1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 ******************************************************************************* 4 ** 5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 6 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. 7 ** 8 ** 9 ******************************************************************************* 10 ******************************************************************************/ 11 12 /* 13 * lowcomms.c 14 * 15 * This is the "low-level" comms layer. 16 * 17 * It is responsible for sending/receiving messages 18 * from other nodes in the cluster. 19 * 20 * Cluster nodes are referred to by their nodeids. nodeids are 21 * simply 32 bit numbers to the locking module - if they need to 22 * be expanded for the cluster infrastructure then that is its 23 * responsibility. It is this layer's 24 * responsibility to resolve these into IP address or 25 * whatever it needs for inter-node communication. 26 * 27 * The comms level is two kernel threads that deal mainly with 28 * the receiving of messages from other nodes and passing them 29 * up to the mid-level comms layer (which understands the 30 * message format) for execution by the locking core, and 31 * a send thread which does all the setting up of connections 32 * to remote nodes and the sending of data. Threads are not allowed 33 * to send their own data because it may cause them to wait in times 34 * of high load. Also, this way, the sending thread can collect together 35 * messages bound for one node and send them in one block. 36 * 37 * lowcomms will choose to use either TCP or SCTP as its transport layer 38 * depending on the configuration variable 'protocol'. This should be set 39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a 40 * cluster-wide mechanism as it must be the same on all nodes of the cluster 41 * for the DLM to function. 42 * 43 */ 44 45 #include <asm/ioctls.h> 46 #include <net/sock.h> 47 #include <net/tcp.h> 48 #include <linux/pagemap.h> 49 #include <linux/file.h> 50 #include <linux/mutex.h> 51 #include <linux/sctp.h> 52 #include <linux/slab.h> 53 #include <net/sctp/sctp.h> 54 #include <net/ipv6.h> 55 56 #include "dlm_internal.h" 57 #include "lowcomms.h" 58 #include "midcomms.h" 59 #include "config.h" 60 61 #define NEEDED_RMEM (4*1024*1024) 62 #define CONN_HASH_SIZE 32 63 64 /* Number of messages to send before rescheduling */ 65 #define MAX_SEND_MSG_COUNT 25 66 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000) 67 68 struct connection { 69 struct socket *sock; /* NULL if not connected */ 70 uint32_t nodeid; /* So we know who we are in the list */ 71 struct mutex sock_mutex; 72 unsigned long flags; 73 #define CF_READ_PENDING 1 74 #define CF_WRITE_PENDING 2 75 #define CF_INIT_PENDING 4 76 #define CF_IS_OTHERCON 5 77 #define CF_CLOSE 6 78 #define CF_APP_LIMITED 7 79 #define CF_CLOSING 8 80 #define CF_SHUTDOWN 9 81 #define CF_CONNECTED 10 82 struct list_head writequeue; /* List of outgoing writequeue_entries */ 83 spinlock_t writequeue_lock; 84 void (*connect_action) (struct connection *); /* What to do to connect */ 85 void (*shutdown_action)(struct connection *con); /* What to do to shutdown */ 86 int retries; 87 #define MAX_CONNECT_RETRIES 3 88 struct hlist_node list; 89 struct connection *othercon; 90 struct work_struct rwork; /* Receive workqueue */ 91 struct work_struct swork; /* Send workqueue */ 92 wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */ 93 unsigned char *rx_buf; 94 int rx_buflen; 95 int rx_leftover; 96 struct rcu_head rcu; 97 }; 98 #define sock2con(x) ((struct connection *)(x)->sk_user_data) 99 100 struct listen_connection { 101 struct socket *sock; 102 struct work_struct rwork; 103 }; 104 105 /* An entry waiting to be sent */ 106 struct writequeue_entry { 107 struct list_head list; 108 struct page *page; 109 int offset; 110 int len; 111 int end; 112 int users; 113 struct connection *con; 114 }; 115 116 struct dlm_node_addr { 117 struct list_head list; 118 int nodeid; 119 int mark; 120 int addr_count; 121 int curr_addr_index; 122 struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT]; 123 }; 124 125 static struct listen_sock_callbacks { 126 void (*sk_error_report)(struct sock *); 127 void (*sk_data_ready)(struct sock *); 128 void (*sk_state_change)(struct sock *); 129 void (*sk_write_space)(struct sock *); 130 } listen_sock; 131 132 static LIST_HEAD(dlm_node_addrs); 133 static DEFINE_SPINLOCK(dlm_node_addrs_spin); 134 135 static struct listen_connection listen_con; 136 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT]; 137 static int dlm_local_count; 138 static int dlm_allow_conn; 139 140 /* Work queues */ 141 static struct workqueue_struct *recv_workqueue; 142 static struct workqueue_struct *send_workqueue; 143 144 static struct hlist_head connection_hash[CONN_HASH_SIZE]; 145 static DEFINE_SPINLOCK(connections_lock); 146 DEFINE_STATIC_SRCU(connections_srcu); 147 148 static void process_recv_sockets(struct work_struct *work); 149 static void process_send_sockets(struct work_struct *work); 150 151 static void sctp_connect_to_sock(struct connection *con); 152 static void tcp_connect_to_sock(struct connection *con); 153 static void dlm_tcp_shutdown(struct connection *con); 154 155 /* This is deliberately very simple because most clusters have simple 156 sequential nodeids, so we should be able to go straight to a connection 157 struct in the array */ 158 static inline int nodeid_hash(int nodeid) 159 { 160 return nodeid & (CONN_HASH_SIZE-1); 161 } 162 163 static struct connection *__find_con(int nodeid) 164 { 165 int r, idx; 166 struct connection *con; 167 168 r = nodeid_hash(nodeid); 169 170 idx = srcu_read_lock(&connections_srcu); 171 hlist_for_each_entry_rcu(con, &connection_hash[r], list) { 172 if (con->nodeid == nodeid) { 173 srcu_read_unlock(&connections_srcu, idx); 174 return con; 175 } 176 } 177 srcu_read_unlock(&connections_srcu, idx); 178 179 return NULL; 180 } 181 182 static int dlm_con_init(struct connection *con, int nodeid) 183 { 184 con->rx_buflen = dlm_config.ci_buffer_size; 185 