xref: /openbmc/linux/fs/dlm/lowcomms.c (revision b2a66629)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
57 
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62 
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65 
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68 
69 struct cbuf {
70 	unsigned int base;
71 	unsigned int len;
72 	unsigned int mask;
73 };
74 
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77 	cb->len += n;
78 }
79 
80 static int cbuf_data(struct cbuf *cb)
81 {
82 	return ((cb->base + cb->len) & cb->mask);
83 }
84 
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87 	cb->base = cb->len = 0;
88 	cb->mask = size-1;
89 }
90 
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93 	cb->len  -= n;
94 	cb->base += n;
95 	cb->base &= cb->mask;
96 }
97 
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100 	return cb->len == 0;
101 }
102 
103 struct connection {
104 	struct socket *sock;	/* NULL if not connected */
105 	uint32_t nodeid;	/* So we know who we are in the list */
106 	struct mutex sock_mutex;
107 	unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_INIT_PENDING 4
110 #define CF_IS_OTHERCON 5
111 #define CF_CLOSE 6
112 #define CF_APP_LIMITED 7
113 #define CF_CLOSING 8
114 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
115 	spinlock_t writequeue_lock;
116 	int (*rx_action) (struct connection *);	/* What to do when active */
117 	void (*connect_action) (struct connection *);	/* What to do to connect */
118 	struct page *rx_page;
119 	struct cbuf cb;
120 	int retries;
121 #define MAX_CONNECT_RETRIES 3
122 	struct hlist_node list;
123 	struct connection *othercon;
124 	struct work_struct rwork; /* Receive workqueue */
125 	struct work_struct swork; /* Send workqueue */
126 };
127 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
128 
129 /* An entry waiting to be sent */
130 struct writequeue_entry {
131 	struct list_head list;
132 	struct page *page;
133 	int offset;
134 	int len;
135 	int end;
136 	int users;
137 	struct connection *con;
138 };
139 
140 struct dlm_node_addr {
141 	struct list_head list;
142 	int nodeid;
143 	int addr_count;
144 	int curr_addr_index;
145 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
146 };
147 
148 static struct listen_sock_callbacks {
149 	void (*sk_error_report)(struct sock *);
150 	void (*sk_data_ready)(struct sock *);
151 	void (*sk_state_change)(struct sock *);
152 	void (*sk_write_space)(struct sock *);
153 } listen_sock;
154 
155 static LIST_HEAD(dlm_node_addrs);
156 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
157 
158 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
159 static int dlm_local_count;
160 static int dlm_allow_conn;
161 
162 /* Work queues */
163 static struct workqueue_struct *recv_workqueue;
164 static struct workqueue_struct *send_workqueue;
165 
166 static struct hlist_head connection_hash[CONN_HASH_SIZE];
167 static DEFINE_MUTEX(connections_lock);
168 static struct kmem_cache *con_cache;
169 
170 static void process_recv_sockets(struct work_struct *work);
171 static void process_send_sockets(struct work_struct *work);
172 
173 
174 /* This is deliberately very simple because most clusters have simple
175    sequential nodeids, so we should be able to go straight to a connection
176    struct in the array */
177 static inline int nodeid_hash(int nodeid)
178 {
179 	return nodeid & (CONN_HASH_SIZE-1);
180 }
181 
182 static struct connection *__find_con(int nodeid)
183 {
184 	int r;
185 	struct connection *con;
186 
187 	r = nodeid_hash(nodeid);
188 
189 	hlist_for_each_entry(con, &connection_hash[r], list) {
190 		if (con->nodeid == nodeid)
191 			return con;
192 	}
193 	return NULL;
194 }
195 
196 /*
197  * If 'allocation' is zero then we don't attempt to create a new
198  * connection structure for this node.
