xref: /openbmc/linux/fs/dlm/lowcomms.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/user.h>
56 #include <net/ipv6.h>
57 
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62 
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65 
66 struct cbuf {
67 	unsigned int base;
68 	unsigned int len;
69 	unsigned int mask;
70 };
71 
72 static void cbuf_add(struct cbuf *cb, int n)
73 {
74 	cb->len += n;
75 }
76 
77 static int cbuf_data(struct cbuf *cb)
78 {
79 	return ((cb->base + cb->len) & cb->mask);
80 }
81 
82 static void cbuf_init(struct cbuf *cb, int size)
83 {
84 	cb->base = cb->len = 0;
85 	cb->mask = size-1;
86 }
87 
88 static void cbuf_eat(struct cbuf *cb, int n)
89 {
90 	cb->len  -= n;
91 	cb->base += n;
92 	cb->base &= cb->mask;
93 }
94 
95 static bool cbuf_empty(struct cbuf *cb)
96 {
97 	return cb->len == 0;
98 }
99 
100 struct connection {
101 	struct socket *sock;	/* NULL if not connected */
102 	uint32_t nodeid;	/* So we know who we are in the list */
103 	struct mutex sock_mutex;
104 	unsigned long flags;
105 #define CF_READ_PENDING 1
106 #define CF_WRITE_PENDING 2
107 #define CF_CONNECT_PENDING 3
108 #define CF_INIT_PENDING 4
109 #define CF_IS_OTHERCON 5
110 #define CF_CLOSE 6
111 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
112 	spinlock_t writequeue_lock;
113 	int (*rx_action) (struct connection *);	/* What to do when active */
114 	void (*connect_action) (struct connection *);	/* What to do to connect */
115 	struct page *rx_page;
116 	struct cbuf cb;
117 	int retries;
118 #define MAX_CONNECT_RETRIES 3
119 	int sctp_assoc;
120 	struct hlist_node list;
121 	struct connection *othercon;
122 	struct work_struct rwork; /* Receive workqueue */
123 	struct work_struct swork; /* Send workqueue */
124 };
125 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
126 
127 /* An entry waiting to be sent */
128 struct writequeue_entry {
129 	struct list_head list;
130 	struct page *page;
131 	int offset;
132 	int len;
133 	int end;
134 	int users;
135 	struct connection *con;
136 };
137 
138 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
139 static int dlm_local_count;
140 
141 /* Work queues */
142 static struct workqueue_struct *recv_workqueue;
143 static struct workqueue_struct *send_workqueue;
144 
145 static struct hlist_head connection_hash[CONN_HASH_SIZE];
146 static DEFINE_MUTEX(connections_lock);
147 static struct kmem_cache *con_cache;
148 
149 static void process_recv_sockets(struct work_struct *work);
150 static void process_send_sockets(struct work_struct *work);
151 
152 
153 /* This is deliberately very simple because most clusters have simple
154    sequential nodeids, so we should be able to go straight to a connection
155    struct in the array */
156 static inline int nodeid_hash(int nodeid)
157 {
158 	return nodeid & (CONN_HASH_SIZE-1);
159 }
160 
161 static struct connection *__find_con(int nodeid)
162 {
163 	int r;
164 	struct hlist_node *h;
165 	struct connection *con;
166 
167 	r = nodeid_hash(nodeid);
168 
169 	hlist_for_each_entry(con, h, &connection_hash[r], list) {
170 		if (con->nodeid == nodeid)
171 			return con;
172 	}
173 	return NULL;
174 }
175 
176 /*
177  * If 'allocation' is zero then we don't attempt to create a new
178  * connection structure for this node.
179  */
180 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
181 {
182 	struct connection *con = NULL;
183 	int r;
184 
185 	con = __find_con(nodeid);
186 	if (con || !alloc)
187 		return con;
188 
189 	con = kmem_cache_zalloc(con_cache, alloc);
190 	if (!con)
191 		return NULL;
192 
193 	r = nodeid_hash(nodeid);
194 	hlist_add_head(&con->list, &connection_hash[r]);
195 
196 	con->nodeid = nodeid;
197 	mutex_init(&con->sock_mutex);
198 	INIT_LIST_HEAD(&con->writequeue);
199 	spin_lock_init(&con->writequeue_lock);
200 	INIT_WORK(&con->swork, process_send_sockets);
201 	INIT_WORK(&con->rwork, process_recv_sockets);
202 
203 	/* Setup action pointers for child sockets */
204 	if (con->nodeid) {
205 		struct connection *zerocon = __find_con(0);
206 
207 		con->connect_action = zerocon->connect_action;
208 		if (!con->rx_action)
209 			con->rx_action = zerocon->rx_action;
210 	}
211 
212 	return con;
213 }
214 
215 /* Loop round all connections */
216 static void foreach_conn(void (*conn_func)(struct connection *c))
217 {
218 	int i;
219 	struct hlist_node *h, *n;
220 	struct connection *con;
221 
222 	for (i = 0; i < CONN_HASH_SIZE; i++) {
223 		hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
224 			conn_func(con);
225 		}
226 	}
227 }
228 
229 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
230 {
231 	struct connection *con;
232 
233 	mutex_lock(&connections_lock);
234 	con = __nodeid2con(nodeid, allocation);
235 	mutex_unlock(&connections_lock);
236 
237 	return con;
238 }
239 
240 /* This is a bit drastic, but only called when things go wrong */
241 static struct connection *assoc2con(int assoc_id)
242 {
243 	int i;
244 	struct hlist_node *h;
245 	struct connection *con;
246 
247 	mutex_lock(&connections_lock);
248 
249 	for (i = 0 ; i < CONN_HASH_SIZE; i++) {
250 		hlist_for_each_entry(con, h, &connection_hash[i], list) {
251 			if (con->sctp_assoc == assoc_id) {
252 				mutex_unlock(&connections_lock);
253 				return con;
254 			}
255 		}
256 	}
257 	mutex_unlock(&connections_lock);
