xref: /openbmc/linux/fs/dlm/lowcomms.c (revision c8ed9fc9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11 
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44 
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55 
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60 
61 #define NEEDED_RMEM (4*1024*1024)
62 #define CONN_HASH_SIZE 32
63 
64 /* Number of messages to send before rescheduling */
65 #define MAX_SEND_MSG_COUNT 25
66 
67 struct cbuf {
68 	unsigned int base;
69 	unsigned int len;
70 	unsigned int mask;
71 };
72 
73 static void cbuf_add(struct cbuf *cb, int n)
74 {
75 	cb->len += n;
76 }
77 
78 static int cbuf_data(struct cbuf *cb)
79 {
80 	return ((cb->base + cb->len) & cb->mask);
81 }
82 
83 static void cbuf_init(struct cbuf *cb, int size)
84 {
85 	cb->base = cb->len = 0;
86 	cb->mask = size-1;
87 }
88 
89 static void cbuf_eat(struct cbuf *cb, int n)
90 {
91 	cb->len  -= n;
92 	cb->base += n;
93 	cb->base &= cb->mask;
94 }
95 
96 static bool cbuf_empty(struct cbuf *cb)
97 {
98 	return cb->len == 0;
99 }
100 
101 struct connection {
102 	struct socket *sock;	/* NULL if not connected */
103 	uint32_t nodeid;	/* So we know who we are in the list */
104 	struct mutex sock_mutex;
105 	unsigned long flags;
106 #define CF_READ_PENDING 1
107 #define CF_WRITE_PENDING 2
108 #define CF_INIT_PENDING 4
109 #define CF_IS_OTHERCON 5
110 #define CF_CLOSE 6
111 #define CF_APP_LIMITED 7
112 #define CF_CLOSING 8
113 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
114 	spinlock_t writequeue_lock;
115 	int (*rx_action) (struct connection *);	/* What to do when active */
116 	void (*connect_action) (struct connection *);	/* What to do to connect */
117 	struct page *rx_page;
118 	struct cbuf cb;
119 	int retries;
120 #define MAX_CONNECT_RETRIES 3
121 	struct hlist_node list;
122 	struct connection *othercon;
123 	struct work_struct rwork; /* Receive workqueue */
124 	struct work_struct swork; /* Send workqueue */
125 };
126 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
127 
128 /* An entry waiting to be sent */
129 struct writequeue_entry {
130 	struct list_head list;
131 	struct page *page;
132 	int offset;
133 	int len;
134 	int end;
135 	int users;
136 	struct connection *con;
137 };
138 
139 struct dlm_node_addr {
140 	struct list_head list;
141 	int nodeid;
142 	int addr_count;
143 	int curr_addr_index;
144 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
145 };
146 
147 static struct listen_sock_callbacks {
148 	void (*sk_error_report)(struct sock *);
149 	void (*sk_data_ready)(struct sock *);
150 	void (*sk_state_change)(struct sock *);
151 	void (*sk_write_space)(struct sock *);
152 } listen_sock;
153 
154 static LIST_HEAD(dlm_node_addrs);
155 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
156 
157 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
158 static int dlm_local_count;
159 static int dlm_allow_conn;
160 
161 /* Work queues */
162 static struct workqueue_struct *recv_workqueue;
163 static struct workqueue_struct *send_workqueue;
164 
165 static struct hlist_head connection_hash[CONN_HASH_SIZE];
166 static DEFINE_MUTEX(connections_lock);
167 static struct kmem_cache *con_cache;
168 
169 static void process_recv_sockets(struct work_struct *work);
170 static void process_send_sockets(struct work_struct *work);
171 
172 
173 /* This is deliberately very simple because most clusters have simple
174    sequential nodeids, so we should be able to go straight to a connection
175    struct in the array */
176 static inline int nodeid_hash(int nodeid)
177 {
178 	return nodeid & (CONN_HASH_SIZE-1);
179 }
180 
181 static struct connection *__find_con(int nodeid)
182 {
183 	int r;
184 	struct connection *con;
185 
186 	r = nodeid_hash(nodeid);
187 
188 	hlist_for_each_entry(con, &connection_hash[r], list) {
189 		if (con->nodeid == nodeid)
190 			return con;
191 	}
192 	return NULL;
193 }
194 
195 /*
196  * If 'allocation' is zero then we don't attempt to create a new
197  * connection structure for this node.
198  */
199 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
200 {
201 	struct connection *con = NULL;
202 	int r;
203 
204 	con = __find_con(nodeid);
205 	if (con || !alloc)
206 		return con;
207 
208 	con = kmem_cache_zalloc(con_cache, alloc);
209 	if (!con)
210 		return NULL;
211 
212 	r = nodeid_hash(nodeid);
213 	hlist_add_head(&con->list, &connection_hash[r]);
214 
215 	con->nodeid = nodeid;
216 	mutex_init(&con->sock_mutex);
217 	INIT_LIST_HEAD(&con->writequeue);
218 	spin_lock_init(&con->writequeue_lock);
219 	INIT_WORK(&con->swork, process_send_sockets);
220 	INIT_WORK(&con->rwork, process_recv_sockets);
221 
222 	/* Setup action pointers for child sockets */
223 	if (con->nodeid) {
224 		struct connection *zerocon = __find_con(0);
225 
226 		con->connect_action = zerocon->connect_action;
227 		if (!con->rx_action)
228 			con->rx_action = zerocon->rx_action;
229 	}
230 
231 	return con;
232 }
233 
234 /* Loop round all connections */
235 static void foreach_conn(void (*conn_func)(struct connection *c))
236 {
237 	int i;
238 	struct hlist_node *n;
239 	struct connection *con;
240 
241 	for (i = 0; i < CONN_HASH_SIZE; i++) {
242 		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
243 			conn_func(con);
244 	}
245 }
246 
247 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
248 {
249 	struct connection *con;
250 
251 	mutex_lock(&connections_lock);
