xref: /openbmc/linux/fs/dlm/lowcomms.c (revision d78c317f)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/user.h>
56 #include <net/ipv6.h>
57 
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62 
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65 
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68 
69 struct cbuf {
70 	unsigned int base;
71 	unsigned int len;
72 	unsigned int mask;
73 };
74 
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77 	cb->len += n;
78 }
79 
80 static int cbuf_data(struct cbuf *cb)
81 {
82 	return ((cb->base + cb->len) & cb->mask);
83 }
84 
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87 	cb->base = cb->len = 0;
88 	cb->mask = size-1;
89 }
90 
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93 	cb->len  -= n;
94 	cb->base += n;
95 	cb->base &= cb->mask;
96 }
97 
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100 	return cb->len == 0;
101 }
102 
103 struct connection {
104 	struct socket *sock;	/* NULL if not connected */
105 	uint32_t nodeid;	/* So we know who we are in the list */
106 	struct mutex sock_mutex;
107 	unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_CONNECT_PENDING 3
111 #define CF_INIT_PENDING 4
112 #define CF_IS_OTHERCON 5
113 #define CF_CLOSE 6
114 #define CF_APP_LIMITED 7
115 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
116 	spinlock_t writequeue_lock;
117 	int (*rx_action) (struct connection *);	/* What to do when active */
118 	void (*connect_action) (struct connection *);	/* What to do to connect */
119 	struct page *rx_page;
120 	struct cbuf cb;
121 	int retries;
122 #define MAX_CONNECT_RETRIES 3
123 	int sctp_assoc;
124 	struct hlist_node list;
125 	struct connection *othercon;
126 	struct work_struct rwork; /* Receive workqueue */
127 	struct work_struct swork; /* Send workqueue */
128 };
129 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
130 
131 /* An entry waiting to be sent */
132 struct writequeue_entry {
133 	struct list_head list;
134 	struct page *page;
135 	int offset;
136 	int len;
137 	int end;
138 	int users;
139 	struct connection *con;
140 };
141 
142 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
143 static int dlm_local_count;
144 
145 /* Work queues */
146 static struct workqueue_struct *recv_workqueue;
147 static struct workqueue_struct *send_workqueue;
148 
149 static struct hlist_head connection_hash[CONN_HASH_SIZE];
150 static DEFINE_MUTEX(connections_lock);
151 static struct kmem_cache *con_cache;
152 
153 static void process_recv_sockets(struct work_struct *work);
154 static void process_send_sockets(struct work_struct *work);
155 
156 
157 /* This is deliberately very simple because most clusters have simple
158    sequential nodeids, so we should be able to go straight to a connection
159    struct in the array */
160 static inline int nodeid_hash(int nodeid)
161 {
162 	return nodeid & (CONN_HASH_SIZE-1);
163 }
164 
165 static struct connection *__find_con(int nodeid)
166 {
167 	int r;
168 	struct hlist_node *h;
169 	struct connection *con;
170 
171 	r = nodeid_hash(nodeid);
172 
173 	hlist_for_each_entry(con, h, &connection_hash[r], list) {
174 		if (con->nodeid == nodeid)
175 			return con;
176 	}
177 	return NULL;
178 }
179 
180 /*
181  * If 'allocation' is zero then we don't attempt to create a new
182  * connection structure for this node.
183  */
184 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
185 {
186 	struct connection *con = NULL;
187 	int r;
188 
189 	con = __find_con(nodeid);
190 	if (con || !alloc)
191 		return con;
192 
193 	con = kmem_cache_zalloc(con_cache, alloc);
194 	if (!con)
195 		return NULL;
196 
197 	r = nodeid_hash(nodeid);
198 	hlist_add_head(&con->list, &connection_hash[r]);
199 
200 	con->nodeid = nodeid;
201 	mutex_init(&con->sock_mutex);
202 	INIT_LIST_HEAD(&con->writequeue);
203 	spin_lock_init(&con->writequeue_lock);
204 	INIT_WORK(&con->swork, process_send_sockets);
205 	INIT_WORK(&con->rwork, process_recv_sockets);
206 
207 	/* Setup action pointers for child sockets */
208 	if (con->nodeid) {
209 		struct connection *zerocon = __find_con(0);
210 
211 		con->connect_action = zerocon->connect_action;
212 		if (!con->rx_action)
213 			con->rx_action = zerocon->rx_action;
214 	}
215 
216 	return con;
217 }
218 
219 /* Loop round all connections */
220 static void foreach_conn(void (*conn_func)(struct connection *c))
221 {
222 	int i;
223 	struct hlist_node *h, *n;
224 	struct connection *con;
225 
226 	for (i = 0; i < CONN_HASH_SIZE; i++) {
227 		hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
228 			conn_func(con);
229 		}
230 	}
231 }
232 
233 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
234 {
235 	struct connection *con;
236 
237 	mutex_lock(&connections_lock);
238 	con = __nodeid2con(nodeid, allocation);
239 	mutex_unlock(&connections_lock);
240 
241 	return con;
242 }
243 
244 /* This is a bit drastic, but only called when things go wrong */
245 static struct connection *assoc2con(int assoc_id)
246 {
247 	int i;
248 	struct hlist_node *h;
249 	struct connection *con;
250 
251 	mutex_lock(&connections_lock);
252 
253 	for (i = 0 ; i < CONN_HASH_SIZE; i++) {
254 		hlist_for_each_entry(con, h, &connection_hash[i], list) {
255 			if (con->sctp_assoc == assoc_id) {
256 				mutex_unlock(&connections_lock);
257 				return con;
258 			}
259 		}
260 	}
261 	mutex_unlock(&connections_lock);
262 	return NULL;
263 }
264 
265 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
