xref: /openbmc/linux/fs/dlm/lowcomms.c (revision b390ca38)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <linux/sctp.h>
56 #include <net/sctp/sctp.h>
57 #include <net/ipv6.h>
58 
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "config.h"
63 
64 #define NEEDED_RMEM (4*1024*1024)
65 #define CONN_HASH_SIZE 32
66 
67 /* Number of messages to send before rescheduling */
68 #define MAX_SEND_MSG_COUNT 25
69 
70 struct cbuf {
71 	unsigned int base;
72 	unsigned int len;
73 	unsigned int mask;
74 };
75 
76 static void cbuf_add(struct cbuf *cb, int n)
77 {
78 	cb->len += n;
79 }
80 
81 static int cbuf_data(struct cbuf *cb)
82 {
83 	return ((cb->base + cb->len) & cb->mask);
84 }
85 
86 static void cbuf_init(struct cbuf *cb, int size)
87 {
88 	cb->base = cb->len = 0;
89 	cb->mask = size-1;
90 }
91 
92 static void cbuf_eat(struct cbuf *cb, int n)
93 {
94 	cb->len  -= n;
95 	cb->base += n;
96 	cb->base &= cb->mask;
97 }
98 
99 static bool cbuf_empty(struct cbuf *cb)
100 {
101 	return cb->len == 0;
102 }
103 
104 struct connection {
105 	struct socket *sock;	/* NULL if not connected */
106 	uint32_t nodeid;	/* So we know who we are in the list */
107 	struct mutex sock_mutex;
108 	unsigned long flags;
109 #define CF_READ_PENDING 1
110 #define CF_WRITE_PENDING 2
111 #define CF_CONNECT_PENDING 3
112 #define CF_INIT_PENDING 4
113 #define CF_IS_OTHERCON 5
114 #define CF_CLOSE 6
115 #define CF_APP_LIMITED 7
116 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
117 	spinlock_t writequeue_lock;
118 	int (*rx_action) (struct connection *);	/* What to do when active */
119 	void (*connect_action) (struct connection *);	/* What to do to connect */
120 	struct page *rx_page;
121 	struct cbuf cb;
122 	int retries;
123 #define MAX_CONNECT_RETRIES 3
124 	int sctp_assoc;
125 	struct hlist_node list;
126 	struct connection *othercon;
127 	struct work_struct rwork; /* Receive workqueue */
128 	struct work_struct swork; /* Send workqueue */
129 };
130 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
131 
132 /* An entry waiting to be sent */
133 struct writequeue_entry {
134 	struct list_head list;
135 	struct page *page;
136 	int offset;
137 	int len;
138 	int end;
139 	int users;
140 	struct connection *con;
141 };
142 
143 struct dlm_node_addr {
144 	struct list_head list;
145 	int nodeid;
146 	int addr_count;
147 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
148 };
149 
150 static LIST_HEAD(dlm_node_addrs);
151 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
152 
153 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
154 static int dlm_local_count;
155 static int dlm_allow_conn;
156 
157 /* Work queues */
158 static struct workqueue_struct *recv_workqueue;
159 static struct workqueue_struct *send_workqueue;
160 
161 static struct hlist_head connection_hash[CONN_HASH_SIZE];
162 static DEFINE_MUTEX(connections_lock);
163 static struct kmem_cache *con_cache;
164 
165 static void process_recv_sockets(struct work_struct *work);
166 static void process_send_sockets(struct work_struct *work);
167 
168 
169 /* This is deliberately very simple because most clusters have simple
170    sequential nodeids, so we should be able to go straight to a connection
171    struct in the array */
172 static inline int nodeid_hash(int nodeid)
173 {
174 	return nodeid & (CONN_HASH_SIZE-1);
175 }
176 
177 static struct connection *__find_con(int nodeid)
178 {
179 	int r;
180 	struct connection *con;
181 
182 	r = nodeid_hash(nodeid);
183 
184 	hlist_for_each_entry(con, &connection_hash[r], list) {
185 		if (con->nodeid == nodeid)
186 			return con;
187 	}
188 	return NULL;
189 }
190 
191 /*
192  * If 'allocation' is zero then we don't attempt to create a new
193  * connection structure for this node.
194  */
195 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
196 {
197 	struct connection *con = NULL;
198 	int r;
199 
200 	con = __find_con(nodeid);
201 	if (con || !alloc)
202 		return con;
203 
204 	con = kmem_cache_zalloc(con_cache, alloc);
205 	if (!con)
206 		return NULL;
207 
208 	r = nodeid_hash(nodeid);
209 	hlist_add_head(&con->list, &connection_hash[r]);
210 
211 	con->nodeid = nodeid;
212 	mutex_init(&con->sock_mutex);
213 	INIT_LIST_HEAD(&con->writequeue);
214 	spin_lock_init(&con->writequeue_lock);
215 	INIT_WORK(&con->swork, process_send_sockets);
216 	INIT_WORK(&con->rwork, process_recv_sockets);
217 
218 	/* Setup action pointers for child sockets */
219 	if (con->nodeid) {
220 		struct connection *zerocon = __find_con(0);
221 
222 		con->connect_action = zerocon->connect_action;
223 		if (!con->rx_action)
224 			con->rx_action = zerocon->rx_action;
225 	}
226 
227 	return con;
228 }
229 
230 /* Loop round all connections */
231 static void foreach_conn(void (*conn_func)(struct connection *c))
232 {
233 	int i;
234 	struct hlist_node *n;
235 	struct connection *con;
236 
237 	for (i = 0; i < CONN_HASH_SIZE; i++) {
238 		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
239 			conn_func(con);
240 	}
241 }
242 
243 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
244 {
245 	struct connection *con;
246 
247 	mutex_lock(&connections_lock);
248 	con = __nodeid2con(nodeid, allocation);
249 	mutex_unlock(&connections_lock);
250 
251 	return con;
252 }
253 
254 /* This is a bit drastic, but only called when things go wrong */
255 static struct connection *assoc2con(int assoc_id)
256 {
257 	int i;
258 	struct connection *con;
259 
260 	mutex_lock(&connections_lock);
261 
262 	for (i = 0 ; i < CONN_HASH_SIZE; i++) {
263 		hlist_for_each_entry(con, &connection_hash[i], list) {
264 			if (con->sctp_assoc == assoc_id) {
265 				mutex_unlock(&connections_lock);
266 				return con;
267 			}
268 		}
269 	}
270 	mutex_unlock(&connections_lock);
271 	return NULL;
272 }
273 
274 static struct dlm_node_addr *find_node_addr(int nodeid)
275 {
276 	struct dlm_node_addr *na;
277 
278 	list_for_each_entry(na, &dlm_node_addrs, list) {
279 		if (na->nodeid == nodeid)
280 			return na;
281 	}
282 	return NULL;
283 }
284 
285 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
286 {
287 	switch (x->ss_family) {
288 	case AF_INET: {
289 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
290 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
291 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