con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS); 186 if (!con->rx_buf) 187 return -ENOMEM; 188 189 con->nodeid = nodeid; 190 mutex_init(&con->sock_mutex); 191 INIT_LIST_HEAD(&con->writequeue); 192 spin_lock_init(&con->writequeue_lock); 193 INIT_WORK(&con->swork, process_send_sockets); 194 INIT_WORK(&con->rwork, process_recv_sockets); 195 init_waitqueue_head(&con->shutdown_wait); 196 197 if (dlm_config.ci_protocol == 0) { 198 con->connect_action = tcp_connect_to_sock; 199 con->shutdown_action = dlm_tcp_shutdown; 200 } else { 201 con->connect_action = sctp_connect_to_sock; 202 } 203 204 return 0; 205 } 206 207 /* 208 * If 'allocation' is zero then we don't attempt to create a new 209 * connection structure for this node. 210 */ 211 static struct connection *nodeid2con(int nodeid, gfp_t alloc) 212 { 213 struct connection *con, *tmp; 214 int r, ret; 215 216 con = __find_con(nodeid); 217 if (con || !alloc) 218 return con; 219 220 con = kzalloc(sizeof(*con), alloc); 221 if (!con) 222 return NULL; 223 224 ret = dlm_con_init(con, nodeid); 225 if (ret) { 226 kfree(con); 227 return NULL; 228 } 229 230 r = nodeid_hash(nodeid); 231 232 spin_lock(&connections_lock); 233 /* Because multiple workqueues/threads calls this function it can 234 * race on multiple cpu's. Instead of locking hot path __find_con() 235 * we just check in rare cases of recently added nodes again 236 * under protection of connections_lock. If this is the case we 237 * abort our connection creation and return the existing connection. 238 */ 239 tmp = __find_con(nodeid); 240 if (tmp) { 241 spin_unlock(&connections_lock); 242 kfree(con->rx_buf); 243 kfree(con); 244 return tmp; 245 } 246 247 hlist_add_head_rcu(&con->list, &connection_hash[r]); 248 spin_unlock(&connections_lock); 249 250 return con; 251 } 252 253 /* Loop round all connections */ 254 static void foreach_conn(void (*conn_func)(struct connection *c)) 255 { 256 int i, idx; 257 struct connection *con; 258 259 idx = srcu_read_lock(&connections_srcu); 260 for (i = 0; i < CONN_HASH_SIZE; i++) { 261 hlist_for_each_entry_rcu(con, &connection_hash[i], list) 262 conn_func(con); 263 } 264 srcu_read_unlock(&connections_srcu, idx); 265 } 266 267 static struct dlm_node_addr *find_node_addr(int nodeid) 268 { 269 struct dlm_node_addr *na; 270 271 list_for_each_entry(na, &dlm_node_addrs, list) { 272 if (na->nodeid == nodeid) 273 return na; 274 } 275 return NULL; 276 } 277 278 static int addr_compare(const struct sockaddr_storage *x, 279 const struct sockaddr_storage *y) 280 { 281 switch (x->ss_family) { 282 case AF_INET: { 283 struct sockaddr_in *sinx = (struct sockaddr_in *)x; 284 struct sockaddr_in *siny = (struct sockaddr_in *)y; 285 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr) 286 return 0; 287 if (sinx->sin_port != siny->sin_port) 288 return 0; 289 break; 290 } 291 case AF_INET6: { 292 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x; 293 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y; 294 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr)) 295 return 0; 296 if (sinx->sin6_port != siny->sin6_port) 297 return 0; 298 break; 299 } 300 default: 301 return 0; 302 } 303 return 1; 304 } 305 306 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out, 307 struct sockaddr *sa_out, bool try_new_addr, 308 unsigned int *mark) 309 { 310 struct sockaddr_storage sas; 311 struct dlm_node_addr *na; 312 313 if (!dlm_local_count) 314 return -1; 315 316 spin_lock(&dlm_node_addrs_spin); 317 na = find_node_addr(nodeid); 318 if (na && na->addr_count) { 319 memcpy(&sas, na->addr[na->curr_addr_index], 320 sizeof(struct sockaddr_storage)); 321 322 if (try_new_addr) { 323 na->curr_addr_index++; 324 if (na->curr_addr_index == na->addr_count) 325 na->curr_addr_index = 0; 326 } 327 } 328 spin_unlock(&dlm_node_addrs_spin); 329 330 if (!na) 331 return -EEXIST; 332 333 if (!na->addr_count) 334 return -ENOENT; 335 336 *mark = na->mark; 337 338 if (sas_out) 339 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage)); 340 341 if (!sa_out) 342 return 0; 343 344 if (dlm_local_addr[0]->ss_family == AF_INET) { 345 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas; 346 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out; 347 ret4->sin_addr.s_addr = in4->sin_addr.s_addr; 348 } else { 349 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas; 350 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out; 351 ret6->sin6_addr = in6->sin6_addr; 352 } 353 354 return 0; 355 } 356 357 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid, 358 unsigned int *mark) 359 { 360 struct dlm_node_addr *na; 361 int rv = -EEXIST; 362 int addr_i; 363 364 spin_lock(&dlm_node_addrs_spin); 365 list_for_each_entry(na, &dlm_node_addrs, list) { 366 if (!na->addr_count) 367 continue; 368 369 for (addr_i = 0; addr_i < na->addr_count; addr_i++) { 370 if (addr_compare(na->addr[addr_i], addr)) { 371 *nodeid = na->nodeid; 372 *mark = na->mark; 373 rv = 0; 374 goto unlock; 375 } 376 } 377 } 378 unlock: 379 spin_unlock(&dlm_node_addrs_spin); 380 return rv; 381 } 382 383 /* caller need to held dlm_node_addrs_spin lock */ 384 static bool dlm_lowcomms_na_has_addr(const struct dlm_node_addr *na, 385 const struct sockaddr_storage *addr) 386 { 387 int i; 388 389 for (i = 0; i < na->addr_count; i++) { 390 if (addr_compare(na->addr[i], addr)) 391 return true; 392 } 393 394 return false; 395 } 396 397 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len) 398 { 399 struct sockaddr_storage *new_addr; 400 struct dlm_node_addr *new_node, *na; 401 bool ret; 402 403 new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS); 404 if (!new_node) 405 return -ENOMEM; 406 407 new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS); 408 if (!new_addr) { 409 kfree(new_node); 410 return -ENOMEM; 411 } 412 413 memcpy(new_addr, addr, len); 414 415 spin_lock(&dlm_node_addrs_spin); 416 na = find_node_addr(nodeid); 417 if (!na) { 418 new_node->nodeid = nodeid; 419 new_node->addr[0] = new_addr; 420 new_node->addr_count = 1; 421 new_node->mark = dlm_config.ci_mark; 422 