258 	return NULL;
259 }
260 
261 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
262 {
263 	struct sockaddr_storage addr;
264 	int error;
265 
266 	if (!dlm_local_count)
267 		return -1;
268 
269 	error = dlm_nodeid_to_addr(nodeid, &addr);
270 	if (error)
271 		return error;
272 
273 	if (dlm_local_addr[0]->ss_family == AF_INET) {
274 		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
275 		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
276 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
277 	} else {
278 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
279 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
280 		ipv6_addr_copy(&ret6->sin6_addr, &in6->sin6_addr);
281 	}
282 
283 	return 0;
284 }
285 
286 /* Data available on socket or listen socket received a connect */
287 static void lowcomms_data_ready(struct sock *sk, int count_unused)
288 {
289 	struct connection *con = sock2con(sk);
290 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
291 		queue_work(recv_workqueue, &con->rwork);
292 }
293 
294 static void lowcomms_write_space(struct sock *sk)
295 {
296 	struct connection *con = sock2con(sk);
297 
298 	if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
299 		queue_work(send_workqueue, &con->swork);
300 }
301 
302 static inline void lowcomms_connect_sock(struct connection *con)
303 {
304 	if (test_bit(CF_CLOSE, &con->flags))
305 		return;
306 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
307 		queue_work(send_workqueue, &con->swork);
308 }
309 
310 static void lowcomms_state_change(struct sock *sk)
311 {
312 	if (sk->sk_state == TCP_ESTABLISHED)
313 		lowcomms_write_space(sk);
314 }
315 
316 int dlm_lowcomms_connect_node(int nodeid)
317 {
318 	struct connection *con;
319 
320 	/* with sctp there's no connecting without sending */
321 	if (dlm_config.ci_protocol != 0)
322 		return 0;
323 
324 	if (nodeid == dlm_our_nodeid())
325 		return 0;
326 
327 	con = nodeid2con(nodeid, GFP_NOFS);
328 	if (!con)
329 		return -ENOMEM;
330 	lowcomms_connect_sock(con);
331 	return 0;
332 }
333 
334 /* Make a socket active */
335 static int add_sock(struct socket *sock, struct connection *con)
336 {
337 	con->sock = sock;
338 
339 	/* Install a data_ready callback */
340 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
341 	con->sock->sk->sk_write_space = lowcomms_write_space;
342 	con->sock->sk->sk_state_change = lowcomms_state_change;
343 	con->sock->sk->sk_user_data = con;
344 	con->sock->sk->sk_allocation = GFP_NOFS;
345 	return 0;
346 }
347 
348 /* Add the port number to an IPv6 or 4 sockaddr and return the address
349    length */
350 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
351 			  int *addr_len)
352 {
353 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
354 	if (saddr->ss_family == AF_INET) {
355 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
356 		in4_addr->sin_port = cpu_to_be16(port);
357 		*addr_len = sizeof(struct sockaddr_in);
358 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
359 	} else {
360 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
361 		in6_addr->sin6_port = cpu_to_be16(port);
362 		*addr_len = sizeof(struct sockaddr_in6);
363 	}
364 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
365 }
366 
367 /* Close a remote connection and tidy up */
368 static void close_connection(struct connection *con, bool and_other)
369 {
370 	mutex_lock(&con->sock_mutex);
371 
372 	if (con->sock) {
373 		sock_release(con->sock);
374 		con->sock = NULL;
375 	}
376 	if (con->othercon && and_other) {
377 		/* Will only re-enter once. */
378 		close_connection(con->othercon, false);
379 	}
380 	if (con->rx_page) {
381 		__free_page(con->rx_page);
382 		con->rx_page = NULL;
383 	}
384 
385 	con->retries = 0;
386 	mutex_unlock(&con->sock_mutex);
387 }
388 
389 /* We only send shutdown messages to nodes that are not part of the cluster */
390 static void sctp_send_shutdown(sctp_assoc_t associd)
391 {
392 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
393 	struct msghdr outmessage;
394 	struct cmsghdr *cmsg;
395 	struct sctp_sndrcvinfo *sinfo;
396 	int ret;
397 	struct connection *con;
398 
399 	con = nodeid2con(0,0);
400 	BUG_ON(con == NULL);
401 
402 	outmessage.msg_name = NULL;
403 	outmessage.msg_namelen = 0;
404 	outmessage.msg_control = outcmsg;
405 	outmessage.msg_controllen = sizeof(outcmsg);
406 	outmessage.msg_flags = MSG_EOR;
407 
408 	cmsg = CMSG_FIRSTHDR(&outmessage);
409 	cmsg->cmsg_level = IPPROTO_SCTP;
410 	cmsg->cmsg_type = SCTP_SNDRCV;
411 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
412 	outmessage.msg_controllen = cmsg->cmsg_len;
413 	sinfo = CMSG_DATA(cmsg);
414 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
415 
416 	sinfo->sinfo_flags |= MSG_EOF;
417 	sinfo->sinfo_assoc_id = associd;
418 
419 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
420 
421 	if (ret != 0)
422 		log_print("send EOF to node failed: %d", ret);
423 }
424 
425 static void sctp_init_failed_foreach(struct connection *con)
426 {
427 	con->sctp_assoc = 0;
428 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
429 		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
430 			queue_work(send_workqueue, &con->swork);
431 	}
432 }
433 
434 /* INIT failed but we don't know which node...
