes, list) {
824 		/* we already remembered this node */
825 		if (n->nodeid == nodeid)
826 			return;
827 	}
828 
829 	/* if it's fails in worst case we simple don't send an ack back.
830 	 * We try it next time.
831 	 */
832 	n = kmalloc(sizeof(*n), GFP_NOFS);
833 	if (!n)
834 		return;
835 
836 	n->nodeid = nodeid;
837 	list_add(&n->list, processed_nodes);
838 }
839 
840 static void process_dlm_messages(struct work_struct *work)
841 {
842 	struct dlm_processed_nodes *n, *n_tmp;
843 	struct processqueue_entry *pentry;
844 	LIST_HEAD(processed_nodes);
845 
846 	spin_lock(&processqueue_lock);
847 	pentry = list_first_entry_or_null(&processqueue,
848 					  struct processqueue_entry, list);
849 	if (WARN_ON_ONCE(!pentry)) {
850 		spin_unlock(&processqueue_lock);
851 		return;
852 	}
853 
854 	list_del(&pentry->list);
855 	spin_unlock(&processqueue_lock);
856 
857 	for (;;) {
858 		dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
859 					    pentry->buflen);
860 		add_processed_node(pentry->nodeid, &processed_nodes);
861 		free_processqueue_entry(pentry);
862 
863 		spin_lock(&processqueue_lock);
864 		pentry = list_first_entry_or_null(&processqueue,
865 						  struct processqueue_entry, list);
866 		if (!pentry) {
867 			process_dlm_messages_pending = false;
868 			spin_unlock(&processqueue_lock);
869 			break;
870 		}
871 
872 		list_del(&pentry->list);
873 		spin_unlock(&processqueue_lock);
874 	}
875 
876 	/* send ack back after we processed couple of messages */
877 	list_for_each_entry_safe(n, n_tmp, &processed_nodes, list) {
878 		list_del(&n->list);
879 		dlm_midcomms_receive_done(n->nodeid);
880 		kfree(n);
881 	}
882 }
883 
884 /* Data received from remote end */
885 static int receive_from_sock(struct connection *con, int buflen)
886 {
887 	struct processqueue_entry *pentry;
888 	int ret, buflen_real;
889 	struct msghdr msg;
890 	struct kvec iov;
891 
892 	pentry = new_processqueue_entry(con->nodeid, buflen);
893 	if (!pentry)
894 		return DLM_IO_RESCHED;
895 
896 	memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
897 
898 	/* calculate new buffer parameter regarding last receive and
899 	 * possible leftover bytes
900 	 */
901 	iov.iov_base = pentry->buf + con->rx_leftover;
902 	iov.iov_len = buflen - con->rx_leftover;
903 
904 	memset(&msg, 0, sizeof(msg));
905 	msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
906 	clear_bit(CF_RECV_INTR, &con->flags);
907 again:
908 	ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
909 			     msg.msg_flags);
910 	trace_dlm_recv(con->nodeid, ret);
911 	if (ret == -EAGAIN) {
912 		lock_sock(con->sock->sk);
913 		if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
914 			release_sock(con->sock->sk);
915 			goto again;
916 		}
917 
918 		clear_bit(CF_RECV_PENDING, &con->flags);
919 		release_sock(con->sock->sk);
920 		free_processqueue_entry(pentry);
921 		return DLM_IO_END;
922 	} else if (ret == 0) {
923 		/* close will clear CF_RECV_PENDING */
924 		free_processqueue_entry(pentry);
925 		return DLM_IO_EOF;
926 	} else if (ret < 0) {
927 		free_processqueue_entry(pentry);
928 		return ret;
929 	}
930 
931 	/* new buflen according readed bytes and leftover from last receive */
932 	buflen_real = ret + con->rx_leftover;
933 	ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
934 					   buflen_real);
935 	if (ret < 0) {
936 		free_processqueue_entry(pentry);
937 		return ret;
938 	}
939 
940 	pentry->buflen = ret;
941 
942 	/* calculate leftover bytes from process and put it into begin of
943 	 * the receive buffer, so next receive we have the full message
944 	 * at the start address of the receive buffer.