list_add(&new_node->list, &dlm_node_addrs); 423 spin_unlock(&dlm_node_addrs_spin); 424 return 0; 425 } 426 427 ret = dlm_lowcomms_na_has_addr(na, addr); 428 if (ret) { 429 spin_unlock(&dlm_node_addrs_spin); 430 kfree(new_addr); 431 kfree(new_node); 432 return -EEXIST; 433 } 434 435 if (na->addr_count >= DLM_MAX_ADDR_COUNT) { 436 spin_unlock(&dlm_node_addrs_spin); 437 kfree(new_addr); 438 kfree(new_node); 439 return -ENOSPC; 440 } 441 442 na->addr[na->addr_count++] = new_addr; 443 spin_unlock(&dlm_node_addrs_spin); 444 kfree(new_node); 445 return 0; 446 } 447 448 /* Data available on socket or listen socket received a connect */ 449 static void lowcomms_data_ready(struct sock *sk) 450 { 451 struct connection *con; 452 453 read_lock_bh(&sk->sk_callback_lock); 454 con = sock2con(sk); 455 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags)) 456 queue_work(recv_workqueue, &con->rwork); 457 read_unlock_bh(&sk->sk_callback_lock); 458 } 459 460 static void lowcomms_listen_data_ready(struct sock *sk) 461 { 462 queue_work(recv_workqueue, &listen_con.rwork); 463 } 464 465 static void lowcomms_write_space(struct sock *sk) 466 { 467 struct connection *con; 468 469 read_lock_bh(&sk->sk_callback_lock); 470 con = sock2con(sk); 471 if (!con) 472 goto out; 473 474 if (!test_and_set_bit(CF_CONNECTED, &con->flags)) { 475 log_print("successful connected to node %d", con->nodeid); 476 queue_work(send_workqueue, &con->swork); 477 goto out; 478 } 479 480 clear_bit(SOCK_NOSPACE, &con->sock->flags); 481 482 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) { 483 con->sock->sk->sk_write_pending--; 484 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags); 485 } 486 487 queue_work(send_workqueue, &con->swork); 488 out: 489 read_unlock_bh(&sk->sk_callback_lock); 490 } 491 492 static inline void lowcomms_connect_sock(struct connection *con) 493 { 494 if (test_bit(CF_CLOSE, &con->flags)) 495 return; 496 queue_work(send_workqueue, &con->swork); 497 cond_resched(); 498 } 499 500 static void lowcomms_state_change(struct sock *sk) 501 { 502 /* SCTP layer is not calling sk_data_ready when the connection 503 * is done, so we catch the signal through here. Also, it 504 * doesn't switch socket state when entering shutdown, so we 505 * skip the write in that case. 506 */ 507 if (sk->sk_shutdown) { 508 if (sk->sk_shutdown == RCV_SHUTDOWN) 509 lowcomms_data_ready(sk); 510 } else if (sk->sk_state == TCP_ESTABLISHED) { 511 lowcomms_write_space(sk); 512 } 513 } 514 515 int dlm_lowcomms_connect_node(int nodeid) 516 { 517 struct connection *con; 518 519 if (nodeid == dlm_our_nodeid()) 520 return 0; 521 522 con = nodeid2con(nodeid, GFP_NOFS); 523 if (!con) 524 return -ENOMEM; 525 lowcomms_connect_sock(con); 526 return 0; 527 } 528 529 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark) 530 { 531 struct dlm_node_addr *na; 532 533 spin_lock(&dlm_node_addrs_spin); 534 na = find_node_addr(nodeid); 535 if (!na) { 536 spin_unlock(&dlm_node_addrs_spin); 537 return -ENOENT; 538 } 539 540 na->mark = mark; 541 spin_unlock(&dlm_node_addrs_spin); 542 543 return 0; 544 } 545 546 static void lowcomms_error_report(struct sock *sk) 547 { 548 struct connection *con; 549 struct sockaddr_storage saddr; 550 void (*orig_report)(struct sock *) = NULL; 551 552 read_lock_bh(&sk->sk_callback_lock); 553 con = sock2con(sk); 554 if (con == NULL) 555 goto out; 556 557 orig_report = listen_sock.sk_error_report; 558 if (con->sock == NULL || 559 kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) { 560 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 561 "sending to node %d, port %d, " 562 "sk_err=%d/%d\n", dlm_our_nodeid(), 563 con->nodeid, dlm_config.ci_tcp_port, 564 sk->sk_err, sk->sk_err_soft); 565 } else if (saddr.ss_family == AF_INET) { 566 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr; 567 568 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 569 "sending to node %d at %pI4, port %d, " 570 "sk_err=%d/%d\n", dlm_our_nodeid(), 571 con->nodeid, &sin4->sin_addr.s_addr, 572 dlm_config.ci_tcp_port, sk->sk_err, 573 sk->sk_err_soft); 574 } else { 575 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr; 576 577 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 578 "sending to node %d at %u.%u.%u.%u, " 579 "port %d, sk_err=%d/%d\n", dlm_our_nodeid(), 580 con->nodeid, sin6->sin6_addr.s6_addr32[0], 581 sin6->sin6_addr.s6_addr32[1], 582 sin6->sin6_addr.s6_addr32[2], 583 sin6->sin6_addr.s6_addr32[3], 584 dlm_config.ci_tcp_port, sk->sk_err, 585 sk->sk_err_soft); 586 } 587 out: 588 read_unlock_bh(&sk->sk_callback_lock); 589 if (orig_report) 590 orig_report(sk); 591 } 592 593 /* Note: sk_callback_lock must be locked before calling this function. */ 594 static void save_listen_callbacks(struct socket *sock) 595 { 596 struct sock *sk = sock->sk; 597 598 listen_sock.sk_data_ready = sk->sk_data_ready; 599 listen_sock.sk_state_change = sk->sk_state_change; 600 listen_sock.sk_write_space = sk->sk_write_space; 601 listen_sock.sk_error_report = sk->sk_error_report; 602 } 603 604 static void restore_callbacks(struct socket *sock) 605 { 606 struct sock *sk = sock->sk; 607 608 write_lock_bh(&sk->sk_callback_lock); 609 sk->sk_user_data = NULL; 610 sk->sk_data_ready = listen_sock.sk_data_ready; 611 sk->sk_state_change = listen_sock.sk_state_change; 612 sk->sk_write_space = listen_sock.sk_write_space; 613 sk->sk_error_report = listen_sock.sk_error_report; 614 write_unlock_bh(&sk->sk_callback_lock); 615 } 616 617 static void add_listen_sock(struct socket *sock, struct listen_connection *con) 618 { 619 struct sock *sk = sock->sk; 620 621 write_lock_bh(&sk->sk_callback_lock); 622 save_listen_callbacks(sock); 623 con->sock = sock; 624 625 sk->sk_user_data = con; 626 sk->sk_allocation = GFP_NOFS; 627 /* Install a data_ready callback */ 628 sk->sk_data_ready = lowcomms_listen_data_ready; 629 write_unlock_bh(&sk->sk_callback_lock); 630 } 631 632 /* Make a socket active */ 633 static void add_sock(struct socket *sock, struct connection *con) 634 { 635 struct sock *sk = sock->sk; 636 637 write_lock_bh(&sk->sk_callback_lock); 