266 {
267 	struct sockaddr_storage addr;
268 	int error;
269 
270 	if (!dlm_local_count)
271 		return -1;
272 
273 	error = dlm_nodeid_to_addr(nodeid, &addr);
274 	if (error)
275 		return error;
276 
277 	if (dlm_local_addr[0]->ss_family == AF_INET) {
278 		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
279 		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
280 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
281 	} else {
282 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
283 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
284 		ret6->sin6_addr = in6->sin6_addr;
285 	}
286 
287 	return 0;
288 }
289 
290 /* Data available on socket or listen socket received a connect */
291 static void lowcomms_data_ready(struct sock *sk, int count_unused)
292 {
293 	struct connection *con = sock2con(sk);
294 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
295 		queue_work(recv_workqueue, &con->rwork);
296 }
297 
298 static void lowcomms_write_space(struct sock *sk)
299 {
300 	struct connection *con = sock2con(sk);
301 
302 	if (!con)
303 		return;
304 
305 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
306 
307 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
308 		con->sock->sk->sk_write_pending--;
309 		clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
310 	}
311 
312 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
313 		queue_work(send_workqueue, &con->swork);
314 }
315 
316 static inline void lowcomms_connect_sock(struct connection *con)
317 {
318 	if (test_bit(CF_CLOSE, &con->flags))
319 		return;
320 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
321 		queue_work(send_workqueue, &con->swork);
322 }
323 
324 static void lowcomms_state_change(struct sock *sk)
325 {
326 	if (sk->sk_state == TCP_ESTABLISHED)
327 		lowcomms_write_space(sk);
328 }
329 
330 int dlm_lowcomms_connect_node(int nodeid)
331 {
332 	struct connection *con;
333 
334 	/* with sctp there's no connecting without sending */
335 	if (dlm_config.ci_protocol != 0)
336 		return 0;
337 
338 	if (nodeid == dlm_our_nodeid())
339 		return 0;
340 
341 	con = nodeid2con(nodeid, GFP_NOFS);
342 	if (!con)
343 		return -ENOMEM;
344 	lowcomms_connect_sock(con);
345 	return 0;
346 }
347 
348 /* Make a socket active */
349 static int add_sock(struct socket *sock, struct connection *con)
350 {
351 	con->sock = sock;
352 
353 	/* Install a data_ready callback */
354 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
355 	con->sock->sk->sk_write_space = lowcomms_write_space;
356 	con->sock->sk->sk_state_change = lowcomms_state_change;
357 	con->sock->sk->sk_user_data = con;
358 	con->sock->sk->sk_allocation = GFP_NOFS;
359 	return 0;
360 }
361 
362 /* Add the port number to an IPv6 or 4 sockaddr and return the address
363    length */
364 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
365 			  int *addr_len)
366 {
367 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
368 	if (saddr->ss_family == AF_INET) {
369 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
370 		in4_addr->sin_port = cpu_to_be16(port);
371 		*addr_len = sizeof(struct sockaddr_in);
372 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
373 	} else {
374 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
375 		in6_addr->sin6_port = cpu_to_be16(port);
376 		*addr_len = sizeof(struct sockaddr_in6);
377 	}
378 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
379 }
380 
381 /* Close a remote connection and tidy up */
382 static void close_connection(struct connection *con, bool and_other)
383 {
384 	mutex_lock(&con->sock_mutex);
385 
386 	if (con->sock) {
387 		sock_release(con->sock);
388 		con->sock = NULL;
389 	}
390 	if (con->othercon && and_other) {
391 		/* Will only re-enter once. */
392 		close_connection(con->othercon, false);
393 	}
394 	if (con->rx_page) {
395 		__free_page(con->rx_page);
396 		con->rx_page = NULL;
397 	}
398 
399 	con->retries = 0;
400 	mutex_unlock(&con->sock_mutex);
401 }
402 
403 /* We only send shutdown messages to nodes that are not part of the cluster */
404 static void sctp_send_shutdown(sctp_assoc_t associd)
405 {
406 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
407 	struct msghdr outmessage;
408 	struct cmsghdr *cmsg;
409 	struct sctp_sndrcvinfo *sinfo;
410 	int ret;
411 	struct connection *con;
412 
413 	con = nodeid2con(0,0);
414 	BUG_ON(con == NULL);
415 
416 	outmessage.msg_name = NULL;
417 	outmessage.msg_namelen = 0;
418 	outmessage.msg_control = outcmsg;
419 	outmessage.msg_controllen = sizeof(outcmsg);
420 	outmessage.msg_flags = MSG_EOR;
421 
422 	cmsg = CMSG_FIRSTHDR(&outmessage);
423 	cmsg->cmsg_level = IPPROTO_SCTP;
424 	cmsg->cmsg_type = SCTP_SNDRCV;
425 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
426 	outmessage.msg_controllen = cmsg->cmsg_len;
427 	sinfo = CMSG_DATA(cmsg);
428 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
429 
430 	sinfo->sinfo_flags |= MSG_EOF;
431 	sinfo->sinfo_assoc_id = associd;
432 
433 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
434 
435 	if (ret != 0)
436 		log_print("send EOF to node failed: %d", ret);
437 }
438 
439 static void sctp_init_failed_foreach(struct connection *con)
440 {
441 	con->sctp_assoc = 0;
442 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
443 		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
444 			queue_work(send_workqueue, &con->swork);
445 	}
446 }
447 
448 /* INIT failed but we don't know which node...