199  */
200 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
201 {
202 	struct connection *con = NULL;
203 	int r;
204 
205 	con = __find_con(nodeid);
206 	if (con || !alloc)
207 		return con;
208 
209 	con = kmem_cache_zalloc(con_cache, alloc);
210 	if (!con)
211 		return NULL;
212 
213 	r = nodeid_hash(nodeid);
214 	hlist_add_head(&con->list, &connection_hash[r]);
215 
216 	con->nodeid = nodeid;
217 	mutex_init(&con->sock_mutex);
218 	INIT_LIST_HEAD(&con->writequeue);
219 	spin_lock_init(&con->writequeue_lock);
220 	INIT_WORK(&con->swork, process_send_sockets);
221 	INIT_WORK(&con->rwork, process_recv_sockets);
222 
223 	/* Setup action pointers for child sockets */
224 	if (con->nodeid) {
225 		struct connection *zerocon = __find_con(0);
226 
227 		con->connect_action = zerocon->connect_action;
228 		if (!con->rx_action)
229 			con->rx_action = zerocon->rx_action;
230 	}
231 
232 	return con;
233 }
234 
235 /* Loop round all connections */
236 static void foreach_conn(void (*conn_func)(struct connection *c))
237 {
238 	int i;
239 	struct hlist_node *n;
240 	struct connection *con;
241 
242 	for (i = 0; i < CONN_HASH_SIZE; i++) {
243 		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
244 			conn_func(con);
245 	}
246 }
247 
248 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
249 {
250 	struct connection *con;
251 
252 	mutex_lock(&connections_lock);
253 	con = __nodeid2con(nodeid, allocation);
254 	mutex_unlock(&connections_lock);
255 
256 	return con;
257 }
258 
259 static struct dlm_node_addr *find_node_addr(int nodeid)
260 {
261 	struct dlm_node_addr *na;
262 
263 	list_for_each_entry(na, &dlm_node_addrs, list) {
264 		if (na->nodeid == nodeid)
265 			return na;
266 	}
267 	return NULL;
268 }
269 
270 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
271 {
272 	switch (x->ss_family) {
273 	case AF_INET: {
274 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
275 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
276 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
277 			return 0;
278 		if (sinx->sin_port != siny->sin_port)
279 			return 0;
280 		break;
281 	}
282 	case AF_INET6: {
283 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
284 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
285 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
286 			return 0;
287 		if (sinx->sin6_port != siny->sin6_port)
288 			return 0;
289 		break;
290 	}
291 	default:
292 		return 0;
293 	}
294 	return 1;
295 }
296 
297 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
298 			  struct sockaddr *sa_out, bool try_new_addr)
299 {
300 	struct sockaddr_storage sas;
301 	struct dlm_node_addr *na;
302 
303 	if (!dlm_local_count)
304 		return -1;
305 
306 	spin_lock(&dlm_node_addrs_spin);
307 	na = find_node_addr(nodeid);
308 	if (na && na->addr_count) {
309 		memcpy(&sas, na->addr[na->curr_addr_index],
310 		       sizeof(struct sockaddr_storage));
311 
312 		if (try_new_addr) {
313 			na->curr_addr_index++;
314 			if (na->curr_addr_index == na->addr_count)
315 				na->curr_addr_index = 0;
316 		}
317 	}
318 	spin_unlock(&dlm_node_addrs_spin);
319 
320 	if (!na)
321 		return -EEXIST;
322 
323 	if (!na->addr_count)
324 		return -ENOENT;
325 
326 	if (sas_out)
327 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
328 
329 	if (!sa_out)
330 		return 0;
331 
332 	if (dlm_local_addr[0]->ss_family == AF_INET) {
333 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
334 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
335 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
336 	} else {
337 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
338 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
339 		ret6->sin6_addr = in6->sin6_addr;
340 	}
341 
342 	return 0;
343 }
344 
345 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
346 {
347 	struct dlm_node_addr *na;
348 	int rv = -EEXIST;
349 	int addr_i;
350 
351 	spin_lock(&dlm_node_addrs_spin);
352 	list_for_each_entry(na, &dlm_node_addrs, list) {
353 		if (!na->addr_count)
354 			continue;
355 
356 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
357 			if (addr_compare(na->addr[addr_i], addr)) {
358 				*nodeid = na->nodeid;
359 				rv = 0;
360 				goto unlock;
361 			}
362 		}
363 	}
364 unlock:
365 	spin_unlock(&dlm_node_addrs_spin);
366 	return rv;
367 }
368 
369 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
370 {
371 	struct sockaddr_storage *new_addr;
372 	struct dlm_node_addr *new_node, *na;
373 
374 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
375 	if (!new_node)
376 		return -ENOMEM;
377 
378 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
379 	if (!new_addr) {
380 		kfree(new_node);
381 		return -ENOMEM;
382 	}
383 
384 	memcpy(new_addr, addr, len);
385 
386 	spin_lock(&dlm_node_addrs_spin);
387 	na = find_node_addr(nodeid);
388 	if (!na) {
389 		new_node->nodeid = nodeid;
390 		new_node->addr[0] = new_addr;
391 		new_node->addr_count = 1;
392 		list_add(&new_node->list, &dlm_node_addrs);
393 		spin_unlock(&dlm_node_addrs_spin);
394 		return 0;
395 	}
396 
397 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
398 		spin_unlock(&dlm_node_addrs_spin);
399 		kfree(new_addr);
400 		kfree(new_node);
401 		return -ENOSPC;
402 	}
403 
404 	na->addr[na->addr_count++] = new_addr;
405 	spin_unlock(&dlm_node_addrs_spin);
406 	kfree(new_node);
407 	return 0;
408 }
409 
410 /* Data available on socket or listen socket received a connect */
411 static void lowcomms_data_ready(struct sock *sk)
412 {
413 	struct connection *con = sock2con(sk);
414 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
415 		queue_work(recv_workqueue, &con->rwork);
416 }
417 
418 static void lowcomms_write_space(struct sock *sk)
419 {
420 	struct connection *con = sock2con(sk);
421 
422 	if (!con)
423 		return;
424 
425 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
426 
427 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
428 		con->sock->sk->sk_write_pending--;
429 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
430 	}
431 
432 	queue_work(send_workqueue, &con->swork);
433 }
434 
435 static inline void lowcomms_connect_sock(struct connection *con)
436 {
437 	if (test_bit(CF_CLOSE, &con->flags))
438 		return;
439 	queue_work(send_workqueue, &con->swork);
440 	cond_resched();
441 }
442 
443 static void lowcomms_state_change(struct sock *sk)
444 {
445 	/* SCTP layer is not calling sk_data_ready when the connection
446 	 * is done, so we catch the signal through here. Also, it
447 	 * doesn't switch socket state when entering shutdown, so we
448 	 * skip the write in that case.
449 	 */
450 	if (sk->sk_shutdown) {
451 		if (sk->sk_shutdown == RCV_SHUTDOWN)
452 			lowcomms_data_ready(sk);
453 	} else if (sk->sk_state == TCP_ESTABLISHED) {
454 		lowcomms_write_space(sk);
455 	}
456 }
457 
458 int dlm_lowcomms_connect_node(int nodeid)
459 {
460 	struct connection *con;
461 
462 	if (nodeid == dlm_our_nodeid())
463 		return 0;
464 
465 	con = nodeid2con(nodeid, GFP_NOFS);
466 	if (!con)
467 		return -ENOMEM;
468 	lowcomms_connect_sock(con);
469 	return 0;
470 }
471 
472 static void lowcomms_error_report(struct sock *sk)
473 {
474 	struct connection *con;
475 	struct sockaddr_storage saddr;
476 	int buflen;
477 	void (*orig_report)(struct sock *) = NULL;
478 
479 	read_lock_bh(&sk->sk_callback_lock);
480 	con = sock2con(sk);
481 	if (con == NULL)
482 		goto out;
483 
484 	orig_report = listen_sock.sk_error_report;
485 	if (con->sock == NULL ||
486 	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr, &buflen)) {
487 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
488 				   "sending to node %d, port %d, "
489 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
490 				   con->nodeid, dlm_config.ci_tcp_port,
491 				   sk->sk_err, sk->sk_err_soft);
492 	} else if (saddr.ss_family == AF_INET) {
493 		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
494 
495 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
496 				   "sending to node %d at %pI4, port %d, "
497 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
498 				   con->nodeid, &sin4->sin_addr.s_addr,
499 				   dlm_config.ci_tcp_port, sk->sk_err,
500 				   sk->sk_err_soft);
501 	} else {
502 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
503 
504 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
505 				   "sending to node %d at %u.%u.%u.%u, "
506 				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
507 				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
508 				   sin6->sin6_addr.s6_addr32[1],