435    restart INIT on all pending nodes */
436 static void sctp_init_failed(void)
437 {
438 	mutex_lock(&connections_lock);
439 
440 	foreach_conn(sctp_init_failed_foreach);
441 
442 	mutex_unlock(&connections_lock);
443 }
444 
445 /* Something happened to an association */
446 static void process_sctp_notification(struct connection *con,
447 				      struct msghdr *msg, char *buf)
448 {
449 	union sctp_notification *sn = (union sctp_notification *)buf;
450 
451 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
452 		switch (sn->sn_assoc_change.sac_state) {
453 
454 		case SCTP_COMM_UP:
455 		case SCTP_RESTART:
456 		{
457 			/* Check that the new node is in the lockspace */
458 			struct sctp_prim prim;
459 			int nodeid;
460 			int prim_len, ret;
461 			int addr_len;
462 			struct connection *new_con;
463 			sctp_peeloff_arg_t parg;
464 			int parglen = sizeof(parg);
465 			int err;
466 
467 			/*
468 			 * We get this before any data for an association.
469 			 * We verify that the node is in the cluster and
470 			 * then peel off a socket for it.
471 			 */
472 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
473 				log_print("COMM_UP for invalid assoc ID %d",
474 					 (int)sn->sn_assoc_change.sac_assoc_id);
475 				sctp_init_failed();
476 				return;
477 			}
478 			memset(&prim, 0, sizeof(struct sctp_prim));
479 			prim_len = sizeof(struct sctp_prim);
480 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
481 
482 			ret = kernel_getsockopt(con->sock,
483 						IPPROTO_SCTP,
484 						SCTP_PRIMARY_ADDR,
485 						(char*)&prim,
486 						&prim_len);
487 			if (ret < 0) {
488 				log_print("getsockopt/sctp_primary_addr on "
489 					  "new assoc %d failed : %d",
490 					  (int)sn->sn_assoc_change.sac_assoc_id,
491 					  ret);
492 
493 				/* Retry INIT later */
494 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
495 				if (new_con)
496 					clear_bit(CF_CONNECT_PENDING, &con->flags);
497 				return;
498 			}
499 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
500 			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
501 				int i;
502 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
503 				log_print("reject connect from unknown addr");
504 				for (i=0; i<sizeof(struct sockaddr_storage);i++)
505 					printk("%02x ", b[i]);
506 				printk("\n");
507 				sctp_send_shutdown(prim.ssp_assoc_id);
508 				return;
509 			}
510 
511 			new_con = nodeid2con(nodeid, GFP_NOFS);
512 			if (!new_con)
513 				return;
514 
515 			/* Peel off a new sock */
516 			parg.associd = sn->sn_assoc_change.sac_assoc_id;
517 			ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
518 						SCTP_SOCKOPT_PEELOFF,
519 						(void *)&parg, &parglen);
520 			if (ret < 0) {
521 				log_print("Can't peel off a socket for "
522 					  "connection %d to node %d: err=%d",
523 					  parg.associd, nodeid, ret);
524 				return;
525 			}
526 			new_con->sock = sockfd_lookup(parg.sd, &err);
527 			if (!new_con->sock) {
528 				log_print("sockfd_lookup error %d", err);
529 				return;
530 			}
531 			add_sock(new_con->sock, new_con);
532 			sockfd_put(new_con->sock);
533 
534 			log_print("connecting to %d sctp association %d",
535 				 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
536 
537 			/* Send any pending writes */
538 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
539 			clear_bit(CF_INIT_PENDING, &con->flags);
540 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
541 				queue_work(send_workqueue, &new_con->swork);
542 			}
543 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
544 				queue_work(recv_workqueue, &new_con->rwork);
545 		}
546 		break;
547 
548 		case SCTP_COMM_LOST:
549 		case SCTP_SHUTDOWN_COMP:
550 		{
551 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
552 			if (con) {
553 				con->sctp_assoc = 0;
554 			}
555 		}
556 		break;
557 
558 		/* We don't know which INIT failed, so clear the PENDING flags
559 		 * on them all.  if assoc_id is zero then it will then try
560 		 * again */
561 
562 		case SCTP_CANT_STR_ASSOC:
563 		{
564 			log_print("Can't start SCTP association - retrying");
565 			sctp_init_failed();
566 		}
567 		break;
568 
569 		default:
570 			log_print("unexpected SCTP assoc change id=%d state=%d",
571 				  (int)sn->sn_assoc_change.sac_assoc_id,
572 				  sn->sn_assoc_change.sac_state);
573 		}
574 	}
575 }
576 
577 /* Data received from remote end */
578 static int receive_from_sock(struct connection *con)
579 {
580 	int ret = 0;
581 	struct msghdr msg = {};
582 	struct kvec iov[2];
583 	unsigned len;
584 	int r;
585 	int call_again_soon = 0;
586 	int nvec;
587 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
588 
589 	mutex_lock(&con->sock_mutex);
590 
591 	if (con->sock == NULL) {
592 		ret = -EAGAIN;
593 		goto out_close;
594 	}
595 
596 	if (con->rx_page == NULL) {
597 		/*
598 		 * This doesn't need to be atomic, but I think it should
599 		 * improve performance if it is.
600 		 */
601 		con->rx_page = alloc_page(GFP_ATOMIC);
602 		if (con->rx_page == NULL)
603 			goto out_resched;
604 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
605 	}
606 
607 	/* Only SCTP needs these really */
608 	memset(&incmsg, 0, sizeof(incmsg));
609 	msg.msg_control = incmsg;
610 	msg.msg_controllen = sizeof(incmsg);
611 
612 	/*
613 	 * iov[0] is the bit of the circular buffer between the current end
614 	 * point (cb.base + cb.len) and the end of the buffer.