252 	con = __nodeid2con(nodeid, allocation);
253 	mutex_unlock(&connections_lock);
254 
255 	return con;
256 }
257 
258 static struct dlm_node_addr *find_node_addr(int nodeid)
259 {
260 	struct dlm_node_addr *na;
261 
262 	list_for_each_entry(na, &dlm_node_addrs, list) {
263 		if (na->nodeid == nodeid)
264 			return na;
265 	}
266 	return NULL;
267 }
268 
269 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
270 {
271 	switch (x->ss_family) {
272 	case AF_INET: {
273 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
274 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
275 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
276 			return 0;
277 		if (sinx->sin_port != siny->sin_port)
278 			return 0;
279 		break;
280 	}
281 	case AF_INET6: {
282 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
283 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
284 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
285 			return 0;
286 		if (sinx->sin6_port != siny->sin6_port)
287 			return 0;
288 		break;
289 	}
290 	default:
291 		return 0;
292 	}
293 	return 1;
294 }
295 
296 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
297 			  struct sockaddr *sa_out, bool try_new_addr)
298 {
299 	struct sockaddr_storage sas;
300 	struct dlm_node_addr *na;
301 
302 	if (!dlm_local_count)
303 		return -1;
304 
305 	spin_lock(&dlm_node_addrs_spin);
306 	na = find_node_addr(nodeid);
307 	if (na && na->addr_count) {
308 		memcpy(&sas, na->addr[na->curr_addr_index],
309 		       sizeof(struct sockaddr_storage));
310 
311 		if (try_new_addr) {
312 			na->curr_addr_index++;
313 			if (na->curr_addr_index == na->addr_count)
314 				na->curr_addr_index = 0;
315 		}
316 	}
317 	spin_unlock(&dlm_node_addrs_spin);
318 
319 	if (!na)
320 		return -EEXIST;
321 
322 	if (!na->addr_count)
323 		return -ENOENT;
324 
325 	if (sas_out)
326 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
327 
328 	if (!sa_out)
329 		return 0;
330 
331 	if (dlm_local_addr[0]->ss_family == AF_INET) {
332 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
333 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
334 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
335 	} else {
336 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
337 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
338 		ret6->sin6_addr = in6->sin6_addr;
339 	}
340 
341 	return 0;
342 }
343 
344 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
345 {
346 	struct dlm_node_addr *na;
347 	int rv = -EEXIST;
348 	int addr_i;
349 
350 	spin_lock(&dlm_node_addrs_spin);
351 	list_for_each_entry(na, &dlm_node_addrs, list) {
352 		if (!na->addr_count)
353 			continue;
354 
355 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
356 			if (addr_compare(na->addr[addr_i], addr)) {
357 				*nodeid = na->nodeid;
358 				rv = 0;
359 				goto unlock;
360 			}
361 		}
362 	}
363 unlock:
364 	spin_unlock(&dlm_node_addrs_spin);
365 	return rv;
366 }
367 
368 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
369 {
370 	struct sockaddr_storage *new_addr;
371 	struct dlm_node_addr *new_node, *na;
372 
373 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
374 	if (!new_node)
375 		return -ENOMEM;
376 
377 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
378 	if (!new_addr) {
379 		kfree(new_node);
380 		return -ENOMEM;
381 	}
382 
383 	memcpy(new_addr, addr, len);
384 
385 	spin_lock(&dlm_node_addrs_spin);
386 	na = find_node_addr(nodeid);
387 	if (!na) {
388 		new_node->nodeid = nodeid;
389 		new_node->addr[0] = new_addr;
390 		new_node->addr_count = 1;
391 		list_add(&new_node->list, &dlm_node_addrs);
392 		spin_unlock(&dlm_node_addrs_spin);
393 		return 0;
394 	}
395 
396 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
397 		spin_unlock(&dlm_node_addrs_spin);
398 		kfree(new_addr);
399 		kfree(new_node);
400 		return -ENOSPC;
401 	}
402 
403 	na->addr[na->addr_count++] = new_addr;
404 	spin_unlock(&dlm_node_addrs_spin);
405 	kfree(new_node);
406 	return 0;
407 }
408 
409 /* Data available on socket or listen socket received a connect */
410 static void lowcomms_data_ready(struct sock *sk)
411 {
412 	struct connection *con;
413 
414 	read_lock_bh(&sk->sk_callback_lock);
415 	con = sock2con(sk);
416 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
417 		queue_work(recv_workqueue, &con->rwork);
418 	read_unlock_bh(&sk->sk_callback_lock);
419 }
420 
421 static void lowcomms_write_space(struct sock *sk)
422 {
423 	struct connection *con;
424 
425 	read_lock_bh(&sk->sk_callback_lock);
426 	con = sock2con(sk);
427 	if (!con)
428 		goto out;
429 
430 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
431 
432 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
433 		con->sock->sk->sk_write_pending--;
434 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
435 	}
436 
437 	queue_work(send_workqueue, &con->swork);
438 out:
439 	read_unlock_bh(&sk->sk_callback_lock);
440 }
441 
442 static inline void lowcomms_connect_sock(struct connection *con)
443 {
444 	if (test_bit(CF_CLOSE, &con->flags))
445 		return;
446 	queue_work(send_workqueue, &con->swork);
447 	cond_resched();
448 }
449 
450 static void lowcomms_state_change(struct sock *sk)
451 {
452 	/* SCTP layer is not calling sk_data_ready when the connection
453 	 * is done, so we catch the signal through here. Also, it
454 	 * doesn't switch socket state when entering shutdown, so we
455 	 * skip the write in that case.