945 	 */
946 	con->rx_leftover = buflen_real - ret;
947 	memmove(con->rx_leftover_buf, pentry->buf + ret,
948 		con->rx_leftover);
949 
950 	spin_lock(&processqueue_lock);
951 	list_add_tail(&pentry->list, &processqueue);
952 	if (!process_dlm_messages_pending) {
953 		process_dlm_messages_pending = true;
954 		queue_work(process_workqueue, &process_work);
955 	}
956 	spin_unlock(&processqueue_lock);
957 
958 	return DLM_IO_SUCCESS;
959 }
960 
961 /* Listening socket is busy, accept a connection */
962 static int accept_from_sock(void)
963 {
964 	struct sockaddr_storage peeraddr;
965 	int len, idx, result, nodeid;
966 	struct connection *newcon;
967 	struct socket *newsock;
968 	unsigned int mark;
969 
970 	result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
971 	if (result == -EAGAIN)
972 		return DLM_IO_END;
973 	else if (result < 0)
974 		goto accept_err;
975 
976 	/* Get the connected socket's peer */
977 	memset(&peeraddr, 0, sizeof(peeraddr));
978 	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
979 	if (len < 0) {
980 		result = -ECONNABORTED;
981 		goto accept_err;
982 	}
983 
984 	/* Get the new node's NODEID */
985 	make_sockaddr(&peeraddr, 0, &len);
986 	if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
987 		switch (peeraddr.ss_family) {
988 		case AF_INET: {
989 			struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
990 
991 			log_print("connect from non cluster IPv4 node %pI4",
992 				  &sin->sin_addr);
993 			break;
994 		}
995 #if IS_ENABLED(CONFIG_IPV6)
996 		case AF_INET6: {
997 			struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
998 
999 			log_print("connect from non cluster IPv6 node %pI6c",
1000 				  &sin6->sin6_addr);
1001 			break;
1002 		}
1003 #endif
1004 		default:
1005 			log_print("invalid family from non cluster node");
1006 			break;
1007 		}
1008 
1009 		sock_release(newsock);
1010 		return -1;
1011 	}
1012 
1013 	log_print("got connection from %d", nodeid);
1014 
1015 	/*  Check to see if we already have a connection to this node. This
1016 	 *  could happen if the two nodes initiate a connection at roughly
1017 	 *  the same time and the connections cross on the wire.
1018 	 *  In this case we store the incoming one in "othercon"
1019 	 */
1020 	idx = srcu_read_lock(&connections_srcu);
1021 	newcon = nodeid2con(nodeid, 0);
1022 	if (WARN_ON_ONCE(!newcon)) {
1023 		srcu_read_unlock(&connections_srcu, idx);
1024 		result = -ENOENT;
1025 		goto accept_err;
1026 	}
1027 
1028 	sock_set_mark(newsock->sk, mark);
1029 
1030 	down_write(&newcon->sock_lock);
1031 	if (newcon->sock) {
1032 		struct connection *othercon = newcon->othercon;
1033 
1034 		if (!othercon) {
1035 			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1036 			if (!othercon) {
1037 				log_print("failed to allocate incoming socket");
1038 				up_write(&newcon->sock_lock);
1039 				srcu_read_unlock(&connections_srcu, idx);
1040 				result = -ENOMEM;
1041 				goto accept_err;
1042 			}
1043 
1044 			dlm_con_init(othercon, nodeid);
1045 			lockdep_set_subclass(&othercon->sock_lock, 1);
1046 			newcon->othercon = othercon;
1047 			set_bit(CF_IS_OTHERCON, &othercon->flags);
1048 		} else {
1049 			/* close other sock con if we have something new */
1050 			close_connection(othercon, false);
1051 		}
1052 
1053 		down_write(&othercon->sock_lock);
1054 		add_sock(newsock, othercon);
1055 
1056 		/* check if we receved something while adding */
1057 		lock_sock(othercon->sock->sk);
1058 		lowcomms_queue_rwork(othercon);
1059 		release_sock(othercon->sock->sk);
1060 		up_write(&othercon->sock_lock);
1061 	}
1062 	else {
1063 		/* accept copies the sk after we've saved the callbacks, so we
1064 		   don't want to save them a second time or comm errors will
1065 		   result in calling sk_error_report recursively. */
1066 		add_sock(newsock, newcon);
1067 
1068 		/* check if we receved something while adding */
1069 		lock_sock(newcon->sock->sk);
1070 		lowcomms_queue_rwork(newcon);
1071 		release_sock(newcon->sock->sk);
1072 	}
1073 	up_write(&newcon->sock_lock);
1074 	srcu_read_unlock(&connections_srcu, idx);
1075 
1076 	return DLM_IO_SUCCESS;
1077 
1078 accept_err:
1079 	if (newsock)
1080 		sock_release(newsock);
1081 
1082 	return result;
1083 }
1084 
1085 /*
1086  * writequeue_entry_complete - try to delete and free write queue entry
1087  * @e: write queue entry to try to delete
1088  * @completed: bytes completed
1089  *
1090  * writequeue_lock must be held.
