xref: /openbmc/linux/fs/dlm/lowcomms.c (revision d41a1a3d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11 
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44 
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55 
56 #include <trace/events/dlm.h>
57 #include <trace/events/sock.h>
58 
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "memory.h"
63 #include "config.h"
64 
65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66 #define NEEDED_RMEM (4*1024*1024)
67 
68 struct connection {
69 	struct socket *sock;	/* NULL if not connected */
70 	uint32_t nodeid;	/* So we know who we are in the list */
71 	/* this semaphore is used to allow parallel recv/send in read
72 	 * lock mode. When we release a sock we need to held the write lock.
73 	 *
74 	 * However this is locking code and not nice. When we remove the
75 	 * othercon handling we can look into other mechanism to synchronize
76 	 * io handling to call sock_release() at the right time.
77 	 */
78 	struct rw_semaphore sock_lock;
79 	unsigned long flags;
80 #define CF_APP_LIMITED 0
81 #define CF_RECV_PENDING 1
82 #define CF_SEND_PENDING 2
83 #define CF_RECV_INTR 3
84 #define CF_IO_STOP 4
85 #define CF_IS_OTHERCON 5
86 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
87 	spinlock_t writequeue_lock;
88 	int retries;
89 	struct hlist_node list;
90 	/* due some connect()/accept() races we currently have this cross over
91 	 * connection attempt second connection for one node.
92 	 *
93 	 * There is a solution to avoid the race by introducing a connect
94 	 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
95 	 * connect. Otherside can connect but will only be considered that
96 	 * the other side wants to have a reconnect.
97 	 *
98 	 * However changing to this behaviour will break backwards compatible.
99 	 * In a DLM protocol major version upgrade we should remove this!
100 	 */
101 	struct connection *othercon;
102 	struct work_struct rwork; /* receive worker */
103 	struct work_struct swork; /* send worker */
104 	wait_queue_head_t shutdown_wait;
105 	unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
106 	int rx_leftover;
107 	int mark;
108 	int addr_count;
109 	int curr_addr_index;
110 	struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
111 	spinlock_t addrs_lock;
112 	struct rcu_head rcu;
113 };
114 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
115 
116 struct listen_connection {
117 	struct socket *sock;
118 	struct work_struct rwork;
119 };
120 
121 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
122 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
123 
124 /* An entry waiting to be sent */
125 struct writequeue_entry {
126 	struct list_head list;
127 	struct page *page;
128 	int offset;
129 	int len;
130 	int end;
131 	int users;
132 	bool dirty;
133 	struct connection *con;
134 	struct list_head msgs;
135 	struct kref ref;
136 };
137 
138 struct dlm_msg {
139 	struct writequeue_entry *entry;
140 	struct dlm_msg *orig_msg;
141 	bool retransmit;
142 	void *ppc;
143 	int len;
144 	int idx; /* new()/commit() idx exchange */
145 
146 	struct list_head list;
147 	struct kref ref;
148 };
149 
150 struct processqueue_entry {
151 	unsigned char *buf;
152 	int nodeid;
153 	int buflen;
154 
155 	struct list_head list;
156 };
157 
158 struct dlm_proto_ops {
159 	bool try_new_addr;
160 	const char *name;
161 	int proto;
162 
163 	int (*connect)(struct connection *con, struct socket *sock,
164 		       struct sockaddr *addr, int addr_len);
165 	void (*sockopts)(struct socket *sock);
166 	int (*bind)(struct socket *sock);
167 	int (*listen_validate)(void);
168 	void (*listen_sockopts)(struct socket *sock);
169 	int (*listen_bind)(struct socket *sock);
170 };
171 
172 static struct listen_sock_callbacks {
173 	void (*sk_error_report)(struct sock *);
174 	void (*sk_data_ready)(struct sock *);
175 	void (*sk_state_change)(struct sock *);
176 	void (*sk_write_space)(struct sock *);
177 } listen_sock;
178 
179 static struct listen_connection listen_con;
180 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
181 static int dlm_local_count;
182 
183 /* Work queues */
184 static struct workqueue_struct *io_workqueue;
185 static struct workqueue_struct *process_workqueue;
186 
187 static struct hlist_head connection_hash[CONN_HASH_SIZE];
188 static DEFINE_SPINLOCK(connections_lock);
189 DEFINE_STATIC_SRCU(connections_srcu);
190 
191 static const struct dlm_proto_ops *dlm_proto_ops;
192 
193 #define DLM_IO_SUCCESS 0
194 #define DLM_IO_END 1
195 #define DLM_IO_EOF 2
196 #define DLM_IO_RESCHED 3
197 
198 static void process_recv_sockets(struct work_struct *work);
199 static void process_send_sockets(struct work_struct *work);
200 static void process_dlm_messages(struct work_struct *work);
201 
202 static DECLARE_WORK(process_work, process_dlm_messages);
203 static DEFINE_SPINLOCK(processqueue_lock);
204 static bool process_dlm_messages_pending;
205 static LIST_HEAD(processqueue);
206 
207 bool dlm_lowcomms_is_running(void)
208 {
209 	return !!listen_con.sock;
210 }
211 
212 static void lowcomms_queue_swork(struct connection *con)
213 {
214 	assert_spin_locked(&con->writequeue_lock);
215 
216 	if (!test_bit(CF_IO_STOP, &con->flags) &&
217 	    !test_bit(CF_APP_LIMITED, &con->flags) &&
218 	    !test_and_set_bit(CF_SEND_PENDING, &con->flags))
219 		queue_work(io_workqueue, &con->swork);
220 }
221 
222 static void lowcomms_queue_rwork(struct connection *con)
223 {
224 #ifdef CONFIG_LOCKDEP
225 	WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
226 #endif
227 
228 	if (!test_bit(CF_IO_STOP, &con->flags) &&
229 	    !test_and_set_bit(CF_RECV_PENDING, &con->flags))
230 		queue_work(io_workqueue, &con->rwork);
231 }
232 
233 static void writequeue_entry_ctor(void *data)
234 {
235 	struct writequeue_entry *entry = data;
236 
237 	INIT_LIST_HEAD(&entry->msgs);
238 }
239 
240 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
241 {
242 	return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
243 				 0, 0, writequeue_entry_ctor);
244 }
245 
246 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
247 {
248 	return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
249 }
250 
251 /* need to held writequeue_lock */
252 static struct writequeue_entry *con_next_wq(struct connection *con)
253 {
254 	struct writequeue_entry *e;
255 
256 	e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
257 				     list);
258 	/* if len is zero nothing is to send, if there are users filling
259 	 * buffers we wait until the users are done so we can send more.
260 	 */
261 	if (!e || e->users || e->len == 0)
262 		return NULL;
263 
264 	return e;
265 }
266 
267 static struct connection *__find_con(int nodeid, int r)
268 {
269 	struct connection *con;
270 
271 	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
272 		if (con->nodeid == nodeid)
273 			return con;
274 	}
275 
276 	return NULL;
277 }
278 
279 static void dlm_con_init(struct connection *con, int nodeid)
280 {
281 	con->nodeid = nodeid;
282 	init_rwsem(&con->sock_lock);
283 	INIT_LIST_HEAD(&con->writequeue);
284 	spin_lock_init(&con->writequeue_lock);
285 	INIT_WORK(&con->swork, process_send_sockets);
286 	INIT_WORK(&con->rwork, process_recv_sockets);
287 	spin_lock_init(&con->addrs_lock);
288 	init_waitqueue_head(&con->shutdown_wait);
289 }
290 
291 /*
292  * If 'allocation' is zero then we don't attempt to create a new
293  * connection structure for this node.