449    restart INIT on all pending nodes */
450 static void sctp_init_failed(void)
451 {
452 	mutex_lock(&connections_lock);
453 
454 	foreach_conn(sctp_init_failed_foreach);
455 
456 	mutex_unlock(&connections_lock);
457 }
458 
459 /* Something happened to an association */
460 static void process_sctp_notification(struct connection *con,
461 				      struct msghdr *msg, char *buf)
462 {
463 	union sctp_notification *sn = (union sctp_notification *)buf;
464 
465 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
466 		switch (sn->sn_assoc_change.sac_state) {
467 
468 		case SCTP_COMM_UP:
469 		case SCTP_RESTART:
470 		{
471 			/* Check that the new node is in the lockspace */
472 			struct sctp_prim prim;
473 			int nodeid;
474 			int prim_len, ret;
475 			int addr_len;
476 			struct connection *new_con;
477 			sctp_peeloff_arg_t parg;
478 			int parglen = sizeof(parg);
479 			int err;
480 
481 			/*
482 			 * We get this before any data for an association.
483 			 * We verify that the node is in the cluster and
484 			 * then peel off a socket for it.
485 			 */
486 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
487 				log_print("COMM_UP for invalid assoc ID %d",
488 					 (int)sn->sn_assoc_change.sac_assoc_id);
489 				sctp_init_failed();
490 				return;
491 			}
492 			memset(&prim, 0, sizeof(struct sctp_prim));
493 			prim_len = sizeof(struct sctp_prim);
494 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
495 
496 			ret = kernel_getsockopt(con->sock,
497 						IPPROTO_SCTP,
498 						SCTP_PRIMARY_ADDR,
499 						(char*)&prim,
500 						&prim_len);
501 			if (ret < 0) {
502 				log_print("getsockopt/sctp_primary_addr on "
503 					  "new assoc %d failed : %d",
504 					  (int)sn->sn_assoc_change.sac_assoc_id,
505 					  ret);
506 
507 				/* Retry INIT later */
508 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
509 				if (new_con)
510 					clear_bit(CF_CONNECT_PENDING, &con->flags);
511 				return;
512 			}
513 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
514 			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
515 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
516 				log_print("reject connect from unknown addr");
517 				print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
518 						     b, sizeof(struct sockaddr_storage));
519 				sctp_send_shutdown(prim.ssp_assoc_id);
520 				return;
521 			}
522 
523 			new_con = nodeid2con(nodeid, GFP_NOFS);
524 			if (!new_con)
525 				return;
526 
527 			/* Peel off a new sock */
528 			parg.associd = sn->sn_assoc_change.sac_assoc_id;
529 			ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
530 						SCTP_SOCKOPT_PEELOFF,
531 						(void *)&parg, &parglen);
532 			if (ret < 0) {
533 				log_print("Can't peel off a socket for "
534 					  "connection %d to node %d: err=%d",
535 					  parg.associd, nodeid, ret);
536 				return;
537 			}
538 			new_con->sock = sockfd_lookup(parg.sd, &err);
539 			if (!new_con->sock) {
540 				log_print("sockfd_lookup error %d", err);
541 				return;
542 			}
543 			add_sock(new_con->sock, new_con);
544 			sockfd_put(new_con->sock);
545 
546 			log_print("connecting to %d sctp association %d",
547 				 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
548 
549 			/* Send any pending writes */
550 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
551 			clear_bit(CF_INIT_PENDING, &con->flags);
552 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
553 				queue_work(send_workqueue, &new_con->swork);
554 			}
555 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
556 				queue_work(recv_workqueue, &new_con->rwork);
557 		}
558 		break;
559 
560 		case SCTP_COMM_LOST:
561 		case SCTP_SHUTDOWN_COMP:
562 		{
563 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
564 			if (con) {
565 				con->sctp_assoc = 0;
566 			}
567 		}
568 		break;
569 
570 		/* We don't know which INIT failed, so clear the PENDING flags
571 		 * on them all.  if assoc_id is zero then it will then try
572 		 * again */
573 
574 		case SCTP_CANT_STR_ASSOC:
575 		{
576 			log_print("Can't start SCTP association - retrying");
577 			sctp_init_failed();
578 		}
579 		break;
580 
581 		default:
582 			log_print("unexpected SCTP assoc change id=%d state=%d",
583 				  (int)sn->sn_assoc_change.sac_assoc_id,
584 				  sn->sn_assoc_change.sac_state);
585 		}
586 	}
587 }
588 
589 /* Data received from remote end */
590 static int receive_from_sock(struct connection *con)
591 {
592 	int ret = 0;
593 	struct msghdr msg = {};
594 	struct kvec iov[2];
595 	unsigned len;
596 	int r;
597 	int call_again_soon = 0;
598 	int nvec;
599 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
600 
601 	mutex_lock(&con->sock_mutex);
602 
603 	if (con->sock == NULL) {
604 		ret = -EAGAIN;
605 		goto out_close;
606 	}
607 
608 	if (con->rx_page == NULL) {
609 		/*
610 		 * This doesn't need to be atomic, but I think it should
611 		 * improve performance if it is.
612 		 */
613 		con->rx_page = alloc_page(GFP_ATOMIC);
614 		if (con->rx_page == NULL)
615 			goto out_resched;
616 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
617 	}
618 
619 	/* Only SCTP needs these really */
620 	memset(&incmsg, 0, sizeof(incmsg));
621 	msg.msg_control = incmsg;
622 	msg.msg_controllen = sizeof(incmsg);
623 
624 	/*
625 	 * iov[0] is the bit of the circular buffer between the current end
626 	 * point (cb.base + cb.len) and the end of the buffer.