638 con->sock = sock; 639 640 sk->sk_user_data = con; 641 /* Install a data_ready callback */ 642 sk->sk_data_ready = lowcomms_data_ready; 643 sk->sk_write_space = lowcomms_write_space; 644 sk->sk_state_change = lowcomms_state_change; 645 sk->sk_allocation = GFP_NOFS; 646 sk->sk_error_report = lowcomms_error_report; 647 write_unlock_bh(&sk->sk_callback_lock); 648 } 649 650 /* Add the port number to an IPv6 or 4 sockaddr and return the address 651 length */ 652 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port, 653 int *addr_len) 654 { 655 saddr->ss_family = dlm_local_addr[0]->ss_family; 656 if (saddr->ss_family == AF_INET) { 657 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; 658 in4_addr->sin_port = cpu_to_be16(port); 659 *addr_len = sizeof(struct sockaddr_in); 660 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); 661 } else { 662 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; 663 in6_addr->sin6_port = cpu_to_be16(port); 664 *addr_len = sizeof(struct sockaddr_in6); 665 } 666 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); 667 } 668 669 static void dlm_close_sock(struct socket **sock) 670 { 671 if (*sock) { 672 restore_callbacks(*sock); 673 sock_release(*sock); 674 *sock = NULL; 675 } 676 } 677 678 /* Close a remote connection and tidy up */ 679 static void close_connection(struct connection *con, bool and_other, 680 bool tx, bool rx) 681 { 682 bool closing = test_and_set_bit(CF_CLOSING, &con->flags); 683 684 if (tx && !closing && cancel_work_sync(&con->swork)) { 685 log_print("canceled swork for node %d", con->nodeid); 686 clear_bit(CF_WRITE_PENDING, &con->flags); 687 } 688 if (rx && !closing && cancel_work_sync(&con->rwork)) { 689 log_print("canceled rwork for node %d", con->nodeid); 690 clear_bit(CF_READ_PENDING, &con->flags); 691 } 692 693 mutex_lock(&con->sock_mutex); 694 dlm_close_sock(&con->sock); 695 696 if (con->othercon && and_other) { 697 /* Will only re-enter once. */ 698 close_connection(con->othercon, false, true, true); 699 } 700 701 con->rx_leftover = 0; 702 con->retries = 0; 703 clear_bit(CF_CONNECTED, &con->flags); 704 mutex_unlock(&con->sock_mutex); 705 clear_bit(CF_CLOSING, &con->flags); 706 } 707 708 static void shutdown_connection(struct connection *con) 709 { 710 int ret; 711 712 if (cancel_work_sync(&con->swork)) { 713 log_print("canceled swork for node %d", con->nodeid); 714 clear_bit(CF_WRITE_PENDING, &con->flags); 715 } 716 717 mutex_lock(&con->sock_mutex); 718 /* nothing to shutdown */ 719 if (!con->sock) { 720 mutex_unlock(&con->sock_mutex); 721 return; 722 } 723 724 set_bit(CF_SHUTDOWN, &con->flags); 725 ret = kernel_sock_shutdown(con->sock, SHUT_WR); 726 mutex_unlock(&con->sock_mutex); 727 if (ret) { 728 log_print("Connection %p failed to shutdown: %d will force close", 729 con, ret); 730 goto force_close; 731 } else { 732 ret = wait_event_timeout(con->shutdown_wait, 733 !test_bit(CF_SHUTDOWN, &con->flags), 734 DLM_SHUTDOWN_WAIT_TIMEOUT); 735 if (ret == 0) { 736 log_print("Connection %p shutdown timed out, will force close", 737 con); 738 goto force_close; 739 } 740 } 741 742 return; 743 744 force_close: 745 clear_bit(CF_SHUTDOWN, &con->flags); 746 close_connection(con, false, true, true); 747 } 748 749 static void dlm_tcp_shutdown(struct connection *con) 750 { 751 if (con->othercon) 752 shutdown_connection(con->othercon); 753 shutdown_connection(con); 754 } 755 756 static int con_realloc_receive_buf(struct connection *con, int newlen) 757 { 758 unsigned char *newbuf; 759 760 newbuf = kmalloc(newlen, GFP_NOFS); 761 if (!newbuf) 762 return -ENOMEM; 763 764 /* copy any leftover from last receive */ 765 if (con->rx_leftover) 766 memmove(newbuf, con->rx_buf, con->rx_leftover); 767 768 /* swap to new buffer space */ 769 kfree(con->rx_buf); 770 con->rx_buflen = newlen; 771 con->rx_buf = newbuf; 772 773 return 0; 774 } 775 776 /* Data received from remote end */ 777 static int receive_from_sock(struct connection *con) 778 { 779 int call_again_soon = 0; 780 struct msghdr msg; 781 struct kvec iov; 782 int ret, buflen; 783 784 mutex_lock(&con->sock_mutex); 785 786 if (con->sock == NULL) { 787 ret = -EAGAIN; 788 goto out_close; 789 } 790 791 /* realloc if we get new buffer size to read out */ 792 buflen = dlm_config.ci_buffer_size; 793 if (con->rx_buflen != buflen && con->rx_leftover <= buflen) { 794 ret = con_realloc_receive_buf(con, buflen); 795 if (ret < 0) 796 goto out_resched; 797 } 798 799 /* calculate new buffer parameter regarding last receive and 800 * possible leftover bytes 801 */ 802 iov.iov_base = con->rx_buf + con->rx_leftover; 803 iov.iov_len = con->rx_buflen - con->rx_leftover; 804 805 memset(&msg, 0, sizeof(msg)); 806 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 807 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len, 808 msg.msg_flags); 809 if (ret <= 0) 810 goto out_close; 811 else if (ret == iov.iov_len) 812 call_again_soon = 1; 813 814 /* new buflen according readed bytes and leftover from last receive */ 815 buflen = ret + con->rx_leftover; 816 ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen); 817 if (ret < 0) 818 goto out_close; 819 820 /* calculate leftover bytes from process and put it into begin of 821 * the receive buffer, so next receive we have the full message 822 * at the start address of the receive buffer. 