1 /****************************************************************************** 2 ******************************************************************************* 3 ** 4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 5 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. 6 ** 7 ** This copyrighted material is made available to anyone wishing to use, 8 ** modify, copy, or redistribute it subject to the terms and conditions 9 ** of the GNU General Public License v.2. 10 ** 11 ******************************************************************************* 12 ******************************************************************************/ 13 14 /* 15 * lowcomms.c 16 * 17 * This is the "low-level" comms layer. 18 * 19 * It is responsible for sending/receiving messages 20 * from other nodes in the cluster. 21 * 22 * Cluster nodes are referred to by their nodeids. nodeids are 23 * simply 32 bit numbers to the locking module - if they need to 24 * be expanded for the cluster infrastructure then that is its 25 * responsibility. It is this layer's 26 * responsibility to resolve these into IP address or 27 * whatever it needs for inter-node communication. 28 * 29 * The comms level is two kernel threads that deal mainly with 30 * the receiving of messages from other nodes and passing them 31 * up to the mid-level comms layer (which understands the 32 * message format) for execution by the locking core, and 33 * a send thread which does all the setting up of connections 34 * to remote nodes and the sending of data. Threads are not allowed 35 * to send their own data because it may cause them to wait in times 36 * of high load. Also, this way, the sending thread can collect together 37 * messages bound for one node and send them in one block. 38 * 39 * lowcomms will choose to use either TCP or SCTP as its transport layer 40 * depending on the configuration variable 'protocol'. This should be set 41 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a 42 * cluster-wide mechanism as it must be the same on all nodes of the cluster 43 * for the DLM to function. 44 * 45 */ 46 47 #include <asm/ioctls.h> 48 #include <net/sock.h> 49 #include <net/tcp.h> 50 #include <linux/pagemap.h> 51 #include <linux/file.h> 52 #include <linux/mutex.h> 53 #include <linux/sctp.h> 54 #include <linux/slab.h> 55 #include <net/sctp/user.h> 56 #include <net/ipv6.h> 57 58 #include "dlm_internal.h" 59 #include "lowcomms.h" 60 #include "midcomms.h" 61 #include "config.h" 62 63 #define NEEDED_RMEM (4*1024*1024) 64 #define CONN_HASH_SIZE 32 65 66 struct cbuf { 67 unsigned int base; 68 unsigned int len; 69 unsigned int mask; 70 }; 71 72 static void cbuf_add(struct cbuf *cb, int n) 73 { 74 cb->len += n; 75 } 76 77 static int cbuf_data(struct cbuf *cb) 78 { 79 return ((cb->base + cb->len) & cb->mask); 80 } 81 82 static void cbuf_init(struct cbuf *cb, int size) 83 { 84 cb->base = cb->len = 0; 85 cb->mask = size-1; 86 } 87 88 static void cbuf_eat(struct cbuf *cb, int n) 89 { 90 cb->len -= n; 91 cb->base += n; 92 cb->base &= cb->mask; 93 } 94 95 static bool cbuf_empty(struct cbuf *cb) 96 { 97 return cb->len == 0; 98 } 99 100 struct connection { 101 struct socket *sock; /* NULL if not connected */ 102 uint32_t nodeid; /* So we know who we are in the list */ 103 struct mutex sock_mutex; 104 unsigned long flags; 105 #define CF_READ_PENDING 1 106 #define CF_WRITE_PENDING 2 107 #define CF_CONNECT_PENDING 3 108 #define CF_INIT_PENDING 4 109 #define CF_IS_OTHERCON 5 110 #define CF_CLOSE 6 111 struct list_head writequeue; /* List of outgoing writequeue_entries */ 112 spinlock_t writequeue_lock; 113 int (*rx_action) (struct connection *); /* What to do when active */ 114 void (*connect_action) (struct connection *); /* What to do to connect */ 115 struct page *rx_page; 116 struct cbuf cb; 117 int retries; 118 #define MAX_CONNECT_RETRIES 3 119 int sctp_assoc; 120 struct hlist_node list; 121 struct connection *othercon; 122 struct work_struct rwork; /* Receive workqueue */ 123 struct work_struct swork; /* Send workqueue */ 124 }; 125 #define sock2con(x) ((struct connection *)(x)->sk_user_data) 126 127 /* An entry waiting to be sent */ 128 struct writequeue_entry { 129 struct list_head list; 130 struct page *page; 131 int offset; 132 int len; 133 int end; 134 int users; 135 struct connection *con; 136 }; 137 138 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT]; 139 static int dlm_local_count; 140 141 /* Work queues */ 142 static struct workqueue_struct *recv_workqueue; 143 static struct workqueue_struct *send_workqueue; 144 145 static struct hlist_head connection_hash[CONN_HASH_SIZE]; 146 static DEFINE_MUTEX(connections_lock); 147 static struct kmem_cache *con_cache; 148 149 static void process_recv_sockets(struct work_struct *work); 150 static void process_send_sockets(struct work_struct *work); 151 152 153 /* This is deliberately very simple because most clusters have simple 154 sequential nodeids, so we should be able to go straight to a connection 155 struct in the array */ 156 static inline int nodeid_hash(int nodeid) 157 { 158 return nodeid & (CONN_HASH_SIZE-1); 159 } 160 161 static struct connection *__find_con(int nodeid) 162 { 163 int r; 164 struct hlist_node *h; 165 struct connection *con; 166 167 r = nodeid_hash(nodeid); 168 169 