294  */
295 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
296 {
297 	struct connection *con, *tmp;
298 	int r;
299 
300 	r = nodeid_hash(nodeid);
301 	con = __find_con(nodeid, r);
302 	if (con || !alloc)
303 		return con;
304 
305 	con = kzalloc(sizeof(*con), alloc);
306 	if (!con)
307 		return NULL;
308 
309 	dlm_con_init(con, nodeid);
310 
311 	spin_lock(&connections_lock);
312 	/* Because multiple workqueues/threads calls this function it can
313 	 * race on multiple cpu's. Instead of locking hot path __find_con()
314 	 * we just check in rare cases of recently added nodes again
315 	 * under protection of connections_lock. If this is the case we
316 	 * abort our connection creation and return the existing connection.
317 	 */
318 	tmp = __find_con(nodeid, r);
319 	if (tmp) {
320 		spin_unlock(&connections_lock);
321 		kfree(con);
322 		return tmp;
323 	}
324 
325 	hlist_add_head_rcu(&con->list, &connection_hash[r]);
326 	spin_unlock(&connections_lock);
327 
328 	return con;
329 }
330 
331 static int addr_compare(const struct sockaddr_storage *x,
332 			const struct sockaddr_storage *y)
333 {
334 	switch (x->ss_family) {
335 	case AF_INET: {
336 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
337 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
338 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
339 			return 0;
340 		if (sinx->sin_port != siny->sin_port)
341 			return 0;
342 		break;
343 	}
344 	case AF_INET6: {
345 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
346 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
347 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
348 			return 0;
349 		if (sinx->sin6_port != siny->sin6_port)
350 			return 0;
351 		break;
352 	}
353 	default:
354 		return 0;
355 	}
356 	return 1;
357 }
358 
359 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
360 			  struct sockaddr *sa_out, bool try_new_addr,
361 			  unsigned int *mark)
362 {
363 	struct sockaddr_storage sas;
364 	struct connection *con;
365 	int idx;
366 
367 	if (!dlm_local_count)
368 		return -1;
369 
370 	idx = srcu_read_lock(&connections_srcu);
371 	con = nodeid2con(nodeid, 0);
372 	if (!con) {
373 		srcu_read_unlock(&connections_srcu, idx);
374 		return -ENOENT;
375 	}
376 
377 	spin_lock(&con->addrs_lock);
378 	if (!con->addr_count) {
379 		spin_unlock(&con->addrs_lock);
380 		srcu_read_unlock(&connections_srcu, idx);
381 		return -ENOENT;
382 	}
383 
384 	memcpy(&sas, &con->addr[con->curr_addr_index],
385 	       sizeof(struct sockaddr_storage));
386 
387 	if (try_new_addr) {
388 		con->curr_addr_index++;
389 		if (con->curr_addr_index == con->addr_count)
390 			con->curr_addr_index = 0;
391 	}
392 
393 	*mark = con->mark;
394 	spin_unlock(&con->addrs_lock);
395 
396 	if (sas_out)
397 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
398 
399 	if (!sa_out) {
400 		srcu_read_unlock(&connections_srcu, idx);
401 		return 0;
402 	}
403 
404 	if (dlm_local_addr[0].ss_family == AF_INET) {
405 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
406 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
407 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
408 	} else {
409 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
410 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
411 		ret6->sin6_addr = in6->sin6_addr;
412 	}
413 
414 	srcu_read_unlock(&connections_srcu, idx);
415 	return 0;
416 }
417 
418 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
419 			  unsigned int *mark)
420 {
421 	struct connection *con;
422 	int i, idx, addr_i;
423 
424 	idx = srcu_read_lock(&connections_srcu);
425 	for (i = 0; i < CONN_HASH_SIZE; i++) {
426 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
427 			WARN_ON_ONCE(!con->addr_count);
428 
429 			spin_lock(&con->addrs_lock);
430 			for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
431 				if (addr_compare(&con->addr[addr_i], addr)) {
432 					*nodeid = con->nodeid;
433 					*mark = con->mark;
434 					spin_unlock(&con->addrs_lock);
435 					srcu_read_unlock(&connections_srcu, idx);
436 					return 0;
437 				}
438 			}
439 			spin_unlock(&con->addrs_lock);
440 		}
441 	}
442 	srcu_read_unlock(&connections_srcu, idx);
443 
444 	return -ENOENT;
445 }
446 
447 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
448 				      const struct sockaddr_storage *addr)
449 {
450 	int i;
451 
452 	for (i = 0; i < con->addr_count; i++) {
453 		if (addr_compare(&con->addr[i], addr))
454 			return true;
455 	}
456 
457 	return false;
458 }
459 
460 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
461 {
462 	struct connection *con;
463 	bool ret, idx;
464 
465 	idx = srcu_read_lock(&connections_srcu);
466 	con = nodeid2con(nodeid, GFP_NOFS);
467 	if (!con) {
468 		srcu_read_unlock(&connections_srcu, idx);
469 		return -ENOMEM;
470 	}
471 
472 	spin_lock(&con->addrs_lock);
473 	if (!con->addr_count) {
474 		memcpy(&con->addr[0], addr, sizeof(*addr));
475 		con->addr_count = 1;
476 		con->mark = dlm_config.ci_mark;
477 		spin_unlock(&con->addrs_lock);
478 		srcu_read_unlock(&connections_srcu, idx);
479 		return 0;
480 	}
481 
482 	ret = dlm_lowcomms_con_has_addr(con, addr);
483 	if (ret) {
484 		spin_unlock(&con->addrs_lock);
485 		srcu_read_unlock(&connections_srcu, idx);
486 		return -EEXIST;
487 	}
488 
489 	if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
490 		spin_unlock(&con->addrs_lock);
491 		srcu_read_unlock(&connections_srcu, idx);
492 		return -ENOSPC;
493 	}
494 
495 	memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
496 	srcu_read_unlock(&connections_srcu, idx);
497 	spin_unlock(&con->addrs_lock);
498 	return 0;
499 }
500 
501 /* Data available on socket or listen socket received a connect */
502 static void lowcomms_data_ready(struct sock *sk)
503 {
504 	struct connection *con = sock2con(sk);
505 
506 	trace_sk_data_ready(sk);
507 
508 	set_bit(CF_RECV_INTR, &con->flags);
509 	lowcomms_queue_rwork(con);
510 }
511 
512 static void lowcomms_write_space(struct sock *sk)
513 {
514 	struct connection *con = sock2con(sk);
515 
516 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
517 
518 	spin_lock_bh(&con->writequeue_lock);
519 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
520 		con->sock->sk->sk_write_pending--;
521 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
522 	}
523 
524 	lowcomms_queue_swork(con);
525 	spin_unlock_bh(&con->writequeue_lock);
526 }
527 
528 static void lowcomms_state_change(struct sock *sk)
529 {
530 	/* SCTP layer is not calling sk_data_ready when the connection
531 	 * is done, so we catch the signal through here.