292 			return 0;
293 		if (sinx->sin_port != siny->sin_port)
294 			return 0;
295 		break;
296 	}
297 	case AF_INET6: {
298 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
299 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
300 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
301 			return 0;
302 		if (sinx->sin6_port != siny->sin6_port)
303 			return 0;
304 		break;
305 	}
306 	default:
307 		return 0;
308 	}
309 	return 1;
310 }
311 
312 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
313 			  struct sockaddr *sa_out)
314 {
315 	struct sockaddr_storage sas;
316 	struct dlm_node_addr *na;
317 
318 	if (!dlm_local_count)
319 		return -1;
320 
321 	spin_lock(&dlm_node_addrs_spin);
322 	na = find_node_addr(nodeid);
323 	if (na && na->addr_count)
324 		memcpy(&sas, na->addr[0], sizeof(struct sockaddr_storage));
325 	spin_unlock(&dlm_node_addrs_spin);
326 
327 	if (!na)
328 		return -EEXIST;
329 
330 	if (!na->addr_count)
331 		return -ENOENT;
332 
333 	if (sas_out)
334 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
335 
336 	if (!sa_out)
337 		return 0;
338 
339 	if (dlm_local_addr[0]->ss_family == AF_INET) {
340 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
341 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
342 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
343 	} else {
344 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
345 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
346 		ret6->sin6_addr = in6->sin6_addr;
347 	}
348 
349 	return 0;
350 }
351 
352 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
353 {
354 	struct dlm_node_addr *na;
355 	int rv = -EEXIST;
356 
357 	spin_lock(&dlm_node_addrs_spin);
358 	list_for_each_entry(na, &dlm_node_addrs, list) {
359 		if (!na->addr_count)
360 			continue;
361 
362 		if (!addr_compare(na->addr[0], addr))
363 			continue;
364 
365 		*nodeid = na->nodeid;
366 		rv = 0;
367 		break;
368 	}
369 	spin_unlock(&dlm_node_addrs_spin);
370 	return rv;
371 }
372 
373 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
374 {
375 	struct sockaddr_storage *new_addr;
376 	struct dlm_node_addr *new_node, *na;
377 
378 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
379 	if (!new_node)
380 		return -ENOMEM;
381 
382 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
383 	if (!new_addr) {
384 		kfree(new_node);
385 		return -ENOMEM;
386 	}
387 
388 	memcpy(new_addr, addr, len);
389 
390 	spin_lock(&dlm_node_addrs_spin);
391 	na = find_node_addr(nodeid);
392 	if (!na) {
393 		new_node->nodeid = nodeid;
394 		new_node->addr[0] = new_addr;
395 		new_node->addr_count = 1;
396 		list_add(&new_node->list, &dlm_node_addrs);
397 		spin_unlock(&dlm_node_addrs_spin);
398 		return 0;
399 	}
400 
401 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
402 		spin_unlock(&dlm_node_addrs_spin);
403 		kfree(new_addr);
404 		kfree(new_node);
405 		return -ENOSPC;
406 	}
407 
408 	na->addr[na->addr_count++] = new_addr;
409 	spin_unlock(&dlm_node_addrs_spin);
410 	kfree(new_node);
411 	return 0;
412 }
413 
414 /* Data available on socket or listen socket received a connect */
415 static void lowcomms_data_ready(struct sock *sk, int count_unused)
416 {
417 	struct connection *con = sock2con(sk);
418 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
419 		queue_work(recv_workqueue, &con->rwork);
420 }
421 
422 static void lowcomms_write_space(struct sock *sk)
423 {
424 	struct connection *con = sock2con(sk);
425 
426 	if (!con)
427 		return;
428 
429 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
430 
431 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
432 		con->sock->sk->sk_write_pending--;
433 		clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
434 	}
435 
436 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
437 		queue_work(send_workqueue, &con->swork);
438 }
439 
440 static inline void lowcomms_connect_sock(struct connection *con)
441 {
442 	if (test_bit(CF_CLOSE, &con->flags))
443 		return;
444 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
445 		queue_work(send_workqueue, &con->swork);
446 }
447 
448 static void lowcomms_state_change(struct sock *sk)
449 {
450 	if (sk->sk_state == TCP_ESTABLISHED)
451 		lowcomms_write_space(sk);
452 }
453 
454 int dlm_lowcomms_connect_node(int nodeid)
455 {
456 	struct connection *con;
457 
458 	/* with sctp there's no connecting without sending */
459 	if (dlm_config.ci_protocol != 0)
460 		return 0;
461 
462 	if (nodeid == dlm_our_nodeid())
463 		return 0;
464 
465 	con = nodeid2con(nodeid, GFP_NOFS);
466 	if (!con)
467 		return -ENOMEM;
468 	lowcomms_connect_sock(con);
469 	return 0;
470 }
471 
472 /* Make a socket active */
473 static void add_sock(struct socket *sock, struct connection *con)
474 {
475 	con->sock = sock;
476 
477 	/* Install a data_ready callback */
478 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
479 	con->sock->sk->sk_write_space = lowcomms_write_space;
480 	con->sock->sk->sk_state_change = lowcomms_state_change;
481 	con->sock->sk->sk_user_data = con;
482 	con->sock->sk->sk_allocation = GFP_NOFS;
483 }
484 
485 /* Add the port number to an IPv6 or 4 sockaddr and return the address
486    length */
487 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
488 			  int *addr_len)
489 {
490 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
491 	if (saddr->ss_family == AF_INET) {
492 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
493 		in4_addr->sin_port = cpu_to_be16(port);
494 		*addr_len = sizeof(struct sockaddr_in);
495 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
496 	} else {
497 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
498 		in6_addr->sin6_port = cpu_to_be16(port);
499 		*addr_len = sizeof(struct sockaddr_in6);
500 	}
501 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
502 }
503 
504 /* Close a remote connection and tidy up */
505 static void close_connection(struct connection *con, bool and_other)
506 {
507 	mutex_lock(&con->sock_mutex);
508 
509 	if (con->sock) {
510 		sock_release(con->sock);
511 		con->sock = NULL;
512 	}
513 	if (con->othercon && and_other) {
514 		/* Will only re-enter once. */
515 		close_connection(con->othercon, false);
516 	}
517 	if (con->rx_page) {
518 		__free_page(con->rx_page);
519 		con->rx_page = NULL;
520 	}
521 
522 	con->retries = 0;