509 				   sin6->sin6_addr.s6_addr32[2],
510 				   sin6->sin6_addr.s6_addr32[3],
511 				   dlm_config.ci_tcp_port, sk->sk_err,
512 				   sk->sk_err_soft);
513 	}
514 out:
515 	read_unlock_bh(&sk->sk_callback_lock);
516 	if (orig_report)
517 		orig_report(sk);
518 }
519 
520 /* Note: sk_callback_lock must be locked before calling this function. */
521 static void save_listen_callbacks(struct socket *sock)
522 {
523 	struct sock *sk = sock->sk;
524 
525 	listen_sock.sk_data_ready = sk->sk_data_ready;
526 	listen_sock.sk_state_change = sk->sk_state_change;
527 	listen_sock.sk_write_space = sk->sk_write_space;
528 	listen_sock.sk_error_report = sk->sk_error_report;
529 }
530 
531 static void restore_callbacks(struct socket *sock)
532 {
533 	struct sock *sk = sock->sk;
534 
535 	write_lock_bh(&sk->sk_callback_lock);
536 	sk->sk_user_data = NULL;
537 	sk->sk_data_ready = listen_sock.sk_data_ready;
538 	sk->sk_state_change = listen_sock.sk_state_change;
539 	sk->sk_write_space = listen_sock.sk_write_space;
540 	sk->sk_error_report = listen_sock.sk_error_report;
541 	write_unlock_bh(&sk->sk_callback_lock);
542 }
543 
544 /* Make a socket active */
545 static void add_sock(struct socket *sock, struct connection *con)
546 {
547 	struct sock *sk = sock->sk;
548 
549 	write_lock_bh(&sk->sk_callback_lock);
550 	con->sock = sock;
551 
552 	sk->sk_user_data = con;
553 	/* Install a data_ready callback */
554 	sk->sk_data_ready = lowcomms_data_ready;
555 	sk->sk_write_space = lowcomms_write_space;
556 	sk->sk_state_change = lowcomms_state_change;
557 	sk->sk_allocation = GFP_NOFS;
558 	sk->sk_error_report = lowcomms_error_report;
559 	write_unlock_bh(&sk->sk_callback_lock);
560 }
561 
562 /* Add the port number to an IPv6 or 4 sockaddr and return the address
563    length */
564 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
565 			  int *addr_len)
566 {
567 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
568 	if (saddr->ss_family == AF_INET) {
569 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
570 		in4_addr->sin_port = cpu_to_be16(port);
571 		*addr_len = sizeof(struct sockaddr_in);
572 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
573 	} else {
574 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
575 		in6_addr->sin6_port = cpu_to_be16(port);
576 		*addr_len = sizeof(struct sockaddr_in6);
577 	}
578 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
579 }
580 
581 /* Close a remote connection and tidy up */
582 static void close_connection(struct connection *con, bool and_other,
583 			     bool tx, bool rx)
584 {
585 	bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
586 
587 	if (tx && !closing && cancel_work_sync(&con->swork))
588 		log_print("canceled swork for node %d", con->nodeid);
589 	if (rx && !closing && cancel_work_sync(&con->rwork))
590 		log_print("canceled rwork for node %d", con->nodeid);
591 
592 	mutex_lock(&con->sock_mutex);
593 	if (con->sock) {
594 		restore_callbacks(con->sock);
595 		sock_release(con->sock);
596 		con->sock = NULL;
597 	}
598 	if (con->othercon && and_other) {
599 		/* Will only re-enter once. */
600 		close_connection(con->othercon, false, true, true);
601 	}
602 	if (con->rx_page) {
603 		__free_page(con->rx_page);
604 		con->rx_page = NULL;
605 	}
606 
607 	con->retries = 0;
608 	mutex_unlock(&con->sock_mutex);
609 	clear_bit(CF_CLOSING, &con->flags);
610 }
611 
612 /* Data received from remote end */
613 static int receive_from_sock(struct connection *con)
614 {
615 	int ret = 0;
616 	struct msghdr msg = {};
617 	struct kvec iov[2];
618 	unsigned len;
619 	int r;
620 	int call_again_soon = 0;
621 	int nvec;
622 
623 	mutex_lock(&con->sock_mutex);
624 
625 	if (con->sock == NULL) {
626 		ret = -EAGAIN;
627 		goto out_close;
628 	}
629 	if (con->nodeid == 0) {
630 		ret = -EINVAL;
631 		goto out_close;
632 	}
633 
634 	if (con->rx_page == NULL) {
635 		/*
636 		 * This doesn't need to be atomic, but I think it should
637 		 * improve performance if it is.
638 		 */
639 		con->rx_page = alloc_page(GFP_ATOMIC);
640 		if (con->rx_page == NULL)
641 			goto out_resched;
642 		cbuf_init(&con->cb, PAGE_SIZE);
643 	}
644 
645 	/*
646 	 * iov[0] is the bit of the circular buffer between the current end
647 	 * point (cb.base + cb.len) and the end of the buffer.