532 	 */
533 	if (sk->sk_shutdown == RCV_SHUTDOWN)
534 		lowcomms_data_ready(sk);
535 }
536 
537 static void lowcomms_listen_data_ready(struct sock *sk)
538 {
539 	trace_sk_data_ready(sk);
540 
541 	queue_work(io_workqueue, &listen_con.rwork);
542 }
543 
544 int dlm_lowcomms_connect_node(int nodeid)
545 {
546 	struct connection *con;
547 	int idx;
548 
549 	if (nodeid == dlm_our_nodeid())
550 		return 0;
551 
552 	idx = srcu_read_lock(&connections_srcu);
553 	con = nodeid2con(nodeid, 0);
554 	if (WARN_ON_ONCE(!con)) {
555 		srcu_read_unlock(&connections_srcu, idx);
556 		return -ENOENT;
557 	}
558 
559 	down_read(&con->sock_lock);
560 	if (!con->sock) {
561 		spin_lock_bh(&con->writequeue_lock);
562 		lowcomms_queue_swork(con);
563 		spin_unlock_bh(&con->writequeue_lock);
564 	}
565 	up_read(&con->sock_lock);
566 	srcu_read_unlock(&connections_srcu, idx);
567 
568 	cond_resched();
569 	return 0;
570 }
571 
572 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
573 {
574 	struct connection *con;
575 	int idx;
576 
577 	idx = srcu_read_lock(&connections_srcu);
578 	con = nodeid2con(nodeid, 0);
579 	if (!con) {
580 		srcu_read_unlock(&connections_srcu, idx);
581 		return -ENOENT;
582 	}
583 
584 	spin_lock(&con->addrs_lock);
585 	con->mark = mark;
586 	spin_unlock(&con->addrs_lock);
587 	srcu_read_unlock(&connections_srcu, idx);
588 	return 0;
589 }
590 
591 static void lowcomms_error_report(struct sock *sk)
592 {
593 	struct connection *con = sock2con(sk);
594 	struct inet_sock *inet;
595 
596 	inet = inet_sk(sk);
597 	switch (sk->sk_family) {
598 	case AF_INET:
599 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
600 				   "sending to node %d at %pI4, dport %d, "
601 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
602 				   con->nodeid, &inet->inet_daddr,
603 				   ntohs(inet->inet_dport), sk->sk_err,
604 				   READ_ONCE(sk->sk_err_soft));
605 		break;
606 #if IS_ENABLED(CONFIG_IPV6)
607 	case AF_INET6:
608 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
609 				   "sending to node %d at %pI6c, "
610 				   "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
611 				   con->nodeid, &sk->sk_v6_daddr,
612 				   ntohs(inet->inet_dport), sk->sk_err,
613 				   READ_ONCE(sk->sk_err_soft));
614 		break;
615 #endif
616 	default:
617 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
618 				   "invalid socket family %d set, "
619 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
620 				   sk->sk_family, sk->sk_err,
621 				   READ_ONCE(sk->sk_err_soft));
622 		break;
623 	}
624 
625 	dlm_midcomms_unack_msg_resend(con->nodeid);
626 
627 	listen_sock.sk_error_report(sk);
628 }
629 
630 static void restore_callbacks(struct sock *sk)
631 {
632 #ifdef CONFIG_LOCKDEP
633 	WARN_ON_ONCE(!lockdep_sock_is_held(sk));
634 #endif
635 
636 	sk->sk_user_data = NULL;
637 	sk->sk_data_ready = listen_sock.sk_data_ready;
638 	sk->sk_state_change = listen_sock.sk_state_change;
639 	sk->sk_write_space = listen_sock.sk_write_space;
640 	sk->sk_error_report = listen_sock.sk_error_report;
641 }
642 
643 /* Make a socket active */
644 static void add_sock(struct socket *sock, struct connection *con)
645 {
646 	struct sock *sk = sock->sk;
647 
648 	lock_sock(sk);
649 	con->sock = sock;
650 
651 	sk->sk_user_data = con;
652 	sk->sk_data_ready = lowcomms_data_ready;
653 	sk->sk_write_space = lowcomms_write_space;
654 	if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
655 		sk->sk_state_change = lowcomms_state_change;
656 	sk->sk_allocation = GFP_NOFS;
657 	sk->sk_use_task_frag = false;
658 	sk->sk_error_report = lowcomms_error_report;
659 	release_sock(sk);
660 }
661 
662 /* Add the port number to an IPv6 or 4 sockaddr and return the address
663    length */
664 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
665 			  int *addr_len)
666 {
667 	saddr->ss_family =  dlm_local_addr[0].ss_family;
668 	if (saddr->ss_family == AF_INET) {
669 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
670 		in4_addr->sin_port = cpu_to_be16(port);
671 		*addr_len = sizeof(struct sockaddr_in);
672 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
673 	} else {
674 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
675 		in6_addr->sin6_port = cpu_to_be16(port);
676 		*addr_len = sizeof(struct sockaddr_in6);
677 	}
678 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
679 }
680 
681 static void dlm_page_release(struct kref *kref)
682 {
683 	struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
684 						  ref);
685 
686 	__free_page(e->page);
687 	dlm_free_writequeue(e);
688 }
689 
690 static void dlm_msg_release(struct kref *kref)
691 {
692 	struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
693 
694 	kref_put(&msg->entry->ref, dlm_page_release);
695 	dlm_free_msg(msg);
696 }
697 
698 static void free_entry(struct writequeue_entry *e)
699 {
700 	struct dlm_msg *msg, *tmp;
701 
702 	list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
703 		if (msg->orig_msg) {
704 			msg->orig_msg->retransmit = false;
705 			kref_put(&msg->orig_msg->ref, dlm_msg_release);
706 		}
707 
708 		list_del(&msg->list);
709 		kref_put(&msg->ref, dlm_msg_release);
710 	}
711 
712 	list_del(&e->list);
713 	kref_put(&e->ref, dlm_page_release);
714 }
715 
716 static void dlm_close_sock(struct socket **sock)
717 {
718 	lock_sock((*sock)->sk);
719 	restore_callbacks((*sock)->sk);
720 	release_sock((*sock)->sk);
721 
722 	sock_release(*sock);
723 	*sock = NULL;
724 }
725 
726 static void allow_connection_io(struct connection *con)
727 {
728 	if (con->othercon)
729 		clear_bit(CF_IO_STOP, &con->othercon->flags);
730 	clear_bit(CF_IO_STOP, &con->flags);
731 }
732 
733 static void stop_connection_io(struct connection *con)
734 {
735 	if (con->othercon)
736 		stop_connection_io(con->othercon);
737 
738 	spin_lock_bh(&con->writequeue_lock);
739 	set_bit(CF_IO_STOP, &con->flags);
740 	spin_unlock_bh(&con->writequeue_lock);
741 
742 	down_write(&con->sock_lock);
743 	if (con->sock) {
744 		lock_sock(con->sock->sk);
745 		restore_callbacks(con->sock->sk);
746 		release_sock(con->sock->sk);
747 	}
748 	up_write(&con->sock_lock);
749 
750 	cancel_work_sync(&con->swork);
751 	cancel_work_sync(&con->rwork);
752 }
753 
754 /* Close a remote connection and tidy up */
755 static void close_connection(struct connection *con, bool and_other)
756 {
757 	struct writequeue_entry *e;
758 
759 	if (con->othercon && and_other)
760 		close_connection(con->othercon, false);
761 
762 	down_write(&con->sock_lock);
763 	if (!con->sock) {
764 		up_write(&con->sock_lock);
765 		return;
766 	}
767 
768 	dlm_close_sock(&con->sock);
769 
770 	/* if we send a writequeue entry only a half way, we drop the
771 	 * whole entry because reconnection and that we not start of the
772 	 * middle of a msg which will confuse the other end.
773 	 *
774 	 * we can always drop messages because retransmits, but what we
775 	 * cannot allow is to transmit half messages which may be processed
776 	 * at the other side.
777 	 *
778 	 * our policy is to start on a clean state when disconnects, we don't
779 	 * know what's send/received on transport layer in this case.