615 	 */
616 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
617 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
618 	iov[1].iov_len = 0;
619 	nvec = 1;
620 
621 	/*
622 	 * iov[1] is the bit of the circular buffer between the start of the
623 	 * buffer and the start of the currently used section (cb.base)
624 	 */
625 	if (cbuf_data(&con->cb) >= con->cb.base) {
626 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
627 		iov[1].iov_len = con->cb.base;
628 		iov[1].iov_base = page_address(con->rx_page);
629 		nvec = 2;
630 	}
631 	len = iov[0].iov_len + iov[1].iov_len;
632 
633 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
634 			       MSG_DONTWAIT | MSG_NOSIGNAL);
635 	if (ret <= 0)
636 		goto out_close;
637 
638 	/* Process SCTP notifications */
639 	if (msg.msg_flags & MSG_NOTIFICATION) {
640 		msg.msg_control = incmsg;
641 		msg.msg_controllen = sizeof(incmsg);
642 
643 		process_sctp_notification(con, &msg,
644 				page_address(con->rx_page) + con->cb.base);
645 		mutex_unlock(&con->sock_mutex);
646 		return 0;
647 	}
648 	BUG_ON(con->nodeid == 0);
649 
650 	if (ret == len)
651 		call_again_soon = 1;
652 	cbuf_add(&con->cb, ret);
653 	ret = dlm_process_incoming_buffer(con->nodeid,
654 					  page_address(con->rx_page),
655 					  con->cb.base, con->cb.len,
656 					  PAGE_CACHE_SIZE);
657 	if (ret == -EBADMSG) {
658 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
659 			  "iov_len=%u, iov_base[0]=%p, read=%d",
660 			  page_address(con->rx_page), con->cb.base, con->cb.len,
661 			  len, iov[0].iov_base, r);
662 	}
663 	if (ret < 0)
664 		goto out_close;
665 	cbuf_eat(&con->cb, ret);
666 
667 	if (cbuf_empty(&con->cb) && !call_again_soon) {
668 		__free_page(con->rx_page);
669 		con->rx_page = NULL;
670 	}
671 
672 	if (call_again_soon)
673 		goto out_resched;
674 	mutex_unlock(&con->sock_mutex);
675 	return 0;
676 
677 out_resched:
678 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
679 		queue_work(recv_workqueue, &con->rwork);
680 	mutex_unlock(&con->sock_mutex);
681 	return -EAGAIN;
682 
683 out_close:
684 	mutex_unlock(&con->sock_mutex);
685 	if (ret != -EAGAIN) {
686 		close_connection(con, false);
687 		/* Reconnect when there is something to send */
688 	}
689 	/* Don't return success if we really got EOF */
690 	if (ret == 0)
691 		ret = -EAGAIN;
692 
693 	return ret;
694 }
695 
696 /* Listening socket is busy, accept a connection */
697 static int tcp_accept_from_sock(struct connection *con)
698 {
699 	int result;
700 	struct sockaddr_storage peeraddr;
701 	struct socket *newsock;
702 	int len;
703 	int nodeid;
704 	struct connection *newcon;
705 	struct connection *addcon;
706 
707 	memset(&peeraddr, 0, sizeof(peeraddr));
708 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
709 				  IPPROTO_TCP, &newsock);
710 	if (result < 0)
711 		return -ENOMEM;
712 
713 	mutex_lock_nested(&con->sock_mutex, 0);
714 
715 	result = -ENOTCONN;
716 	if (con->sock == NULL)
717 		goto accept_err;
718 
719 	newsock->type = con->sock->type;
720 	newsock->ops = con->sock->ops;
721 
722 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
723 	if (result < 0)
724 		goto accept_err;
725 
726 	/* Get the connected socket's peer */
727 	memset(&peeraddr, 0, sizeof(peeraddr));
728 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
729 				  &len, 2)) {
730 		result = -ECONNABORTED;
731 		goto accept_err;
732 	}
733 
734 	/* Get the new node's NODEID */
735 	make_sockaddr(&peeraddr, 0, &len);
736 	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
737 		log_print("connect from non cluster node");
738 		sock_release(newsock);
739 		mutex_unlock(&con->sock_mutex);
740 		return -1;
741 	}
742 
743 	log_print("got connection from %d", nodeid);
744 
745 	/*  Check to see if we already have a connection to this node. This
746 	 *  could happen if the two nodes initiate a connection at roughly
747 	 *  the same time and the connections cross on the wire.
748 	 *  In this case we store the incoming one in "othercon"
749 	 */
750 	newcon = nodeid2con(nodeid, GFP_NOFS);
751 	if (!newcon) {
752 		result = -ENOMEM;
753 		goto accept_err;
754 	}
755 	mutex_lock_nested(&newcon->sock_mutex, 1);
756 	if (newcon->sock) {
757 		struct connection *othercon = newcon->othercon;
758 
759 		if (!othercon) {
760 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
761 			if (!othercon) {
762 				log_print("failed to allocate incoming socket");
763 				mutex_unlock(&newcon->sock_mutex);
764 				result = -ENOMEM;
765 				goto accept_err;
766 			}
767 			othercon->nodeid = nodeid;
768 			othercon->rx_action = receive_from_sock;
769 			mutex_init(&othercon->sock_mutex);
770 			INIT_WORK(&othercon->swork, process_send_sockets);
771 			INIT_WORK(&othercon->rwork, process_recv_sockets);
772 			set_bit(CF_IS_OTHERCON, &othercon->flags);
773 		}
774 		if (!othercon->sock) {
775 			newcon->othercon = othercon;
776 			othercon->sock = newsock;
777 			newsock->sk->sk_user_data = othercon;
778 			add_sock(newsock, othercon);
779 			addcon = othercon;
780 		}
781 		else {
782 			printk("Extra connection from node %d attempted\n", nodeid);
783 			result = -EAGAIN;
784 			mutex_unlock(&newcon->sock_mutex);
785 			goto accept_err;
786 		}
787 	}
788 	else {
789 		newsock->sk->sk_user_data = newcon;
790 		newcon->rx_action = receive_from_sock;
791 		add_sock(newsock, newcon);
792 		addcon = newcon;
793 	}
794 
795 	mutex_unlock(&newcon->sock_mutex);
796 
797 	/*
798 	 * Add it to the active queue in case we got data
799 	 * beween processing the accept adding the socket
800 	 * to the read_sockets list
801 	 */
802 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
803 		queue_work(recv_workqueue, &addcon->rwork);
804 	mutex_unlock(&con->sock_mutex);
805 
806 	return 0;
807 
808 accept_err:
809 	mutex_unlock(&con->sock_mutex);
810 	sock_release(newsock);
811 
812 	if (result != -EAGAIN)
813 		log_print("error accepting connection from node: %d", result);
814 	return result;
815 }
816 
817 static void free_entry(struct writequeue_entry *e)
818 {
819 	__free_page(e->page);
820 	kfree(e);
821 }
822 
823 /* Initiate an SCTP association.