823 */ 824 con->rx_leftover = buflen - ret; 825 if (con->rx_leftover) { 826 memmove(con->rx_buf, con->rx_buf + ret, 827 con->rx_leftover); 828 call_again_soon = true; 829 } 830 831 if (call_again_soon) 832 goto out_resched; 833 834 mutex_unlock(&con->sock_mutex); 835 return 0; 836 837 out_resched: 838 if (!test_and_set_bit(CF_READ_PENDING, &con->flags)) 839 queue_work(recv_workqueue, &con->rwork); 840 mutex_unlock(&con->sock_mutex); 841 return -EAGAIN; 842 843 out_close: 844 mutex_unlock(&con->sock_mutex); 845 if (ret != -EAGAIN) { 846 /* Reconnect when there is something to send */ 847 close_connection(con, false, true, false); 848 if (ret == 0) { 849 log_print("connection %p got EOF from %d", 850 con, con->nodeid); 851 /* handling for tcp shutdown */ 852 clear_bit(CF_SHUTDOWN, &con->flags); 853 wake_up(&con->shutdown_wait); 854 /* signal to breaking receive worker */ 855 ret = -1; 856 } 857 } 858 return ret; 859 } 860 861 /* Listening socket is busy, accept a connection */ 862 static int accept_from_sock(struct listen_connection *con) 863 { 864 int result; 865 struct sockaddr_storage peeraddr; 866 struct socket *newsock; 867 int len; 868 int nodeid; 869 struct connection *newcon; 870 struct connection *addcon; 871 unsigned int mark; 872 873 if (!dlm_allow_conn) { 874 return -1; 875 } 876 877 if (!con->sock) 878 return -ENOTCONN; 879 880 result = kernel_accept(con->sock, &newsock, O_NONBLOCK); 881 if (result < 0) 882 goto accept_err; 883 884 /* Get the connected socket's peer */ 885 memset(&peeraddr, 0, sizeof(peeraddr)); 886 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2); 887 if (len < 0) { 888 result = -ECONNABORTED; 889 goto accept_err; 890 } 891 892 /* Get the new node's NODEID */ 893 make_sockaddr(&peeraddr, 0, &len); 894 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) { 895 unsigned char *b=(unsigned char *)&peeraddr; 896 log_print("connect from non cluster node"); 897 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 898 b, sizeof(struct sockaddr_storage)); 899 sock_release(newsock); 900 return -1; 901 } 902 903 log_print("got connection from %d", nodeid); 904 905 /* Check to see if we already have a connection to this node. This 906 * could happen if the two nodes initiate a connection at roughly 907 * the same time and the connections cross on the wire. 908 * In this case we store the incoming one in "othercon" 909 */ 910 newcon = nodeid2con(nodeid, GFP_NOFS); 911 if (!newcon) { 912 result = -ENOMEM; 913 goto accept_err; 914 } 915 916 sock_set_mark(newsock->sk, mark); 917 918 mutex_lock(&newcon->sock_mutex); 919 if (newcon->sock) { 920 struct connection *othercon = newcon->othercon; 921 922 if (!othercon) { 923 othercon = kzalloc(sizeof(*othercon), GFP_NOFS); 924 if (!othercon) { 925 log_print("failed to allocate incoming socket"); 926 mutex_unlock(&newcon->sock_mutex); 927 result = -ENOMEM; 928 goto accept_err; 929 } 930 931 result = dlm_con_init(othercon, nodeid); 932 if (result < 0) { 933 kfree(othercon); 934 goto accept_err; 935 } 936 937 newcon->othercon = othercon; 938 } else { 939 /* close other sock con if we have something new */ 940 close_connection(othercon, false, true, false); 941 } 942 943 mutex_lock_nested(&othercon->sock_mutex, 1); 944 add_sock(newsock, othercon); 945 addcon = othercon; 946 mutex_unlock(&othercon->sock_mutex); 947 } 948 else { 949 /* accept copies the sk after we've saved the callbacks, so we 950 don't want to save them a second time or comm errors will 951 result in calling sk_error_report recursively. */ 952 add_sock(newsock, newcon); 953 addcon = newcon; 954 } 955 956 set_bit(CF_CONNECTED, &addcon->flags); 957 mutex_unlock(&newcon->sock_mutex); 958 959 /* 960 * Add it to the active queue in case we got data 961 * between processing the accept adding the socket 962 * to the read_sockets list 963 */ 964 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags)) 965 queue_work(recv_workqueue, &addcon->rwork); 966 967 return 0; 968 969 accept_err: 970 if (newsock) 971 sock_release(newsock); 972 973 if (result != -EAGAIN) 974 log_print("error accepting connection from node: %d", result); 975 return result; 976 } 977 978 static void free_entry(struct writequeue_entry *e) 979 { 980 __free_page(e->page); 981 kfree(e); 982 } 983 984 /* 985 * writequeue_entry_complete - try to delete and free write queue entry 986 * @e: write queue entry to try to delete 987 * @completed: bytes completed 988 * 989 * writequeue_lock must be held. 990 */ 991 static void writequeue_entry_complete(struct writequeue_entry *e, int completed) 992 { 993 e->offset += completed; 994 e->len -= completed; 995 996 if (e->len == 0 && e->users == 0) { 997 list_del(&e->list); 998 free_entry(e); 999 } 1000 } 1001 1002 /* 1003 * sctp_bind_addrs - bind a SCTP socket to all our addresses 1004 */ 1005 static int sctp_bind_addrs(struct socket *sock, uint16_t port) 1006 { 1007 struct sockaddr_storage localaddr; 1008 struct sockaddr *addr = (struct sockaddr *)&localaddr; 1009 int i, addr_len, result = 0; 1010 1011 for (i = 0; i < dlm_local_count; i++) { 1012 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr)); 1013 make_sockaddr(&localaddr, port, &addr_len); 1014 1015 if (!i) 1016 result = kernel_bind(sock, addr, addr_len); 1017 else 1018 result = sock_bind_add(sock->sk, addr, addr_len); 1019 1020 if (result < 0) { 1021 log_print("Can't bind to %d addr number %d, %d.\n", 1022 port, i + 1, result); 1023 break; 1024 } 1025 } 1026 return result; 1027 } 1028 1029 /* Initiate an SCTP association. 1030 This is a special case of send_to_sock() in that we don't yet have a 1031 peeled-off socket for this association, so we use the listening socket 1032 and add the primary IP address of the remote node. 1033 */ 1034 static void sctp_connect_to_sock(struct connection *con) 1035 { 1036 struct sockaddr_storage daddr; 1037 int result; 1038 int addr_len; 1039 struct socket *sock; 1040 unsigned int mark; 1041 1042 mutex_lock(&con->sock_mutex); 1043 1044 /* Some odd races can cause double-connects, ignore them */ 1045 if (con->retries++ > MAX_CONNECT_RETRIES) 1046 goto out; 1047 1048 if (con->sock) { 1049 log_print("node %d already connected.", con->nodeid); 1050 goto out; 1051 } 1052 1053 memset(&daddr, 0, sizeof(daddr)); 1054 result = nodeid_to_addr(con->nodeid, &daddr, NULL, true, &mark); 1055 if (result < 0) { 1056 log_print("no address for nodeid %d", con->nodeid); 1057 goto out; 1058 } 1059 1060 /* Create a socket to communicate with */ 1061 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1062 SOCK_STREAM, IPPROTO_SCTP, &sock); 1063 if (result < 0) 1064 goto socket_err; 1065 1066 sock_set_mark(sock->sk, mark); 1067 1068 add_sock(sock, con); 1069 1070 /* Bind to all addresses. */ 1071 if (sctp_bind_addrs(con->sock, 0)) 1072 goto bind_err; 1073 1074 make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len); 1075 1076 log_print("connecting to %d", con->nodeid); 1077 1078 /* Turn off Nagle's algorithm */ 1079 sctp_sock_set_nodelay(sock->sk); 1080 1081 /* 1082 * Make sock->ops->connect() function return in specified time, 1083 * since O_NONBLOCK argument in connect() function does not work here, 1084 * then, we should restore the default value of this attribute. 