1091  */
1092 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1093 {
1094 	e->offset += completed;
1095 	e->len -= completed;
1096 	/* signal that page was half way transmitted */
1097 	e->dirty = true;
1098 
1099 	if (e->len == 0 && e->users == 0)
1100 		free_entry(e);
1101 }
1102 
1103 /*
1104  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1105  */
1106 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1107 {
1108 	struct sockaddr_storage localaddr;
1109 	struct sockaddr *addr = (struct sockaddr *)&localaddr;
1110 	int i, addr_len, result = 0;
1111 
1112 	for (i = 0; i < dlm_local_count; i++) {
1113 		memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1114 		make_sockaddr(&localaddr, port, &addr_len);
1115 
1116 		if (!i)
1117 			result = kernel_bind(sock, addr, addr_len);
1118 		else
1119 			result = sock_bind_add(sock->sk, addr, addr_len);
1120 
1121 		if (result < 0) {
1122 			log_print("Can't bind to %d addr number %d, %d.\n",
1123 				  port, i + 1, result);
1124 			break;
1125 		}
1126 	}
1127 	return result;
1128 }
1129 
1130 /* Get local addresses */
1131 static void init_local(void)
1132 {
1133 	struct sockaddr_storage sas;
1134 	int i;
1135 
1136 	dlm_local_count = 0;
1137 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1138 		if (dlm_our_addr(&sas, i))
1139 			break;
1140 
1141 		memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1142 	}
1143 }
1144 
1145 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1146 {
1147 	struct writequeue_entry *entry;
1148 
1149 	entry = dlm_allocate_writequeue();
1150 	if (!entry)
1151 		return NULL;
1152 
1153 	entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1154 	if (!entry->page) {
1155 		dlm_free_writequeue(entry);
1156 		return NULL;
1157 	}
1158 
1159 	entry->offset = 0;
1160 	entry->len = 0;
1161 	entry->end = 0;
1162 	entry->dirty = false;
1163 	entry->con = con;
1164 	entry->users = 1;
1165 	kref_init(&entry->ref);
1166 	return entry;
1167 }
1168 
1169 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1170 					     char **ppc, void (*cb)(void *data),
1171 					     void *data)
1172 {
1173 	struct writequeue_entry *e;
1174 
1175 	spin_lock_bh(&con->writequeue_lock);
1176 	if (!list_empty(&con->writequeue)) {
1177 		e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1178 		if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1179 			kref_get(&e->ref);
1180 
1181 			*ppc = page_address(e->page) + e->end;
1182 			if (cb)
1183 				cb(data);
1184 
1185 			e->end += len;
1186 			e->users++;
1187 			goto out;
1188 		}
1189 	}
1190 
1191 	e = new_writequeue_entry(con);
1192 	if (!e)
1193 		goto out;
1194 
1195 	kref_get(&e->ref);
1196 	*ppc = page_address(e->page);
1197 	e->end += len;
1198 	if (cb)
1199 		cb(data);
1200 
1201 	list_add_tail(&e->list, &con->writequeue);
1202 
1203 out:
1204 	spin_unlock_bh(&con->writequeue_lock);
1205 	return e;
1206 };
1207 
1208 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1209 						gfp_t allocation, char **ppc,
1210 						void (*cb)(void *data),
1211 						void *data)
1212 {
1213 	struct writequeue_entry *e;
1214 	struct dlm_msg *msg;
1215 
1216 	msg = dlm_allocate_msg(allocation);
1217 	if (!msg)
1218 		return NULL;
1219 
1220 	kref_init(&msg->ref);
1221 
1222 	e = new_wq_entry(con, len, ppc, cb, data);
1223 	if (!e) {
1224 		dlm_free_msg(msg);
1225 		return NULL;
1226 	}
1227 
1228 	msg->retransmit = false;
1229 	msg->orig_msg = NULL;
1230 	msg->ppc = *ppc;
1231 	msg->len = len;
1232 	msg->entry = e;
1233 
1234 	return msg;
1235 }
1236 
1237 /* avoid false positive for nodes_srcu, unlock happens in
1238  * dlm_lowcomms_commit_msg which is a must call if success
1239  */
1240 #ifndef __CHECKER__