780 	 */
781 	spin_lock_bh(&con->writequeue_lock);
782 	if (!list_empty(&con->writequeue)) {
783 		e = list_first_entry(&con->writequeue, struct writequeue_entry,
784 				     list);
785 		if (e->dirty)
786 			free_entry(e);
787 	}
788 	spin_unlock_bh(&con->writequeue_lock);
789 
790 	con->rx_leftover = 0;
791 	con->retries = 0;
792 	clear_bit(CF_APP_LIMITED, &con->flags);
793 	clear_bit(CF_RECV_PENDING, &con->flags);
794 	clear_bit(CF_SEND_PENDING, &con->flags);
795 	up_write(&con->sock_lock);
796 }
797 
798 static void shutdown_connection(struct connection *con, bool and_other)
799 {
800 	int ret;
801 
802 	if (con->othercon && and_other)
803 		shutdown_connection(con->othercon, false);
804 
805 	flush_workqueue(io_workqueue);
806 	down_read(&con->sock_lock);
807 	/* nothing to shutdown */
808 	if (!con->sock) {
809 		up_read(&con->sock_lock);
810 		return;
811 	}
812 
813 	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
814 	up_read(&con->sock_lock);
815 	if (ret) {
816 		log_print("Connection %p failed to shutdown: %d will force close",
817 			  con, ret);
818 		goto force_close;
819 	} else {
820 		ret = wait_event_timeout(con->shutdown_wait, !con->sock,
821 					 DLM_SHUTDOWN_WAIT_TIMEOUT);
822 		if (ret == 0) {
823 			log_print("Connection %p shutdown timed out, will force close",
824 				  con);
825 			goto force_close;
826 		}
827 	}
828 
829 	return;
830 
831 force_close:
832 	close_connection(con, false);
833 }
834 
835 static struct processqueue_entry *new_processqueue_entry(int nodeid,
836 							 int buflen)
837 {
838 	struct processqueue_entry *pentry;
839 
840 	pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
841 	if (!pentry)
842 		return NULL;
843 
844 	pentry->buf = kmalloc(buflen, GFP_NOFS);
845 	if (!pentry->buf) {
846 		kfree(pentry);
847 		return NULL;
848 	}
849 
850 	pentry->nodeid = nodeid;
851 	return pentry;
852 }
853 
854 static void free_processqueue_entry(struct processqueue_entry *pentry)
855 {
856 	kfree(pentry->buf);
857 	kfree(pentry);
858 }
859 
860 struct dlm_processed_nodes {
861 	int nodeid;
862 
863 	struct list_head list;
864 };
865 
866 static void add_processed_node(int nodeid, struct list_head *processed_nodes)
867 {
868 	struct dlm_processed_nodes *n;
869 
870 	list_for_each_entry(n, processed_nodes, list) {
871 		/* we already remembered this node */
872 		if (n->nodeid == nodeid)
873 			return;
874 	}
875 
876 	/* if it's fails in worst case we simple don't send an ack back.
877 	 * We try it next time.
878 	 */
879 	n = kmalloc(sizeof(*n), GFP_NOFS);
880 	if (!n)
881 		return;
882 
883 	n->nodeid = nodeid;
884 	list_add(&n->list, processed_nodes);
885 }
886 
887 static void process_dlm_messages(struct work_struct *work)
888 {
889 	struct dlm_processed_nodes *n, *n_tmp;
890 	struct processqueue_entry *pentry;
891 	LIST_HEAD(processed_nodes);
892 
893 	spin_lock(&processqueue_lock);
894 	pentry = list_first_entry_or_null(&processqueue,
895 					  struct processqueue_entry, list);
896 	if (WARN_ON_ONCE(!pentry)) {
897 		process_dlm_messages_pending = false;
898 		spin_unlock(&processqueue_lock);
899 		return;
900 	}
901 
902 	list_del(&pentry->list);
903 	spin_unlock(&processqueue_lock);
904 
905 	for (;;) {
906 		dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
907 					    pentry->buflen);
908 		add_processed_node(pentry->nodeid, &processed_nodes);
909 		free_processqueue_entry(pentry);
910 
911 		spin_lock(&processqueue_lock);
912 		pentry = list_first_entry_or_null(&processqueue,
913 						  struct processqueue_entry, list);
914 		if (!pentry) {
915 			process_dlm_messages_pending = false;
916 			spin_unlock(&processqueue_lock);
917 			break;
918 		}
919 
920 		list_del(&pentry->list);
921 		spin_unlock(&processqueue_lock);
922 	}
923 
924 	/* send ack back after we processed couple of messages */
925 	list_for_each_entry_safe(n, n_tmp, &processed_nodes, list) {
926 		list_del(&n->list);
927 		dlm_midcomms_receive_done(n->nodeid);
928 		kfree(n);
929 	}
930 }
931 
932 /* Data received from remote end */
933 static int receive_from_sock(struct connection *con, int buflen)
934 {
935 	struct processqueue_entry *pentry;
936 	int ret, buflen_real;
937 	struct msghdr msg;
938 	struct kvec iov;
939 
940 	pentry = new_processqueue_entry(con->nodeid, buflen);
941 	if (!pentry)
942 		return DLM_IO_RESCHED;
943 
944 	memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
945 
946 	/* calculate new buffer parameter regarding last receive and
947 	 * possible leftover bytes
948 	 */
949 	iov.iov_base = pentry->buf + con->rx_leftover;
950 	iov.iov_len = buflen - con->rx_leftover;
951 
952 	memset(&msg, 0, sizeof(msg));
953 	msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
954 	clear_bit(CF_RECV_INTR, &con->flags);
955 again:
956 	ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
957 			     msg.msg_flags);
958 	trace_dlm_recv(con->nodeid, ret);
959 	if (ret == -EAGAIN) {
960 		lock_sock(con->sock->sk);
961 		if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
962 			release_sock(con->sock->sk);
963 			goto again;
964 		}
965 
966 		clear_bit(CF_RECV_PENDING, &con->flags);
967 		release_sock(con->sock->sk);
968 		free_processqueue_entry(pentry);
969 		return DLM_IO_END;
970 	} else if (ret == 0) {
971 		/* close will clear CF_RECV_PENDING */
972 		free_processqueue_entry(pentry);
973 		return DLM_IO_EOF;
974 	} else if (ret < 0) {
975 		free_processqueue_entry(pentry);
976 		return ret;
977 	}
978 
979 	/* new buflen according readed bytes and leftover from last receive */
980 	buflen_real = ret + con->rx_leftover;
981 	ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
982 					   buflen_real);
983 	if (ret < 0) {
984 		free_processqueue_entry(pentry);
985 		return ret;
986 	}
987 
988 	pentry->buflen = ret;
989 
990 	/* calculate leftover bytes from process and put it into begin of
991 	 * the receive buffer, so next receive we have the full message
992 	 * at the start address of the receive buffer.
993 	 */
994 	con->rx_leftover = buflen_real - ret;
995 	memmove(con->rx_leftover_buf, pentry->buf + ret,
996 		con->rx_leftover);
997 
998 	spin_lock(&processqueue_lock);
999 	list_add_tail(&pentry->list, &processqueue);
1000 	if (!process_dlm_messages_pending) {
1001 		process_dlm_messages_pending = true;
1002 		queue_work(process_workqueue, &process_work);
1003 	}
1004 	spin_unlock(&processqueue_lock);
1005 
1006 	return DLM_IO_SUCCESS;
1007 }
1008 
1009 /* Listening socket is busy, accept a connection */
1010 static int accept_from_sock(void)
1011 {
1012 	struct sockaddr_storage peeraddr;
1013 	int len, idx, result, nodeid;
1014 	struct connection *newcon;
1015 	struct socket *newsock;
1016 	unsigned int mark;
1017 
1018 	result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
1019 	if (result == -EAGAIN)
1020 		return DLM_IO_END;
1021 	else if (result < 0)
1022 		goto accept_err;
1023 
1024 	/* Get the connected socket's peer */
1025 	memset(&peeraddr, 0, sizeof(peeraddr));
1026 	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
1027 	if (len < 0) {
1028 		result = -ECONNABORTED;
1029 		goto accept_err;
1030 	}
1031 
1032 	/* Get the new node's NODEID */
1033 	make_sockaddr(&peeraddr, 0, &len);
1034 	if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1035 		switch (peeraddr.ss_family) {
1036 		case AF_INET: {
1037 			struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1038 
1039 			log_print("connect from non cluster IPv4 node %pI4",
1040 				  &sin->sin_addr);
1041 			break;
1042 		}
1043 #if IS_ENABLED(CONFIG_IPV6)
1044 		case AF_INET6: {
1045 			struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1046 
1047 			log_print("connect from non cluster IPv6 node %pI6c",
1048 				  &sin6->sin6_addr);
1049 			break;
1050 		}
1051 #endif
1052 		default:
1053 			log_print("invalid family from non cluster node");
1054 			break;
1055 		}
1056 
1057 		sock_release(newsock);
1058 		return -1;
1059 	}
1060 
1061 	log_print("got connection from %d", nodeid);
1062 
1063 	/*  Check to see if we already have a connection to this node. This
1064 	 *  could happen if the two nodes initiate a connection at roughly
1065 	 *  the same time and the connections cross on the wire.