824    This is a special case of send_to_sock() in that we don't yet have a
825    peeled-off socket for this association, so we use the listening socket
826    and add the primary IP address of the remote node.
827  */
828 static void sctp_init_assoc(struct connection *con)
829 {
830 	struct sockaddr_storage rem_addr;
831 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
832 	struct msghdr outmessage;
833 	struct cmsghdr *cmsg;
834 	struct sctp_sndrcvinfo *sinfo;
835 	struct connection *base_con;
836 	struct writequeue_entry *e;
837 	int len, offset;
838 	int ret;
839 	int addrlen;
840 	struct kvec iov[1];
841 
842 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
843 		return;
844 
845 	if (con->retries++ > MAX_CONNECT_RETRIES)
846 		return;
847 
848 	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
849 		log_print("no address for nodeid %d", con->nodeid);
850 		return;
851 	}
852 	base_con = nodeid2con(0, 0);
853 	BUG_ON(base_con == NULL);
854 
855 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
856 
857 	outmessage.msg_name = &rem_addr;
858 	outmessage.msg_namelen = addrlen;
859 	outmessage.msg_control = outcmsg;
860 	outmessage.msg_controllen = sizeof(outcmsg);
861 	outmessage.msg_flags = MSG_EOR;
862 
863 	spin_lock(&con->writequeue_lock);
864 
865 	if (list_empty(&con->writequeue)) {
866 		spin_unlock(&con->writequeue_lock);
867 		log_print("writequeue empty for nodeid %d", con->nodeid);
868 		return;
869 	}
870 
871 	e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
872 	len = e->len;
873 	offset = e->offset;
874 	spin_unlock(&con->writequeue_lock);
875 
876 	/* Send the first block off the write queue */
877 	iov[0].iov_base = page_address(e->page)+offset;
878 	iov[0].iov_len = len;
879 
880 	cmsg = CMSG_FIRSTHDR(&outmessage);
881 	cmsg->cmsg_level = IPPROTO_SCTP;
882 	cmsg->cmsg_type = SCTP_SNDRCV;
883 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
884 	sinfo = CMSG_DATA(cmsg);
885 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
886 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
887 	outmessage.msg_controllen = cmsg->cmsg_len;
888 
889 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
890 	if (ret < 0) {
891 		log_print("Send first packet to node %d failed: %d",
892 			  con->nodeid, ret);
893 
894 		/* Try again later */
895 		clear_bit(CF_CONNECT_PENDING, &con->flags);
896 		clear_bit(CF_INIT_PENDING, &con->flags);
897 	}
898 	else {
899 		spin_lock(&con->writequeue_lock);
900 		e->offset += ret;
901 		e->len -= ret;
902 
903 		if (e->len == 0 && e->users == 0) {
904 			list_del(&e->list);
905 			free_entry(e);
906 		}
907 		spin_unlock(&con->writequeue_lock);
908 	}
909 }
910 
911 /* Connect a new socket to its peer */
912 static void tcp_connect_to_sock(struct connection *con)
913 {
914 	int result = -EHOSTUNREACH;
915 	struct sockaddr_storage saddr, src_addr;
916 	int addr_len;
917 	struct socket *sock = NULL;
918 
919 	if (con->nodeid == 0) {
920 		log_print("attempt to connect sock 0 foiled");
921 		return;
922 	}
923 
924 	mutex_lock(&con->sock_mutex);
925 	if (con->retries++ > MAX_CONNECT_RETRIES)
926 		goto out;
927 
928 	/* Some odd races can cause double-connects, ignore them */
929 	if (con->sock) {
930 		result = 0;
931 		goto out;
932 	}
933 
934 	/* Create a socket to communicate with */
935 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
936 				  IPPROTO_TCP, &sock);
937 	if (result < 0)
938 		goto out_err;
939 
940 	memset(&saddr, 0, sizeof(saddr));
941 	if (dlm_nodeid_to_addr(con->nodeid, &saddr))
942 		goto out_err;
943 
944 	sock->sk->sk_user_data = con;
945 	con->rx_action = receive_from_sock;
946 	con->connect_action = tcp_connect_to_sock;
947 	add_sock(sock, con);
948 
949 	/* Bind to our cluster-known address connecting to avoid
950 	   routing problems */
951 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
952 	make_sockaddr(&src_addr, 0, &addr_len);
953 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
954 				 addr_len);
955 	if (result < 0) {
956 		log_print("could not bind for connect: %d", result);
957 		/* This *may* not indicate a critical error */
958 	}
959 
960 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
961 
962 	log_print("connecting to %d", con->nodeid);
963 	result =
964 		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
965 				   O_NONBLOCK);
966 	if (result == -EINPROGRESS)
967 		result = 0;
968 	if (result == 0)
969 		goto out;
970 
971 out_err:
972 	if (con->sock) {
973 		sock_release(con->sock);
974 		con->sock = NULL;
975 	} else if (sock) {
976 		sock_release(sock);
977 	}
978 	/*
979 	 * Some errors are fatal and this list might need adjusting. For other
980 	 * errors we try again until the max number of retries is reached.