523 	mutex_unlock(&con->sock_mutex);
524 }
525 
526 /* We only send shutdown messages to nodes that are not part of the cluster */
527 static void sctp_send_shutdown(sctp_assoc_t associd)
528 {
529 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
530 	struct msghdr outmessage;
531 	struct cmsghdr *cmsg;
532 	struct sctp_sndrcvinfo *sinfo;
533 	int ret;
534 	struct connection *con;
535 
536 	con = nodeid2con(0,0);
537 	BUG_ON(con == NULL);
538 
539 	outmessage.msg_name = NULL;
540 	outmessage.msg_namelen = 0;
541 	outmessage.msg_control = outcmsg;
542 	outmessage.msg_controllen = sizeof(outcmsg);
543 	outmessage.msg_flags = MSG_EOR;
544 
545 	cmsg = CMSG_FIRSTHDR(&outmessage);
546 	cmsg->cmsg_level = IPPROTO_SCTP;
547 	cmsg->cmsg_type = SCTP_SNDRCV;
548 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
549 	outmessage.msg_controllen = cmsg->cmsg_len;
550 	sinfo = CMSG_DATA(cmsg);
551 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
552 
553 	sinfo->sinfo_flags |= MSG_EOF;
554 	sinfo->sinfo_assoc_id = associd;
555 
556 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
557 
558 	if (ret != 0)
559 		log_print("send EOF to node failed: %d", ret);
560 }
561 
562 static void sctp_init_failed_foreach(struct connection *con)
563 {
564 	con->sctp_assoc = 0;
565 	if (test_and_clear_bit(CF_INIT_PENDING, &con->flags)) {
566 		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
567 			queue_work(send_workqueue, &con->swork);
568 	}
569 }
570 
571 /* INIT failed but we don't know which node...
572    restart INIT on all pending nodes */
573 static void sctp_init_failed(void)
574 {
575 	mutex_lock(&connections_lock);
576 
577 	foreach_conn(sctp_init_failed_foreach);
578 
579 	mutex_unlock(&connections_lock);
580 }
581 
582 /* Something happened to an association */
583 static void process_sctp_notification(struct connection *con,
584 				      struct msghdr *msg, char *buf)
585 {
586 	union sctp_notification *sn = (union sctp_notification *)buf;
587 
588 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
589 		switch (sn->sn_assoc_change.sac_state) {
590 
591 		case SCTP_COMM_UP:
592 		case SCTP_RESTART:
593 		{
594 			/* Check that the new node is in the lockspace */
595 			struct sctp_prim prim;
596 			int nodeid;
597 			int prim_len, ret;
598 			int addr_len;
599 			struct connection *new_con;
600 
601 			/*
602 			 * We get this before any data for an association.
603 			 * We verify that the node is in the cluster and
604 			 * then peel off a socket for it.
605 			 */
606 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
607 				log_print("COMM_UP for invalid assoc ID %d",
608 					 (int)sn->sn_assoc_change.sac_assoc_id);
609 				sctp_init_failed();
610 				return;
611 			}
612 			memset(&prim, 0, sizeof(struct sctp_prim));
613 			prim_len = sizeof(struct sctp_prim);
614 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
615 
616 			ret = kernel_getsockopt(con->sock,
617 						IPPROTO_SCTP,
618 						SCTP_PRIMARY_ADDR,
619 						(char*)&prim,
620 						&prim_len);
621 			if (ret < 0) {
622 				log_print("getsockopt/sctp_primary_addr on "
623 					  "new assoc %d failed : %d",
624 					  (int)sn->sn_assoc_change.sac_assoc_id,
625 					  ret);
626 
627 				/* Retry INIT later */
628 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
629 				if (new_con)
630 					clear_bit(CF_CONNECT_PENDING, &con->flags);
631 				return;
632 			}
633 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
634 			if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
635 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
636 				log_print("reject connect from unknown addr");
637 				print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
638 						     b, sizeof(struct sockaddr_storage));
639 				sctp_send_shutdown(prim.ssp_assoc_id);
640 				return;
641 			}
642 
643 			new_con = nodeid2con(nodeid, GFP_NOFS);
644 			if (!new_con)
645 				return;
646 
647 			/* Peel off a new sock */
648 			sctp_lock_sock(con->sock->sk);
649 			ret = sctp_do_peeloff(con->sock->sk,
650 				sn->sn_assoc_change.sac_assoc_id,
651 				&new_con->sock);
652 			sctp_release_sock(con->sock->sk);
653 			if (ret < 0) {
654 				log_print("Can't peel off a socket for "
655 					  "connection %d to node %d: err=%d",
656 					  (int)sn->sn_assoc_change.sac_assoc_id,
657 					  nodeid, ret);
658 				return;
659 			}
660 			add_sock(new_con->sock, new_con);
661 
662 			log_print("connecting to %d sctp association %d",
663 				 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
664 
665 			new_con->sctp_assoc = sn->sn_assoc_change.sac_assoc_id;
666 			/* Send any pending writes */
667 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
668 			clear_bit(CF_INIT_PENDING, &new_con->flags);
669 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
670 				queue_work(send_workqueue, &new_con->swork);
671 			}
672 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
673 				queue_work(recv_workqueue, &new_con->rwork);
674 		}
675 		break;
676 
677 		case SCTP_COMM_LOST:
678 		case SCTP_SHUTDOWN_COMP:
679 		{
680 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
681 			if (con) {
682 				con->sctp_assoc = 0;
683 			}
684 		}
685 		break;
686 
687 		/* We don't know which INIT failed, so clear the PENDING flags
688 		 * on them all.  if assoc_id is zero then it will then try
689 		 * again */
690 
691 		case SCTP_CANT_STR_ASSOC:
692 		{
693 			log_print("Can't start SCTP association - retrying");
694 			sctp_init_failed();
695 		}
696 		break;
697 
698 		default:
699 			log_print("unexpected SCTP assoc change id=%d state=%d",
700 				  (int)sn->sn_assoc_change.sac_assoc_id,
701 				  sn->sn_assoc_change.sac_state);
702 		}
703 	}
704 }
705 
706 /* Data received from remote end */
707 static int receive_from_sock(struct connection *con)
708 {
709 	int ret = 0;
710 	struct msghdr msg = {};
711 	struct kvec iov[2];
712 	unsigned len;
713 	int r;
714 	int call_again_soon = 0;
715 	int nvec;
716 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
717 
718 	mutex_lock(&con->sock_mutex);
719 
720 	if (con->sock == NULL) {
721 		ret = -EAGAIN;
722 		goto out_close;
723 	}
724 
725 	if (con->rx_page == NULL) {
726 		/*
727 		 * This doesn't need to be atomic, but I think it should
728 		 * improve performance if it is.