hlist_for_each_entry(con, h, &connection_hash[r], list) { 170 if (con->nodeid == nodeid) 171 return con; 172 } 173 return NULL; 174 } 175 176 /* 177 * If 'allocation' is zero then we don't attempt to create a new 178 * connection structure for this node. 179 */ 180 static struct connection *__nodeid2con(int nodeid, gfp_t alloc) 181 { 182 struct connection *con = NULL; 183 int r; 184 185 con = __find_con(nodeid); 186 if (con || !alloc) 187 return con; 188 189 con = kmem_cache_zalloc(con_cache, alloc); 190 if (!con) 191 return NULL; 192 193 r = nodeid_hash(nodeid); 194 hlist_add_head(&con->list, &connection_hash[r]); 195 196 con->nodeid = nodeid; 197 mutex_init(&con->sock_mutex); 198 INIT_LIST_HEAD(&con->writequeue); 199 spin_lock_init(&con->writequeue_lock); 200 INIT_WORK(&con->swork, process_send_sockets); 201 INIT_WORK(&con->rwork, process_recv_sockets); 202 203 /* Setup action pointers for child sockets */ 204 if (con->nodeid) { 205 struct connection *zerocon = __find_con(0); 206 207 con->connect_action = zerocon->connect_action; 208 if (!con->rx_action) 209 con->rx_action = zerocon->rx_action; 210 } 211 212 return con; 213 } 214 215 /* Loop round all connections */ 216 static void foreach_conn(void (*conn_func)(struct connection *c)) 217 { 218 int i; 219 struct hlist_node *h, *n; 220 struct connection *con; 221 222 for (i = 0; i < CONN_HASH_SIZE; i++) { 223 hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){ 224 conn_func(con); 225 } 226 } 227 } 228 229 static struct connection *nodeid2con(int nodeid, gfp_t allocation) 230 { 231 struct connection *con; 232 233 mutex_lock(&connections_lock); 234 con = __nodeid2con(nodeid, allocation); 235 mutex_unlock(&connections_lock); 236 237 return con; 238 } 239 240 /* This is a bit drastic, but only called when things go wrong */ 241 static struct connection *assoc2con(int assoc_id) 242 { 243 int i; 244 struct hlist_node *h; 245 struct connection *con; 246 247 mutex_lock(&connections_lock); 248 249 for (i = 0 ; i < CONN_HASH_SIZE; i++) { 250 hlist_for_each_entry(con, h, &connection_hash[i], list) { 251 if (con->sctp_assoc == assoc_id) { 252 mutex_unlock(&connections_lock); 253 return con; 254 } 255 } 256 } 257 mutex_unlock(&connections_lock); 258 return NULL; 259 } 260 261 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr) 262 { 263 struct sockaddr_storage addr; 264 int error; 265 266 if (!dlm_local_count) 267 return -1; 268 269 error = dlm_nodeid_to_addr(nodeid, &addr); 270 if (error) 271 return error; 272 273 if (dlm_local_addr[0]->ss_family == AF_INET) { 274 struct sockaddr_in *in4 = (struct sockaddr_in *) &addr; 275 struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr; 276 ret4->sin_addr.s_addr = in4->sin_addr.s_addr; 277 } else { 278 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &addr; 279 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr; 280 ipv6_addr_copy(&ret6->sin6_addr, &in6->sin6_addr); 281 } 282 283 return 0; 284 } 285 286 /* Data available on socket or listen socket received a connect */ 287 static void lowcomms_data_ready(struct sock *sk, int count_unused) 288 { 289 struct connection *con = sock2con(sk); 290 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags)) 291 queue_work(recv_workqueue, &con->rwork); 292 } 293 294 static void lowcomms_write_space(struct sock *sk) 295 { 296 struct connection *con = sock2con(sk); 297 298 if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags)) 299 queue_work(send_workqueue, &con->swork); 300 } 301 302 static inline void lowcomms_connect_sock(struct connection *con) 303 { 304 if (test_bit(CF_CLOSE, &con->flags)) 305 return; 306 if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags)) 307 queue_work(send_workqueue, &con->swork); 308 } 309 310 static void lowcomms_state_change(struct sock *sk) 311 { 312 if (sk->sk_state == TCP_ESTABLISHED) 313 lowcomms_write_space(sk); 314 } 315 316 int dlm_lowcomms_connect_node(int nodeid) 317 { 318 struct connection *con; 319 320 /* with sctp there's no connecting without sending */ 321 if (dlm_config.ci_protocol != 0) 322 return 0; 323 324 if (nodeid == dlm_our_nodeid()) 325 return 0; 326 327 con = nodeid2con(nodeid, GFP_NOFS); 328 if (!con) 329 return -ENOMEM; 330 lowcomms_connect_sock(con); 331 return 0; 332 } 333 334 /* Make a socket active */ 335 static int add_sock(struct socket *sock, struct connection *con) 336 { 337 con->sock = sock; 338 339 /* Install a data_ready callback */ 340 con->sock->sk->sk_data_ready = lowcomms_data_ready; 341 con->sock->sk->sk_write_space = lowcomms_write_space; 342 con->sock->sk->sk_state_change = lowcomms_state_change; 343 con->sock->sk->sk_user_data = con; 344 con->sock->sk->sk_allocation = GFP_NOFS; 345 return 0; 346 } 347 348 /* Add the port number to an IPv6 or 4 sockaddr and return the address 349 length */ 350 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port, 351 int *addr_len) 352 { 353 saddr->ss_family = dlm_local_addr[0]->ss_family; 354 if (saddr->ss_family == AF_INET) { 355 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; 356 in4_addr->sin_port = cpu_to_be16(port); 357 *addr_len = sizeof(struct sockaddr_in); 358 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); 359 } else { 360 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; 361 in6_addr->sin6_port = cpu_to_be16(port); 362 *addr_len = sizeof(struct sockaddr_in6); 363 } 364 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); 365 } 366 367 /* Close a remote connection and tidy up */ 368 static void close_connection(struct connection *con, bool and_other) 369 { 370 mutex_lock(&con->sock_mutex); 371 372 if (con->sock) { 373 sock_release(con->sock); 374 con->sock = NULL; 375 } 376 if (con->othercon && and_other) { 377 /* Will only re-enter once. */ 378 close_connection(con->othercon, false); 379 } 380 if (con->rx_page) { 381 __free_page(con->rx_page); 382 con->rx_page = NULL; 383 } 384 385 con->retries = 0; 386 mutex_unlock(&con->sock_mutex); 387 } 388 389 /* We only send shutdown messages to nodes that are not part of the cluster */ 390 static void sctp_send_shutdown(sctp_assoc_t associd) 391 { 392 static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))]; 393 struct msghdr outmessage; 394 struct cmsghdr *cmsg; 395 struct sctp_sndrcvinfo *sinfo; 396 int ret; 397 struct connection *con; 398 399 con = nodeid2con(0,0); 400 BUG_ON(con == NULL); 401 402 outmessage.msg_name = NULL; 403 outmessage.msg_namelen = 0; 404 outmessage.msg_control = outcmsg; 405 outmessage.msg_controllen = sizeof(outcmsg); 406 outmessage.msg_flags = MSG_EOR; 407 408 cmsg = CMSG_FIRSTHDR(&outmessage); 409 cmsg->cmsg_level = IPPROTO_SCTP; 410 cmsg->cmsg_type = SCTP_SNDRCV; 411 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo)); 412 outmessage.msg_controllen = cmsg->cmsg_len; 413 sinfo = CMSG_DATA(cmsg); 414 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo)); 415 416 sinfo->sinfo_flags |= MSG_EOF; 417 sinfo->sinfo_assoc_id = associd; 418 419 ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0); 420 421 if (ret != 0) 422 log_print("send EOF to node failed: %d", ret); 423 } 424 425 static void sctp_init_failed_foreach(struct connection *con) 426 { 427 con->sctp_assoc = 0; 428 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) { 429 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) 430 queue_work(send_workqueue, &con->swork); 431 } 432 } 433 434 /* INIT failed but we don't know which node... 435 restart INIT on all pending nodes */ 436 static void sctp_init_failed(void) 437 { 438 mutex_lock(&connections_lock); 439 440 foreach_conn(sctp_init_failed_foreach); 441 442 mutex_unlock(&connections_lock); 443 } 444 445 /* Something happened to an association */ 446 static void process_sctp_notification(struct connection *con, 447 struct msghdr *msg, char *buf) 448 { 449 union sctp_notification *sn = (union sctp_notification *)buf; 450 451 if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) { 452 switch (sn->sn_assoc_change.sac_state) { 453 454 case SCTP_COMM_UP: 455 case SCTP_RESTART: 456 { 457 /* Check that the new node is in the lockspace */ 458 struct sctp_prim prim; 459 int nodeid; 460 int prim_len, ret; 461 int addr_len; 462 struct connection *new_con; 463 sctp_peeloff_arg_t parg; 464 int parglen = sizeof(parg); 465 int err; 466 467 /* 468 * We get this before any data for an association. 469 * We verify that the node is in the cluster and 470 * then peel off a socket for it. 471 */ 472 if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) { 473 log_print("COMM_UP for invalid assoc ID %d", 474 (int)sn->sn_assoc_change.sac_assoc_id); 475 sctp_init_failed(); 476 return; 477 } 478 memset(&prim, 0, sizeof(struct sctp_prim)); 479 prim_len = sizeof(struct sctp_prim); 480 prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id; 481 482 ret = kernel_getsockopt(con->sock, 483 IPPROTO_SCTP, 484 SCTP_PRIMARY_ADDR, 485 (char*)&prim, 486 &prim_len); 487 if (ret < 0) { 488 log_print("getsockopt/sctp_primary_addr on " 489 "new assoc %d failed : %d", 490 (int)sn->sn_assoc_change.sac_assoc_id, 491 ret); 492 493 /* Retry INIT later */ 494 new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id); 495 if (new_con) 496 clear_bit(CF_CONNECT_PENDING, &con->flags); 497 return; 498 } 499 make_sockaddr(&prim.ssp_addr, 0, &addr_len); 500 if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) { 501 int i; 502 unsigned char *b=(unsigned char *)&prim.ssp_addr; 503 log_print("reject connect from unknown addr"); 504 for (i=0; i<sizeof(struct sockaddr_storage);i++) 505 printk("%02x ", b[i]); 506 printk("\n"); 507 sctp_send_shutdown(prim.ssp_assoc_id); 508 return; 509 } 510 511 new_con = nodeid2con(nodeid, GFP_NOFS); 512 if (!new_con) 513 return; 514 515 /* Peel off a new sock */ 516 parg.associd = sn->sn_assoc_change.sac_assoc_id; 517 ret = kernel_getsockopt(con->sock, IPPROTO_SCTP, 518 SCTP_SOCKOPT_PEELOFF, 519 (void *)&parg, &parglen); 520 if (ret < 0) { 521 log_print("Can't peel off a socket for " 522 "connection %d to node %d: err=%d", 523 parg.associd, nodeid, ret); 524 return; 525 } 526 new_con->sock = sockfd_lookup(parg.sd, &err); 527 if (!new_con->sock) { 528 log_print("sockfd_lookup error %d", err); 529 return; 530 } 531 add_sock(new_con->sock, new_con); 532 sockfd_put(new_con->sock); 533 534 log_print("connecting to %d sctp association %d", 535 nodeid, (int)sn->sn_assoc_change.sac_assoc_id); 536 537 /* Send any pending writes */ 538 clear_bit(CF_CONNECT_PENDING, &new_con->flags); 539 clear_bit(CF_INIT_PENDING, &con->flags); 540 if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) { 541 queue_work(send_workqueue, &new_con->swork); 