1066 	 *  In this case we store the incoming one in "othercon"
1067 	 */
1068 	idx = srcu_read_lock(&connections_srcu);
1069 	newcon = nodeid2con(nodeid, 0);
1070 	if (WARN_ON_ONCE(!newcon)) {
1071 		srcu_read_unlock(&connections_srcu, idx);
1072 		result = -ENOENT;
1073 		goto accept_err;
1074 	}
1075 
1076 	sock_set_mark(newsock->sk, mark);
1077 
1078 	down_write(&newcon->sock_lock);
1079 	if (newcon->sock) {
1080 		struct connection *othercon = newcon->othercon;
1081 
1082 		if (!othercon) {
1083 			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1084 			if (!othercon) {
1085 				log_print("failed to allocate incoming socket");
1086 				up_write(&newcon->sock_lock);
1087 				srcu_read_unlock(&connections_srcu, idx);
1088 				result = -ENOMEM;
1089 				goto accept_err;
1090 			}
1091 
1092 			dlm_con_init(othercon, nodeid);
1093 			lockdep_set_subclass(&othercon->sock_lock, 1);
1094 			newcon->othercon = othercon;
1095 			set_bit(CF_IS_OTHERCON, &othercon->flags);
1096 		} else {
1097 			/* close other sock con if we have something new */
1098 			close_connection(othercon, false);
1099 		}
1100 
1101 		down_write(&othercon->sock_lock);
1102 		add_sock(newsock, othercon);
1103 
1104 		/* check if we receved something while adding */
1105 		lock_sock(othercon->sock->sk);
1106 		lowcomms_queue_rwork(othercon);
1107 		release_sock(othercon->sock->sk);
1108 		up_write(&othercon->sock_lock);
1109 	}
1110 	else {
1111 		/* accept copies the sk after we've saved the callbacks, so we
1112 		   don't want to save them a second time or comm errors will
1113 		   result in calling sk_error_report recursively. */
1114 		add_sock(newsock, newcon);
1115 
1116 		/* check if we receved something while adding */
1117 		lock_sock(newcon->sock->sk);
1118 		lowcomms_queue_rwork(newcon);
1119 		release_sock(newcon->sock->sk);
1120 	}
1121 	up_write(&newcon->sock_lock);
1122 	srcu_read_unlock(&connections_srcu, idx);
1123 
1124 	return DLM_IO_SUCCESS;
1125 
1126 accept_err:
1127 	if (newsock)
1128 		sock_release(newsock);
1129 
1130 	return result;
1131 }
1132 
1133 /*
1134  * writequeue_entry_complete - try to delete and free write queue entry
1135  * @e: write queue entry to try to delete
1136  * @completed: bytes completed
1137  *
1138  * writequeue_lock must be held.
1139  */
1140 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1141 {
1142 	e->offset += completed;
1143 	e->len -= completed;
1144 	/* signal that page was half way transmitted */
1145 	e->dirty = true;
1146 
1147 	if (e->len == 0 && e->users == 0)
1148 		free_entry(e);
1149 }
1150 
1151 /*
1152  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1153  */
1154 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1155 {
1156 	struct sockaddr_storage localaddr;
1157 	struct sockaddr *addr = (struct sockaddr *)&localaddr;
1158 	int i, addr_len, result = 0;
1159 
1160 	for (i = 0; i < dlm_local_count; i++) {
1161 		memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1162 		make_sockaddr(&localaddr, port, &addr_len);
1163 
1164 		if (!i)
1165 			result = kernel_bind(sock, addr, addr_len);
1166 		else
1167 			result = sock_bind_add(sock->sk, addr, addr_len);
1168 
1169 		if (result < 0) {
1170 			log_print("Can't bind to %d addr number %d, %d.\n",
1171 				  port, i + 1, result);
1172 			break;
1173 		}
1174 	}
1175 	return result;
1176 }
1177 
1178 /* Get local addresses */
1179 static void init_local(void)
1180 {
1181 	struct sockaddr_storage sas;
1182 	int i;
1183 
1184 	dlm_local_count = 0;
1185 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1186 		if (dlm_our_addr(&sas, i))
1187 			break;
1188 
1189 		memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1190 	}
1191 }
1192 
1193 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1194 {
1195 	struct writequeue_entry *entry;
1196 
1197 	entry = dlm_allocate_writequeue();
1198 	if (!entry)
1199 		return NULL;
1200 
1201 	entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1202 	if (!entry->page) {
1203 		dlm_free_writequeue(entry);
1204 		return NULL;
1205 	}
1206 
1207 	entry->offset = 0;
1208 	entry->len = 0;
1209 	entry->end = 0;
1210 	entry->dirty = false;
1211 	entry->con = con;
1212 	entry->users = 1;
1213 	kref_init(&entry->ref);
1214 	return entry;
1215 }
1216 
1217 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1218 					     char **ppc, void (*cb)(void *data),
1219 					     void *data)
1220 {
1221 	struct writequeue_entry *e;
1222 
1223 	spin_lock_bh(&con->writequeue_lock);
1224 	if (!list_empty(&con->writequeue)) {
1225 		e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1226 		if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1227 			kref_get(&e->ref);
1228 
1229 			*ppc = page_address(e->page) + e->end;
1230 			if (cb)
1231 				cb(data);
1232 
1233 			e->end += len;
1234 			e->users++;
1235 			goto out;
1236 		}
1237 	}
1238 
1239 	e = new_writequeue_entry(con);
1240 	if (!e)
1241 		goto out;
1242 
1243 	kref_get(&e->ref);
1244 	*ppc = page_address(e->page);
1245 	e->end += len;
1246 	if (cb)
1247 		cb(data);
1248 
1249 	list_add_tail(&e->list, &con->writequeue);
1250 
1251 out:
1252 	spin_unlock_bh(&con->writequeue_lock);
1253 	return e;
1254 };
1255 
1256 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1257 						gfp_t allocation, char **ppc,
1258 						void (*cb)(void *data),
1259 						void *data)
1260 {
1261 	struct writequeue_entry *e;
1262 	struct dlm_msg *msg;
1263 
1264 	msg = dlm_allocate_msg(allocation);
1265 	if (!msg)
1266 		return NULL;
1267 
1268 	kref_init(&msg->ref);
1269 
1270 	e = new_wq_entry(con, len, ppc, cb, data);
1271 	if (!e) {
1272 		dlm_free_msg(msg);
1273 		return NULL;
1274 	}
1275 
1276 	msg->retransmit = false;
1277 	msg->orig_msg = NULL;
1278 	msg->ppc = *ppc;
1279 	msg->len = len;
1280 	msg->entry = e;
1281 
1282 	return msg;
1283 }
1284 
1285 /* avoid false positive for nodes_srcu, unlock happens in
1286  * dlm_lowcomms_commit_msg which is a must call if success
1287  */
1288 #ifndef __CHECKER__
1289 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1290 				     char **ppc, void (*cb)(void *data),
1291 				     void *data)
1292 {
1293 	struct connection *con;
1294 	struct dlm_msg *msg;
1295 	int idx;
1296 
1297 	if (len > DLM_MAX_SOCKET_BUFSIZE ||
1298 	    len < sizeof(struct dlm_header)) {
1299 		BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1300 		log_print("failed to allocate a buffer of size %d", len);
1301 		WARN_ON_ONCE(1);
1302 		return NULL;
1303 	}
1304 
1305 	idx = srcu_read_lock(&connections_srcu);
1306 	con = nodeid2con(nodeid, 0);
1307 	if (WARN_ON_ONCE(!con)) {
1308 		srcu_read_unlock(&connections_srcu, idx);
1309 		return NULL;
1310 	}
1311 
1312 	msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1313 	if (!msg) {
1314 		srcu_read_unlock(&connections_srcu, idx);
1315 		return NULL;
1316 	}
1317 
1318 	/* for dlm_lowcomms_commit_msg() */
1319 	kref_get(&msg->ref);
1320 	/* we assume if successful commit must called */
1321 	msg->idx = idx;
1322 	return msg;
1323 }
1324 #endif
1325 