981 	 */
982 	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
983 	    result != -ENETDOWN && result != -EINVAL
984 	    && result != -EPROTONOSUPPORT) {
985 		lowcomms_connect_sock(con);
986 		result = 0;
987 	}
988 out:
989 	mutex_unlock(&con->sock_mutex);
990 	return;
991 }
992 
993 static struct socket *tcp_create_listen_sock(struct connection *con,
994 					     struct sockaddr_storage *saddr)
995 {
996 	struct socket *sock = NULL;
997 	int result = 0;
998 	int one = 1;
999 	int addr_len;
1000 
1001 	if (dlm_local_addr[0]->ss_family == AF_INET)
1002 		addr_len = sizeof(struct sockaddr_in);
1003 	else
1004 		addr_len = sizeof(struct sockaddr_in6);
1005 
1006 	/* Create a socket to communicate with */
1007 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1008 				  IPPROTO_TCP, &sock);
1009 	if (result < 0) {
1010 		log_print("Can't create listening comms socket");
1011 		goto create_out;
1012 	}
1013 
1014 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1015 				   (char *)&one, sizeof(one));
1016 
1017 	if (result < 0) {
1018 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1019 	}
1020 	sock->sk->sk_user_data = con;
1021 	con->rx_action = tcp_accept_from_sock;
1022 	con->connect_action = tcp_connect_to_sock;
1023 	con->sock = sock;
1024 
1025 	/* Bind to our port */
1026 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1027 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1028 	if (result < 0) {
1029 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1030 		sock_release(sock);
1031 		sock = NULL;
1032 		con->sock = NULL;
1033 		goto create_out;
1034 	}
1035 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1036 				 (char *)&one, sizeof(one));
1037 	if (result < 0) {
1038 		log_print("Set keepalive failed: %d", result);
1039 	}
1040 
1041 	result = sock->ops->listen(sock, 5);
1042 	if (result < 0) {
1043 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1044 		sock_release(sock);
1045 		sock = NULL;
1046 		goto create_out;
1047 	}
1048 
1049 create_out:
1050 	return sock;
1051 }
1052 
1053 /* Get local addresses */
1054 static void init_local(void)
1055 {
1056 	struct sockaddr_storage sas, *addr;
1057 	int i;
1058 
1059 	dlm_local_count = 0;
1060 	for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1061 		if (dlm_our_addr(&sas, i))
1062 			break;
1063 
1064 		addr = kmalloc(sizeof(*addr), GFP_NOFS);
1065 		if (!addr)
1066 			break;
1067 		memcpy(addr, &sas, sizeof(*addr));
1068 		dlm_local_addr[dlm_local_count++] = addr;
1069 	}
1070 }
1071 
1072 /* Bind to an IP address. SCTP allows multiple address so it can do
1073    multi-homing */
1074 static int add_sctp_bind_addr(struct connection *sctp_con,
1075 			      struct sockaddr_storage *addr,
1076 			      int addr_len, int num)
1077 {
1078 	int result = 0;
1079 
1080 	if (num == 1)
1081 		result = kernel_bind(sctp_con->sock,
1082 				     (struct sockaddr *) addr,
1083 				     addr_len);
1084 	else
1085 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1086 					   SCTP_SOCKOPT_BINDX_ADD,
1087 					   (char *)addr, addr_len);
1088 
1089 	if (result < 0)
1090 		log_print("Can't bind to port %d addr number %d",
1091 			  dlm_config.ci_tcp_port, num);
1092 
1093 	return result;
1094 }
1095 
1096 /* Initialise SCTP socket and bind to all interfaces */
1097 static int sctp_listen_for_all(void)
1098 {
1099 	struct socket *sock = NULL;
1100 	struct sockaddr_storage localaddr;
1101 	struct sctp_event_subscribe subscribe;
1102 	int result = -EINVAL, num = 1, i, addr_len;
1103 	struct connection *con = nodeid2con(0, GFP_NOFS);
1104 	int bufsize = NEEDED_RMEM;
1105 
1106 	if (!con)
1107 		return -ENOMEM;
1108 
1109 	log_print("Using SCTP for communications");
1110 
1111 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1112 				  IPPROTO_SCTP, &sock);
1113 	if (result < 0) {
1114 		log_print("Can't create comms socket, check SCTP is loaded");
1115 		goto out;
1116 	}
1117 
1118 	/* Listen for events */
1119 	memset(&subscribe, 0, sizeof(subscribe));
1120 	subscribe.sctp_data_io_event = 1;
1121 	subscribe.sctp_association_event = 1;
1122 	subscribe.sctp_send_failure_event = 1;
1123 	subscribe.sctp_shutdown_event = 1;
1124 	subscribe.sctp_partial_delivery_event = 1;
1125 
1126 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1127 				 (char *)&bufsize, sizeof(bufsize));
1128 	if (result)
1129 		log_print("Error increasing buffer space on socket %d", result);
1130 
1131 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1132 				   (char *)&subscribe, sizeof(subscribe));
1133 	if (result < 0) {
1134 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1135 			  result);
1136 		goto create_delsock;
1137 	}
1138 
1139 	/* Init con struct */
1140 	sock->sk->sk_user_data = con;
1141 	con->sock = sock;
1142 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1143 	con->rx_action = receive_from_sock;
1144 	con->connect_action = sctp_init_assoc;