627 	 */
628 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
629 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
630 	iov[1].iov_len = 0;
631 	nvec = 1;
632 
633 	/*
634 	 * iov[1] is the bit of the circular buffer between the start of the
635 	 * buffer and the start of the currently used section (cb.base)
636 	 */
637 	if (cbuf_data(&con->cb) >= con->cb.base) {
638 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
639 		iov[1].iov_len = con->cb.base;
640 		iov[1].iov_base = page_address(con->rx_page);
641 		nvec = 2;
642 	}
643 	len = iov[0].iov_len + iov[1].iov_len;
644 
645 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
646 			       MSG_DONTWAIT | MSG_NOSIGNAL);
647 	if (ret <= 0)
648 		goto out_close;
649 
650 	/* Process SCTP notifications */
651 	if (msg.msg_flags & MSG_NOTIFICATION) {
652 		msg.msg_control = incmsg;
653 		msg.msg_controllen = sizeof(incmsg);
654 
655 		process_sctp_notification(con, &msg,
656 				page_address(con->rx_page) + con->cb.base);
657 		mutex_unlock(&con->sock_mutex);
658 		return 0;
659 	}
660 	BUG_ON(con->nodeid == 0);
661 
662 	if (ret == len)
663 		call_again_soon = 1;
664 	cbuf_add(&con->cb, ret);
665 	ret = dlm_process_incoming_buffer(con->nodeid,
666 					  page_address(con->rx_page),
667 					  con->cb.base, con->cb.len,
668 					  PAGE_CACHE_SIZE);
669 	if (ret == -EBADMSG) {
670 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
671 			  "iov_len=%u, iov_base[0]=%p, read=%d",
672 			  page_address(con->rx_page), con->cb.base, con->cb.len,
673 			  len, iov[0].iov_base, r);
674 	}
675 	if (ret < 0)
676 		goto out_close;
677 	cbuf_eat(&con->cb, ret);
678 
679 	if (cbuf_empty(&con->cb) && !call_again_soon) {
680 		__free_page(con->rx_page);
681 		con->rx_page = NULL;
682 	}
683 
684 	if (call_again_soon)
685 		goto out_resched;
686 	mutex_unlock(&con->sock_mutex);
687 	return 0;
688 
689 out_resched:
690 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
691 		queue_work(recv_workqueue, &con->rwork);
692 	mutex_unlock(&con->sock_mutex);
693 	return -EAGAIN;
694 
695 out_close:
696 	mutex_unlock(&con->sock_mutex);
697 	if (ret != -EAGAIN) {
698 		close_connection(con, false);
699 		/* Reconnect when there is something to send */
700 	}
701 	/* Don't return success if we really got EOF */
702 	if (ret == 0)
703 		ret = -EAGAIN;
704 
705 	return ret;
706 }
707 
708 /* Listening socket is busy, accept a connection */
709 static int tcp_accept_from_sock(struct connection *con)
710 {
711 	int result;
712 	struct sockaddr_storage peeraddr;
713 	struct socket *newsock;
714 	int len;
715 	int nodeid;
716 	struct connection *newcon;
717 	struct connection *addcon;
718 
719 	memset(&peeraddr, 0, sizeof(peeraddr));
720 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
721 				  IPPROTO_TCP, &newsock);
722 	if (result < 0)
723 		return -ENOMEM;
724 
725 	mutex_lock_nested(&con->sock_mutex, 0);
726 
727 	result = -ENOTCONN;
728 	if (con->sock == NULL)
729 		goto accept_err;
730 
731 	newsock->type = con->sock->type;
732 	newsock->ops = con->sock->ops;
733 
734 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
735 	if (result < 0)
736 		goto accept_err;
737 
738 	/* Get the connected socket's peer */
739 	memset(&peeraddr, 0, sizeof(peeraddr));
740 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
741 				  &len, 2)) {
742 		result = -ECONNABORTED;
743 		goto accept_err;
744 	}
745 
746 	/* Get the new node's NODEID */
747 	make_sockaddr(&peeraddr, 0, &len);
748 	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
749 		unsigned char *b=(unsigned char *)&peeraddr;
750 		log_print("connect from non cluster node");
751 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
752 				     b, sizeof(struct sockaddr_storage));
753 		sock_release(newsock);
754 		mutex_unlock(&con->sock_mutex);
755 		return -1;
756 	}
757 
758 	log_print("got connection from %d", nodeid);
759 
760 	/*  Check to see if we already have a connection to this node. This
761 	 *  could happen if the two nodes initiate a connection at roughly
762 	 *  the same time and the connections cross on the wire.
763 	 *  In this case we store the incoming one in "othercon"
764 	 */
765 	newcon = nodeid2con(nodeid, GFP_NOFS);
766 	if (!newcon) {
767 		result = -ENOMEM;
768 		goto accept_err;
769 	}
770 	mutex_lock_nested(&newcon->sock_mutex, 1);
771 	if (newcon->sock) {
772 		struct connection *othercon = newcon->othercon;
773 
774 		if (!othercon) {
775 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
776 			if (!othercon) {
777 				log_print("failed to allocate incoming socket");
778 				mutex_unlock(&newcon->sock_mutex);
779 				result = -ENOMEM;
780 				goto accept_err;
781 			}
782 			othercon->nodeid = nodeid;
783 			othercon->rx_action = receive_from_sock;
784 			mutex_init(&othercon->sock_mutex);
785 			INIT_WORK(&othercon->swork, process_send_sockets);
786 			INIT_WORK(&othercon->rwork, process_recv_sockets);
787 			set_bit(CF_IS_OTHERCON, &othercon->flags);
788 		}
789 		if (!othercon->sock) {
790 			newcon->othercon = othercon;
791 			othercon->sock = newsock;
792 			newsock->sk->sk_user_data = othercon;
793 			add_sock(newsock, othercon);
794 			addcon = othercon;
795 		}
796 		else {
797 			printk("Extra connection from node %d attempted\n", nodeid);
798 			result = -EAGAIN;
799 			mutex_unlock(&newcon->sock_mutex);
800 			goto accept_err;
801 		}
802 	}
803 	else {
804 		newsock->sk->sk_user_data = newcon;
805 		newcon->rx_action = receive_from_sock;
806 		add_sock(newsock, newcon);
807 		addcon = newcon;
808 	}
809 
810 	mutex_unlock(&newcon->sock_mutex);
811 
812 	/*
813 	 * Add it to the active queue in case we got data
814 	 * between processing the accept adding the socket
815 	 * to the read_sockets list
816 	 */
817 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
818 		queue_work(recv_workqueue, &addcon->rwork);
819 	mutex_unlock(&con->sock_mutex);
820 
821 	return 0;
822 
823 accept_err:
824 	mutex_unlock(&con->sock_mutex);
825 	sock_release(newsock);
826 
827 	if (result != -EAGAIN)
828 		log_print("error accepting connection from node: %d", result);
829 	return result;
830 }
831 
832 static void free_entry(struct writequeue_entry *e)
833 {
834 	__free_page(e->page);
835 	kfree(e);
836 }
837 
838 /* Initiate an SCTP association.