456 	 */
457 	if (sk->sk_shutdown) {
458 		if (sk->sk_shutdown == RCV_SHUTDOWN)
459 			lowcomms_data_ready(sk);
460 	} else if (sk->sk_state == TCP_ESTABLISHED) {
461 		lowcomms_write_space(sk);
462 	}
463 }
464 
465 int dlm_lowcomms_connect_node(int nodeid)
466 {
467 	struct connection *con;
468 
469 	if (nodeid == dlm_our_nodeid())
470 		return 0;
471 
472 	con = nodeid2con(nodeid, GFP_NOFS);
473 	if (!con)
474 		return -ENOMEM;
475 	lowcomms_connect_sock(con);
476 	return 0;
477 }
478 
479 static void lowcomms_error_report(struct sock *sk)
480 {
481 	struct connection *con;
482 	struct sockaddr_storage saddr;
483 	void (*orig_report)(struct sock *) = NULL;
484 
485 	read_lock_bh(&sk->sk_callback_lock);
486 	con = sock2con(sk);
487 	if (con == NULL)
488 		goto out;
489 
490 	orig_report = listen_sock.sk_error_report;
491 	if (con->sock == NULL ||
492 	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
493 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
494 				   "sending to node %d, port %d, "
495 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
496 				   con->nodeid, dlm_config.ci_tcp_port,
497 				   sk->sk_err, sk->sk_err_soft);
498 	} else if (saddr.ss_family == AF_INET) {
499 		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
500 
501 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
502 				   "sending to node %d at %pI4, port %d, "
503 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
504 				   con->nodeid, &sin4->sin_addr.s_addr,
505 				   dlm_config.ci_tcp_port, sk->sk_err,
506 				   sk->sk_err_soft);
507 	} else {
508 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
509 
510 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
511 				   "sending to node %d at %u.%u.%u.%u, "
512 				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
513 				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
514 				   sin6->sin6_addr.s6_addr32[1],
515 				   sin6->sin6_addr.s6_addr32[2],
516 				   sin6->sin6_addr.s6_addr32[3],
517 				   dlm_config.ci_tcp_port, sk->sk_err,
518 				   sk->sk_err_soft);
519 	}
520 out:
521 	read_unlock_bh(&sk->sk_callback_lock);
522 	if (orig_report)
523 		orig_report(sk);
524 }
525 
526 /* Note: sk_callback_lock must be locked before calling this function. */
527 static void save_listen_callbacks(struct socket *sock)
528 {
529 	struct sock *sk = sock->sk;
530 
531 	listen_sock.sk_data_ready = sk->sk_data_ready;
532 	listen_sock.sk_state_change = sk->sk_state_change;
533 	listen_sock.sk_write_space = sk->sk_write_space;
534 	listen_sock.sk_error_report = sk->sk_error_report;
535 }
536 
537 static void restore_callbacks(struct socket *sock)
538 {
539 	struct sock *sk = sock->sk;
540 
541 	write_lock_bh(&sk->sk_callback_lock);
542 	sk->sk_user_data = NULL;
543 	sk->sk_data_ready = listen_sock.sk_data_ready;
544 	sk->sk_state_change = listen_sock.sk_state_change;
545 	sk->sk_write_space = listen_sock.sk_write_space;
546 	sk->sk_error_report = listen_sock.sk_error_report;
547 	write_unlock_bh(&sk->sk_callback_lock);
548 }
549 
550 /* Make a socket active */
551 static void add_sock(struct socket *sock, struct connection *con)
552 {
553 	struct sock *sk = sock->sk;
554 
555 	write_lock_bh(&sk->sk_callback_lock);
556 	con->sock = sock;
557 
558 	sk->sk_user_data = con;
559 	/* Install a data_ready callback */
560 	sk->sk_data_ready = lowcomms_data_ready;
561 	sk->sk_write_space = lowcomms_write_space;
562 	sk->sk_state_change = lowcomms_state_change;
563 	sk->sk_allocation = GFP_NOFS;
564 	sk->sk_error_report = lowcomms_error_report;
565 	write_unlock_bh(&sk->sk_callback_lock);
566 }
567 
568 /* Add the port number to an IPv6 or 4 sockaddr and return the address
569    length */
570 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
571 			  int *addr_len)
572 {
573 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
574 	if (saddr->ss_family == AF_INET) {
575 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
576 		in4_addr->sin_port = cpu_to_be16(port);
577 		*addr_len = sizeof(struct sockaddr_in);
578 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
579 	} else {
580 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
581 		in6_addr->sin6_port = cpu_to_be16(port);
582 		*addr_len = sizeof(struct sockaddr_in6);
583 	}
584 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
585 }
586 
587 /* Close a remote connection and tidy up */
588 static void close_connection(struct connection *con, bool and_other,
589 			     bool tx, bool rx)
590 {
591 	bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
592 
593 	if (tx && !closing && cancel_work_sync(&con->swork)) {
594 		log_print("canceled swork for node %d", con->nodeid);
595 		clear_bit(CF_WRITE_PENDING, &con->flags);
596 	}
597 	if (rx && !closing && cancel_work_sync(&con->rwork)) {
598 		log_print("canceled rwork for node %d", con->nodeid);
599 		clear_bit(CF_READ_PENDING, &con->flags);
600 	}
601 
602 	mutex_lock(&con->sock_mutex);
603 	if (con->sock) {
604 		restore_callbacks(con->sock);
605 		sock_release(con->sock);
606 		con->sock = NULL;
607 	}
608 	if (con->othercon && and_other) {
609 		/* Will only re-enter once. */
610 		close_connection(con->othercon, false, true, true);
611 	}
612 	if (con->rx_page) {
613 		__free_page(con->rx_page);
614 		con->rx_page = NULL;
615 	}
616 
617 	con->retries = 0;
618 	mutex_unlock(&con->sock_mutex);
619 	clear_bit(CF_CLOSING, &con->flags);
620 }
621 
622 /* Data received from remote end */
623 static int receive_from_sock(struct connection *con)
624 {
625 	int ret = 0;
626 	struct msghdr msg = {};
627 	struct kvec iov[2];
628 	unsigned len;
629 	int r;
630 	int call_again_soon = 0;
631 	int nvec;
632 
633 	mutex_lock(&con->sock_mutex);
634 
635 	if (con->sock == NULL) {
636 		ret = -EAGAIN;
637 		goto out_close;
638 	}
639 	if (con->nodeid == 0) {
640 		ret = -EINVAL;
641 		goto out_close;
642 	}
643 
644 	if (con->rx_page == NULL) {
645 		/*
646 		 * This doesn't need to be atomic, but I think it should
647 		 * improve performance if it is.
648 		 */
649 		con->rx_page = alloc_page(GFP_ATOMIC);
650 		if (con->rx_page == NULL)
651 			goto out_resched;
652 		cbuf_init(&con->cb, PAGE_SIZE);
653 	}
654 
655 	/*
656 	 * iov[0] is the bit of the circular buffer between the current end
657 	 * point (cb.base + cb.len) and the end of the buffer.