1085 */ 1086 sock_set_sndtimeo(sock->sk, 5); 1087 result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len, 1088 0); 1089 sock_set_sndtimeo(sock->sk, 0); 1090 1091 if (result == -EINPROGRESS) 1092 result = 0; 1093 if (result == 0) { 1094 if (!test_and_set_bit(CF_CONNECTED, &con->flags)) 1095 log_print("successful connected to node %d", con->nodeid); 1096 goto out; 1097 } 1098 1099 bind_err: 1100 con->sock = NULL; 1101 sock_release(sock); 1102 1103 socket_err: 1104 /* 1105 * Some errors are fatal and this list might need adjusting. For other 1106 * errors we try again until the max number of retries is reached. 1107 */ 1108 if (result != -EHOSTUNREACH && 1109 result != -ENETUNREACH && 1110 result != -ENETDOWN && 1111 result != -EINVAL && 1112 result != -EPROTONOSUPPORT) { 1113 log_print("connect %d try %d error %d", con->nodeid, 1114 con->retries, result); 1115 mutex_unlock(&con->sock_mutex); 1116 msleep(1000); 1117 lowcomms_connect_sock(con); 1118 return; 1119 } 1120 1121 out: 1122 mutex_unlock(&con->sock_mutex); 1123 } 1124 1125 /* Connect a new socket to its peer */ 1126 static void tcp_connect_to_sock(struct connection *con) 1127 { 1128 struct sockaddr_storage saddr, src_addr; 1129 unsigned int mark; 1130 int addr_len; 1131 struct socket *sock = NULL; 1132 int result; 1133 1134 mutex_lock(&con->sock_mutex); 1135 if (con->retries++ > MAX_CONNECT_RETRIES) 1136 goto out; 1137 1138 /* Some odd races can cause double-connects, ignore them */ 1139 if (con->sock) 1140 goto out; 1141 1142 /* Create a socket to communicate with */ 1143 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1144 SOCK_STREAM, IPPROTO_TCP, &sock); 1145 if (result < 0) 1146 goto out_err; 1147 1148 memset(&saddr, 0, sizeof(saddr)); 1149 result = nodeid_to_addr(con->nodeid, &saddr, NULL, false, &mark); 1150 if (result < 0) { 1151 log_print("no address for nodeid %d", con->nodeid); 1152 goto out_err; 1153 } 1154 1155 sock_set_mark(sock->sk, mark); 1156 1157 add_sock(sock, con); 1158 1159 /* Bind to our cluster-known address connecting to avoid 1160 routing problems */ 1161 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr)); 1162 make_sockaddr(&src_addr, 0, &addr_len); 1163 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr, 1164 addr_len); 1165 if (result < 0) { 1166 log_print("could not bind for connect: %d", result); 1167 /* This *may* not indicate a critical error */ 1168 } 1169 1170 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len); 1171 1172 log_print("connecting to %d", con->nodeid); 1173 1174 /* Turn off Nagle's algorithm */ 1175 tcp_sock_set_nodelay(sock->sk); 1176 1177 result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len, 1178 O_NONBLOCK); 1179 if (result == -EINPROGRESS) 1180 result = 0; 1181 if (result == 0) 1182 goto out; 1183 1184 out_err: 1185 if (con->sock) { 1186 sock_release(con->sock); 1187 con->sock = NULL; 1188 } else if (sock) { 1189 sock_release(sock); 1190 } 1191 /* 1192 * Some errors are fatal and this list might need adjusting. For other 1193 * errors we try again until the max number of retries is reached. 1194 */ 1195 if (result != -EHOSTUNREACH && 1196 result != -ENETUNREACH && 1197 result != -ENETDOWN && 1198 result != -EINVAL && 1199 result != -EPROTONOSUPPORT) { 1200 log_print("connect %d try %d error %d", con->nodeid, 1201 con->retries, result); 1202 mutex_unlock(&con->sock_mutex); 1203 msleep(1000); 1204 lowcomms_connect_sock(con); 1205 return; 1206 } 1207 out: 1208 mutex_unlock(&con->sock_mutex); 1209 return; 1210 } 1211 1212 /* On error caller must run dlm_close_sock() for the 1213 * listen connection socket. 1214 */ 1215 static int tcp_create_listen_sock(struct listen_connection *con, 1216 struct sockaddr_storage *saddr) 1217 { 1218 struct socket *sock = NULL; 1219 int result = 0; 1220 int addr_len; 1221 1222 if (dlm_local_addr[0]->ss_family == AF_INET) 1223 addr_len = sizeof(struct sockaddr_in); 1224 else 1225 addr_len = sizeof(struct sockaddr_in6); 1226 1227 /* Create a socket to communicate with */ 1228 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1229 SOCK_STREAM, IPPROTO_TCP, &sock); 1230 if (result < 0) { 1231 log_print("Can't create listening comms socket"); 1232 goto create_out; 1233 } 1234 1235 sock_set_mark(sock->sk, dlm_config.ci_mark); 1236 1237 /* Turn off Nagle's algorithm */ 1238 tcp_sock_set_nodelay(sock->sk); 1239 1240 sock_set_reuseaddr(sock->sk); 1241 1242 add_listen_sock(sock, con); 1243 1244 /* Bind to our port */ 1245 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len); 1246 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len); 1247 if (result < 0) { 1248 log_print("Can't bind to port %d", dlm_config.ci_tcp_port); 1249 goto create_out; 1250 } 1251 sock_set_keepalive(sock->sk); 1252 1253 result = sock->ops->listen(sock, 5); 1254 if (result < 0) { 1255 log_print("Can't listen on port %d", dlm_config.ci_tcp_port); 1256 goto create_out; 1257 } 1258 1259 return 0; 1260 1261 create_out: 1262 return result; 1263 } 1264 1265 /* Get local addresses */ 1266 static void init_local(void) 1267 { 1268 struct sockaddr_storage sas, *addr; 1269 int i; 1270 1271 dlm_local_count = 0; 1272 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) { 1273 if (dlm_our_addr(&sas, i)) 1274 break; 1275 1276 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS); 1277 if (!addr) 1278 break; 1279 dlm_local_addr[dlm_local_count++] = addr; 1280 } 1281 } 1282 1283 static void deinit_local(void) 1284 { 1285 int i; 1286 1287 for (i = 0; i < dlm_local_count; i++) 1288 kfree(dlm_local_addr[i]); 1289 } 1290 1291 /* Initialise SCTP socket and bind to all interfaces 1292 * On error caller must run dlm_close_sock() for the 1293 * listen connection socket. 