729 		 */
730 		con->rx_page = alloc_page(GFP_ATOMIC);
731 		if (con->rx_page == NULL)
732 			goto out_resched;
733 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
734 	}
735 
736 	/* Only SCTP needs these really */
737 	memset(&incmsg, 0, sizeof(incmsg));
738 	msg.msg_control = incmsg;
739 	msg.msg_controllen = sizeof(incmsg);
740 
741 	/*
742 	 * iov[0] is the bit of the circular buffer between the current end
743 	 * point (cb.base + cb.len) and the end of the buffer.
744 	 */
745 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
746 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
747 	iov[1].iov_len = 0;
748 	nvec = 1;
749 
750 	/*
751 	 * iov[1] is the bit of the circular buffer between the start of the
752 	 * buffer and the start of the currently used section (cb.base)
753 	 */
754 	if (cbuf_data(&con->cb) >= con->cb.base) {
755 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
756 		iov[1].iov_len = con->cb.base;
757 		iov[1].iov_base = page_address(con->rx_page);
758 		nvec = 2;
759 	}
760 	len = iov[0].iov_len + iov[1].iov_len;
761 
762 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
763 			       MSG_DONTWAIT | MSG_NOSIGNAL);
764 	if (ret <= 0)
765 		goto out_close;
766 
767 	/* Process SCTP notifications */
768 	if (msg.msg_flags & MSG_NOTIFICATION) {
769 		msg.msg_control = incmsg;
770 		msg.msg_controllen = sizeof(incmsg);
771 
772 		process_sctp_notification(con, &msg,
773 				page_address(con->rx_page) + con->cb.base);
774 		mutex_unlock(&con->sock_mutex);
775 		return 0;
776 	}
777 	BUG_ON(con->nodeid == 0);
778 
779 	if (ret == len)
780 		call_again_soon = 1;
781 	cbuf_add(&con->cb, ret);
782 	ret = dlm_process_incoming_buffer(con->nodeid,
783 					  page_address(con->rx_page),
784 					  con->cb.base, con->cb.len,
785 					  PAGE_CACHE_SIZE);
786 	if (ret == -EBADMSG) {
787 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
788 			  "iov_len=%u, iov_base[0]=%p, read=%d",
789 			  page_address(con->rx_page), con->cb.base, con->cb.len,
790 			  len, iov[0].iov_base, r);
791 	}
792 	if (ret < 0)
793 		goto out_close;
794 	cbuf_eat(&con->cb, ret);
795 
796 	if (cbuf_empty(&con->cb) && !call_again_soon) {
797 		__free_page(con->rx_page);
798 		con->rx_page = NULL;
799 	}
800 
801 	if (call_again_soon)
802 		goto out_resched;
803 	mutex_unlock(&con->sock_mutex);
804 	return 0;
805 
806 out_resched:
807 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
808 		queue_work(recv_workqueue, &con->rwork);
809 	mutex_unlock(&con->sock_mutex);
810 	return -EAGAIN;
811 
812 out_close:
813 	mutex_unlock(&con->sock_mutex);
814 	if (ret != -EAGAIN) {
815 		close_connection(con, false);
816 		/* Reconnect when there is something to send */
817 	}
818 	/* Don't return success if we really got EOF */
819 	if (ret == 0)
820 		ret = -EAGAIN;
821 
822 	return ret;
823 }
824 
825 /* Listening socket is busy, accept a connection */
826 static int tcp_accept_from_sock(struct connection *con)
827 {
828 	int result;
829 	struct sockaddr_storage peeraddr;
830 	struct socket *newsock;
831 	int len;
832 	int nodeid;
833 	struct connection *newcon;
834 	struct connection *addcon;
835 
836 	mutex_lock(&connections_lock);
837 	if (!dlm_allow_conn) {
838 		mutex_unlock(&connections_lock);
839 		return -1;
840 	}
841 	mutex_unlock(&connections_lock);
842 
843 	memset(&peeraddr, 0, sizeof(peeraddr));
844 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
845 				  IPPROTO_TCP, &newsock);
846 	if (result < 0)
847 		return -ENOMEM;
848 
849 	mutex_lock_nested(&con->sock_mutex, 0);
850 
851 	result = -ENOTCONN;
852 	if (con->sock == NULL)
853 		goto accept_err;
854 
855 	newsock->type = con->sock->type;
856 	newsock->ops = con->sock->ops;
857 
858 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
859 	if (result < 0)
860 		goto accept_err;
861 
862 	/* Get the connected socket's peer */
863 	memset(&peeraddr, 0, sizeof(peeraddr));
864 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
865 				  &len, 2)) {
866 		result = -ECONNABORTED;
867 		goto accept_err;
868 	}
869 
870 	/* Get the new node's NODEID */
871 	make_sockaddr(&peeraddr, 0, &len);
872 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
873 		unsigned char *b=(unsigned char *)&peeraddr;
874 		log_print("connect from non cluster node");
875 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
876 				     b, sizeof(struct sockaddr_storage));
877 		sock_release(newsock);
878 		mutex_unlock(&con->sock_mutex);
879 		return -1;
880 	}
881 
882 	log_print("got connection from %d", nodeid);
883 
884 	/*  Check to see if we already have a connection to this node. This
885 	 *  could happen if the two nodes initiate a connection at roughly
886 	 *  the same time and the connections cross on the wire.