658 	 */
659 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
660 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
661 	iov[1].iov_len = 0;
662 	nvec = 1;
663 
664 	/*
665 	 * iov[1] is the bit of the circular buffer between the start of the
666 	 * buffer and the start of the currently used section (cb.base)
667 	 */
668 	if (cbuf_data(&con->cb) >= con->cb.base) {
669 		iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
670 		iov[1].iov_len = con->cb.base;
671 		iov[1].iov_base = page_address(con->rx_page);
672 		nvec = 2;
673 	}
674 	len = iov[0].iov_len + iov[1].iov_len;
675 	iov_iter_kvec(&msg.msg_iter, READ, iov, nvec, len);
676 
677 	r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL);
678 	if (ret <= 0)
679 		goto out_close;
680 	else if (ret == len)
681 		call_again_soon = 1;
682 
683 	cbuf_add(&con->cb, ret);
684 	ret = dlm_process_incoming_buffer(con->nodeid,
685 					  page_address(con->rx_page),
686 					  con->cb.base, con->cb.len,
687 					  PAGE_SIZE);
688 	if (ret == -EBADMSG) {
689 		log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
690 			  page_address(con->rx_page), con->cb.base,
691 			  con->cb.len, r);
692 	}
693 	if (ret < 0)
694 		goto out_close;
695 	cbuf_eat(&con->cb, ret);
696 
697 	if (cbuf_empty(&con->cb) && !call_again_soon) {
698 		__free_page(con->rx_page);
699 		con->rx_page = NULL;
700 	}
701 
702 	if (call_again_soon)
703 		goto out_resched;
704 	mutex_unlock(&con->sock_mutex);
705 	return 0;
706 
707 out_resched:
708 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
709 		queue_work(recv_workqueue, &con->rwork);
710 	mutex_unlock(&con->sock_mutex);
711 	return -EAGAIN;
712 
713 out_close:
714 	mutex_unlock(&con->sock_mutex);
715 	if (ret != -EAGAIN) {
716 		close_connection(con, true, true, false);
717 		/* Reconnect when there is something to send */
718 	}
719 	/* Don't return success if we really got EOF */
720 	if (ret == 0)
721 		ret = -EAGAIN;
722 
723 	return ret;
724 }
725 
726 /* Listening socket is busy, accept a connection */
727 static int accept_from_sock(struct connection *con)
728 {
729 	int result;
730 	struct sockaddr_storage peeraddr;
731 	struct socket *newsock;
732 	int len;
733 	int nodeid;
734 	struct connection *newcon;
735 	struct connection *addcon;
736 
737 	mutex_lock(&connections_lock);
738 	if (!dlm_allow_conn) {
739 		mutex_unlock(&connections_lock);
740 		return -1;
741 	}
742 	mutex_unlock(&connections_lock);
743 
744 	mutex_lock_nested(&con->sock_mutex, 0);
745 
746 	if (!con->sock) {
747 		mutex_unlock(&con->sock_mutex);
748 		return -ENOTCONN;
749 	}
750 
751 	result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
752 	if (result < 0)
753 		goto accept_err;
754 
755 	/* Get the connected socket's peer */
756 	memset(&peeraddr, 0, sizeof(peeraddr));
757 	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
758 	if (len < 0) {
759 		result = -ECONNABORTED;
760 		goto accept_err;
761 	}
762 
763 	/* Get the new node's NODEID */
764 	make_sockaddr(&peeraddr, 0, &len);
765 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
766 		unsigned char *b=(unsigned char *)&peeraddr;
767 		log_print("connect from non cluster node");
768 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
769 				     b, sizeof(struct sockaddr_storage));
770 		sock_release(newsock);
771 		mutex_unlock(&con->sock_mutex);
772 		return -1;
773 	}
774 
775 	log_print("got connection from %d", nodeid);
776 
777 	/*  Check to see if we already have a connection to this node. This
778 	 *  could happen if the two nodes initiate a connection at roughly
779 	 *  the same time and the connections cross on the wire.
780 	 *  In this case we store the incoming one in "othercon"
781 	 */
782 	newcon = nodeid2con(nodeid, GFP_NOFS);
783 	if (!newcon) {
784 		result = -ENOMEM;
785 		goto accept_err;
786 	}
787 	mutex_lock_nested(&newcon->sock_mutex, 1);
788 	if (newcon->sock) {
789 		struct connection *othercon = newcon->othercon;
790 
791 		if (!othercon) {
792 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
793 			if (!othercon) {
794 				log_print("failed to allocate incoming socket");
795 				mutex_unlock(&newcon->sock_mutex);
796 				result = -ENOMEM;
797 				goto accept_err;
798 			}
799 			othercon->nodeid = nodeid;
800 			othercon->rx_action = receive_from_sock;
801 			mutex_init(&othercon->sock_mutex);
802 			INIT_LIST_HEAD(&othercon->writequeue);
803 			spin_lock_init(&othercon->writequeue_lock);
804 			INIT_WORK(&othercon->swork, process_send_sockets);
805 			INIT_WORK(&othercon->rwork, process_recv_sockets);
806 			set_bit(CF_IS_OTHERCON, &othercon->flags);
807 		}
808 		mutex_lock_nested(&othercon->sock_mutex, 2);
809 		if (!othercon->sock) {
810 			newcon->othercon = othercon;
811 			add_sock(newsock, othercon);
812 			addcon = othercon;
813 			mutex_unlock(&othercon->sock_mutex);
814 		}
815 		else {
816 			printk("Extra connection from node %d attempted\n", nodeid);
817 			result = -EAGAIN;
818 			mutex_unlock(&othercon->sock_mutex);
819 			mutex_unlock(&newcon->sock_mutex);
820 			goto accept_err;
821 		}
822 	}
823 	else {
824 		newcon->rx_action = receive_from_sock;
825 		/* accept copies the sk after we've saved the callbacks, so we
826 		   don't want to save them a second time or comm errors will
827 		   result in calling sk_error_report recursively. */
828 		add_sock(newsock, newcon);
829 		addcon = newcon;
830 	}
831 
832 	mutex_unlock(&newcon->sock_mutex);
833 
834 	/*
835 	 * Add it to the active queue in case we got data
836 	 * between processing the accept adding the socket
837 	 * to the read_sockets list
838 	 */
839 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
840 		queue_work(recv_workqueue, &addcon->rwork);
841 	mutex_unlock(&con->sock_mutex);
842 
843 	return 0;
844 
845 accept_err:
846 	mutex_unlock(&con->sock_mutex);
847 	if (newsock)
848 		sock_release(newsock);
849 
850 	if (result != -EAGAIN)
851 		log_print("error accepting connection from node: %d", result);
852 	return result;
853 }
854 
855 static void free_entry(struct writequeue_entry *e)
856 {
857 	__free_page(e->page);
858 	kfree(e);
859 }
860 
861 /*
862  * writequeue_entry_complete - try to delete and free write queue entry
863  * @e: write queue entry to try to delete
864  * @completed: bytes completed
865  *
866  * writequeue_lock must be held.