1294 */ 1295 static int sctp_listen_for_all(struct listen_connection *con) 1296 { 1297 struct socket *sock = NULL; 1298 int result = -EINVAL; 1299 1300 log_print("Using SCTP for communications"); 1301 1302 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1303 SOCK_STREAM, IPPROTO_SCTP, &sock); 1304 if (result < 0) { 1305 log_print("Can't create comms socket, check SCTP is loaded"); 1306 goto out; 1307 } 1308 1309 sock_set_rcvbuf(sock->sk, NEEDED_RMEM); 1310 sock_set_mark(sock->sk, dlm_config.ci_mark); 1311 sctp_sock_set_nodelay(sock->sk); 1312 1313 add_listen_sock(sock, con); 1314 1315 /* Bind to all addresses. */ 1316 result = sctp_bind_addrs(con->sock, dlm_config.ci_tcp_port); 1317 if (result < 0) 1318 goto out; 1319 1320 result = sock->ops->listen(sock, 5); 1321 if (result < 0) { 1322 log_print("Can't set socket listening"); 1323 goto out; 1324 } 1325 1326 return 0; 1327 1328 out: 1329 return result; 1330 } 1331 1332 static int tcp_listen_for_all(void) 1333 { 1334 /* We don't support multi-homed hosts */ 1335 if (dlm_local_count > 1) { 1336 log_print("TCP protocol can't handle multi-homed hosts, " 1337 "try SCTP"); 1338 return -EINVAL; 1339 } 1340 1341 log_print("Using TCP for communications"); 1342 1343 return tcp_create_listen_sock(&listen_con, dlm_local_addr[0]); 1344 } 1345 1346 1347 1348 static struct writequeue_entry *new_writequeue_entry(struct connection *con, 1349 gfp_t allocation) 1350 { 1351 struct writequeue_entry *entry; 1352 1353 entry = kmalloc(sizeof(struct writequeue_entry), allocation); 1354 if (!entry) 1355 return NULL; 1356 1357 entry->page = alloc_page(allocation); 1358 if (!entry->page) { 1359 kfree(entry); 1360 return NULL; 1361 } 1362 1363 entry->offset = 0; 1364 entry->len = 0; 1365 entry->end = 0; 1366 entry->users = 0; 1367 entry->con = con; 1368 1369 return entry; 1370 } 1371 1372 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc) 1373 { 1374 struct connection *con; 1375 struct writequeue_entry *e; 1376 int offset = 0; 1377 1378 if (len > LOWCOMMS_MAX_TX_BUFFER_LEN) { 1379 BUILD_BUG_ON(PAGE_SIZE < LOWCOMMS_MAX_TX_BUFFER_LEN); 1380 log_print("failed to allocate a buffer of size %d", len); 1381 return NULL; 1382 } 1383 1384 con = nodeid2con(nodeid, allocation); 1385 if (!con) 1386 return NULL; 1387 1388 spin_lock(&con->writequeue_lock); 1389 e = list_entry(con->writequeue.prev, struct writequeue_entry, list); 1390 if ((&e->list == &con->writequeue) || 1391 (PAGE_SIZE - e->end < len)) { 1392 e = NULL; 1393 } else { 1394 offset = e->end; 1395 e->end += len; 1396 e->users++; 1397 } 1398 spin_unlock(&con->writequeue_lock); 1399 1400 if (e) { 1401 got_one: 1402 *ppc = page_address(e->page) + offset; 1403 return e; 1404 } 1405 1406 e = new_writequeue_entry(con, allocation); 1407 if (e) { 1408 spin_lock(&con->writequeue_lock); 1409 offset = e->end; 1410 e->end += len; 1411 e->users++; 1412 list_add_tail(&e->list, &con->writequeue); 1413 spin_unlock(&con->writequeue_lock); 1414 goto got_one; 1415 } 1416 return NULL; 1417 } 1418 1419 void dlm_lowcomms_commit_buffer(void *mh) 1420 { 1421 struct writequeue_entry *e = (struct writequeue_entry *)mh; 1422 struct connection *con = e->con; 1423 int users; 1424 1425 spin_lock(&con->writequeue_lock); 1426 users = --e->users; 1427 if (users) 1428 goto out; 1429 e->len = e->end - e->offset; 1430 spin_unlock(&con->writequeue_lock); 1431 1432 queue_work(send_workqueue, &con->swork); 1433 return; 1434 1435 out: 1436 spin_unlock(&con->writequeue_lock); 1437 return; 1438 } 1439 1440 /* Send a message */ 1441 static void send_to_sock(struct connection *con) 1442 { 1443 int ret = 0; 1444 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1445 struct writequeue_entry *e; 1446 int len, offset; 1447 int count = 0; 1448 1449 mutex_lock(&con->sock_mutex); 1450 if (con->sock == NULL) 1451 goto out_connect; 1452 1453 spin_lock(&con->writequeue_lock); 1454 for (;;) { 1455 e = list_entry(con->writequeue.next, struct writequeue_entry, 1456 list); 1457 if ((struct list_head *) e == &con->writequeue) 1458 break; 1459 1460 len = e->len; 1461 offset = e->offset; 1462 BUG_ON(len == 0 && e->users == 0); 1463 spin_unlock(&con->writequeue_lock); 1464 1465 ret = 0; 1466 if (len) { 1467 ret = kernel_sendpage(con->sock, e->page, offset, len, 1468 msg_flags); 1469 if (ret == -EAGAIN || ret == 0) { 1470 if (ret == -EAGAIN && 1471 test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) && 1472 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) { 1473 /* Notify TCP that we're limited by the 1474 * application window size. 1475 */ 1476 set_bit(SOCK_NOSPACE, &con->sock->flags); 1477 con->sock->sk->sk_write_pending++; 1478 } 1479 cond_resched(); 1480 goto out; 1481 } else if (ret < 0) 1482 goto send_error; 1483 } 1484 1485 /* Don't starve people filling buffers */ 1486 if (++count >= MAX_SEND_MSG_COUNT) { 1487 cond_resched(); 1488 count = 0; 1489 } 1490 1491 spin_lock(&con->writequeue_lock); 1492 writequeue_entry_complete(e, ret); 1493 } 1494 spin_unlock(&con->writequeue_lock); 1495 out: 1496 mutex_unlock(&con->sock_mutex); 1497 return; 1498 1499 send_error: 1500 mutex_unlock(&con->sock_mutex); 1501 close_connection(con, false, false, true); 1502 /* Requeue the send work. When the work daemon runs again, it will try 1503 a new connection, then call this function again. */ 1504 queue_work(send_workqueue, &con->swork); 1505 return; 1506 1507 out_connect: 1508 mutex_unlock(&con->sock_mutex); 1509 queue_work(send_workqueue, &con->swork); 1510 cond_resched(); 1511 } 1512 1513 static void clean_one_writequeue(struct connection *con) 1514 { 1515 struct writequeue_entry *e, *safe; 1516 1517 spin_lock(&con->writequeue_lock); 1518 list_for_each_entry_safe(e, safe, &con->writequeue, list) { 1519 list_del(&e->list); 1520 free_entry(e); 1521 } 1522 spin_unlock(&con->writequeue_lock); 1523 } 1524 1525 /* Called from recovery when it knows that a node has 1526 left the cluster */ 1527 int dlm_lowcomms_close(int nodeid) 1528 { 1529 struct connection *con; 1530 struct