839    This is a special case of send_to_sock() in that we don't yet have a
840    peeled-off socket for this association, so we use the listening socket
841    and add the primary IP address of the remote node.
842  */
843 static void sctp_init_assoc(struct connection *con)
844 {
845 	struct sockaddr_storage rem_addr;
846 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
847 	struct msghdr outmessage;
848 	struct cmsghdr *cmsg;
849 	struct sctp_sndrcvinfo *sinfo;
850 	struct connection *base_con;
851 	struct writequeue_entry *e;
852 	int len, offset;
853 	int ret;
854 	int addrlen;
855 	struct kvec iov[1];
856 
857 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
858 		return;
859 
860 	if (con->retries++ > MAX_CONNECT_RETRIES)
861 		return;
862 
863 	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
864 		log_print("no address for nodeid %d", con->nodeid);
865 		return;
866 	}
867 	base_con = nodeid2con(0, 0);
868 	BUG_ON(base_con == NULL);
869 
870 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
871 
872 	outmessage.msg_name = &rem_addr;
873 	outmessage.msg_namelen = addrlen;
874 	outmessage.msg_control = outcmsg;
875 	outmessage.msg_controllen = sizeof(outcmsg);
876 	outmessage.msg_flags = MSG_EOR;
877 
878 	spin_lock(&con->writequeue_lock);
879 
880 	if (list_empty(&con->writequeue)) {
881 		spin_unlock(&con->writequeue_lock);
882 		log_print("writequeue empty for nodeid %d", con->nodeid);
883 		return;
884 	}
885 
886 	e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
887 	len = e->len;
888 	offset = e->offset;
889 	spin_unlock(&con->writequeue_lock);
890 
891 	/* Send the first block off the write queue */
892 	iov[0].iov_base = page_address(e->page)+offset;
893 	iov[0].iov_len = len;
894 
895 	cmsg = CMSG_FIRSTHDR(&outmessage);
896 	cmsg->cmsg_level = IPPROTO_SCTP;
897 	cmsg->cmsg_type = SCTP_SNDRCV;
898 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
899 	sinfo = CMSG_DATA(cmsg);
900 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
901 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
902 	outmessage.msg_controllen = cmsg->cmsg_len;
903 
904 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
905 	if (ret < 0) {
906 		log_print("Send first packet to node %d failed: %d",
907 			  con->nodeid, ret);
908 
909 		/* Try again later */
910 		clear_bit(CF_CONNECT_PENDING, &con->flags);
911 		clear_bit(CF_INIT_PENDING, &con->flags);
912 	}
913 	else {
914 		spin_lock(&con->writequeue_lock);
915 		e->offset += ret;
916 		e->len -= ret;
917 
918 		if (e->len == 0 && e->users == 0) {
919 			list_del(&e->list);
920 			free_entry(e);
921 		}
922 		spin_unlock(&con->writequeue_lock);
923 	}
924 }
925 
926 /* Connect a new socket to its peer */
927 static void tcp_connect_to_sock(struct connection *con)
928 {
929 	int result = -EHOSTUNREACH;
930 	struct sockaddr_storage saddr, src_addr;
931 	int addr_len;
932 	struct socket *sock = NULL;
933 	int one = 1;
934 
935 	if (con->nodeid == 0) {
936 		log_print("attempt to connect sock 0 foiled");
937 		return;
938 	}
939 
940 	mutex_lock(&con->sock_mutex);
941 	if (con->retries++ > MAX_CONNECT_RETRIES)
942 		goto out;
943 
944 	/* Some odd races can cause double-connects, ignore them */
945 	if (con->sock) {
946 		result = 0;
947 		goto out;
948 	}
949 
950 	/* Create a socket to communicate with */
951 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
952 				  IPPROTO_TCP, &sock);
953 	if (result < 0)
954 		goto out_err;
955 
956 	memset(&saddr, 0, sizeof(saddr));
957 	if (dlm_nodeid_to_addr(con->nodeid, &saddr))
958 		goto out_err;
959 
960 	sock->sk->sk_user_data = con;
961 	con->rx_action = receive_from_sock;
962 	con->connect_action = tcp_connect_to_sock;
963 	add_sock(sock, con);
964 
965 	/* Bind to our cluster-known address connecting to avoid
966 	   routing problems */
967 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
968 	make_sockaddr(&src_addr, 0, &addr_len);
969 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
970 				 addr_len);
971 	if (result < 0) {
972 		log_print("could not bind for connect: %d", result);
973 		/* This *may* not indicate a critical error */
974 	}
975 
976 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
977 
978 	log_print("connecting to %d", con->nodeid);
979 
980 	/* Turn off Nagle's algorithm */
981 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
982 			  sizeof(one));
983 
984 	result =
985 		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
986 				   O_NONBLOCK);
987 	if (result == -EINPROGRESS)
988 		result = 0;
989 	if (result == 0)
990 		goto out;
991 
992 out_err:
993 	if (con->sock) {
994 		sock_release(con->sock);
995 		con->sock = NULL;
996 	} else if (sock) {
997 		sock_release(sock);
998 	}
999 	/*
1000 	 * Some errors are fatal and this list might need adjusting. For other
1001 	 * errors we try again until the max number of retries is reached.