867  */
868 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
869 {
870 	e->offset += completed;
871 	e->len -= completed;
872 
873 	if (e->len == 0 && e->users == 0) {
874 		list_del(&e->list);
875 		free_entry(e);
876 	}
877 }
878 
879 /*
880  * sctp_bind_addrs - bind a SCTP socket to all our addresses
881  */
882 static int sctp_bind_addrs(struct connection *con, uint16_t port)
883 {
884 	struct sockaddr_storage localaddr;
885 	struct sockaddr *addr = (struct sockaddr *)&localaddr;
886 	int i, addr_len, result = 0;
887 
888 	for (i = 0; i < dlm_local_count; i++) {
889 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
890 		make_sockaddr(&localaddr, port, &addr_len);
891 
892 		if (!i)
893 			result = kernel_bind(con->sock, addr, addr_len);
894 		else
895 			result = sock_bind_add(con->sock->sk, addr, addr_len);
896 
897 		if (result < 0) {
898 			log_print("Can't bind to %d addr number %d, %d.\n",
899 				  port, i + 1, result);
900 			break;
901 		}
902 	}
903 	return result;
904 }
905 
906 /* Initiate an SCTP association.
907    This is a special case of send_to_sock() in that we don't yet have a
908    peeled-off socket for this association, so we use the listening socket
909    and add the primary IP address of the remote node.
910  */
911 static void sctp_connect_to_sock(struct connection *con)
912 {
913 	struct sockaddr_storage daddr;
914 	int result;
915 	int addr_len;
916 	struct socket *sock;
917 
918 	if (con->nodeid == 0) {
919 		log_print("attempt to connect sock 0 foiled");
920 		return;
921 	}
922 
923 	mutex_lock(&con->sock_mutex);
924 
925 	/* Some odd races can cause double-connects, ignore them */
926 	if (con->retries++ > MAX_CONNECT_RETRIES)
927 		goto out;
928 
929 	if (con->sock) {
930 		log_print("node %d already connected.", con->nodeid);
931 		goto out;
932 	}
933 
934 	memset(&daddr, 0, sizeof(daddr));
935 	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
936 	if (result < 0) {
937 		log_print("no address for nodeid %d", con->nodeid);
938 		goto out;
939 	}
940 
941 	/* Create a socket to communicate with */
942 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
943 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
944 	if (result < 0)
945 		goto socket_err;
946 
947 	con->rx_action = receive_from_sock;
948 	con->connect_action = sctp_connect_to_sock;
949 	add_sock(sock, con);
950 
951 	/* Bind to all addresses. */
952 	if (sctp_bind_addrs(con, 0))
953 		goto bind_err;
954 
955 	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
956 
957 	log_print("connecting to %d", con->nodeid);
958 
959 	/* Turn off Nagle's algorithm */
960 	sctp_sock_set_nodelay(sock->sk);
961 
962 	/*
963 	 * Make sock->ops->connect() function return in specified time,
964 	 * since O_NONBLOCK argument in connect() function does not work here,
965 	 * then, we should restore the default value of this attribute.
966 	 */
967 	sock_set_sndtimeo(sock->sk, 5);
968 	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
969 				   0);
970 	sock_set_sndtimeo(sock->sk, 0);
971 
972 	if (result == -EINPROGRESS)
973 		result = 0;
974 	if (result == 0)
975 		goto out;
976 
977 bind_err:
978 	con->sock = NULL;
979 	sock_release(sock);
980 
981 socket_err:
982 	/*
983 	 * Some errors are fatal and this list might need adjusting. For other
984 	 * errors we try again until the max number of retries is reached.
985 	 */
986 	if (result != -EHOSTUNREACH &&
987 	    result != -ENETUNREACH &&
988 	    result != -ENETDOWN &&
989 	    result != -EINVAL &&
990 	    result != -EPROTONOSUPPORT) {
991 		log_print("connect %d try %d error %d", con->nodeid,
992 			  con->retries, result);
993 		mutex_unlock(&con->sock_mutex);
994 		msleep(1000);
995 		lowcomms_connect_sock(con);
996 		return;
997 	}
998 
999 out:
1000 	mutex_unlock(&con->sock_mutex);
1001 }
1002 
1003 /* Connect a new socket to its peer */
1004 static void tcp_connect_to_sock(struct connection *con)
1005 {
1006 	struct sockaddr_storage saddr, src_addr;
1007 	int addr_len;
1008 	struct socket *sock = NULL;
1009 	int result;
1010 
1011 	if (con->nodeid == 0) {
1012 		log_print("attempt to connect sock 0 foiled");
1013 		return;
1014 	}
1015 
1016 	mutex_lock(&con->sock_mutex);
1017 	if (con->retries++ > MAX_CONNECT_RETRIES)
1018 		goto out;
1019 
1020 	/* Some odd races can cause double-connects, ignore them */
1021 	if (con->sock)
1022 		goto out;
1023 
1024 	/* Create a socket to communicate with */
1025 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1026 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1027 	if (result < 0)
1028 		goto out_err;
1029 
1030 	memset(&saddr, 0, sizeof(saddr));
1031 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1032 	if (result < 0) {
1033 		log_print("no address for nodeid %d", con->nodeid);
1034 		goto out_err;
1035 	}
1036 
1037 	con->rx_action = receive_from_sock;
1038 	con->connect_action = tcp_connect_to_sock;
1039 	add_sock(sock, con);
1040 
1041 	/* Bind to our cluster-known address connecting to avoid
1042 	   routing problems */
1043 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1044 	make_sockaddr(&src_addr, 0, &addr_len);
1045 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1046 				 addr_len);
1047 	if (result < 0) {
1048 		log_print("could not bind for connect: %d", result);
1049 		/* This *may* not indicate a critical error */
1050 	}
1051 
1052 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1053 
1054 	log_print("connecting to %d", con->nodeid);
1055 
1056 	/* Turn off Nagle's algorithm */
1057 	tcp_sock_set_nodelay(sock->sk);
1058 
1059 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1060 				   O_NONBLOCK);
1061 	if (result == -EINPROGRESS)
1062 		result = 0;
1063 	if (result == 0)
1064 		goto out;
1065 
1066 out_err:
1067 	if (con->sock) {
1068 		sock_release(con->sock);
1069 		con->sock = NULL;
1070 	} else if (sock) {
1071 		sock_release(sock);
1072 	}
1073 	/*
1074 	 * Some errors are fatal and this list might need adjusting. For other
1075 	 * errors we try again until the max number of retries is reached.