1326 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1327 {
1328 	struct writequeue_entry *e = msg->entry;
1329 	struct connection *con = e->con;
1330 	int users;
1331 
1332 	spin_lock_bh(&con->writequeue_lock);
1333 	kref_get(&msg->ref);
1334 	list_add(&msg->list, &e->msgs);
1335 
1336 	users = --e->users;
1337 	if (users)
1338 		goto out;
1339 
1340 	e->len = DLM_WQ_LENGTH_BYTES(e);
1341 
1342 	lowcomms_queue_swork(con);
1343 
1344 out:
1345 	spin_unlock_bh(&con->writequeue_lock);
1346 	return;
1347 }
1348 
1349 /* avoid false positive for nodes_srcu, lock was happen in
1350  * dlm_lowcomms_new_msg
1351  */
1352 #ifndef __CHECKER__
1353 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1354 {
1355 	_dlm_lowcomms_commit_msg(msg);
1356 	srcu_read_unlock(&connections_srcu, msg->idx);
1357 	/* because dlm_lowcomms_new_msg() */
1358 	kref_put(&msg->ref, dlm_msg_release);
1359 }
1360 #endif
1361 
1362 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1363 {
1364 	kref_put(&msg->ref, dlm_msg_release);
1365 }
1366 
1367 /* does not held connections_srcu, usage lowcomms_error_report only */
1368 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1369 {
1370 	struct dlm_msg *msg_resend;
1371 	char *ppc;
1372 
1373 	if (msg->retransmit)
1374 		return 1;
1375 
1376 	msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1377 					      GFP_ATOMIC, &ppc, NULL, NULL);
1378 	if (!msg_resend)
1379 		return -ENOMEM;
1380 
1381 	msg->retransmit = true;
1382 	kref_get(&msg->ref);
1383 	msg_resend->orig_msg = msg;
1384 
1385 	memcpy(ppc, msg->ppc, msg->len);
1386 	_dlm_lowcomms_commit_msg(msg_resend);
1387 	dlm_lowcomms_put_msg(msg_resend);
1388 
1389 	return 0;
1390 }
1391 
1392 /* Send a message */
1393 static int send_to_sock(struct connection *con)
1394 {
1395 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1396 	struct writequeue_entry *e;
1397 	int len, offset, ret;
1398 
1399 	spin_lock_bh(&con->writequeue_lock);
1400 	e = con_next_wq(con);
1401 	if (!e) {
1402 		clear_bit(CF_SEND_PENDING, &con->flags);
1403 		spin_unlock_bh(&con->writequeue_lock);
1404 		return DLM_IO_END;
1405 	}
1406 
1407 	len = e->len;
1408 	offset = e->offset;
1409 	WARN_ON_ONCE(len == 0 && e->users == 0);
1410 	spin_unlock_bh(&con->writequeue_lock);
1411 
1412 	ret = kernel_sendpage(con->sock, e->page, offset, len,
1413 			      msg_flags);
1414 	trace_dlm_send(con->nodeid, ret);
1415 	if (ret == -EAGAIN || ret == 0) {
1416 		lock_sock(con->sock->sk);
1417 		spin_lock_bh(&con->writequeue_lock);
1418 		if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1419 		    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1420 			/* Notify TCP that we're limited by the
1421 			 * application window size.
1422 			 */
1423 			set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1424 			con->sock->sk->sk_write_pending++;
1425 
1426 			clear_bit(CF_SEND_PENDING, &con->flags);
1427 			spin_unlock_bh(&con->writequeue_lock);
1428 			release_sock(con->sock->sk);
1429 
1430 			/* wait for write_space() event */
1431 			return DLM_IO_END;
1432 		}
1433 		spin_unlock_bh(&con->writequeue_lock);
1434 		release_sock(con->sock->sk);
1435 
1436 		return DLM_IO_RESCHED;
1437 	} else if (ret < 0) {
1438 		return ret;
1439 	}
1440 
1441 	spin_lock_bh(&con->writequeue_lock);
1442 	writequeue_entry_complete(e, ret);
1443 	spin_unlock_bh(&con->writequeue_lock);
1444 
1445 	return DLM_IO_SUCCESS;
1446 }
1447 
1448 static void clean_one_writequeue(struct connection *con)
1449 {
1450 	struct writequeue_entry *e, *safe;
1451 
1452 	spin_lock_bh(&con->writequeue_lock);
1453 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1454 		free_entry(e);
1455 	}
1456 	spin_unlock_bh(&con->writequeue_lock);
1457 }
1458 
1459 static void connection_release(struct rcu_head *rcu)
1460 {
1461 	struct connection *con = container_of(rcu, struct connection, rcu);
1462 
1463 	WARN_ON_ONCE(!list_empty(&con->writequeue));
1464 	WARN_ON_ONCE(con->sock);
1465 	kfree(con);
1466 }
1467 
1468 /* Called from recovery when it knows that a node has
1469    left the cluster */
1470 int dlm_lowcomms_close(int nodeid)
1471 {
1472 	struct connection *con;
1473 	int idx;
1474 
1475 	log_print("closing connection to node %d", nodeid);
1476 
1477 	idx = srcu_read_lock(&connections_srcu);
1478 	con = nodeid2con(nodeid, 0);
1479 	if (WARN_ON_ONCE(!con)) {
1480 		srcu_read_unlock(&connections_srcu, idx);
1481 		return -ENOENT;
1482 	}
1483 
1484 	stop_connection_io(con);
1485 	log_print("io handling for node: %d stopped", nodeid);
1486 	close_connection(con, true);
1487 
1488 	spin_lock(&connections_lock);
1489 	hlist_del_rcu(&con->list);
1490 	spin_unlock(&connections_lock);
1491 
1492 	clean_one_writequeue(con);
1493 	call_srcu(&connections_srcu, &con->rcu, connection_release);
1494 	if (con->othercon) {
1495 		clean_one_writequeue(con->othercon);
1496 		call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1497 	}
1498 	srcu_read_unlock(&connections_srcu, idx);
1499 
1500 	/* for debugging we print when we are done to compare with other
1501 	 * messages in between. This function need to be correctly synchronized
1502 	 * with io handling
1503 	 */
1504 	log_print("closing connection to node %d done", nodeid);
1505 
1506 	return 0;
1507 }
1508 
1509 /* Receive worker function */
1510 static void process_recv_sockets(struct work_struct *work)
1511 {
1512 	struct connection *con = container_of(work, struct connection, rwork);
1513 	int ret, buflen;
1514 
1515 	down_read(&con->sock_lock);
1516 	if (!con->sock) {
1517 		up_read(&con->sock_lock);
1518 		return;
1519 	}
1520 
1521 	buflen = READ_ONCE(dlm_config.ci_buffer_size);
1522 	do {
1523 		ret = receive_from_sock(con, buflen);
1524 	} while (ret == DLM_IO_SUCCESS);
1525 	up_read(&con->sock_lock);
1526 
1527 	switch (ret) {
1528 	case DLM_IO_END:
1529 		/* CF_RECV_PENDING cleared */
1530 		break;
1531 	case DLM_IO_EOF:
1532 		close_connection(con, false);
1533 		wake_up(&con->shutdown_wait);
1534 		/* CF_RECV_PENDING cleared */
1535 		break;
1536 	case DLM_IO_RESCHED:
1537 		cond_resched();
1538 		queue_work(io_workqueue, &con->rwork);
1539 		/* CF_RECV_PENDING not cleared */
1540 		break;
1541 	default:
1542 		if (ret < 0) {
1543 			if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1544 				close_connection(con, false);
1545 			} else {
1546 				spin_lock_bh(&con->writequeue_lock);
1547 				lowcomms_queue_swork(con);
1548 				spin_unlock_bh(&con->writequeue_lock);
1549 			}
1550 
1551 			/* CF_RECV_PENDING cleared for othercon
1552 			 * we trigger send queue if not already done
1553 			 * and process_send_sockets will handle it
1554 			 */
1555 			break;
1556 		}
1557 
1558 		WARN_ON_ONCE(1);
1559 		break;
1560 	}
1561 }
1562 
1563 static void process_listen_recv_socket(struct work_struct *work)
1564 {
1565 	int ret;
1566 
1567 	if (WARN_ON_ONCE(!listen_con.sock))
1568 		return;
1569 
1570 	do {
1571 		ret = accept_from_sock();
1572 	} while (ret == DLM_IO_SUCCESS);
1573 
1574 	if (ret < 0)
1575 		log_print("critical error accepting connection: %d", ret);