887 	 *  In this case we store the incoming one in "othercon"
888 	 */
889 	newcon = nodeid2con(nodeid, GFP_NOFS);
890 	if (!newcon) {
891 		result = -ENOMEM;
892 		goto accept_err;
893 	}
894 	mutex_lock_nested(&newcon->sock_mutex, 1);
895 	if (newcon->sock) {
896 		struct connection *othercon = newcon->othercon;
897 
898 		if (!othercon) {
899 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
900 			if (!othercon) {
901 				log_print("failed to allocate incoming socket");
902 				mutex_unlock(&newcon->sock_mutex);
903 				result = -ENOMEM;
904 				goto accept_err;
905 			}
906 			othercon->nodeid = nodeid;
907 			othercon->rx_action = receive_from_sock;
908 			mutex_init(&othercon->sock_mutex);
909 			INIT_WORK(&othercon->swork, process_send_sockets);
910 			INIT_WORK(&othercon->rwork, process_recv_sockets);
911 			set_bit(CF_IS_OTHERCON, &othercon->flags);
912 		}
913 		if (!othercon->sock) {
914 			newcon->othercon = othercon;
915 			othercon->sock = newsock;
916 			newsock->sk->sk_user_data = othercon;
917 			add_sock(newsock, othercon);
918 			addcon = othercon;
919 		}
920 		else {
921 			printk("Extra connection from node %d attempted\n", nodeid);
922 			result = -EAGAIN;
923 			mutex_unlock(&newcon->sock_mutex);
924 			goto accept_err;
925 		}
926 	}
927 	else {
928 		newsock->sk->sk_user_data = newcon;
929 		newcon->rx_action = receive_from_sock;
930 		add_sock(newsock, newcon);
931 		addcon = newcon;
932 	}
933 
934 	mutex_unlock(&newcon->sock_mutex);
935 
936 	/*
937 	 * Add it to the active queue in case we got data
938 	 * between processing the accept adding the socket
939 	 * to the read_sockets list
940 	 */
941 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
942 		queue_work(recv_workqueue, &addcon->rwork);
943 	mutex_unlock(&con->sock_mutex);
944 
945 	return 0;
946 
947 accept_err:
948 	mutex_unlock(&con->sock_mutex);
949 	sock_release(newsock);
950 
951 	if (result != -EAGAIN)
952 		log_print("error accepting connection from node: %d", result);
953 	return result;
954 }
955 
956 static void free_entry(struct writequeue_entry *e)
957 {
958 	__free_page(e->page);
959 	kfree(e);
960 }
961 
962 /* Initiate an SCTP association.
963    This is a special case of send_to_sock() in that we don't yet have a
964    peeled-off socket for this association, so we use the listening socket
965    and add the primary IP address of the remote node.
966  */
967 static void sctp_init_assoc(struct connection *con)
968 {
969 	struct sockaddr_storage rem_addr;
970 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
971 	struct msghdr outmessage;
972 	struct cmsghdr *cmsg;
973 	struct sctp_sndrcvinfo *sinfo;
974 	struct connection *base_con;
975 	struct writequeue_entry *e;
976 	int len, offset;
977 	int ret;
978 	int addrlen;
979 	struct kvec iov[1];
980 
981 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
982 		return;
983 
984 	if (con->retries++ > MAX_CONNECT_RETRIES)
985 		return;
986 
987 	if (nodeid_to_addr(con->nodeid, NULL, (struct sockaddr *)&rem_addr)) {
988 		log_print("no address for nodeid %d", con->nodeid);
989 		return;
990 	}
991 	base_con = nodeid2con(0, 0);
992 	BUG_ON(base_con == NULL);
993 
994 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
995 
996 	outmessage.msg_name = &rem_addr;
997 	outmessage.msg_namelen = addrlen;
998 	outmessage.msg_control = outcmsg;
999 	outmessage.msg_controllen = sizeof(outcmsg);
1000 	outmessage.msg_flags = MSG_EOR;
1001 
1002 	spin_lock(&con->writequeue_lock);
1003 
1004 	if (list_empty(&con->writequeue)) {
1005 		spin_unlock(&con->writequeue_lock);
1006 		log_print("writequeue empty for nodeid %d", con->nodeid);
1007 		return;
1008 	}
1009 
1010 	e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
1011 	len = e->len;
1012 	offset = e->offset;
1013 	spin_unlock(&con->writequeue_lock);
1014 
1015 	/* Send the first block off the write queue */
1016 	iov[0].iov_base = page_address(e->page)+offset;
1017 	iov[0].iov_len = len;
1018 
1019 	cmsg = CMSG_FIRSTHDR(&outmessage);
1020 	cmsg->cmsg_level = IPPROTO_SCTP;
1021 	cmsg->cmsg_type = SCTP_SNDRCV;
1022 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
1023 	sinfo = CMSG_DATA(cmsg);
1024 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
1025 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
1026 	outmessage.msg_controllen = cmsg->cmsg_len;
1027 
1028 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
1029 	if (ret < 0) {
1030 		log_print("Send first packet to node %d failed: %d",
1031 			  con->nodeid, ret);
1032 
1033 		/* Try again later */
1034 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1035 		clear_bit(CF_INIT_PENDING, &con->flags);
1036 	}
1037 	else {
1038 		spin_lock(&con->writequeue_lock);
1039 		e->offset += ret;
1040 		e->len -= ret;
1041 
1042 		if (e->len == 0 && e->users == 0) {
1043 			list_del(&e->list);
1044 			free_entry(e);
1045 		}
1046 		spin_unlock(&con->writequeue_lock);
1047 	}
1048 }
1049 
1050 /* Connect a new socket to its peer */
1051 static void tcp_connect_to_sock(struct connection *con)
1052 {
1053 	struct sockaddr_storage saddr, src_addr;
1054 	int addr_len;
1055 	struct socket *sock = NULL;
1056 	int one = 1;
1057 	int result;
1058 
1059 	if (con->nodeid == 0) {
1060 		log_print("attempt to connect sock 0 foiled");
1061 		return;
1062 	}
1063 
1064 	mutex_lock(&con->sock_mutex);
1065 	if (con->retries++ > MAX_CONNECT_RETRIES)
1066 		goto out;
1067 
1068 	/* Some odd races can cause double-connects, ignore them */
1069 	if (con->sock)
1070 		goto out;
1071 
1072 	/* Create a socket to communicate with */
1073 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1074 				  IPPROTO_TCP, &sock);
1075 	if (result < 0)
1076 		goto out_err;
1077 
1078 	memset(&saddr, 0, sizeof(saddr));
1079 	result = nodeid_to_addr(con->nodeid, &saddr, NULL);
1080 	if (result < 0) {
1081 		log_print("no address for nodeid %d", con->nodeid);
1082 		goto out_err;
1083 	}
1084 
1085 	sock->sk->sk_user_data = con;
1086 	con->rx_action = receive_from_sock;
1087 	con->connect_action = tcp_connect_to_sock;
1088 	add_sock(sock, con);
1089 
1090 	/* Bind to our cluster-known address connecting to avoid
1091 	   routing problems */
1092 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1093 	make_sockaddr(&src_addr, 0, &addr_len);
1094 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1095 				 addr_len);
1096 	if (result < 0) {
1097 		log_print("could not bind for connect: %d", result);
1098 		/* This *may* not indicate a critical error */
1099 	}
1100 
1101 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1102 
1103 	log_print("connecting to %d", con->nodeid);
1104 
1105 	/* Turn off Nagle's algorithm */
1106 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1107 			  sizeof(one));
1108 
1109 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1110 				   O_NONBLOCK);
1111 	if (result == -EINPROGRESS)
1112 		result = 0;
1113 	if (result == 0)
1114 		goto out;
1115 
1116 out_err:
1117 	if (con->sock) {
1118 		sock_release(con->sock);
1119 		con->sock = NULL;
1120 	} else if (sock) {
1121 		sock_release(sock);
1122 	}
1123 	/*
1124 	 * Some errors are fatal and this list might need adjusting. For other
1125 	 * errors we try again until the max number of retries is reached.