542 } 543 if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags)) 544 queue_work(recv_workqueue, &new_con->rwork); 545 } 546 break; 547 548 case SCTP_COMM_LOST: 549 case SCTP_SHUTDOWN_COMP: 550 { 551 con = assoc2con(sn->sn_assoc_change.sac_assoc_id); 552 if (con) { 553 con->sctp_assoc = 0; 554 } 555 } 556 break; 557 558 /* We don't know which INIT failed, so clear the PENDING flags 559 * on them all. if assoc_id is zero then it will then try 560 * again */ 561 562 case SCTP_CANT_STR_ASSOC: 563 { 564 log_print("Can't start SCTP association - retrying"); 565 sctp_init_failed(); 566 } 567 break; 568 569 default: 570 log_print("unexpected SCTP assoc change id=%d state=%d", 571 (int)sn->sn_assoc_change.sac_assoc_id, 572 sn->sn_assoc_change.sac_state); 573 } 574 } 575 } 576 577 /* Data received from remote end */ 578 static int receive_from_sock(struct connection *con) 579 { 580 int ret = 0; 581 struct msghdr msg = {}; 582 struct kvec iov[2]; 583 unsigned len; 584 int r; 585 int call_again_soon = 0; 586 int nvec; 587 char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))]; 588 589 mutex_lock(&con->sock_mutex); 590 591 if (con->sock == NULL) { 592 ret = -EAGAIN; 593 goto out_close; 594 } 595 596 if (con->rx_page == NULL) { 597 /* 598 * This doesn't need to be atomic, but I think it should 599 * improve performance if it is. 600 */ 601 con->rx_page = alloc_page(GFP_ATOMIC); 602 if (con->rx_page == NULL) 603 goto out_resched; 604 cbuf_init(&con->cb, PAGE_CACHE_SIZE); 605 } 606 607 /* Only SCTP needs these really */ 608 memset(&incmsg, 0, sizeof(incmsg)); 609 msg.msg_control = incmsg; 610 msg.msg_controllen = sizeof(incmsg); 611 612 /* 613 * iov[0] is the bit of the circular buffer between the current end 614 * point (cb.base + cb.len) and the end of the buffer. 615 */ 616 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb); 617 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb); 618 iov[1].iov_len = 0; 619 nvec = 1; 620 621 /* 622 * iov[1] is the bit of the circular buffer between the start of the 623 * buffer and the start of the currently used section (cb.base) 624 */ 625 if (cbuf_data(&con->cb) >= con->cb.base) { 626 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb); 627 iov[1].iov_len = con->cb.base; 628 iov[1].iov_base = page_address(con->rx_page); 629 nvec = 2; 630 } 631 len = iov[0].iov_len + iov[1].iov_len; 632 633 r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len, 634 MSG_DONTWAIT | MSG_NOSIGNAL); 635 if (ret <= 0) 636 goto out_close; 637 638 /* Process SCTP notifications */ 639 if (msg.msg_flags & MSG_NOTIFICATION) { 640 msg.msg_control = incmsg; 641 msg.msg_controllen = sizeof(incmsg); 642 643 process_sctp_notification(con, &msg, 644 page_address(con->rx_page) + con->cb.base); 645 mutex_unlock(&con->sock_mutex); 646 return 0; 647 } 648 BUG_ON(con->nodeid == 0); 649 650 if (ret == len) 651 call_again_soon = 1; 652 cbuf_add(&con->cb, ret); 653 ret = dlm_process_incoming_buffer(con->nodeid, 654 page_address(con->rx_page), 655 con->cb.base, con->cb.len, 656 PAGE_CACHE_SIZE); 657 if (ret == -EBADMSG) { 658 log_print("lowcomms: addr=%p, base=%u, len=%u, " 659 "iov_len=%u, iov_base[0]=%p, read=%d", 660 page_address(con->rx_page), con->cb.base, con->cb.len, 661 len, iov[0].iov_base, r); 662 } 663 if (ret < 0) 664 goto out_close; 665 cbuf_eat(&con->cb, ret); 666 667 if (cbuf_empty(&con->cb) && !call_again_soon) { 668 __free_page(con->rx_page); 669 con->rx_page = NULL; 670 } 671 672 if (call_again_soon) 673 goto out_resched; 674 mutex_unlock(&con->sock_mutex); 675 return 0; 676 677 out_resched: 678 if (!test_and_set_bit(CF_READ_PENDING, &con->flags)) 679 queue_work(recv_workqueue, &con->rwork); 680 mutex_unlock(&con->sock_mutex); 681 return -EAGAIN; 682 683 out_close: 684 mutex_unlock(&con->sock_mutex); 685 if (ret != -EAGAIN) { 686 close_connection(con, false); 687 /* Reconnect when there is something to send */ 688 } 689 /* Don't return success if we really got EOF */ 690 if (ret == 0) 691 ret = -EAGAIN; 692 693 return ret; 694 } 695 696 /* Listening socket is busy, accept a connection */ 697 static int tcp_accept_from_sock(struct connection *con) 698 { 699 int result; 700 struct sockaddr_storage peeraddr; 701 struct socket *newsock; 702 int len; 703 int nodeid; 704 struct connection *newcon; 705 struct connection *addcon; 706 707 memset(&peeraddr, 0, sizeof(peeraddr)); 708 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM, 709 IPPROTO_TCP, &newsock); 710 if (result < 0) 711 return -ENOMEM; 712 713 mutex_lock_nested(&con->sock_mutex, 0); 714 715 result = -ENOTCONN; 716 if (con->sock == NULL) 717 goto accept_err; 718 719 newsock->type = con->sock->type; 720 newsock->ops = con->sock->ops; 721 722 result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK); 723 if (result < 0) 724 goto accept_err; 725 726 /* Get the connected socket's peer */ 727 memset(&peeraddr, 0, sizeof(peeraddr)); 728 if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 729 &len, 2)) { 730 result = -ECONNABORTED; 731 goto accept_err; 732 } 733 734 /* Get the new node's NODEID */ 735 make_sockaddr(&peeraddr, 0, &len); 736 if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) { 737 log_print("connect from non cluster node"); 738 sock_release(newsock); 739 mutex_unlock(&con->sock_mutex); 