1241 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1242 				     char **ppc, void (*cb)(void *data),
1243 				     void *data)
1244 {
1245 	struct connection *con;
1246 	struct dlm_msg *msg;
1247 	int idx;
1248 
1249 	if (len > DLM_MAX_SOCKET_BUFSIZE ||
1250 	    len < sizeof(struct dlm_header)) {
1251 		BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1252 		log_print("failed to allocate a buffer of size %d", len);
1253 		WARN_ON_ONCE(1);
1254 		return NULL;
1255 	}
1256 
1257 	idx = srcu_read_lock(&connections_srcu);
1258 	con = nodeid2con(nodeid, 0);
1259 	if (WARN_ON_ONCE(!con)) {
1260 		srcu_read_unlock(&connections_srcu, idx);
1261 		return NULL;
1262 	}
1263 
1264 	msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1265 	if (!msg) {
1266 		srcu_read_unlock(&connections_srcu, idx);
1267 		return NULL;
1268 	}
1269 
1270 	/* for dlm_lowcomms_commit_msg() */
1271 	kref_get(&msg->ref);
1272 	/* we assume if successful commit must called */
1273 	msg->idx = idx;
1274 	return msg;
1275 }
1276 #endif
1277 
1278 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1279 {
1280 	struct writequeue_entry *e = msg->entry;
1281 	struct connection *con = e->con;
1282 	int users;
1283 
1284 	spin_lock_bh(&con->writequeue_lock);
1285 	kref_get(&msg->ref);
1286 	list_add(&msg->list, &e->msgs);
1287 
1288 	users = --e->users;
1289 	if (users)
1290 		goto out;
1291 
1292 	e->len = DLM_WQ_LENGTH_BYTES(e);
1293 
1294 	lowcomms_queue_swork(con);
1295 
1296 out:
1297 	spin_unlock_bh(&con->writequeue_lock);
1298 	return;
1299 }
1300 
1301 /* avoid false positive for nodes_srcu, lock was happen in
1302  * dlm_lowcomms_new_msg
1303  */
1304 #ifndef __CHECKER__
1305 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1306 {
1307 	_dlm_lowcomms_commit_msg(msg);
1308 	srcu_read_unlock(&connections_srcu, msg->idx);
1309 	/* because dlm_lowcomms_new_msg() */
1310 	kref_put(&msg->ref, dlm_msg_release);
1311 }
1312 #endif
1313 
1314 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1315 {
1316 	kref_put(&msg->ref, dlm_msg_release);
1317 }
1318 
1319 /* does not held connections_srcu, usage lowcomms_error_report only */
1320 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1321 {
1322 	struct dlm_msg *msg_resend;
1323 	char *ppc;
1324 
1325 	if (msg->retransmit)
1326 		return 1;
1327 
1328 	msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1329 					      GFP_ATOMIC, &ppc, NULL, NULL);
1330 	if (!msg_resend)
1331 		return -ENOMEM;
1332 
1333 	msg->retransmit = true;
1334 	kref_get(&msg->ref);
1335 	msg_resend->orig_msg = msg;
1336 
1337 	memcpy(ppc, msg->ppc, msg->len);
1338 	_dlm_lowcomms_commit_msg(msg_resend);
1339 	dlm_lowcomms_put_msg(msg_resend);
1340 
1341 	return 0;
1342 }
1343 
1344 /* Send a message */
1345 static int send_to_sock(struct connection *con)
1346 {
1347 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1348 	struct writequeue_entry *e;
1349 	int len, offset, ret;
1350 
1351 	spin_lock_bh(&con->writequeue_lock);
1352 	e = con_next_wq(con);
1353 	if (!e) {
1354 		clear_bit(CF_SEND_PENDING, &con->flags);
1355 		spin_unlock_bh(&con->writequeue_lock);
1356 		return DLM_IO_END;
1357 	}
1358 
1359 	len = e->len;
1360 	offset = e->offset;
1361 	WARN_ON_ONCE(len == 0 && e->users == 0);
1362 	spin_unlock_bh(&con->writequeue_lock);
1363 
1364 	ret = kernel_sendpage(con->sock, e->page, offset, len,
1365 			      msg_flags);
1366 	trace_dlm_send(con->nodeid, ret);
1367 	if (ret == -EAGAIN || ret == 0) {
1368 		lock_sock(con->sock->sk);
1369 		spin_lock_bh(&con->writequeue_lock);
1370 		if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1371 		    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1372 			/* Notify TCP that we're limited by the
1373 			 * application window size.