1145 
1146 	/* Bind to all interfaces. */
1147 	for (i = 0; i < dlm_local_count; i++) {
1148 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1149 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1150 
1151 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1152 		if (result)
1153 			goto create_delsock;
1154 		++num;
1155 	}
1156 
1157 	result = sock->ops->listen(sock, 5);
1158 	if (result < 0) {
1159 		log_print("Can't set socket listening");
1160 		goto create_delsock;
1161 	}
1162 
1163 	return 0;
1164 
1165 create_delsock:
1166 	sock_release(sock);
1167 	con->sock = NULL;
1168 out:
1169 	return result;
1170 }
1171 
1172 static int tcp_listen_for_all(void)
1173 {
1174 	struct socket *sock = NULL;
1175 	struct connection *con = nodeid2con(0, GFP_NOFS);
1176 	int result = -EINVAL;
1177 
1178 	if (!con)
1179 		return -ENOMEM;
1180 
1181 	/* We don't support multi-homed hosts */
1182 	if (dlm_local_addr[1] != NULL) {
1183 		log_print("TCP protocol can't handle multi-homed hosts, "
1184 			  "try SCTP");
1185 		return -EINVAL;
1186 	}
1187 
1188 	log_print("Using TCP for communications");
1189 
1190 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1191 	if (sock) {
1192 		add_sock(sock, con);
1193 		result = 0;
1194 	}
1195 	else {
1196 		result = -EADDRINUSE;
1197 	}
1198 
1199 	return result;
1200 }
1201 
1202 
1203 
1204 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1205 						     gfp_t allocation)
1206 {
1207 	struct writequeue_entry *entry;
1208 
1209 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1210 	if (!entry)
1211 		return NULL;
1212 
1213 	entry->page = alloc_page(allocation);
1214 	if (!entry->page) {
1215 		kfree(entry);
1216 		return NULL;
1217 	}
1218 
1219 	entry->offset = 0;
1220 	entry->len = 0;
1221 	entry->end = 0;
1222 	entry->users = 0;
1223 	entry->con = con;
1224 
1225 	return entry;
1226 }
1227 
1228 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1229 {
1230 	struct connection *con;
1231 	struct writequeue_entry *e;
1232 	int offset = 0;
1233 	int users = 0;
1234 
1235 	con = nodeid2con(nodeid, allocation);
1236 	if (!con)
1237 		return NULL;
1238 
1239 	spin_lock(&con->writequeue_lock);
1240 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1241 	if ((&e->list == &con->writequeue) ||
1242 	    (PAGE_CACHE_SIZE - e->end < len)) {
1243 		e = NULL;
1244 	} else {
1245 		offset = e->end;
1246 		e->end += len;
1247 		users = e->users++;
1248 	}
1249 	spin_unlock(&con->writequeue_lock);
1250 
1251 	if (e) {
1252 	got_one:
1253 		*ppc = page_address(e->page) + offset;
1254 		return e;
1255 	}
1256 
1257 	e = new_writequeue_entry(con, allocation);
1258 	if (e) {
1259 		spin_lock(&con->writequeue_lock);
1260 		offset = e->end;
1261 		e->end += len;
1262 		users = e->users++;
1263 		list_add_tail(&e->list, &con->writequeue);
1264 		spin_unlock(&con->writequeue_lock);
1265 		goto got_one;
1266 	}
1267 	return NULL;
1268 }
1269 
1270 void dlm_lowcomms_commit_buffer(void *mh)
1271 {
1272 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1273 	struct connection *con = e->con;
1274 	int users;
1275 
1276 	spin_lock(&con->writequeue_lock);
1277 	users = --e->users;
1278 	if (users)
1279 		goto out;
1280 	e->len = e->end - e->offset;
1281 	spin_unlock(&con->writequeue_lock);
1282 
1283 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1284 		queue_work(send_workqueue, &con->swork);
1285 	}
1286 	return;
1287 
1288 out:
1289 	spin_unlock(&con->writequeue_lock);
1290 	return;
1291 }
1292 
1293 /* Send a message */
1294 static void send_to_sock(struct connection *con)
1295 {
1296 	int ret = 0;
1297 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1298 	struct writequeue_entry *e;
1299 	int len, offset;
1300 
1301 	mutex_lock(&con->sock_mutex);
1302 	if (con->sock == NULL)
1303 		goto out_connect;
1304 
1305 	spin_lock(&con->writequeue_lock);
1306 	for (;;) {
1307 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1308 			       list);
1309 		if ((struct list_head *) e == &con->writequeue)
1310 			break;
1311 
1312 		len = e->len;
1313 		offset = e->offset;
1314 		BUG_ON(len == 0 && e->users == 0);
1315 		spin_unlock(&con->writequeue_lock);
1316 
1317 		ret = 0;
1318 		if (len) {
1319 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1320 					      msg_flags);
1321 			if (ret == -EAGAIN || ret == 0) {
1322 				cond_resched();
1323 				goto out;
1324 			}
1325 			if (ret <= 0)
1326 				goto send_error;
1327 		}
1328 			/* Don't starve people filling buffers */
1329 			cond_resched();
1330 
1331 		spin_lock(&con->writequeue_lock);
1332 		e->offset += ret;
1333 		e->len -= ret;
1334 
1335 		if (e->len == 0 && e->users == 0) {
1336 			list_del(&e->list);
1337 			free_entry(e);
1338 			continue;
1339 		}
1340 	}
1341 	spin_unlock(&con->writequeue_lock);
1342 out:
1343 	mutex_unlock(&con->sock_mutex);
1344 	return;
1345 
1346 send_error:
1347 	mutex_unlock(&con->sock_mutex);