740 return -1; 741 } 742 743 log_print("got connection from %d", nodeid); 744 745 /* Check to see if we already have a connection to this node. This 746 * could happen if the two nodes initiate a connection at roughly 747 * the same time and the connections cross on the wire. 748 * In this case we store the incoming one in "othercon" 749 */ 750 newcon = nodeid2con(nodeid, GFP_NOFS); 751 if (!newcon) { 752 result = -ENOMEM; 753 goto accept_err; 754 } 755 mutex_lock_nested(&newcon->sock_mutex, 1); 756 if (newcon->sock) { 757 struct connection *othercon = newcon->othercon; 758 759 if (!othercon) { 760 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS); 761 if (!othercon) { 762 log_print("failed to allocate incoming socket"); 763 mutex_unlock(&newcon->sock_mutex); 764 result = -ENOMEM; 765 goto accept_err; 766 } 767 othercon->nodeid = nodeid; 768 othercon->rx_action = receive_from_sock; 769 mutex_init(&othercon->sock_mutex); 770 INIT_WORK(&othercon->swork, process_send_sockets); 771 INIT_WORK(&othercon->rwork, process_recv_sockets); 772 set_bit(CF_IS_OTHERCON, &othercon->flags); 773 } 774 if (!othercon->sock) { 775 newcon->othercon = othercon; 776 othercon->sock = newsock; 777 newsock->sk->sk_user_data = othercon; 778 add_sock(newsock, othercon); 779 addcon = othercon; 780 } 781 else { 782 printk("Extra connection from node %d attempted\n", nodeid); 783 result = -EAGAIN; 784 mutex_unlock(&newcon->sock_mutex); 785 goto accept_err; 786 } 787 } 788 else { 789 newsock->sk->sk_user_data = newcon; 790 newcon->rx_action = receive_from_sock; 791 add_sock(newsock, newcon); 792 addcon = newcon; 793 } 794 795 mutex_unlock(&newcon->sock_mutex); 796 797 /* 798 * Add it to the active queue in case we got data 799 * beween processing the accept adding the socket 800 * to the read_sockets list 801 */ 802 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags)) 803 queue_work(recv_workqueue, &addcon->rwork); 804 mutex_unlock(&con->sock_mutex); 805 806 return 0; 807 808 accept_err: 809 mutex_unlock(&con->sock_mutex); 810 sock_release(newsock); 811 812 if (result != -EAGAIN) 813 log_print("error accepting connection from node: %d", result); 814 return result; 815 } 816 817 static void free_entry(struct writequeue_entry *e) 818 { 819 __free_page(e->page); 820 kfree(e); 821 } 822 823 /* Initiate an SCTP association. 824 This is a special case of send_to_sock() in that we don't yet have a 825 peeled-off socket for this association, so we use the listening socket 826 and add the primary IP address of the remote node. 827 */ 828 static void sctp_init_assoc(struct connection *con) 829 { 830 struct sockaddr_storage rem_addr; 831 char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))]; 832 struct msghdr outmessage; 833 struct cmsghdr *cmsg; 834 struct sctp_sndrcvinfo *sinfo; 835 struct connection *base_con; 836 struct writequeue_entry *e; 837 int len, offset; 838 int ret; 839 int addrlen; 840 struct kvec iov[1]; 841 842 if (test_and_set_bit(CF_INIT_PENDING, &con->flags)) 843 return; 844 845 if (con->retries++ > MAX_CONNECT_RETRIES) 846 return; 847 848 if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) { 849 log_print("no address for nodeid %d", con->nodeid); 850 return; 851 } 852 base_con = nodeid2con(0, 0); 853 BUG_ON(base_con == NULL); 854 855 make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen); 856 857 outmessage.msg_name = &rem_addr; 858 outmessage.msg_namelen = addrlen; 859 outmessage.msg_control = outcmsg; 860 outmessage.msg_controllen = sizeof(outcmsg); 861 outmessage.msg_flags = MSG_EOR; 862 863 spin_lock(&con->writequeue_lock); 864 865 if (list_empty(&con->writequeue)) { 866 spin_unlock(&con->writequeue_lock); 867 log_print("writequeue empty for nodeid %d", con->nodeid); 868 return; 869 } 870 871 e = list_first_entry(&con->writequeue, struct writequeue_entry, list); 872 len = e->len; 873 offset = e->offset; 874 spin_unlock(&con->writequeue_lock); 875 876 /* Send the first block off the write queue */ 877 iov[0].iov_base = page_address(e->page)+offset; 878 iov[0].iov_len = len; 879 880 cmsg = CMSG_FIRSTHDR(&outmessage); 881 cmsg->cmsg_level = IPPROTO_SCTP; 882 cmsg->cmsg_type = SCTP_SNDRCV; 883 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo)); 884 sinfo = CMSG_DATA(cmsg); 885 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo)); 886 sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid()); 887 outmessage.msg_controllen = cmsg->cmsg_len; 888 889 ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len); 890 if (ret < 0) { 891 log_print("Send first packet to node %d failed: %d", 892 con->nodeid, ret); 893 894 /* Try again later */ 895 clear_bit(CF_CONNECT_PENDING, &con->flags); 896 clear_bit(CF_INIT_PENDING, &con->flags); 897 } 898 else { 899 spin_lock(&con->writequeue_lock); 900 e->offset += ret; 901 e->len -= ret; 902 903 if (e->len == 0 && e->users == 0) { 904 list_del(&e->list); 905 free_entry(e); 906 } 907 spin_unlock(&con->writequeue_lock); 908 } 909 } 910 911 /* Connect a new socket to its peer */ 912 static void tcp_connect_to_sock(struct connection *con) 913 { 914 int result = -EHOSTUNREACH; 915 struct sockaddr_storage saddr, src_addr; 916 int addr_len; 917 struct socket *sock = NULL; 918 919 if (con->nodeid == 0) { 920 log_print("attempt to connect sock 