1374 			 */
1375 			set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1376 			con->sock->sk->sk_write_pending++;
1377 
1378 			clear_bit(CF_SEND_PENDING, &con->flags);
1379 			spin_unlock_bh(&con->writequeue_lock);
1380 			release_sock(con->sock->sk);
1381 
1382 			/* wait for write_space() event */
1383 			return DLM_IO_END;
1384 		}
1385 		spin_unlock_bh(&con->writequeue_lock);
1386 		release_sock(con->sock->sk);
1387 
1388 		return DLM_IO_RESCHED;
1389 	} else if (ret < 0) {
1390 		return ret;
1391 	}
1392 
1393 	spin_lock_bh(&con->writequeue_lock);
1394 	writequeue_entry_complete(e, ret);
1395 	spin_unlock_bh(&con->writequeue_lock);
1396 
1397 	return DLM_IO_SUCCESS;
1398 }
1399 
1400 static void clean_one_writequeue(struct connection *con)
1401 {
1402 	struct writequeue_entry *e, *safe;
1403 
1404 	spin_lock_bh(&con->writequeue_lock);
1405 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1406 		free_entry(e);
1407 	}
1408 	spin_unlock_bh(&con->writequeue_lock);
1409 }
1410 
1411 static void connection_release(struct rcu_head *rcu)
1412 {
1413 	struct connection *con = container_of(rcu, struct connection, rcu);
1414 
1415 	WARN_ON_ONCE(!list_empty(&con->writequeue));
1416 	WARN_ON_ONCE(con->sock);
1417 	kfree(con);
1418 }
1419 
1420 /* Called from recovery when it knows that a node has
1421    left the cluster */
1422 int dlm_lowcomms_close(int nodeid)
1423 {
1424 	struct connection *con;
1425 	int idx;
1426 
1427 	log_print("closing connection to node %d", nodeid);
1428 
1429 	idx = srcu_read_lock(&connections_srcu);
1430 	con = nodeid2con(nodeid, 0);
1431 	if (WARN_ON_ONCE(!con)) {
1432 		srcu_read_unlock(&connections_srcu, idx);
1433 		return -ENOENT;
1434 	}
1435 
1436 	stop_connection_io(con);
1437 	log_print("io handling for node: %d stopped", nodeid);
1438 	close_connection(con, true);
1439 
1440 	spin_lock(&connections_lock);
1441 	hlist_del_rcu(&con->list);
1442 	spin_unlock(&connections_lock);
1443 
1444 	clean_one_writequeue(con);
1445 	call_srcu(&connections_srcu, &con->rcu, connection_release);
1446 	if (con->othercon) {
1447 		clean_one_writequeue(con->othercon);
1448 		if (con->othercon)
1449 			call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1450 	}
1451 	srcu_read_unlock(&connections_srcu, idx);
1452 
1453 	/* for debugging we print when we are done to compare with other
1454 	 * messages in between. This function need to be correctly synchronized
1455 	 * with io handling
1456 	 */
1457 	log_print("closing connection to node %d done", nodeid);
1458 
1459 	return 0;
1460 }
1461 
1462 /* Receive worker function */
1463 static void process_recv_sockets(struct work_struct *work)
1464 {
1465 	struct connection *con = container_of(work, struct connection, rwork);
1466 	int ret, buflen;
1467 
1468 	down_read(&con->sock_lock);
1469 	if (!con->sock) {
1470 		up_read(&con->sock_lock);
1471 		return;
1472 	}
1473 
1474 	buflen = READ_ONCE(dlm_config.ci_buffer_size);
1475 	do {
1476 		ret = receive_from_sock(con, buflen);
1477 	} while (ret == DLM_IO_SUCCESS);
1478 	up_read(&con->sock_lock);
1479 
1480 	switch (ret) {
1481 	case DLM_IO_END:
1482 		/* CF_RECV_PENDING cleared */
1483 		break;
1484 	case DLM_IO_EOF:
1485 		close_connection(con, false);
1486 		/* CF_RECV_PENDING cleared */
1487 		break;
1488 	case DLM_IO_RESCHED:
1489 		cond_resched();
1490 		queue_work(io_workqueue, &con->rwork);
1491 		/* CF_RECV_PENDING not cleared */
1492 		break;
1493 	default:
1494 		if (ret < 0) {
1495 			if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1496 				close_connection(con, false);
1497 			} else {
1498 				spin_lock_bh(&con->writequeue_lock);
1499 				lowcomms_queue_swork(con);
1500 				spin_unlock_bh(&con->writequeue_lock);
1501 			}
1502 
1503 			/* CF_RECV_PENDING cleared for othercon
1504 			 * we trigger send queue if not already done
1505 			 * and process_send_sockets will handle it
1506 			 */
1507 			break;
1508 		}
1509 
1510 		WARN_ON_ONCE(1);
1511 		break;
1512 	}
1513 }
1514 
1515 static void process_listen_recv_socket(struct work_struct *work)
1516 {
1517 	int ret;
1518 
1519 	if (WARN_ON_ONCE(!listen_con.sock))
1520 		return;
1521 
1522 	do {
1523 		ret = accept_from_sock();
1524 	} while (ret == DLM_IO_SUCCESS);
1525 
1526 	if (ret < 0)
1527 		log_print("critical error accepting connection: %d", ret);
1528 }
1529 
1530 static int dlm_connect(struct connection *con)
1531 {
1532 	struct sockaddr_storage addr;
1533 	int result, addr_len;
1534 	struct socket *sock;
1535 	unsigned int mark;
1536 
1537 	memset(&addr, 0, sizeof(addr));