dlm_node_addr *na; 1531 1532 log_print("closing connection to node %d", nodeid); 1533 con = nodeid2con(nodeid, 0); 1534 if (con) { 1535 set_bit(CF_CLOSE, &con->flags); 1536 close_connection(con, true, true, true); 1537 clean_one_writequeue(con); 1538 if (con->othercon) 1539 clean_one_writequeue(con->othercon); 1540 } 1541 1542 spin_lock(&dlm_node_addrs_spin); 1543 na = find_node_addr(nodeid); 1544 if (na) { 1545 list_del(&na->list); 1546 while (na->addr_count--) 1547 kfree(na->addr[na->addr_count]); 1548 kfree(na); 1549 } 1550 spin_unlock(&dlm_node_addrs_spin); 1551 1552 return 0; 1553 } 1554 1555 /* Receive workqueue function */ 1556 static void process_recv_sockets(struct work_struct *work) 1557 { 1558 struct connection *con = container_of(work, struct connection, rwork); 1559 int err; 1560 1561 clear_bit(CF_READ_PENDING, &con->flags); 1562 do { 1563 err = receive_from_sock(con); 1564 } while (!err); 1565 } 1566 1567 static void process_listen_recv_socket(struct work_struct *work) 1568 { 1569 accept_from_sock(&listen_con); 1570 } 1571 1572 /* Send workqueue function */ 1573 static void process_send_sockets(struct work_struct *work) 1574 { 1575 struct connection *con = container_of(work, struct connection, swork); 1576 1577 clear_bit(CF_WRITE_PENDING, &con->flags); 1578 if (con->sock == NULL) /* not mutex protected so check it inside too */ 1579 con->connect_action(con); 1580 if (!list_empty(&con->writequeue)) 1581 send_to_sock(con); 1582 } 1583 1584 static void work_stop(void) 1585 { 1586 if (recv_workqueue) 1587 destroy_workqueue(recv_workqueue); 1588 if (send_workqueue) 1589 destroy_workqueue(send_workqueue); 1590 } 1591 1592 static int work_start(void) 1593 { 1594 recv_workqueue = alloc_workqueue("dlm_recv", 1595 WQ_UNBOUND | WQ_MEM_RECLAIM, 1); 1596 if (!recv_workqueue) { 1597 log_print("can't start dlm_recv"); 1598 return -ENOMEM; 1599 } 1600 1601 send_workqueue = alloc_workqueue("dlm_send", 1602 WQ_UNBOUND | WQ_MEM_RECLAIM, 1); 1603 if (!send_workqueue) { 1604 log_print("can't start dlm_send"); 1605 destroy_workqueue(recv_workqueue); 1606 return -ENOMEM; 1607 } 1608 1609 return 0; 1610 } 1611 1612 static void _stop_conn(struct connection *con, bool and_other) 1613 { 1614 mutex_lock(&con->sock_mutex); 1615 set_bit(CF_CLOSE, &con->flags); 1616 set_bit(CF_READ_PENDING, &con->flags); 1617 set_bit(CF_WRITE_PENDING, &con->flags); 1618 if (con->sock && con->sock->sk) { 1619 write_lock_bh(&con->sock->sk->sk_callback_lock); 1620 con->sock->sk->sk_user_data = NULL; 1621 write_unlock_bh(&con->sock->sk->sk_callback_lock); 1622 } 1623 if (con->othercon && and_other) 1624 _stop_conn(con->othercon, false); 1625 mutex_unlock(&con->sock_mutex); 1626 } 1627 1628 static void stop_conn(struct connection *con) 1629 { 1630 _stop_conn(con, true); 1631 } 1632 1633 static void shutdown_conn(struct connection *con) 1634 { 1635 if (con->shutdown_action) 1636 con->shutdown_action(con); 1637 } 1638 1639 static void connection_release(struct rcu_head *rcu) 1640 { 1641 struct connection *con = container_of(rcu, struct connection, rcu); 1642 1643 kfree(con->rx_buf); 1644 kfree(con); 1645 } 1646 1647 static void free_conn(struct connection *con) 1648 { 1649 close_connection(con, true, true, true); 1650 spin_lock(&connections_lock); 1651 hlist_del_rcu(&con->list); 1652 spin_unlock(&connections_lock); 1653 if (con->othercon) { 1654 clean_one_writequeue(con->othercon); 1655 call_srcu(&connections_srcu, &con->othercon->rcu, 1656 connection_release); 1657 } 1658 clean_one_writequeue(con); 1659 call_srcu(&connections_srcu, &con->rcu, connection_release); 1660 } 1661 1662 static void work_flush(void) 1663 { 1664 int ok, idx; 1665 int i; 1666 struct connection *con; 1667 1668 do { 1669 ok = 1; 1670 foreach_conn(stop_conn); 1671 if (recv_workqueue) 1672 flush_workqueue(recv_workqueue); 1673 if (send_workqueue) 1674 flush_workqueue(send_workqueue); 1675 idx = srcu_read_lock(&connections_srcu); 1676 for (i = 0; i < CONN_HASH_SIZE && ok; i++) { 1677 hlist_for_each_entry_rcu(con, &connection_hash[i], 1678 list) { 1679 ok &= test_bit(CF_READ_PENDING, &con->flags); 1680 ok &= test_bit(CF_WRITE_PENDING, &con->flags); 1681 if (con->othercon) { 1682 ok &= test_bit(CF_READ_PENDING, 1683 &con->othercon->flags); 1684 ok &= test_bit(CF_WRITE_PENDING, 1685 &con->othercon->flags); 1686 } 1687 } 1688 } 1689 srcu_read_unlock(&connections_srcu, idx); 1690 } while (!ok); 1691 } 1692 1693 void dlm_lowcomms_stop(void) 1694 { 1695 /* Set all the flags to prevent any 1696 socket activity. 1697 */ 1698 dlm_allow_conn = 0; 1699 1700 if (recv_workqueue) 1701 flush_workqueue(recv_workqueue); 1702 if (send_workqueue) 1703 flush_workqueue(send_workqueue); 1704 1705 dlm_close_sock(&listen_con.sock); 1706 1707 foreach_conn(shutdown_conn); 1708 work_flush(); 1709 foreach_conn(free_conn); 1710 work_stop(); 1711 deinit_local(); 1712 } 1713 1714 int dlm_lowcomms_start(void) 1715 { 1716 int error = -EINVAL; 1717 int i; 1718 1719 for (i = 0; i < CONN_HASH_SIZE; i++) 1720 INIT_HLIST_HEAD(&connection_hash[i]); 1721 1722 init_local(); 1723 if (!dlm_local_count) { 1724 error = -ENOTCONN; 1725 log_print("no local IP address has been set"); 1726 goto fail; 1727 } 1728 1729 INIT_WORK(&listen_con.rwork, process_listen_recv_socket); 1730 1731 error = work_start(); 1732 if (error) 1733 goto fail; 1734 1735 dlm_allow_conn = 1; 1736 1737 /* Start listening */ 1738 if (dlm_config.ci_protocol == 0) 1739 error = tcp_listen_for_all(); 1740 else 1741 error = sctp_listen_for_all(&listen_con); 1742 if (error) 1743 goto fail_unlisten; 1744 1745 return 0; 1746 1747 fail_unlisten: 1748 dlm_allow_conn = 0; 1749 dlm_close_sock(&listen_con.sock); 1750 fail: 1751 return error; 1752 } 1753 1754 void dlm_lowcomms_exit(void) 1755 { 1756 struct dlm_node_addr *na, *safe; 1757 1758 spin_lock(&dlm_node_addrs_spin); 1759 list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) { 1760 list_del(&na->list); 1761 while (na->addr_count--) 1762 kfree(na->addr[na->addr_count]); 1763 kfree(na); 1764 } 1765 spin_unlock(&dlm_node_addrs_spin); 1766 } 1767