0 foiled"); 921 return; 922 } 923 924 mutex_lock(&con->sock_mutex); 925 if (con->retries++ > MAX_CONNECT_RETRIES) 926 goto out; 927 928 /* Some odd races can cause double-connects, ignore them */ 929 if (con->sock) { 930 result = 0; 931 goto out; 932 } 933 934 /* Create a socket to communicate with */ 935 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM, 936 IPPROTO_TCP, &sock); 937 if (result < 0) 938 goto out_err; 939 940 memset(&saddr, 0, sizeof(saddr)); 941 if (dlm_nodeid_to_addr(con->nodeid, &saddr)) 942 goto out_err; 943 944 sock->sk->sk_user_data = con; 945 con->rx_action = receive_from_sock; 946 con->connect_action = tcp_connect_to_sock; 947 add_sock(sock, con); 948 949 /* Bind to our cluster-known address connecting to avoid 950 routing problems */ 951 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr)); 952 make_sockaddr(&src_addr, 0, &addr_len); 953 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr, 954 addr_len); 955 if (result < 0) { 956 log_print("could not bind for connect: %d", result); 957 /* This *may* not indicate a critical error */ 958 } 959 960 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len); 961 962 log_print("connecting to %d", con->nodeid); 963 result = 964 sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len, 965 O_NONBLOCK); 966 if (result == -EINPROGRESS) 967 result = 0; 968 if (result == 0) 969 goto out; 970 971 out_err: 972 if (con->sock) { 973 sock_release(con->sock); 974 con->sock = NULL; 975 } else if (sock) { 976 sock_release(sock); 977 } 978 /* 979 * Some errors are fatal and this list might need adjusting. For other 980 * errors we try again until the max number of retries is reached. 981 */ 982 if (result != -EHOSTUNREACH && result != -ENETUNREACH && 983 result != -ENETDOWN && result != -EINVAL 984 && result != -EPROTONOSUPPORT) { 985 lowcomms_connect_sock(con); 986 result = 0; 987 } 988 out: 989 mutex_unlock(&con->sock_mutex); 990 return; 991 } 992 993 static struct socket *tcp_create_listen_sock(struct connection *con, 994 struct sockaddr_storage *saddr) 995 { 996 struct socket *sock = NULL; 997 int result = 0; 998 int one = 1; 999 int addr_len; 1000 1001 if (dlm_local_addr[0]->ss_family == AF_INET) 1002 addr_len = sizeof(struct sockaddr_in); 1003 else 1004 addr_len = sizeof(struct sockaddr_in6); 1005 1006 /* Create a socket to communicate with */ 1007 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM, 1008 IPPROTO_TCP, &sock); 1009 if (result < 0) { 1010 log_print("Can't create listening comms socket"); 1011 goto create_out; 1012 } 1013 1014 result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, 1015 (char *)&one, sizeof(one)); 1016 1017 if (result < 0) { 1018 log_print("Failed to set SO_REUSEADDR on socket: %d", result); 1019 } 1020 sock->sk->sk_user_data = con; 1021 con->rx_action = tcp_accept_from_sock; 1022 con->connect_action = tcp_connect_to_sock; 1023 con->sock = sock; 1024 1025 /* Bind to our port */ 1026 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len); 1027 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len); 1028 if (result < 0) { 1029 log_print("Can't bind to port %d", dlm_config.ci_tcp_port); 1030 sock_release(sock); 1031 sock = NULL; 1032 con->sock = NULL; 1033 goto create_out; 1034 } 1035 result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, 1036 (char *)&one, sizeof(one)); 1037 if (result < 0) { 1038 log_print("Set keepalive failed: %d", result); 1039 } 1040 1041 result = sock->ops->listen(sock, 5); 1042 if (result < 0) { 1043 log_print("Can't listen on port %d", dlm_config.ci_tcp_port); 1044 sock_release(sock); 1045 sock = NULL; 1046 goto create_out; 1047 } 1048 1049 create_out: 1050 return sock; 1051 } 1052 1053 /* Get local addresses */ 1054 static void init_local(void) 1055 { 1056 struct sockaddr_storage sas, *addr; 1057 int i; 1058 1059 dlm_local_count = 0; 1060 for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) { 1061 if (dlm_our_addr(&sas, i)) 1062 break; 1063 1064 addr = kmalloc(sizeof(*addr), GFP_NOFS); 1065 if (!addr) 1066 break; 1067 memcpy(addr, &sas, sizeof(*addr)); 1068 dlm_local_addr[dlm_local_count++] = addr; 1069 } 1070 } 1071 1072 /* Bind to an IP address. SCTP allows multiple address so it can do 1073 multi-homing */ 1074 static int add_sctp_bind_addr(struct connection *sctp_con, 1075 struct sockaddr_storage *addr, 1076 int addr_len, int num) 1077 { 1078 int result = 0; 1079 1080 if (num == 1) 1081 result = kernel_bind(sctp_con->sock, 1082 (struct sockaddr *) addr, 1083 addr_len); 1084 else 1085 result = kernel_setsockopt(sctp_con->sock, SOL_SCTP, 1086 SCTP_SOCKOPT_BINDX_ADD, 1087 (char *)addr, addr_len); 1088 1089 if (result < 0) 1090 log_print("Can't bind to port %d addr number %d", 1091 dlm_config.ci_tcp_port, num); 1092 1093 return result; 1094 } 1095 1096 /* Initialise SCTP socket and bind to all interfaces */ 1097 static int sctp_listen_for_all(void) 1098 { 1099 struct socket *sock = NULL; 1100 struct sockaddr_storage localaddr; 1101 struct sctp_event_subscribe subscribe; 1102 int result = -EINVAL, num = 1, i, addr_len; 1103 struct connection *con = nodeid2con(0, GFP_NOFS); 1104 int bufsize = NEEDED_RMEM; 1105 1106 if (!con) 1107 return -ENOMEM; 1108 1109 log_print("Using SCTP for communications"); 1110 1111 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET, 