1538 	result = nodeid_to_addr(con->nodeid, &addr, NULL,
1539 				dlm_proto_ops->try_new_addr, &mark);
1540 	if (result < 0) {
1541 		log_print("no address for nodeid %d", con->nodeid);
1542 		return result;
1543 	}
1544 
1545 	/* Create a socket to communicate with */
1546 	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1547 				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1548 	if (result < 0)
1549 		return result;
1550 
1551 	sock_set_mark(sock->sk, mark);
1552 	dlm_proto_ops->sockopts(sock);
1553 
1554 	result = dlm_proto_ops->bind(sock);
1555 	if (result < 0) {
1556 		sock_release(sock);
1557 		return result;
1558 	}
1559 
1560 	add_sock(sock, con);
1561 
1562 	log_print_ratelimited("connecting to %d", con->nodeid);
1563 	make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1564 	result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1565 					addr_len);
1566 	switch (result) {
1567 	case -EINPROGRESS:
1568 		/* not an error */
1569 		fallthrough;
1570 	case 0:
1571 		break;
1572 	default:
1573 		if (result < 0)
1574 			dlm_close_sock(&con->sock);
1575 
1576 		break;
1577 	}
1578 
1579 	return result;
1580 }
1581 
1582 /* Send worker function */
1583 static void process_send_sockets(struct work_struct *work)
1584 {
1585 	struct connection *con = container_of(work, struct connection, swork);
1586 	int ret;
1587 
1588 	WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1589 
1590 	down_read(&con->sock_lock);
1591 	if (!con->sock) {
1592 		up_read(&con->sock_lock);
1593 		down_write(&con->sock_lock);
1594 		if (!con->sock) {
1595 			ret = dlm_connect(con);
1596 			switch (ret) {
1597 			case 0:
1598 				break;
1599 			case -EINPROGRESS:
1600 				/* avoid spamming resched on connection
1601 				 * we might can switch to a state_change
1602 				 * event based mechanism if established
1603 				 */
1604 				msleep(100);
1605 				break;
1606 			default:
1607 				/* CF_SEND_PENDING not cleared */
1608 				up_write(&con->sock_lock);
1609 				log_print("connect to node %d try %d error %d",
1610 					  con->nodeid, con->retries++, ret);
1611 				msleep(1000);
1612 				/* For now we try forever to reconnect. In
1613 				 * future we should send a event to cluster
1614 				 * manager to fence itself after certain amount
1615 				 * of retries.
1616 				 */
1617 				queue_work(io_workqueue, &con->swork);
1618 				return;
1619 			}
1620 		}
1621 		downgrade_write(&con->sock_lock);
1622 	}
1623 
1624 	do {
1625 		ret = send_to_sock(con);
1626 	} while (ret == DLM_IO_SUCCESS);
1627 	up_read(&con->sock_lock);
1628 
1629 	switch (ret) {
1630 	case DLM_IO_END:
1631 		/* CF_SEND_PENDING cleared */
1632 		break;
1633 	case DLM_IO_RESCHED:
1634 		/* CF_SEND_PENDING not cleared */
1635 		cond_resched();
1636 		queue_work(io_workqueue, &con->swork);
1637 		break;
1638 	default:
1639 		if (ret < 0) {
1640 			close_connection(con, false);
1641 
1642 			/* CF_SEND_PENDING cleared */
1643 			spin_lock_bh(&con->writequeue_lock);
1644 			lowcomms_queue_swork(con);
1645 			spin_unlock_bh(&con->writequeue_lock);
1646 			break;
1647 		}
1648 
1649 		WARN_ON_ONCE(1);
1650 		break;
1651 	}
1652 }
1653 
1654 static void work_stop(void)
1655 {
1656 	if (io_workqueue) {
1657 		destroy_workqueue(io_workqueue);
1658 		io_workqueue = NULL;
1659 	}
1660 
1661 	if (process_workqueue) {
1662 		destroy_workqueue(process_workqueue);
1663 		process_workqueue = NULL;
1664 	}
1665 }
1666 
1667 static int work_start(void)
1668 {
1669 	io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM,
1670 				       0);
1671 	if (!io_workqueue) {
1672 		log_print("can't start dlm_io");
1673 		return -ENOMEM;
1674 	}
1675 
1676 	/* ordered dlm message process queue,
1677 	 * should be converted to a tasklet
1678 	 */
1679 	process_workqueue = alloc_ordered_workqueue("dlm_process",
1680 						    WQ_HIGHPRI | WQ_MEM_RECLAIM);
1681 	if (!process_workqueue) {
1682 		log_print("can't start dlm_process");
1683 		destroy_workqueue(io_workqueue);
1684 		io_workqueue = NULL;
1685 		return -ENOMEM;
1686 	}
1687 
1688 	return 0;
1689 }
1690 
1691 void dlm_lowcomms_shutdown(void)
1692 {
1693 	/* stop lowcomms_listen_data_ready calls */
1694 	lock_sock(listen_con.sock->sk);
1695 	listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1696 	release_sock(listen_con.sock->sk);
1697 
1698 	cancel_work_sync(&listen_con.rwork);
1699 	dlm_close_sock(&listen_con.sock);
1700 
1701 	flush_workqueue(process_workqueue);
1702 }
1703 
1704 void dlm_lowcomms_shutdown_node(int nodeid, bool force)
1705 {
1706 	struct connection *con;
1707 	int idx;
1708 