1126 	 */
1127 	if (result != -EHOSTUNREACH &&
1128 	    result != -ENETUNREACH &&
1129 	    result != -ENETDOWN &&
1130 	    result != -EINVAL &&
1131 	    result != -EPROTONOSUPPORT) {
1132 		log_print("connect %d try %d error %d", con->nodeid,
1133 			  con->retries, result);
1134 		mutex_unlock(&con->sock_mutex);
1135 		msleep(1000);
1136 		lowcomms_connect_sock(con);
1137 		return;
1138 	}
1139 out:
1140 	mutex_unlock(&con->sock_mutex);
1141 	return;
1142 }
1143 
1144 static struct socket *tcp_create_listen_sock(struct connection *con,
1145 					     struct sockaddr_storage *saddr)
1146 {
1147 	struct socket *sock = NULL;
1148 	int result = 0;
1149 	int one = 1;
1150 	int addr_len;
1151 
1152 	if (dlm_local_addr[0]->ss_family == AF_INET)
1153 		addr_len = sizeof(struct sockaddr_in);
1154 	else
1155 		addr_len = sizeof(struct sockaddr_in6);
1156 
1157 	/* Create a socket to communicate with */
1158 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1159 				  IPPROTO_TCP, &sock);
1160 	if (result < 0) {
1161 		log_print("Can't create listening comms socket");
1162 		goto create_out;
1163 	}
1164 
1165 	/* Turn off Nagle's algorithm */
1166 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1167 			  sizeof(one));
1168 
1169 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1170 				   (char *)&one, sizeof(one));
1171 
1172 	if (result < 0) {
1173 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1174 	}
1175 	con->rx_action = tcp_accept_from_sock;
1176 	con->connect_action = tcp_connect_to_sock;
1177 
1178 	/* Bind to our port */
1179 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1180 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1181 	if (result < 0) {
1182 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1183 		sock_release(sock);
1184 		sock = NULL;
1185 		con->sock = NULL;
1186 		goto create_out;
1187 	}
1188 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1189 				 (char *)&one, sizeof(one));
1190 	if (result < 0) {
1191 		log_print("Set keepalive failed: %d", result);
1192 	}
1193 
1194 	result = sock->ops->listen(sock, 5);
1195 	if (result < 0) {
1196 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1197 		sock_release(sock);
1198 		sock = NULL;
1199 		goto create_out;
1200 	}
1201 
1202 create_out:
1203 	return sock;
1204 }
1205 
1206 /* Get local addresses */
1207 static void init_local(void)
1208 {
1209 	struct sockaddr_storage sas, *addr;
1210 	int i;
1211 
1212 	dlm_local_count = 0;
1213 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1214 		if (dlm_our_addr(&sas, i))
1215 			break;
1216 
1217 		addr = kmalloc(sizeof(*addr), GFP_NOFS);
1218 		if (!addr)
1219 			break;
1220 		memcpy(addr, &sas, sizeof(*addr));
1221 		dlm_local_addr[dlm_local_count++] = addr;
1222 	}
1223 }
1224 
1225 /* Bind to an IP address. SCTP allows multiple address so it can do
1226    multi-homing */
1227 static int add_sctp_bind_addr(struct connection *sctp_con,
1228 			      struct sockaddr_storage *addr,
1229 			      int addr_len, int num)
1230 {
1231 	int result = 0;
1232 
1233 	if (num == 1)
1234 		result = kernel_bind(sctp_con->sock,
1235 				     (struct sockaddr *) addr,
1236 				     addr_len);
1237 	else
1238 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1239 					   SCTP_SOCKOPT_BINDX_ADD,
1240 					   (char *)addr, addr_len);
1241 
1242 	if (result < 0)
1243 		log_print("Can't bind to port %d addr number %d",
1244 			  dlm_config.ci_tcp_port, num);
1245 
1246 	return result;
1247 }
1248 
1249 /* Initialise SCTP socket and bind to all interfaces */
1250 static int sctp_listen_for_all(void)
1251 {
1252 	struct socket *sock = NULL;
1253 	struct sockaddr_storage localaddr;
1254 	struct sctp_event_subscribe subscribe;
1255 	int result = -EINVAL, num = 1, i, addr_len;
1256 	struct connection *con = nodeid2con(0, GFP_NOFS);
1257 	int bufsize = NEEDED_RMEM;
1258 
1259 	if (!con)
1260 		return -ENOMEM;
1261 
1262 	log_print("Using SCTP for communications");
1263 
1264 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1265 				  IPPROTO_SCTP, &sock);
1266 	if (result < 0) {
1267 		log_print("Can't create comms socket, check SCTP is loaded");
1268 		goto out;
1269 	}
1270 
1271 	/* Listen for events */
1272 	memset(&subscribe, 0, sizeof(subscribe));
1273 	subscribe.sctp_data_io_event = 1;
1274 	subscribe.sctp_association_event = 1;
1275 	subscribe.sctp_send_failure_event = 1;
1276 	subscribe.sctp_shutdown_event = 1;
1277 	subscribe.sctp_partial_delivery_event = 1;
1278 
1279 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1280 				 (char *)&bufsize, sizeof(bufsize));
1281 	if (result)
1282 		log_print("Error increasing buffer space on socket %d", result);
1283 
1284 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1285 				   (char *)&subscribe, sizeof(subscribe));
1286 	if (result < 0) {
1287 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1288 			  result);