1002 	 */
1003 	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
1004 	    result != -ENETDOWN && result != -EINVAL
1005 	    && result != -EPROTONOSUPPORT) {
1006 		lowcomms_connect_sock(con);
1007 		result = 0;
1008 	}
1009 out:
1010 	mutex_unlock(&con->sock_mutex);
1011 	return;
1012 }
1013 
1014 static struct socket *tcp_create_listen_sock(struct connection *con,
1015 					     struct sockaddr_storage *saddr)
1016 {
1017 	struct socket *sock = NULL;
1018 	int result = 0;
1019 	int one = 1;
1020 	int addr_len;
1021 
1022 	if (dlm_local_addr[0]->ss_family == AF_INET)
1023 		addr_len = sizeof(struct sockaddr_in);
1024 	else
1025 		addr_len = sizeof(struct sockaddr_in6);
1026 
1027 	/* Create a socket to communicate with */
1028 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1029 				  IPPROTO_TCP, &sock);
1030 	if (result < 0) {
1031 		log_print("Can't create listening comms socket");
1032 		goto create_out;
1033 	}
1034 
1035 	/* Turn off Nagle's algorithm */
1036 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1037 			  sizeof(one));
1038 
1039 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1040 				   (char *)&one, sizeof(one));
1041 
1042 	if (result < 0) {
1043 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1044 	}
1045 	sock->sk->sk_user_data = con;
1046 	con->rx_action = tcp_accept_from_sock;
1047 	con->connect_action = tcp_connect_to_sock;
1048 	con->sock = sock;
1049 
1050 	/* Bind to our port */
1051 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1052 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1053 	if (result < 0) {
1054 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1055 		sock_release(sock);
1056 		sock = NULL;
1057 		con->sock = NULL;
1058 		goto create_out;
1059 	}
1060 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1061 				 (char *)&one, sizeof(one));
1062 	if (result < 0) {
1063 		log_print("Set keepalive failed: %d", result);
1064 	}
1065 
1066 	result = sock->ops->listen(sock, 5);
1067 	if (result < 0) {
1068 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1069 		sock_release(sock);
1070 		sock = NULL;
1071 		goto create_out;
1072 	}
1073 
1074 create_out:
1075 	return sock;
1076 }
1077 
1078 /* Get local addresses */
1079 static void init_local(void)
1080 {
1081 	struct sockaddr_storage sas, *addr;
1082 	int i;
1083 
1084 	dlm_local_count = 0;
1085 	for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1086 		if (dlm_our_addr(&sas, i))
1087 			break;
1088 
1089 		addr = kmalloc(sizeof(*addr), GFP_NOFS);
1090 		if (!addr)
1091 			break;
1092 		memcpy(addr, &sas, sizeof(*addr));
1093 		dlm_local_addr[dlm_local_count++] = addr;
1094 	}
1095 }
1096 
1097 /* Bind to an IP address. SCTP allows multiple address so it can do
1098    multi-homing */
1099 static int add_sctp_bind_addr(struct connection *sctp_con,
1100 			      struct sockaddr_storage *addr,
1101 			      int addr_len, int num)
1102 {
1103 	int result = 0;
1104 
1105 	if (num == 1)
1106 		result = kernel_bind(sctp_con->sock,
1107 				     (struct sockaddr *) addr,
1108 				     addr_len);
1109 	else
1110 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1111 					   SCTP_SOCKOPT_BINDX_ADD,
1112 					   (char *)addr, addr_len);
1113 
1114 	if (result < 0)
1115 		log_print("Can't bind to port %d addr number %d",
1116 			  dlm_config.ci_tcp_port, num);
1117 
1118 	return result;
1119 }
1120 
1121 /* Initialise SCTP socket and bind to all interfaces */
1122 static int sctp_listen_for_all(void)
1123 {
1124 	struct socket *sock = NULL;
1125 	struct sockaddr_storage localaddr;
1126 	struct sctp_event_subscribe subscribe;
1127 	int result = -EINVAL, num = 1, i, addr_len;
1128 	struct connection *con = nodeid2con(0, GFP_NOFS);
1129 	int bufsize = NEEDED_RMEM;
1130 
1131 	if (!con)
1132 		return -ENOMEM;
1133 
1134 	log_print("Using SCTP for communications");
1135 
1136 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1137 				  IPPROTO_SCTP, &sock);
1138 	if (result < 0) {
1139 		log_print("Can't create comms socket, check SCTP is loaded");
1140 		goto out;
1141 	}
1142 
1143 	/* Listen for events */
1144 	memset(&subscribe, 0, sizeof(subscribe));
1145 	subscribe.sctp_data_io_event = 1;
1146 	subscribe.sctp_association_event = 1;
1147 	subscribe.sctp_send_failure_event = 1;
1148 	subscribe.sctp_shutdown_event = 1;
1149 	subscribe.sctp_partial_delivery_event = 1;
1150 
1151 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1152 				 (char *)&bufsize, sizeof(bufsize));
1153 	if (result)
1154 		log_print("Error increasing buffer space on socket %d", result);
1155 
1156 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1157 				   (char *)&subscribe, sizeof(subscribe));
1158 	if (result < 0) {
1159 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1160 			  result);
1161 		goto create_delsock;
1162 	}
1163 