1709 	idx = srcu_read_lock(&connections_srcu);
1710 	con = nodeid2con(nodeid, 0);
1711 	if (WARN_ON_ONCE(!con)) {
1712 		srcu_read_unlock(&connections_srcu, idx);
1713 		return;
1714 	}
1715 
1716 	flush_work(&con->swork);
1717 	stop_connection_io(con);
1718 	WARN_ON_ONCE(!force && !list_empty(&con->writequeue));
1719 	close_connection(con, true);
1720 	clean_one_writequeue(con);
1721 	if (con->othercon)
1722 		clean_one_writequeue(con->othercon);
1723 	allow_connection_io(con);
1724 	srcu_read_unlock(&connections_srcu, idx);
1725 }
1726 
1727 void dlm_lowcomms_stop(void)
1728 {
1729 	work_stop();
1730 	dlm_proto_ops = NULL;
1731 }
1732 
1733 static int dlm_listen_for_all(void)
1734 {
1735 	struct socket *sock;
1736 	int result;
1737 
1738 	log_print("Using %s for communications",
1739 		  dlm_proto_ops->name);
1740 
1741 	result = dlm_proto_ops->listen_validate();
1742 	if (result < 0)
1743 		return result;
1744 
1745 	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1746 				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1747 	if (result < 0) {
1748 		log_print("Can't create comms socket: %d", result);
1749 		return result;
1750 	}
1751 
1752 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1753 	dlm_proto_ops->listen_sockopts(sock);
1754 
1755 	result = dlm_proto_ops->listen_bind(sock);
1756 	if (result < 0)
1757 		goto out;
1758 
1759 	lock_sock(sock->sk);
1760 	listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1761 	listen_sock.sk_write_space = sock->sk->sk_write_space;
1762 	listen_sock.sk_error_report = sock->sk->sk_error_report;
1763 	listen_sock.sk_state_change = sock->sk->sk_state_change;
1764 
1765 	listen_con.sock = sock;
1766 
1767 	sock->sk->sk_allocation = GFP_NOFS;
1768 	sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1769 	release_sock(sock->sk);
1770 
1771 	result = sock->ops->listen(sock, 5);
1772 	if (result < 0) {
1773 		dlm_close_sock(&listen_con.sock);
1774 		return result;
1775 	}
1776 
1777 	return 0;
1778 
1779 out:
1780 	sock_release(sock);
1781 	return result;
1782 }
1783 
1784 static int dlm_tcp_bind(struct socket *sock)
1785 {
1786 	struct sockaddr_storage src_addr;
1787 	int result, addr_len;
1788 
1789 	/* Bind to our cluster-known address connecting to avoid
1790 	 * routing problems.
1791 	 */
1792 	memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1793 	make_sockaddr(&src_addr, 0, &addr_len);
1794 
1795 	result = sock->ops->bind(sock, (struct sockaddr *)&src_addr,
1796 				 addr_len);
1797 	if (result < 0) {
1798 		/* This *may* not indicate a critical error */
1799 		log_print("could not bind for connect: %d", result);
1800 	}
1801 
1802 	return 0;
1803 }
1804 
1805 static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1806 			   struct sockaddr *addr, int addr_len)
1807 {
1808 	return sock->ops->connect(sock, addr, addr_len, O_NONBLOCK);
1809 }
1810 
1811 static int dlm_tcp_listen_validate(void)
1812 {
1813 	/* We don't support multi-homed hosts */
1814 	if (dlm_local_count > 1) {
1815 		log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1816 		return -EINVAL;
1817 	}
1818 
1819 	return 0;
1820 }
1821 
1822 static void dlm_tcp_sockopts(struct socket *sock)
1823 {
1824 	/* Turn off Nagle's algorithm */
1825 	tcp_sock_set_nodelay(sock->sk);
1826 }
1827 
1828 static void dlm_tcp_listen_sockopts(struct socket *sock)
1829 {
1830 	dlm_tcp_sockopts(sock);
1831 	sock_set_reuseaddr(sock->sk);
1832 }
1833 
1834 static int dlm_tcp_listen_bind(struct socket *sock)
1835 {
1836 	int addr_len;
1837 
1838 	/* Bind to our port */
1839 	make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1840 	return sock->ops->bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1841 			       addr_len);
1842 }
1843 
1844 static const struct dlm_proto_ops dlm_tcp_ops = {
1845 	.name = "TCP",
1846 	.proto = IPPROTO_TCP,
1847 	.connect = dlm_tcp_connect,
1848 	.sockopts = dlm_tcp_sockopts,
1849 	.bind = dlm_tcp_bind,
1850 	.listen_validate = dlm_tcp_listen_validate,
1851 	.listen_sockopts = dlm_tcp_listen_sockopts,
1852 	.listen_bind = dlm_tcp_listen_bind,
1853 };
1854 
1855 static int dlm_sctp_bind(struct socket *sock)
1856 {
1857 	return sctp_bind_addrs(sock, 0);
1858 }
1859 
1860 static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1861 			    struct sockaddr *addr, int addr_len)
1862 {
1863 	int ret;
1864 
1865 	/*
1866 	 * Make sock->ops->connect() function return in specified time,
1867 	 * since O_NONBLOCK argument in connect() function does not work here,
1868 	 * then, we should restore the default value of this attribute.