1576 }
1577 
1578 static int dlm_connect(struct connection *con)
1579 {
1580 	struct sockaddr_storage addr;
1581 	int result, addr_len;
1582 	struct socket *sock;
1583 	unsigned int mark;
1584 
1585 	memset(&addr, 0, sizeof(addr));
1586 	result = nodeid_to_addr(con->nodeid, &addr, NULL,
1587 				dlm_proto_ops->try_new_addr, &mark);
1588 	if (result < 0) {
1589 		log_print("no address for nodeid %d", con->nodeid);
1590 		return result;
1591 	}
1592 
1593 	/* Create a socket to communicate with */
1594 	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1595 				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1596 	if (result < 0)
1597 		return result;
1598 
1599 	sock_set_mark(sock->sk, mark);
1600 	dlm_proto_ops->sockopts(sock);
1601 
1602 	result = dlm_proto_ops->bind(sock);
1603 	if (result < 0) {
1604 		sock_release(sock);
1605 		return result;
1606 	}
1607 
1608 	add_sock(sock, con);
1609 
1610 	log_print_ratelimited("connecting to %d", con->nodeid);
1611 	make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1612 	result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1613 					addr_len);
1614 	switch (result) {
1615 	case -EINPROGRESS:
1616 		/* not an error */
1617 		fallthrough;
1618 	case 0:
1619 		break;
1620 	default:
1621 		if (result < 0)
1622 			dlm_close_sock(&con->sock);
1623 
1624 		break;
1625 	}
1626 
1627 	return result;
1628 }
1629 
1630 /* Send worker function */
1631 static void process_send_sockets(struct work_struct *work)
1632 {
1633 	struct connection *con = container_of(work, struct connection, swork);
1634 	int ret;
1635 
1636 	WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1637 
1638 	down_read(&con->sock_lock);
1639 	if (!con->sock) {
1640 		up_read(&con->sock_lock);
1641 		down_write(&con->sock_lock);
1642 		if (!con->sock) {
1643 			ret = dlm_connect(con);
1644 			switch (ret) {
1645 			case 0:
1646 				break;
1647 			case -EINPROGRESS:
1648 				/* avoid spamming resched on connection
1649 				 * we might can switch to a state_change
1650 				 * event based mechanism if established
1651 				 */
1652 				msleep(100);
1653 				break;
1654 			default:
1655 				/* CF_SEND_PENDING not cleared */
1656 				up_write(&con->sock_lock);
1657 				log_print("connect to node %d try %d error %d",
1658 					  con->nodeid, con->retries++, ret);
1659 				msleep(1000);
1660 				/* For now we try forever to reconnect. In
1661 				 * future we should send a event to cluster
1662 				 * manager to fence itself after certain amount
1663 				 * of retries.
1664 				 */
1665 				queue_work(io_workqueue, &con->swork);
1666 				return;
1667 			}
1668 		}
1669 		downgrade_write(&con->sock_lock);
1670 	}
1671 
1672 	do {
1673 		ret = send_to_sock(con);
1674 	} while (ret == DLM_IO_SUCCESS);
1675 	up_read(&con->sock_lock);
1676 
1677 	switch (ret) {
1678 	case DLM_IO_END:
1679 		/* CF_SEND_PENDING cleared */
1680 		break;
1681 	case DLM_IO_RESCHED:
1682 		/* CF_SEND_PENDING not cleared */
1683 		cond_resched();
1684 		queue_work(io_workqueue, &con->swork);
1685 		break;
1686 	default:
1687 		if (ret < 0) {
1688 			close_connection(con, false);
1689 
1690 			/* CF_SEND_PENDING cleared */
1691 			spin_lock_bh(&con->writequeue_lock);
1692 			lowcomms_queue_swork(con);
1693 			spin_unlock_bh(&con->writequeue_lock);
1694 			break;
1695 		}
1696 
1697 		WARN_ON_ONCE(1);
1698 		break;
1699 	}
1700 }
1701 
1702 static void work_stop(void)
1703 {
1704 	if (io_workqueue) {
1705 		destroy_workqueue(io_workqueue);
1706 		io_workqueue = NULL;
1707 	}
1708 
1709 	if (process_workqueue) {
1710 		destroy_workqueue(process_workqueue);
1711 		process_workqueue = NULL;
1712 	}
1713 }
1714 
1715 static int work_start(void)
1716 {
1717 	io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1718 				       WQ_UNBOUND, 0);
1719 	if (!io_workqueue) {
1720 		log_print("can't start dlm_io");
1721 		return -ENOMEM;
1722 	}
1723 
1724 	/* ordered dlm message process queue,
1725 	 * should be converted to a tasklet
1726 	 */
1727 	process_workqueue = alloc_ordered_workqueue("dlm_process",
1728 						    WQ_HIGHPRI | WQ_MEM_RECLAIM);
1729 	if (!process_workqueue) {
1730 		log_print("can't start dlm_process");
1731 		destroy_workqueue(io_workqueue);
1732 		io_workqueue = NULL;
1733 		return -ENOMEM;
1734 	}
1735 
1736 	return 0;
1737 }
1738 
1739 void dlm_lowcomms_shutdown(void)
1740 {
1741 	struct connection *con;
1742 	int i, idx;
1743 
1744 	/* stop lowcomms_listen_data_ready calls */
1745 	lock_sock(listen_con.sock->sk);
1746 	listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1747 	release_sock(listen_con.sock->sk);
1748 
1749 	cancel_work_sync(&listen_con.rwork);
1750 	dlm_close_sock(&listen_con.sock);
1751 
1752 	idx = srcu_read_lock(&connections_srcu);
1753 	for (i = 0; i < CONN_HASH_SIZE; i++) {
1754 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1755 			shutdown_connection(con, true);
1756 			stop_connection_io(con);
1757 			flush_workqueue(process_workqueue);
1758 			close_connection(con, true);
1759 
1760 			clean_one_writequeue(con);
1761 			if (con->othercon)
1762 				clean_one_writequeue(con->othercon);
1763 			allow_connection_io(con);
1764 		}
1765 	}
1766 	srcu_read_unlock(&connections_srcu, idx);
1767 }
1768 
1769 void dlm_lowcomms_stop(void)
1770 {
1771 	work_stop();
1772 	dlm_proto_ops = NULL;
1773 }
1774 
1775 static int dlm_listen_for_all(void)
1776 {
1777 	struct socket *sock;
1778 	int result;
1779 
1780 	log_print("Using %s for communications",
1781 		  dlm_proto_ops->name);
1782 
1783 	result = dlm_proto_ops->listen_validate();
1784 	if (result < 0)
1785 		return result;
1786 
1787 	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1788 				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1789 	if (result < 0) {
1790 		log_print("Can't create comms socket: %d", result);
1791 		return result;
1792 	}
1793 
1794 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1795 	dlm_proto_ops->listen_sockopts(sock);
1796 
1797 	result = dlm_proto_ops->listen_bind(sock);
1798 	if (result < 0)
1799 		goto out;
1800 
1801 	lock_sock(sock->sk);
1802 	listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1803 	listen_sock.sk_write_space = sock->sk->sk_write_space;
1804 	listen_sock.sk_error_report = sock->sk->sk_error_report;
1805 	listen_sock.sk_state_change = sock->sk->sk_state_change;
1806 
1807 	listen_con.sock = sock;
1808 
1809 	sock->sk->sk_allocation = GFP_NOFS;
1810 	sock->sk->sk_use_task_frag = false;
1811 	sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1812 	release_sock(sock->sk);
1813 
1814 	result = sock->ops->listen(sock, 128);
1815 	if (result < 0) {
1816 		dlm_close_sock(&listen_con.sock);
1817 		return result;
1818 	}
1819 
1820 	return 0;
1821 
1822 out:
1823 	sock_release(sock);
1824 	return result;
1825 }
1826 
1827 static int dlm_tcp_bind(struct socket *sock)
1828 {
1829 	struct sockaddr_storage src_addr;
1830 	int result, addr_len;
1831 
1832 	/* Bind to our cluster-known address connecting to avoid
1833 	 * routing problems.