1164 	/* Init con struct */
1165 	sock->sk->sk_user_data = con;
1166 	con->sock = sock;
1167 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1168 	con->rx_action = receive_from_sock;
1169 	con->connect_action = sctp_init_assoc;
1170 
1171 	/* Bind to all interfaces. */
1172 	for (i = 0; i < dlm_local_count; i++) {
1173 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1174 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1175 
1176 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1177 		if (result)
1178 			goto create_delsock;
1179 		++num;
1180 	}
1181 
1182 	result = sock->ops->listen(sock, 5);
1183 	if (result < 0) {
1184 		log_print("Can't set socket listening");
1185 		goto create_delsock;
1186 	}
1187 
1188 	return 0;
1189 
1190 create_delsock:
1191 	sock_release(sock);
1192 	con->sock = NULL;
1193 out:
1194 	return result;
1195 }
1196 
1197 static int tcp_listen_for_all(void)
1198 {
1199 	struct socket *sock = NULL;
1200 	struct connection *con = nodeid2con(0, GFP_NOFS);
1201 	int result = -EINVAL;
1202 
1203 	if (!con)
1204 		return -ENOMEM;
1205 
1206 	/* We don't support multi-homed hosts */
1207 	if (dlm_local_addr[1] != NULL) {
1208 		log_print("TCP protocol can't handle multi-homed hosts, "
1209 			  "try SCTP");
1210 		return -EINVAL;
1211 	}
1212 
1213 	log_print("Using TCP for communications");
1214 
1215 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1216 	if (sock) {
1217 		add_sock(sock, con);
1218 		result = 0;
1219 	}
1220 	else {
1221 		result = -EADDRINUSE;
1222 	}
1223 
1224 	return result;
1225 }
1226 
1227 
1228 
1229 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1230 						     gfp_t allocation)
1231 {
1232 	struct writequeue_entry *entry;
1233 
1234 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1235 	if (!entry)
1236 		return NULL;
1237 
1238 	entry->page = alloc_page(allocation);
1239 	if (!entry->page) {
1240 		kfree(entry);
1241 		return NULL;
1242 	}
1243 
1244 	entry->offset = 0;
1245 	entry->len = 0;
1246 	entry->end = 0;
1247 	entry->users = 0;
1248 	entry->con = con;
1249 
1250 	return entry;
1251 }
1252 
1253 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1254 {
1255 	struct connection *con;
1256 	struct writequeue_entry *e;
1257 	int offset = 0;
1258 	int users = 0;
1259 
1260 	con = nodeid2con(nodeid, allocation);
1261 	if (!con)
1262 		return NULL;
1263 
1264 	spin_lock(&con->writequeue_lock);
1265 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1266 	if ((&e->list == &con->writequeue) ||
1267 	    (PAGE_CACHE_SIZE - e->end < len)) {
1268 		e = NULL;
1269 	} else {
1270 		offset = e->end;
1271 		e->end += len;
1272 		users = e->users++;
1273 	}
1274 	spin_unlock(&con->writequeue_lock);
1275 
1276 	if (e) {
1277 	got_one:
1278 		*ppc = page_address(e->page) + offset;
1279 		return e;
1280 	}
1281 
1282 	e = new_writequeue_entry(con, allocation);
1283 	if (e) {
1284 		spin_lock(&con->writequeue_lock);
1285 		offset = e->end;
1286 		e->end += len;
1287 		users = e->users++;
1288 		list_add_tail(&e->list, &con->writequeue);
1289 		spin_unlock(&con->writequeue_lock);
1290 		goto got_one;
1291 	}
1292 	return NULL;
1293 }
1294 
1295 void dlm_lowcomms_commit_buffer(void *mh)
1296 {
1297 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1298 	struct connection *con = e->con;
1299 	int users;
1300 
1301 	spin_lock(&con->writequeue_lock);
1302 	users = --e->users;
1303 	if (users)
1304 		goto out;
1305 	e->len = e->end - e->offset;
1306 	spin_unlock(&con->writequeue_lock);
1307 
1308 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1309 		queue_work(send_workqueue, &con->swork);
1310 	}
1311 	return;
1312 
1313 out:
1314 	spin_unlock(&con->writequeue_lock);
1315 	return;
1316 }
1317 
1318 /* Send a message */
1319 static void send_to_sock(struct connection *con)
1320 {
1321 	int ret = 0;
1322 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1323 	struct writequeue_entry *e;
1324 	int len, offset;
1325 	int count = 0;
1326 
1327 	mutex_lock(&con->sock_mutex);
1328 	if (con->sock == NULL)
1329 		goto out_connect;
1330 
1331 	spin_lock(&con->writequeue_lock);
1332 	for (;;) {
1333 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1334 			       list);
1335 		if ((struct list_head *) e == &con->writequeue)
1336 			break;
1337 
1338 		len = e->len;
1339 		offset = e->offset;
1340 		BUG_ON(len == 0 && e->users == 0);
1341 		spin_unlock(&con->writequeue_lock);
1342 
1343 		ret = 0;
1344 		if (len) {
1345 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1346 					      msg_flags);
1347 			if (ret == -EAGAIN || ret == 0) {
1348 				if (ret == -EAGAIN &&
1349 				    test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1350 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1351 					/* Notify TCP that we're limited by the
1352 					 * application window size.