1076 	 */
1077 	if (result != -EHOSTUNREACH &&
1078 	    result != -ENETUNREACH &&
1079 	    result != -ENETDOWN &&
1080 	    result != -EINVAL &&
1081 	    result != -EPROTONOSUPPORT) {
1082 		log_print("connect %d try %d error %d", con->nodeid,
1083 			  con->retries, result);
1084 		mutex_unlock(&con->sock_mutex);
1085 		msleep(1000);
1086 		lowcomms_connect_sock(con);
1087 		return;
1088 	}
1089 out:
1090 	mutex_unlock(&con->sock_mutex);
1091 	return;
1092 }
1093 
1094 static struct socket *tcp_create_listen_sock(struct connection *con,
1095 					     struct sockaddr_storage *saddr)
1096 {
1097 	struct socket *sock = NULL;
1098 	int result = 0;
1099 	int addr_len;
1100 
1101 	if (dlm_local_addr[0]->ss_family == AF_INET)
1102 		addr_len = sizeof(struct sockaddr_in);
1103 	else
1104 		addr_len = sizeof(struct sockaddr_in6);
1105 
1106 	/* Create a socket to communicate with */
1107 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1108 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1109 	if (result < 0) {
1110 		log_print("Can't create listening comms socket");
1111 		goto create_out;
1112 	}
1113 
1114 	/* Turn off Nagle's algorithm */
1115 	tcp_sock_set_nodelay(sock->sk);
1116 
1117 	sock_set_reuseaddr(sock->sk);
1118 
1119 	write_lock_bh(&sock->sk->sk_callback_lock);
1120 	sock->sk->sk_user_data = con;
1121 	save_listen_callbacks(sock);
1122 	con->rx_action = accept_from_sock;
1123 	con->connect_action = tcp_connect_to_sock;
1124 	write_unlock_bh(&sock->sk->sk_callback_lock);
1125 
1126 	/* Bind to our port */
1127 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1128 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1129 	if (result < 0) {
1130 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1131 		sock_release(sock);
1132 		sock = NULL;
1133 		con->sock = NULL;
1134 		goto create_out;
1135 	}
1136 	sock_set_keepalive(sock->sk);
1137 
1138 	result = sock->ops->listen(sock, 5);
1139 	if (result < 0) {
1140 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1141 		sock_release(sock);
1142 		sock = NULL;
1143 		goto create_out;
1144 	}
1145 
1146 create_out:
1147 	return sock;
1148 }
1149 
1150 /* Get local addresses */
1151 static void init_local(void)
1152 {
1153 	struct sockaddr_storage sas, *addr;
1154 	int i;
1155 
1156 	dlm_local_count = 0;
1157 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1158 		if (dlm_our_addr(&sas, i))
1159 			break;
1160 
1161 		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1162 		if (!addr)
1163 			break;
1164 		dlm_local_addr[dlm_local_count++] = addr;
1165 	}
1166 }
1167 
1168 /* Initialise SCTP socket and bind to all interfaces */
1169 static int sctp_listen_for_all(void)
1170 {
1171 	struct socket *sock = NULL;
1172 	int result = -EINVAL;
1173 	struct connection *con = nodeid2con(0, GFP_NOFS);
1174 
1175 	if (!con)
1176 		return -ENOMEM;
1177 
1178 	log_print("Using SCTP for communications");
1179 
1180 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1181 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1182 	if (result < 0) {
1183 		log_print("Can't create comms socket, check SCTP is loaded");
1184 		goto out;
1185 	}
1186 
1187 	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1188 	sctp_sock_set_nodelay(sock->sk);
1189 
1190 	write_lock_bh(&sock->sk->sk_callback_lock);
1191 	/* Init con struct */
1192 	sock->sk->sk_user_data = con;
1193 	save_listen_callbacks(sock);
1194 	con->sock = sock;
1195 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1196 	con->rx_action = accept_from_sock;
1197 	con->connect_action = sctp_connect_to_sock;
1198 
1199 	write_unlock_bh(&sock->sk->sk_callback_lock);
1200 
1201 	/* Bind to all addresses. */
1202 	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1203 		goto create_delsock;
1204 
1205 	result = sock->ops->listen(sock, 5);
1206 	if (result < 0) {
1207 		log_print("Can't set socket listening");
1208 		goto create_delsock;
1209 	}
1210 
1211 	return 0;
1212 
1213 create_delsock:
1214 	sock_release(sock);
1215 	con->sock = NULL;
1216 out:
1217 	return result;
1218 }
1219 
1220 static int tcp_listen_for_all(void)
1221 {
1222 	struct socket *sock = NULL;
1223 	struct connection *con = nodeid2con(0, GFP_NOFS);
1224 	int result = -EINVAL;
1225 
1226 	if (!con)
1227 		return -ENOMEM;
1228 
1229 	/* We don't support multi-homed hosts */
1230 	if (dlm_local_addr[1] != NULL) {
1231 		log_print("TCP protocol can't handle multi-homed hosts, "
1232 			  "try SCTP");
1233 		return -EINVAL;
1234 	}
1235 
1236 	log_print("Using TCP for communications");
1237 
1238 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1239 	if (sock) {
1240 		add_sock(sock, con);
1241 		result = 0;
1242 	}
1243 	else {
1244 		result = -EADDRINUSE;
1245 	}
1246 
1247 	return result;
1248 }
1249 
1250 
1251 
1252 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1253 						     gfp_t allocation)
1254 {
1255 	struct writequeue_entry *entry;
1256 
1257 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1258 	if (!entry)
1259 		return NULL;
1260 
1261 	entry->page = alloc_page(allocation);
1262 	if (!entry->page) {
1263 		kfree(entry);
1264 		return NULL;
1265 	}
1266 
1267 	entry->offset = 0;