1834 	 */
1835 	memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1836 	make_sockaddr(&src_addr, 0, &addr_len);
1837 
1838 	result = sock->ops->bind(sock, (struct sockaddr *)&src_addr,
1839 				 addr_len);
1840 	if (result < 0) {
1841 		/* This *may* not indicate a critical error */
1842 		log_print("could not bind for connect: %d", result);
1843 	}
1844 
1845 	return 0;
1846 }
1847 
1848 static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1849 			   struct sockaddr *addr, int addr_len)
1850 {
1851 	return sock->ops->connect(sock, addr, addr_len, O_NONBLOCK);
1852 }
1853 
1854 static int dlm_tcp_listen_validate(void)
1855 {
1856 	/* We don't support multi-homed hosts */
1857 	if (dlm_local_count > 1) {
1858 		log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1859 		return -EINVAL;
1860 	}
1861 
1862 	return 0;
1863 }
1864 
1865 static void dlm_tcp_sockopts(struct socket *sock)
1866 {
1867 	/* Turn off Nagle's algorithm */
1868 	tcp_sock_set_nodelay(sock->sk);
1869 }
1870 
1871 static void dlm_tcp_listen_sockopts(struct socket *sock)
1872 {
1873 	dlm_tcp_sockopts(sock);
1874 	sock_set_reuseaddr(sock->sk);
1875 }
1876 
1877 static int dlm_tcp_listen_bind(struct socket *sock)
1878 {
1879 	int addr_len;
1880 
1881 	/* Bind to our port */
1882 	make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1883 	return sock->ops->bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1884 			       addr_len);
1885 }
1886 
1887 static const struct dlm_proto_ops dlm_tcp_ops = {
1888 	.name = "TCP",
1889 	.proto = IPPROTO_TCP,
1890 	.connect = dlm_tcp_connect,
1891 	.sockopts = dlm_tcp_sockopts,
1892 	.bind = dlm_tcp_bind,
1893 	.listen_validate = dlm_tcp_listen_validate,
1894 	.listen_sockopts = dlm_tcp_listen_sockopts,
1895 	.listen_bind = dlm_tcp_listen_bind,
1896 };
1897 
1898 static int dlm_sctp_bind(struct socket *sock)
1899 {
1900 	return sctp_bind_addrs(sock, 0);
1901 }
1902 
1903 static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1904 			    struct sockaddr *addr, int addr_len)
1905 {
1906 	int ret;
1907 
1908 	/*
1909 	 * Make sock->ops->connect() function return in specified time,
1910 	 * since O_NONBLOCK argument in connect() function does not work here,
1911 	 * then, we should restore the default value of this attribute.
1912 	 */
1913 	sock_set_sndtimeo(sock->sk, 5);
1914 	ret = sock->ops->connect(sock, addr, addr_len, 0);
1915 	sock_set_sndtimeo(sock->sk, 0);
1916 	return ret;
1917 }
1918 
1919 static int dlm_sctp_listen_validate(void)
1920 {
1921 	if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1922 		log_print("SCTP is not enabled by this kernel");
1923 		return -EOPNOTSUPP;
1924 	}
1925 
1926 	request_module("sctp");
1927 	return 0;
1928 }
1929 
1930 static int dlm_sctp_bind_listen(struct socket *sock)
1931 {
1932 	return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1933 }
1934 
1935 static void dlm_sctp_sockopts(struct socket *sock)
1936 {
1937 	/* Turn off Nagle's algorithm */
1938 	sctp_sock_set_nodelay(sock->sk);
1939 	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1940 }
1941 
1942 static const struct dlm_proto_ops dlm_sctp_ops = {
1943 	.name = "SCTP",
1944 	.proto = IPPROTO_SCTP,
1945 	.try_new_addr = true,
1946 	.connect = dlm_sctp_connect,
1947 	.sockopts = dlm_sctp_sockopts,
1948 	.bind = dlm_sctp_bind,
1949 	.listen_validate = dlm_sctp_listen_validate,
1950 	.listen_sockopts = dlm_sctp_sockopts,
1951 	.listen_bind = dlm_sctp_bind_listen,
1952 };
1953 
1954 int dlm_lowcomms_start(void)
1955 {
1956 	int error;
1957 
1958 	init_local();
1959 	if (!dlm_local_count) {
1960 		error = -ENOTCONN;
1961 		log_print("no local IP address has been set");
1962 		goto fail;
1963 	}
1964 
1965 	error = work_start();
1966 	if (error)
1967 		goto fail;
1968 
1969 	/* Start listening */
1970 	switch (dlm_config.ci_protocol) {
1971 	case DLM_PROTO_TCP:
1972 		dlm_proto_ops = &dlm_tcp_ops;
1973 		break;
1974 	case DLM_PROTO_SCTP:
1975 		dlm_proto_ops = &dlm_sctp_ops;
1976 		break;
1977 	default:
1978 		log_print("Invalid protocol identifier %d set",
1979 			  dlm_config.ci_protocol);
1980 		error = -EINVAL;
1981 		goto fail_proto_ops;
1982 	}
1983 
1984 	error = dlm_listen_for_all();
1985 	if (error)
1986 		goto fail_listen;
1987 
1988 	return 0;
1989 
1990 fail_listen:
1991 	dlm_proto_ops = NULL;
1992 fail_proto_ops:
1993 	work_stop();
1994 fail:
1995 	return error;
1996 }
1997 
1998 void dlm_lowcomms_init(void)
1999 {
2000 	int i;
2001 
2002 	for (i = 0; i < CONN_HASH_SIZE; i++)
2003 		INIT_HLIST_HEAD(&connection_hash[i]);
2004 
2005 	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
2006 }
2007 
2008 void dlm_lowcomms_exit(void)
2009 {
2010 	struct connection *con;
2011 	int i, idx;
2012 
2013 	idx = srcu_read_lock(&connections_srcu);
2014 	for (i = 0; i < CONN_HASH_SIZE; i++) {
2015 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
2016 			spin_lock(&connections_lock);
2017 			hlist_del_rcu(&con->list);
2018 			spin_unlock(&connections_lock);
2019 
2020 			if (con->othercon)
2021 				call_srcu(&connections_srcu, &con->othercon->rcu,
2022 					  connection_release);
2023 			call_srcu(&connections_srcu, &con->rcu, connection_release);
2024 		}
2025 	}
2026 	srcu_read_unlock(&connections_srcu, idx);
2027 }
2028