1869 	 */
1870 	sock_set_sndtimeo(sock->sk, 5);
1871 	ret = sock->ops->connect(sock, addr, addr_len, 0);
1872 	sock_set_sndtimeo(sock->sk, 0);
1873 	return ret;
1874 }
1875 
1876 static int dlm_sctp_listen_validate(void)
1877 {
1878 	if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1879 		log_print("SCTP is not enabled by this kernel");
1880 		return -EOPNOTSUPP;
1881 	}
1882 
1883 	request_module("sctp");
1884 	return 0;
1885 }
1886 
1887 static int dlm_sctp_bind_listen(struct socket *sock)
1888 {
1889 	return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1890 }
1891 
1892 static void dlm_sctp_sockopts(struct socket *sock)
1893 {
1894 	/* Turn off Nagle's algorithm */
1895 	sctp_sock_set_nodelay(sock->sk);
1896 	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1897 }
1898 
1899 static const struct dlm_proto_ops dlm_sctp_ops = {
1900 	.name = "SCTP",
1901 	.proto = IPPROTO_SCTP,
1902 	.try_new_addr = true,
1903 	.connect = dlm_sctp_connect,
1904 	.sockopts = dlm_sctp_sockopts,
1905 	.bind = dlm_sctp_bind,
1906 	.listen_validate = dlm_sctp_listen_validate,
1907 	.listen_sockopts = dlm_sctp_sockopts,
1908 	.listen_bind = dlm_sctp_bind_listen,
1909 };
1910 
1911 int dlm_lowcomms_start(void)
1912 {
1913 	int error;
1914 
1915 	init_local();
1916 	if (!dlm_local_count) {
1917 		error = -ENOTCONN;
1918 		log_print("no local IP address has been set");
1919 		goto fail;
1920 	}
1921 
1922 	error = work_start();
1923 	if (error)
1924 		goto fail;
1925 
1926 	/* Start listening */
1927 	switch (dlm_config.ci_protocol) {
1928 	case DLM_PROTO_TCP:
1929 		dlm_proto_ops = &dlm_tcp_ops;
1930 		break;
1931 	case DLM_PROTO_SCTP:
1932 		dlm_proto_ops = &dlm_sctp_ops;
1933 		break;
1934 	default:
1935 		log_print("Invalid protocol identifier %d set",
1936 			  dlm_config.ci_protocol);
1937 		error = -EINVAL;
1938 		goto fail_proto_ops;
1939 	}
1940 
1941 	error = dlm_listen_for_all();
1942 	if (error)
1943 		goto fail_listen;
1944 
1945 	return 0;
1946 
1947 fail_listen:
1948 	dlm_proto_ops = NULL;
1949 fail_proto_ops:
1950 	work_stop();
1951 fail:
1952 	return error;
1953 }
1954 
1955 void dlm_lowcomms_init(void)
1956 {
1957 	int i;
1958 
1959 	for (i = 0; i < CONN_HASH_SIZE; i++)
1960 		INIT_HLIST_HEAD(&connection_hash[i]);
1961 
1962 	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1963 }
1964 
1965 void dlm_lowcomms_exit(void)
1966 {
1967 	struct connection *con;
1968 	int i, idx;
1969 
1970 	idx = srcu_read_lock(&connections_srcu);
1971 	for (i = 0; i < CONN_HASH_SIZE; i++) {
1972 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1973 			spin_lock(&connections_lock);
1974 			hlist_del_rcu(&con->list);
1975 			spin_unlock(&connections_lock);
1976 
1977 			if (con->othercon)
1978 				call_srcu(&connections_srcu, &con->othercon->rcu,
1979 					  connection_release);
1980 			call_srcu(&connections_srcu, &con->rcu, connection_release);
1981 		}
1982 	}
1983 	srcu_read_unlock(&connections_srcu, idx);
1984 }
1985