1268 	entry->len = 0;
1269 	entry->end = 0;
1270 	entry->users = 0;
1271 	entry->con = con;
1272 
1273 	return entry;
1274 }
1275 
1276 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1277 {
1278 	struct connection *con;
1279 	struct writequeue_entry *e;
1280 	int offset = 0;
1281 
1282 	con = nodeid2con(nodeid, allocation);
1283 	if (!con)
1284 		return NULL;
1285 
1286 	spin_lock(&con->writequeue_lock);
1287 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1288 	if ((&e->list == &con->writequeue) ||
1289 	    (PAGE_SIZE - e->end < len)) {
1290 		e = NULL;
1291 	} else {
1292 		offset = e->end;
1293 		e->end += len;
1294 		e->users++;
1295 	}
1296 	spin_unlock(&con->writequeue_lock);
1297 
1298 	if (e) {
1299 	got_one:
1300 		*ppc = page_address(e->page) + offset;
1301 		return e;
1302 	}
1303 
1304 	e = new_writequeue_entry(con, allocation);
1305 	if (e) {
1306 		spin_lock(&con->writequeue_lock);
1307 		offset = e->end;
1308 		e->end += len;
1309 		e->users++;
1310 		list_add_tail(&e->list, &con->writequeue);
1311 		spin_unlock(&con->writequeue_lock);
1312 		goto got_one;
1313 	}
1314 	return NULL;
1315 }
1316 
1317 void dlm_lowcomms_commit_buffer(void *mh)
1318 {
1319 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1320 	struct connection *con = e->con;
1321 	int users;
1322 
1323 	spin_lock(&con->writequeue_lock);
1324 	users = --e->users;
1325 	if (users)
1326 		goto out;
1327 	e->len = e->end - e->offset;
1328 	spin_unlock(&con->writequeue_lock);
1329 
1330 	queue_work(send_workqueue, &con->swork);
1331 	return;
1332 
1333 out:
1334 	spin_unlock(&con->writequeue_lock);
1335 	return;
1336 }
1337 
1338 /* Send a message */
1339 static void send_to_sock(struct connection *con)
1340 {
1341 	int ret = 0;
1342 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1343 	struct writequeue_entry *e;
1344 	int len, offset;
1345 	int count = 0;
1346 
1347 	mutex_lock(&con->sock_mutex);
1348 	if (con->sock == NULL)
1349 		goto out_connect;
1350 
1351 	spin_lock(&con->writequeue_lock);
1352 	for (;;) {
1353 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1354 			       list);
1355 		if ((struct list_head *) e == &con->writequeue)
1356 			break;
1357 
1358 		len = e->len;
1359 		offset = e->offset;
1360 		BUG_ON(len == 0 && e->users == 0);
1361 		spin_unlock(&con->writequeue_lock);
1362 
1363 		ret = 0;
1364 		if (len) {
1365 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1366 					      msg_flags);
1367 			if (ret == -EAGAIN || ret == 0) {
1368 				if (ret == -EAGAIN &&
1369 				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1370 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1371 					/* Notify TCP that we're limited by the
1372 					 * application window size.
1373 					 */
1374 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1375 					con->sock->sk->sk_write_pending++;
1376 				}
1377 				cond_resched();
1378 				goto out;
1379 			} else if (ret < 0)
1380 				goto send_error;
1381 		}
1382 
1383 		/* Don't starve people filling buffers */
1384 		if (++count >= MAX_SEND_MSG_COUNT) {
1385 			cond_resched();
1386 			count = 0;
1387 		}
1388 
1389 		spin_lock(&con->writequeue_lock);
1390 		writequeue_entry_complete(e, ret);
1391 	}
1392 	spin_unlock(&con->writequeue_lock);
1393 out:
1394 	mutex_unlock(&con->sock_mutex);
1395 	return;
1396 
1397 send_error:
1398 	mutex_unlock(&con->sock_mutex);
1399 	close_connection(con, true, false, true);
1400 	/* Requeue the send work. When the work daemon runs again, it will try
1401 	   a new connection, then call this function again. */
1402 	queue_work(send_workqueue, &con->swork);
1403 	return;
1404 
1405 out_connect:
1406 	mutex_unlock(&con->sock_mutex);
1407 	queue_work(send_workqueue, &con->swork);
1408 	cond_resched();
1409 }
1410 
1411 static void clean_one_writequeue(struct connection *con)
1412 {
1413 	struct writequeue_entry *e, *safe;
1414 
1415 	spin_lock(&con->writequeue_lock);
1416 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1417 		list_del(&e->list);
1418 		free_entry(e);
1419 	}
1420 	spin_unlock(&con->writequeue_lock);
1421 }
1422 
1423 /* Called from recovery when it knows that a node has
1424    left the cluster */
1425 int dlm_lowcomms_close(int nodeid)
1426 {
1427 	struct connection *con;
1428 	struct dlm_node_addr *na;
1429 
1430 	log_print("closing connection to node %d", nodeid);
1431 	con = nodeid2con(nodeid, 0);
1432 	if (con) {
1433 		set_bit(CF_CLOSE, &con->flags);
1434 		close_connection(con, true, true, true);
1435 		clean_one_writequeue(con);
1436 	}
1437 
1438 	spin_lock(&dlm_node_addrs_spin);
1439 	na = find_node_addr(nodeid);
1440 	if (na) {
1441 		list_del(&na->list);
1442 		while (na->addr_count--)
1443 			kfree(na->addr[na->addr_count]);
1444 		kfree(na);
1445 	}
1446 	spin_unlock(&dlm_node_addrs_spin);
1447 
1448 	return 0;
1449 }
1450 
1451 /* Receive workqueue function */
1452 static void process_recv_sockets(struct work_struct *work)
1453 {
1454 	struct connection *con = container_of(work, struct connection, rwork);
1455 	int err;
1456 
1457 	clear_bit(CF_READ_PENDING, &con->flags);
1458 	do {
1459 		err = con->rx_action(con);
1460 	} while (!err);
1461 }