1112 IPPROTO_SCTP, &sock); 1113 if (result < 0) { 1114 log_print("Can't create comms socket, check SCTP is loaded"); 1115 goto out; 1116 } 1117 1118 /* Listen for events */ 1119 memset(&subscribe, 0, sizeof(subscribe)); 1120 subscribe.sctp_data_io_event = 1; 1121 subscribe.sctp_association_event = 1; 1122 subscribe.sctp_send_failure_event = 1; 1123 subscribe.sctp_shutdown_event = 1; 1124 subscribe.sctp_partial_delivery_event = 1; 1125 1126 result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE, 1127 (char *)&bufsize, sizeof(bufsize)); 1128 if (result) 1129 log_print("Error increasing buffer space on socket %d", result); 1130 1131 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS, 1132 (char *)&subscribe, sizeof(subscribe)); 1133 if (result < 0) { 1134 log_print("Failed to set SCTP_EVENTS on socket: result=%d", 1135 result); 1136 goto create_delsock; 1137 } 1138 1139 /* Init con struct */ 1140 sock->sk->sk_user_data = con; 1141 con->sock = sock; 1142 con->sock->sk->sk_data_ready = lowcomms_data_ready; 1143 con->rx_action = receive_from_sock; 1144 con->connect_action = sctp_init_assoc; 1145 1146 /* Bind to all interfaces. */ 1147 for (i = 0; i < dlm_local_count; i++) { 1148 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr)); 1149 make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len); 1150 1151 result = add_sctp_bind_addr(con, &localaddr, addr_len, num); 1152 if (result) 1153 goto create_delsock; 1154 ++num; 1155 } 1156 1157 result = sock->ops->listen(sock, 5); 1158 if (result < 0) { 1159 log_print("Can't set socket listening"); 1160 goto create_delsock; 1161 } 1162 1163 return 0; 1164 1165 create_delsock: 1166 sock_release(sock); 1167 con->sock = NULL; 1168 out: 1169 return result; 1170 } 1171 1172 static int tcp_listen_for_all(void) 1173 { 1174 struct socket *sock = NULL; 1175 struct connection *con = nodeid2con(0, GFP_NOFS); 1176 int result = -EINVAL; 1177 1178 if (!con) 1179 return -ENOMEM; 1180 1181 /* We don't support multi-homed hosts */ 1182 if (dlm_local_addr[1] != NULL) { 1183 log_print("TCP protocol can't handle multi-homed hosts, " 1184 "try SCTP"); 1185 return -EINVAL; 1186 } 1187 1188 log_print("Using TCP for communications"); 1189 1190 sock = tcp_create_listen_sock(con, dlm_local_addr[0]); 1191 if (sock) { 1192 add_sock(sock, con); 1193 result = 0; 1194 } 1195 else { 1196 result = -EADDRINUSE; 1197 } 1198 1199 return result; 1200 } 1201 1202 1203 1204 static struct writequeue_entry *new_writequeue_entry(struct connection *con, 1205 gfp_t allocation) 1206 { 1207 struct writequeue_entry *entry; 1208 1209 entry = kmalloc(sizeof(struct writequeue_entry), allocation); 1210 if (!entry) 1211 return NULL; 1212 1213 entry->page = alloc_page(allocation); 1214 if (!entry->page) { 1215 kfree(entry); 1216 return NULL; 1217 } 1218 1219 entry->offset = 0; 1220 entry->len = 0; 1221 entry->end = 0; 1222 entry->users = 0; 1223 entry->con = con; 1224 1225 return entry; 1226 } 1227 1228 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc) 1229 { 1230 struct connection *con; 1231 struct writequeue_entry *e; 1232 int offset = 0; 1233 int users = 0; 1234 1235 con = nodeid2con(nodeid, allocation); 1236 if (!con) 1237 return NULL; 1238 1239 spin_lock(&con->writequeue_lock); 1240 e = list_entry(con->writequeue.prev, struct writequeue_entry, list); 1241 if ((&e->list == &con->writequeue) || 1242 (PAGE_CACHE_SIZE - e->end < len)) { 1243 e = NULL; 1244 } else { 1245 offset = e->end; 1246 e->end += len; 1247 users = e->users++; 1248 } 1249 spin_unlock(&con->writequeue_lock); 1250 1251 if (e) { 1252 got_one: 1253 *ppc = page_address(e->page) + offset; 1254 return e; 1255 } 1256 1257 e = new_writequeue_entry(con, allocation); 1258 if (e) { 1259 spin_lock(&con->writequeue_lock); 1260 offset = e->end; 1261 e->end += len; 1262 users = e->users++; 1263 list_add_tail(&e->list, &con->writequeue); 1264 spin_unlock(&con->writequeue_lock); 1265 goto got_one; 1266 } 1267 return NULL; 1268 } 1269 1270 void dlm_lowcomms_commit_buffer(void *mh) 1271 { 1272 struct writequeue_entry *e = (struct writequeue_entry *)mh; 1273 struct connection *con = e->con; 1274 int users; 1275 1276 spin_lock(&con->writequeue_lock); 1277 users = --e->users; 1278 if (users) 1279 goto out; 1280 e->len = e->end - e->offset; 1281 spin_unlock(&con->writequeue_lock); 1282 1283 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) { 1284 queue_work(send_workqueue, &con->swork); 1285 } 1286 return; 1287 1288 out: 1289 spin_unlock(&con->writequeue_lock); 1290 return; 1291 } 1292 1293 /* Send a message */ 1294 static void send_to_sock(struct connection *con) 1295 { 1296 int ret = 0; 1297 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1298 struct writequeue_entry *e; 1299 int len, offset; 1300 1301 mutex_lock(&con->sock_mutex); 1302 if (con->sock == NULL) 1303 goto out_connect; 1304 1305 spin_lock(&con->writequeue_lock); 1306 for (;;) { 1307 e = list_entry(con->writequeue.next, struct writequeue_entry, 1308 list); 1309 if ((struct list_head *) e == &con->writequeue) 1310 break; 1311 1312 len = e->len; 1313 offset = e->offset; 1314 BUG_ON(len == 0 && e->users == 0); 1315 spin_unlock(&con->writequeue_lock); 1316 1317 ret = 0; 1318 if (len) { 1319 ret = kernel_sendpage(con->sock, e->page, offset, len, 1320 