1289 		goto create_delsock;
1290 	}
1291 
1292 	/* Init con struct */
1293 	sock->sk->sk_user_data = con;
1294 	con->sock = sock;
1295 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1296 	con->rx_action = receive_from_sock;
1297 	con->connect_action = sctp_init_assoc;
1298 
1299 	/* Bind to all interfaces. */
1300 	for (i = 0; i < dlm_local_count; i++) {
1301 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1302 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1303 
1304 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1305 		if (result)
1306 			goto create_delsock;
1307 		++num;
1308 	}
1309 
1310 	result = sock->ops->listen(sock, 5);
1311 	if (result < 0) {
1312 		log_print("Can't set socket listening");
1313 		goto create_delsock;
1314 	}
1315 
1316 	return 0;
1317 
1318 create_delsock:
1319 	sock_release(sock);
1320 	con->sock = NULL;
1321 out:
1322 	return result;
1323 }
1324 
1325 static int tcp_listen_for_all(void)
1326 {
1327 	struct socket *sock = NULL;
1328 	struct connection *con = nodeid2con(0, GFP_NOFS);
1329 	int result = -EINVAL;
1330 
1331 	if (!con)
1332 		return -ENOMEM;
1333 
1334 	/* We don't support multi-homed hosts */
1335 	if (dlm_local_addr[1] != NULL) {
1336 		log_print("TCP protocol can't handle multi-homed hosts, "
1337 			  "try SCTP");
1338 		return -EINVAL;
1339 	}
1340 
1341 	log_print("Using TCP for communications");
1342 
1343 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1344 	if (sock) {
1345 		add_sock(sock, con);
1346 		result = 0;
1347 	}
1348 	else {
1349 		result = -EADDRINUSE;
1350 	}
1351 
1352 	return result;
1353 }
1354 
1355 
1356 
1357 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1358 						     gfp_t allocation)
1359 {
1360 	struct writequeue_entry *entry;
1361 
1362 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1363 	if (!entry)
1364 		return NULL;
1365 
1366 	entry->page = alloc_page(allocation);
1367 	if (!entry->page) {
1368 		kfree(entry);
1369 		return NULL;
1370 	}
1371 
1372 	entry->offset = 0;
1373 	entry->len = 0;
1374 	entry->end = 0;
1375 	entry->users = 0;
1376 	entry->con = con;
1377 
1378 	return entry;
1379 }
1380 
1381 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1382 {
1383 	struct connection *con;
1384 	struct writequeue_entry *e;
1385 	int offset = 0;
1386 
1387 	con = nodeid2con(nodeid, allocation);
1388 	if (!con)
1389 		return NULL;
1390 
1391 	spin_lock(&con->writequeue_lock);
1392 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1393 	if ((&e->list == &con->writequeue) ||
1394 	    (PAGE_CACHE_SIZE - e->end < len)) {
1395 		e = NULL;
1396 	} else {
1397 		offset = e->end;
1398 		e->end += len;
1399 		e->users++;
1400 	}
1401 	spin_unlock(&con->writequeue_lock);
1402 
1403 	if (e) {
1404 	got_one:
1405 		*ppc = page_address(e->page) + offset;
1406 		return e;
1407 	}
1408 
1409 	e = new_writequeue_entry(con, allocation);
1410 	if (e) {
1411 		spin_lock(&con->writequeue_lock);
1412 		offset = e->end;
1413 		e->end += len;
1414 		e->users++;
1415 		list_add_tail(&e->list, &con->writequeue);
1416 		spin_unlock(&con->writequeue_lock);
1417 		goto got_one;
1418 	}
1419 	return NULL;
1420 }
1421 
1422 void dlm_lowcomms_commit_buffer(void *mh)
1423 {
1424 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1425 	struct connection *con = e->con;
1426 	int users;
1427 
1428 	spin_lock(&con->writequeue_lock);
1429 	users = --e->users;
1430 	if (users)
1431 		goto out;
1432 	e->len = e->end - e->offset;
1433 	spin_unlock(&con->writequeue_lock);
1434 
1435 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1436 		queue_work(send_workqueue, &con->swork);
1437 	}
1438 	return;
1439 
1440 out:
1441 	spin_unlock(&con->writequeue_lock);
1442 	return;
1443 }
1444 
1445 /* Send a message */
1446 static void send_to_sock(struct connection *con)
1447 {
1448 	int ret = 0;
1449 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1450 	struct writequeue_entry *e;
1451 	int len, offset;
1452 	int count = 0;
1453 
1454 	mutex_lock(&con->sock_mutex);
1455 	if (con->sock == NULL)
1456 		goto out_connect;
1457 
1458 	spin_lock(&con->writequeue_lock);
1459 	for (;;) {
1460 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1461 			       list);
1462 		if ((struct list_head *) e == &con->writequeue)
1463 			break;
1464 
1465 		len = e->len;
1466 		offset = e->offset;
1467 		BUG_ON(len == 0 && e->users == 0);
1468 		spin_unlock(&con->writequeue_lock);
1469 
1470 		ret = 0;
1471 		if (len) {
1472 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1473 					      msg_flags);
1474 			if (ret == -EAGAIN || ret == 0) {
1475 				if (ret == -EAGAIN &&
1476 				    test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1477 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1478 					/* Notify TCP that we're limited by the
1479 					 * application window size.