1462 
1463 /* Send workqueue function */
1464 static void process_send_sockets(struct work_struct *work)
1465 {
1466 	struct connection *con = container_of(work, struct connection, swork);
1467 
1468 	clear_bit(CF_WRITE_PENDING, &con->flags);
1469 	if (con->sock == NULL) /* not mutex protected so check it inside too */
1470 		con->connect_action(con);
1471 	if (!list_empty(&con->writequeue))
1472 		send_to_sock(con);
1473 }
1474 
1475 
1476 /* Discard all entries on the write queues */
1477 static void clean_writequeues(void)
1478 {
1479 	foreach_conn(clean_one_writequeue);
1480 }
1481 
1482 static void work_stop(void)
1483 {
1484 	if (recv_workqueue)
1485 		destroy_workqueue(recv_workqueue);
1486 	if (send_workqueue)
1487 		destroy_workqueue(send_workqueue);
1488 }
1489 
1490 static int work_start(void)
1491 {
1492 	recv_workqueue = alloc_workqueue("dlm_recv",
1493 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1494 	if (!recv_workqueue) {
1495 		log_print("can't start dlm_recv");
1496 		return -ENOMEM;
1497 	}
1498 
1499 	send_workqueue = alloc_workqueue("dlm_send",
1500 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1501 	if (!send_workqueue) {
1502 		log_print("can't start dlm_send");
1503 		destroy_workqueue(recv_workqueue);
1504 		return -ENOMEM;
1505 	}
1506 
1507 	return 0;
1508 }
1509 
1510 static void _stop_conn(struct connection *con, bool and_other)
1511 {
1512 	mutex_lock(&con->sock_mutex);
1513 	set_bit(CF_CLOSE, &con->flags);
1514 	set_bit(CF_READ_PENDING, &con->flags);
1515 	set_bit(CF_WRITE_PENDING, &con->flags);
1516 	if (con->sock && con->sock->sk) {
1517 		write_lock_bh(&con->sock->sk->sk_callback_lock);
1518 		con->sock->sk->sk_user_data = NULL;
1519 		write_unlock_bh(&con->sock->sk->sk_callback_lock);
1520 	}
1521 	if (con->othercon && and_other)
1522 		_stop_conn(con->othercon, false);
1523 	mutex_unlock(&con->sock_mutex);
1524 }
1525 
1526 static void stop_conn(struct connection *con)
1527 {
1528 	_stop_conn(con, true);
1529 }
1530 
1531 static void free_conn(struct connection *con)
1532 {
1533 	close_connection(con, true, true, true);
1534 	if (con->othercon)
1535 		kmem_cache_free(con_cache, con->othercon);
1536 	hlist_del(&con->list);
1537 	kmem_cache_free(con_cache, con);
1538 }
1539 
1540 static void work_flush(void)
1541 {
1542 	int ok;
1543 	int i;
1544 	struct hlist_node *n;
1545 	struct connection *con;
1546 
1547 	if (recv_workqueue)
1548 		flush_workqueue(recv_workqueue);
1549 	if (send_workqueue)
1550 		flush_workqueue(send_workqueue);
1551 	do {
1552 		ok = 1;
1553 		foreach_conn(stop_conn);
1554 		if (recv_workqueue)
1555 			flush_workqueue(recv_workqueue);
1556 		if (send_workqueue)
1557 			flush_workqueue(send_workqueue);
1558 		for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1559 			hlist_for_each_entry_safe(con, n,
1560 						  &connection_hash[i], list) {
1561 				ok &= test_bit(CF_READ_PENDING, &con->flags);
1562 				ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1563 				if (con->othercon) {
1564 					ok &= test_bit(CF_READ_PENDING,
1565 						       &con->othercon->flags);
1566 					ok &= test_bit(CF_WRITE_PENDING,
1567 						       &con->othercon->flags);
1568 				}
1569 			}
1570 		}
1571 	} while (!ok);
1572 }
1573 
1574 void dlm_lowcomms_stop(void)
1575 {
1576 	/* Set all the flags to prevent any
1577 	   socket activity.
1578 	*/
1579 	mutex_lock(&connections_lock);
1580 	dlm_allow_conn = 0;
1581 	mutex_unlock(&connections_lock);
1582 	work_flush();
1583 	clean_writequeues();
1584 	foreach_conn(free_conn);
1585 	work_stop();
1586 
1587 	kmem_cache_destroy(con_cache);
1588 }
1589 
1590 int dlm_lowcomms_start(void)
1591 {
1592 	int error = -EINVAL;
1593 	struct connection *con;
1594 	int i;
1595 
1596 	for (i = 0; i < CONN_HASH_SIZE; i++)
1597 		INIT_HLIST_HEAD(&connection_hash[i]);
1598 
1599 	init_local();
1600 	if (!dlm_local_count) {
1601 		error = -ENOTCONN;
1602 		log_print("no local IP address has been set");
1603 		goto fail;
1604 	}
1605 
1606 	error = -ENOMEM;
1607 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1608 				      __alignof__(struct connection), 0,
1609 				      NULL);
1610 	if (!con_cache)
1611 		goto fail;
1612 
1613 	error = work_start();
1614 	if (error)
1615 		goto fail_destroy;
1616 
1617 	dlm_allow_conn = 1;
1618 
1619 	/* Start listening */
1620 	if (dlm_config.ci_protocol == 0)
1621 		error = tcp_listen_for_all();
1622 	else
1623 		error = sctp_listen_for_all();
1624 	if (error)
1625 		goto fail_unlisten;
1626 
1627 	return 0;
1628 
1629 fail_unlisten:
1630 	dlm_allow_conn = 0;
1631 	con = nodeid2con(0,0);
1632 	if (con) {
1633 		close_connection(con, false, true, true);
1634 		kmem_cache_free(con_cache, con);
1635 	}
1636 fail_destroy:
1637 	kmem_cache_destroy(con_cache);
1638 fail:
1639 	return error;
1640 }
1641 
1642 void dlm_lowcomms_exit(void)
1643 {
1644 	struct dlm_node_addr *na, *safe;
1645 
1646 	spin_lock(&dlm_node_addrs_spin);
1647 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1648 		list_del(&na->list);
1649 		while (na->addr_count--)
1650 			kfree(na->addr[na->addr_count]);
1651 		kfree(na);
1652 	}
1653 	spin_unlock(&dlm_node_addrs_spin);
1654 }
1655