1348 	close_connection(con, false);
1349 	lowcomms_connect_sock(con);
1350 	return;
1351 
1352 out_connect:
1353 	mutex_unlock(&con->sock_mutex);
1354 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1355 		lowcomms_connect_sock(con);
1356 	return;
1357 }
1358 
1359 static void clean_one_writequeue(struct connection *con)
1360 {
1361 	struct writequeue_entry *e, *safe;
1362 
1363 	spin_lock(&con->writequeue_lock);
1364 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1365 		list_del(&e->list);
1366 		free_entry(e);
1367 	}
1368 	spin_unlock(&con->writequeue_lock);
1369 }
1370 
1371 /* Called from recovery when it knows that a node has
1372    left the cluster */
1373 int dlm_lowcomms_close(int nodeid)
1374 {
1375 	struct connection *con;
1376 
1377 	log_print("closing connection to node %d", nodeid);
1378 	con = nodeid2con(nodeid, 0);
1379 	if (con) {
1380 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1381 		clear_bit(CF_WRITE_PENDING, &con->flags);
1382 		set_bit(CF_CLOSE, &con->flags);
1383 		if (cancel_work_sync(&con->swork))
1384 			log_print("canceled swork for node %d", nodeid);
1385 		if (cancel_work_sync(&con->rwork))
1386 			log_print("canceled rwork for node %d", nodeid);
1387 		clean_one_writequeue(con);
1388 		close_connection(con, true);
1389 	}
1390 	return 0;
1391 }
1392 
1393 /* Receive workqueue function */
1394 static void process_recv_sockets(struct work_struct *work)
1395 {
1396 	struct connection *con = container_of(work, struct connection, rwork);
1397 	int err;
1398 
1399 	clear_bit(CF_READ_PENDING, &con->flags);
1400 	do {
1401 		err = con->rx_action(con);
1402 	} while (!err);
1403 }
1404 
1405 /* Send workqueue function */
1406 static void process_send_sockets(struct work_struct *work)
1407 {
1408 	struct connection *con = container_of(work, struct connection, swork);
1409 
1410 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1411 		con->connect_action(con);
1412 		set_bit(CF_WRITE_PENDING, &con->flags);
1413 	}
1414 	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1415 		send_to_sock(con);
1416 }
1417 
1418 
1419 /* Discard all entries on the write queues */
1420 static void clean_writequeues(void)
1421 {
1422 	foreach_conn(clean_one_writequeue);
1423 }
1424 
1425 static void work_stop(void)
1426 {
1427 	destroy_workqueue(recv_workqueue);
1428 	destroy_workqueue(send_workqueue);
1429 }
1430 
1431 static int work_start(void)
1432 {
1433 	int error;
1434 	recv_workqueue = create_workqueue("dlm_recv");
1435 	error = IS_ERR(recv_workqueue);
1436 	if (error) {
1437 		log_print("can't start dlm_recv %d", error);
1438 		return error;
1439 	}
1440 
1441 	send_workqueue = create_singlethread_workqueue("dlm_send");
1442 	error = IS_ERR(send_workqueue);
1443 	if (error) {
1444 		log_print("can't start dlm_send %d", error);
1445 		destroy_workqueue(recv_workqueue);
1446 		return error;
1447 	}
1448 
1449 	return 0;
1450 }
1451 
1452 static void stop_conn(struct connection *con)
1453 {
1454 	con->flags |= 0x0F;
1455 	if (con->sock && con->sock->sk)
1456 		con->sock->sk->sk_user_data = NULL;
1457 }
1458 
1459 static void free_conn(struct connection *con)
1460 {
1461 	close_connection(con, true);
1462 	if (con->othercon)
1463 		kmem_cache_free(con_cache, con->othercon);
1464 	hlist_del(&con->list);
1465 	kmem_cache_free(con_cache, con);
1466 }
1467 
1468 void dlm_lowcomms_stop(void)
1469 {
1470 	/* Set all the flags to prevent any
1471 	   socket activity.
1472 	*/
1473 	mutex_lock(&connections_lock);
1474 	foreach_conn(stop_conn);
1475 	mutex_unlock(&connections_lock);
1476 
1477 	work_stop();
1478 
1479 	mutex_lock(&connections_lock);
1480 	clean_writequeues();
1481 
1482 	foreach_conn(free_conn);
1483 
1484 	mutex_unlock(&connections_lock);
1485 	kmem_cache_destroy(con_cache);
1486 }
1487 
1488 int dlm_lowcomms_start(void)
1489 {
1490 	int error = -EINVAL;
1491 	struct connection *con;
1492 	int i;
1493 
1494 	for (i = 0; i < CONN_HASH_SIZE; i++)
1495 		INIT_HLIST_HEAD(&connection_hash[i]);
1496 
1497 	init_local();
1498 	if (!dlm_local_count) {
1499 		error = -ENOTCONN;
1500 		log_print("no local IP address has been set");
1501 		goto out;
1502 	}
1503 
1504 	error = -ENOMEM;
1505 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1506 				      __alignof__(struct connection), 0,
1507 				      NULL);
1508 	if (!con_cache)
1509 		goto out;
1510 
1511 	/* Start listening */
1512 	if (dlm_config.ci_protocol == 0)
1513 		error = tcp_listen_for_all();
1514 	else
1515 		error = sctp_listen_for_all();
1516 	if (error)
1517 		goto fail_unlisten;
1518 
1519 	error = work_start();
1520 	if (error)
1521 		goto fail_unlisten;
1522 
1523 	return 0;
1524 
1525 fail_unlisten:
1526 	con = nodeid2con(0,0);
1527 	if (con) {
1528 		close_connection(con, false);
1529 		kmem_cache_free(con_cache, con);
1530 	}
1531 	kmem_cache_destroy(con_cache);
1532 
1533 out:
1534 	return error;
1535 }
1536