msg_flags); 1321 if (ret == -EAGAIN || ret == 0) { 1322 cond_resched(); 1323 goto out; 1324 } 1325 if (ret <= 0) 1326 goto send_error; 1327 } 1328 /* Don't starve people filling buffers */ 1329 cond_resched(); 1330 1331 spin_lock(&con->writequeue_lock); 1332 e->offset += ret; 1333 e->len -= ret; 1334 1335 if (e->len == 0 && e->users == 0) { 1336 list_del(&e->list); 1337 free_entry(e); 1338 continue; 1339 } 1340 } 1341 spin_unlock(&con->writequeue_lock); 1342 out: 1343 mutex_unlock(&con->sock_mutex); 1344 return; 1345 1346 send_error: 1347 mutex_unlock(&con->sock_mutex); 1348 close_connection(con, false); 1349 lowcomms_connect_sock(con); 1350 return; 1351 1352 out_connect: 1353 mutex_unlock(&con->sock_mutex); 1354 if (!test_bit(CF_INIT_PENDING, &con->flags)) 1355 lowcomms_connect_sock(con); 1356 return; 1357 } 1358 1359 static void clean_one_writequeue(struct connection *con) 1360 { 1361 struct writequeue_entry *e, *safe; 1362 1363 spin_lock(&con->writequeue_lock); 1364 list_for_each_entry_safe(e, safe, &con->writequeue, list) { 1365 list_del(&e->list); 1366 free_entry(e); 1367 } 1368 spin_unlock(&con->writequeue_lock); 1369 } 1370 1371 /* Called from recovery when it knows that a node has 1372 left the cluster */ 1373 int dlm_lowcomms_close(int nodeid) 1374 { 1375 struct connection *con; 1376 1377 log_print("closing connection to node %d", nodeid); 1378 con = nodeid2con(nodeid, 0); 1379 if (con) { 1380 clear_bit(CF_CONNECT_PENDING, &con->flags); 1381 clear_bit(CF_WRITE_PENDING, &con->flags); 1382 set_bit(CF_CLOSE, &con->flags); 1383 if (cancel_work_sync(&con->swork)) 1384 log_print("canceled swork for node %d", nodeid); 1385 if (cancel_work_sync(&con->rwork)) 1386 log_print("canceled rwork for node %d", nodeid); 1387 clean_one_writequeue(con); 1388 close_connection(con, true); 1389 } 1390 return 0; 1391 } 1392 1393 /* Receive workqueue function */ 1394 static void process_recv_sockets(struct work_struct *work) 1395 { 1396 struct connection *con = container_of(work, struct connection, rwork); 1397 int err; 1398 1399 clear_bit(CF_READ_PENDING, &con->flags); 1400 do { 1401 err = con->rx_action(con); 1402 } while (!err); 1403 } 1404 1405 /* Send workqueue function */ 1406 static void process_send_sockets(struct work_struct *work) 1407 { 1408 struct connection *con = container_of(work, struct connection, swork); 1409 1410 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) { 1411 con->connect_action(con); 1412 set_bit(CF_WRITE_PENDING, &con->flags); 1413 } 1414 if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags)) 1415 send_to_sock(con); 1416 } 1417 1418 1419 /* Discard all entries on the write queues */ 1420 static void clean_writequeues(void) 1421 { 1422 foreach_conn(clean_one_writequeue); 1423 } 1424 1425 static void work_stop(void) 1426 { 1427 destroy_workqueue(recv_workqueue); 1428 destroy_workqueue(send_workqueue); 1429 } 1430 1431 static int work_start(void) 1432 { 1433 int error; 1434 recv_workqueue = create_workqueue("dlm_recv"); 1435 error = IS_ERR(recv_workqueue); 1436 if (error) { 1437 log_print("can't start dlm_recv %d", error); 1438 return error; 1439 } 1440 1441 send_workqueue = create_singlethread_workqueue("dlm_send"); 1442 error = IS_ERR(send_workqueue); 1443 if (error) { 1444 log_print("can't start dlm_send %d", error); 1445 destroy_workqueue(recv_workqueue); 1446 return error; 1447 } 1448 1449 return 0; 1450 } 1451 1452 static void stop_conn(struct connection *con) 1453 { 1454 con->flags |= 0x0F; 1455 if (con->sock && con->sock->sk) 1456 con->sock->sk->sk_user_data = NULL; 1457 } 1458 1459 static void free_conn(struct connection *con) 1460 { 1461 close_connection(con, true); 1462 if (con->othercon) 1463 kmem_cache_free(con_cache, con->othercon); 1464 hlist_del(&con->list); 1465 kmem_cache_free(con_cache, con); 1466 } 1467 1468 void dlm_lowcomms_stop(void) 1469 { 1470 /* Set all the flags to prevent any 1471 socket activity. 1472 */ 1473 mutex_lock(&connections_lock); 1474 foreach_conn(stop_conn); 1475 mutex_unlock(&connections_lock); 1476 1477 work_stop(); 1478 1479 mutex_lock(&connections_lock); 1480 clean_writequeues(); 1481 1482 foreach_conn(free_conn); 1483 1484 mutex_unlock(&connections_lock); 1485 kmem_cache_destroy(con_cache); 1486 } 1487 1488 int dlm_lowcomms_start(void) 1489 { 1490 int error = -EINVAL; 1491 struct connection *con; 1492 int i; 1493 1494 for (i = 0; i < CONN_HASH_SIZE; i++) 1495 INIT_HLIST_HEAD(&connection_hash[i]); 1496 1497 init_local(); 1498 if (!dlm_local_count) { 1499 error = -ENOTCONN; 1500 log_print("no local IP address has been set"); 1501 goto out; 1502 } 1503 1504 error = -ENOMEM; 1505 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection), 1506 __alignof__(struct connection), 0, 1507 NULL); 1508 if (!con_cache) 1509 goto out; 1510 1511 /* Start listening */ 1512 if (dlm_config.ci_protocol == 0) 1513 error = tcp_listen_for_all(); 1514 else 1515 error = sctp_listen_for_all(); 1516 if (error) 1517 goto fail_unlisten; 1518 1519 error = work_start(); 1520 if (error) 1521 goto fail_unlisten; 1522 1523 return 0; 1524 1525 fail_unlisten: 1526 con = nodeid2con(0,0); 1527 if (con) { 1528 close_connection(con, false); 1529 kmem_cache_free(con_cache, con); 1530 } 1531 kmem_cache_destroy(con_cache); 1532 1533 out: 1534 return error; 1535 } 1536