1480 					 */
1481 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1482 					con->sock->sk->sk_write_pending++;
1483 				}
1484 				cond_resched();
1485 				goto out;
1486 			} else if (ret < 0)
1487 				goto send_error;
1488 		}
1489 
1490 		/* Don't starve people filling buffers */
1491 		if (++count >= MAX_SEND_MSG_COUNT) {
1492 			cond_resched();
1493 			count = 0;
1494 		}
1495 
1496 		spin_lock(&con->writequeue_lock);
1497 		e->offset += ret;
1498 		e->len -= ret;
1499 
1500 		if (e->len == 0 && e->users == 0) {
1501 			list_del(&e->list);
1502 			free_entry(e);
1503 		}
1504 	}
1505 	spin_unlock(&con->writequeue_lock);
1506 out:
1507 	mutex_unlock(&con->sock_mutex);
1508 	return;
1509 
1510 send_error:
1511 	mutex_unlock(&con->sock_mutex);
1512 	close_connection(con, false);
1513 	lowcomms_connect_sock(con);
1514 	return;
1515 
1516 out_connect:
1517 	mutex_unlock(&con->sock_mutex);
1518 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1519 		lowcomms_connect_sock(con);
1520 }
1521 
1522 static void clean_one_writequeue(struct connection *con)
1523 {
1524 	struct writequeue_entry *e, *safe;
1525 
1526 	spin_lock(&con->writequeue_lock);
1527 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1528 		list_del(&e->list);
1529 		free_entry(e);
1530 	}
1531 	spin_unlock(&con->writequeue_lock);
1532 }
1533 
1534 /* Called from recovery when it knows that a node has
1535    left the cluster */
1536 int dlm_lowcomms_close(int nodeid)
1537 {
1538 	struct connection *con;
1539 	struct dlm_node_addr *na;
1540 
1541 	log_print("closing connection to node %d", nodeid);
1542 	con = nodeid2con(nodeid, 0);
1543 	if (con) {
1544 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1545 		clear_bit(CF_WRITE_PENDING, &con->flags);
1546 		set_bit(CF_CLOSE, &con->flags);
1547 		if (cancel_work_sync(&con->swork))
1548 			log_print("canceled swork for node %d", nodeid);
1549 		if (cancel_work_sync(&con->rwork))
1550 			log_print("canceled rwork for node %d", nodeid);
1551 		clean_one_writequeue(con);
1552 		close_connection(con, true);
1553 	}
1554 
1555 	spin_lock(&dlm_node_addrs_spin);
1556 	na = find_node_addr(nodeid);
1557 	if (na) {
1558 		list_del(&na->list);
1559 		while (na->addr_count--)
1560 			kfree(na->addr[na->addr_count]);
1561 		kfree(na);
1562 	}
1563 	spin_unlock(&dlm_node_addrs_spin);
1564 
1565 	return 0;
1566 }
1567 
1568 /* Receive workqueue function */
1569 static void process_recv_sockets(struct work_struct *work)
1570 {
1571 	struct connection *con = container_of(work, struct connection, rwork);
1572 	int err;
1573 
1574 	clear_bit(CF_READ_PENDING, &con->flags);
1575 	do {
1576 		err = con->rx_action(con);
1577 	} while (!err);
1578 }
1579 
1580 /* Send workqueue function */
1581 static void process_send_sockets(struct work_struct *work)
1582 {
1583 	struct connection *con = container_of(work, struct connection, swork);
1584 
1585 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1586 		con->connect_action(con);
1587 		set_bit(CF_WRITE_PENDING, &con->flags);
1588 	}
1589 	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1590 		send_to_sock(con);
1591 }
1592 
1593 
1594 /* Discard all entries on the write queues */
1595 static void clean_writequeues(void)
1596 {
1597 	foreach_conn(clean_one_writequeue);
1598 }
1599 
1600 static void work_stop(void)
1601 {
1602 	destroy_workqueue(recv_workqueue);
1603 	destroy_workqueue(send_workqueue);
1604 }
1605 
1606 static int work_start(void)
1607 {
1608 	recv_workqueue = alloc_workqueue("dlm_recv",
1609 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1610 	if (!recv_workqueue) {
1611 		log_print("can't start dlm_recv");
1612 		return -ENOMEM;
1613 	}
1614 
1615 	send_workqueue = alloc_workqueue("dlm_send",
1616 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1617 	if (!send_workqueue) {
1618 		log_print("can't start dlm_send");
1619 		destroy_workqueue(recv_workqueue);
1620 		return -ENOMEM;
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 static void stop_conn(struct connection *con)
1627 {
1628 	con->flags |= 0x0F;
1629 	if (con->sock && con->sock->sk)
1630 		con->sock->sk->sk_user_data = NULL;
1631 }
1632 
1633 static void free_conn(struct connection *con)
1634 {
1635 	close_connection(con, true);
1636 	if (con->othercon)
1637 		kmem_cache_free(con_cache, con->othercon);
1638 	hlist_del(&con->list);
1639 	kmem_cache_free(con_cache, con);
1640 }
1641 
1642 void dlm_lowcomms_stop(void)
1643 {
1644 	/* Set all the flags to prevent any
1645 	   socket activity.
1646 	*/
1647 	mutex_lock(&connections_lock);
1648 	dlm_allow_conn = 0;
1649 	foreach_conn(stop_conn);
1650 	mutex_unlock(&connections_lock);
1651 
1652 	work_stop();
1653 
1654 	mutex_lock(&connections_lock);
1655 	clean_writequeues();
1656 
1657 	foreach_conn(free_conn);
1658 
1659 	mutex_unlock(&connections_lock);
1660 	kmem_cache_destroy(con_cache);
1661 }
1662 
1663 int dlm_lowcomms_start(void)
1664 {
1665 	int error = -EINVAL;
1666 	struct connection *con;
1667 	int i;
1668 
1669 	for (i = 0; i < CONN_HASH_SIZE; i++)
1670 		INIT_HLIST_HEAD(&connection_hash[i]);
1671 
1672 	init_local();
1673 	if (!dlm_local_count) {
1674 		error = -ENOTCONN;
1675 		log_print("no local IP address has been set");
1676 		goto fail;
1677 	}
1678 
1679 	error = -ENOMEM;
1680 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1681 				      __alignof__(struct connection), 0,
1682 				      NULL);
1683 	if (!con_cache)
1684 		goto fail;
1685 
1686 	error = work_start();
1687 	if (error)
1688 		goto fail_destroy;
1689 
1690 	dlm_allow_conn = 1;
1691 
1692 	/* Start listening */
1693 	if (dlm_config.ci_protocol == 0)
1694 		error = tcp_listen_for_all();
1695 	else
1696 		error = sctp_listen_for_all();
1697 	if (error)
1698 		goto fail_unlisten;
1699 
1700 	return 0;
1701 
1702 fail_unlisten:
1703 	dlm_allow_conn = 0;
1704 	con = nodeid2con(0,0);
1705 	if (con) {
1706 		close_connection(con, false);
1707 		kmem_cache_free(con_cache, con);
1708 	}
1709 fail_destroy:
1710 	kmem_cache_destroy(con_cache);
1711 fail:
1712 	return error;
1713 }
1714 
1715 void dlm_lowcomms_exit(void)
1716 {
1717 	struct dlm_node_addr *na, *safe;
1718 
1719 	spin_lock(&dlm_node_addrs_spin);
1720 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1721 		list_del(&na->list);
1722 		while (na->addr_count--)
1723 			kfree(na->addr[na->addr_count]);
1724 		kfree(na);
1725 	}
1726 	spin_unlock(&dlm_node_addrs_spin);
1727 }
1728