1353 					 */
1354 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1355 					con->sock->sk->sk_write_pending++;
1356 				}
1357 				cond_resched();
1358 				goto out;
1359 			}
1360 			if (ret <= 0)
1361 				goto send_error;
1362 		}
1363 
1364 		/* Don't starve people filling buffers */
1365 		if (++count >= MAX_SEND_MSG_COUNT) {
1366 			cond_resched();
1367 			count = 0;
1368 		}
1369 
1370 		spin_lock(&con->writequeue_lock);
1371 		e->offset += ret;
1372 		e->len -= ret;
1373 
1374 		if (e->len == 0 && e->users == 0) {
1375 			list_del(&e->list);
1376 			free_entry(e);
1377 			continue;
1378 		}
1379 	}
1380 	spin_unlock(&con->writequeue_lock);
1381 out:
1382 	mutex_unlock(&con->sock_mutex);
1383 	return;
1384 
1385 send_error:
1386 	mutex_unlock(&con->sock_mutex);
1387 	close_connection(con, false);
1388 	lowcomms_connect_sock(con);
1389 	return;
1390 
1391 out_connect:
1392 	mutex_unlock(&con->sock_mutex);
1393 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1394 		lowcomms_connect_sock(con);
1395 	return;
1396 }
1397 
1398 static void clean_one_writequeue(struct connection *con)
1399 {
1400 	struct writequeue_entry *e, *safe;
1401 
1402 	spin_lock(&con->writequeue_lock);
1403 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1404 		list_del(&e->list);
1405 		free_entry(e);
1406 	}
1407 	spin_unlock(&con->writequeue_lock);
1408 }
1409 
1410 /* Called from recovery when it knows that a node has
1411    left the cluster */
1412 int dlm_lowcomms_close(int nodeid)
1413 {
1414 	struct connection *con;
1415 
1416 	log_print("closing connection to node %d", nodeid);
1417 	con = nodeid2con(nodeid, 0);
1418 	if (con) {
1419 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1420 		clear_bit(CF_WRITE_PENDING, &con->flags);
1421 		set_bit(CF_CLOSE, &con->flags);
1422 		if (cancel_work_sync(&con->swork))
1423 			log_print("canceled swork for node %d", nodeid);
1424 		if (cancel_work_sync(&con->rwork))
1425 			log_print("canceled rwork for node %d", nodeid);
1426 		clean_one_writequeue(con);
1427 		close_connection(con, true);
1428 	}
1429 	return 0;
1430 }
1431 
1432 /* Receive workqueue function */
1433 static void process_recv_sockets(struct work_struct *work)
1434 {
1435 	struct connection *con = container_of(work, struct connection, rwork);
1436 	int err;
1437 
1438 	clear_bit(CF_READ_PENDING, &con->flags);
1439 	do {
1440 		err = con->rx_action(con);
1441 	} while (!err);
1442 }
1443 
1444 /* Send workqueue function */
1445 static void process_send_sockets(struct work_struct *work)
1446 {
1447 	struct connection *con = container_of(work, struct connection, swork);
1448 
1449 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1450 		con->connect_action(con);
1451 		set_bit(CF_WRITE_PENDING, &con->flags);
1452 	}
1453 	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1454 		send_to_sock(con);
1455 }
1456 
1457 
1458 /* Discard all entries on the write queues */
1459 static void clean_writequeues(void)
1460 {
1461 	foreach_conn(clean_one_writequeue);
1462 }
1463 
1464 static void work_stop(void)
1465 {
1466 	destroy_workqueue(recv_workqueue);
1467 	destroy_workqueue(send_workqueue);
1468 }
1469 
1470 static int work_start(void)
1471 {
1472 	recv_workqueue = alloc_workqueue("dlm_recv",
1473 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1474 	if (!recv_workqueue) {
1475 		log_print("can't start dlm_recv");
1476 		return -ENOMEM;
1477 	}
1478 
1479 	send_workqueue = alloc_workqueue("dlm_send",
1480 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1481 	if (!send_workqueue) {
1482 		log_print("can't start dlm_send");
1483 		destroy_workqueue(recv_workqueue);
1484 		return -ENOMEM;
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 static void stop_conn(struct connection *con)
1491 {
1492 	con->flags |= 0x0F;
1493 	if (con->sock && con->sock->sk)
1494 		con->sock->sk->sk_user_data = NULL;
1495 }
1496 
1497 static void free_conn(struct connection *con)
1498 {
1499 	close_connection(con, true);
1500 	if (con->othercon)
1501 		kmem_cache_free(con_cache, con->othercon);
1502 	hlist_del(&con->list);
1503 	kmem_cache_free(con_cache, con);
1504 }
1505 
1506 void dlm_lowcomms_stop(void)
1507 {
1508 	/* Set all the flags to prevent any
1509 	   socket activity.
1510 	*/
1511 	mutex_lock(&connections_lock);
1512 	foreach_conn(stop_conn);
1513 	mutex_unlock(&connections_lock);
1514 
1515 	work_stop();
1516 
1517 	mutex_lock(&connections_lock);
1518 	clean_writequeues();
1519 
1520 	foreach_conn(free_conn);
1521 
1522 	mutex_unlock(&connections_lock);
1523 	kmem_cache_destroy(con_cache);
1524 }
1525 
1526 int dlm_lowcomms_start(void)
1527 {
1528 	int error = -EINVAL;
1529 	struct connection *con;
1530 	int i;
1531 
1532 	for (i = 0; i < CONN_HASH_SIZE; i++)
1533 		INIT_HLIST_HEAD(&connection_hash[i]);
1534 
1535 	init_local();
1536 	if (!dlm_local_count) {
1537 		error = -ENOTCONN;
1538 		log_print("no local IP address has been set");
1539 		goto out;
1540 	}
1541 
1542 	error = -ENOMEM;
1543 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1544 				      __alignof__(struct connection), 0,
1545 				      NULL);
1546 	if (!con_cache)
1547 		goto out;
1548 
1549 	/* Start listening */
1550 	if (dlm_config.ci_protocol == 0)
1551 		error = tcp_listen_for_all();
1552 	else
1553 		error = sctp_listen_for_all();
1554 	if (error)
1555 		goto fail_unlisten;
1556 
1557 	error = work_start();
1558 	if (error)
1559 		goto fail_unlisten;
1560 
1561 	return 0;
1562 
1563 fail_unlisten:
1564 	con = nodeid2con(0,0);
1565 	if (con) {
1566 		close_connection(con, false);
1567 		kmem_cache_free(con_cache, con);
1568 	}
1569 	kmem_cache_destroy(con_cache);
1570 
1571 out:
1572 	return error;
1573 }
1574