648 	 */
649 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
650 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
651 	iov[1].iov_len = 0;
652 	nvec = 1;
653 
654 	/*
655 	 * iov[1] is the bit of the circular buffer between the start of the
656 	 * buffer and the start of the currently used section (cb.base)
657 	 */
658 	if (cbuf_data(&con->cb) >= con->cb.base) {
659 		iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
660 		iov[1].iov_len = con->cb.base;
661 		iov[1].iov_base = page_address(con->rx_page);
662 		nvec = 2;
663 	}
664 	len = iov[0].iov_len + iov[1].iov_len;
665 
666 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
667 			       MSG_DONTWAIT | MSG_NOSIGNAL);
668 	if (ret <= 0)
669 		goto out_close;
670 	else if (ret == len)
671 		call_again_soon = 1;
672 
673 	cbuf_add(&con->cb, ret);
674 	ret = dlm_process_incoming_buffer(con->nodeid,
675 					  page_address(con->rx_page),
676 					  con->cb.base, con->cb.len,
677 					  PAGE_SIZE);
678 	if (ret == -EBADMSG) {
679 		log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
680 			  page_address(con->rx_page), con->cb.base,
681 			  con->cb.len, r);
682 	}
683 	if (ret < 0)
684 		goto out_close;
685 	cbuf_eat(&con->cb, ret);
686 
687 	if (cbuf_empty(&con->cb) && !call_again_soon) {
688 		__free_page(con->rx_page);
689 		con->rx_page = NULL;
690 	}
691 
692 	if (call_again_soon)
693 		goto out_resched;
694 	mutex_unlock(&con->sock_mutex);
695 	return 0;
696 
697 out_resched:
698 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
699 		queue_work(recv_workqueue, &con->rwork);
700 	mutex_unlock(&con->sock_mutex);
701 	return -EAGAIN;
702 
703 out_close:
704 	mutex_unlock(&con->sock_mutex);
705 	if (ret != -EAGAIN) {
706 		close_connection(con, false, true, false);
707 		/* Reconnect when there is something to send */
708 	}
709 	/* Don't return success if we really got EOF */
710 	if (ret == 0)
711 		ret = -EAGAIN;
712 
713 	return ret;
714 }
715 
716 /* Listening socket is busy, accept a connection */
717 static int tcp_accept_from_sock(struct connection *con)
718 {
719 	int result;
720 	struct sockaddr_storage peeraddr;
721 	struct socket *newsock;
722 	int len;
723 	int nodeid;
724 	struct connection *newcon;
725 	struct connection *addcon;
726 
727 	mutex_lock(&connections_lock);
728 	if (!dlm_allow_conn) {
729 		mutex_unlock(&connections_lock);
730 		return -1;
731 	}
732 	mutex_unlock(&connections_lock);
733 
734 	memset(&peeraddr, 0, sizeof(peeraddr));
735 	result = sock_create_lite(dlm_local_addr[0]->ss_family,
736 				  SOCK_STREAM, IPPROTO_TCP, &newsock);
737 	if (result < 0)
738 		return -ENOMEM;
739 
740 	mutex_lock_nested(&con->sock_mutex, 0);
741 
742 	result = -ENOTCONN;
743 	if (con->sock == NULL)
744 		goto accept_err;
745 
746 	newsock->type = con->sock->type;
747 	newsock->ops = con->sock->ops;
748 
749 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK, true);
750 	if (result < 0)
751 		goto accept_err;
752 
753 	/* Get the connected socket's peer */
754 	memset(&peeraddr, 0, sizeof(peeraddr));
755 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
756 				  &len, 2)) {
757 		result = -ECONNABORTED;
758 		goto accept_err;
759 	}
760 
761 	/* Get the new node's NODEID */
762 	make_sockaddr(&peeraddr, 0, &len);
763 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
764 		unsigned char *b=(unsigned char *)&peeraddr;
765 		log_print("connect from non cluster node");
766 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
767 				     b, sizeof(struct sockaddr_storage));
768 		sock_release(newsock);
769 		mutex_unlock(&con->sock_mutex);
770 		return -1;
771 	}
772 
773 	log_print("got connection from %d", nodeid);
774 
775 	/*  Check to see if we already have a connection to this node. This
776 	 *  could happen if the two nodes initiate a connection at roughly
777 	 *  the same time and the connections cross on the wire.
778 	 *  In this case we store the incoming one in "othercon"
779 	 */
780 	newcon = nodeid2con(nodeid, GFP_NOFS);
781 	if (!newcon) {
782 		result = -ENOMEM;
783 		goto accept_err;
784 	}
785 	mutex_lock_nested(&newcon->sock_mutex, 1);
786 	if (newcon->sock) {
787 		struct connection *othercon = newcon->othercon;
788 
789 		if (!othercon) {
790 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
791 			if (!othercon) {
792 				log_print("failed to allocate incoming socket");
793 				mutex_unlock(&newcon->sock_mutex);
794 				result = -ENOMEM;
795 				goto accept_err;
796 			}
797 			othercon->nodeid = nodeid;
798 			othercon->rx_action = receive_from_sock;
799 			mutex_init(&othercon->sock_mutex);
800 			INIT_WORK(&othercon->swork, process_send_sockets);
801 			INIT_WORK(&othercon->rwork, process_recv_sockets);
802 			set_bit(CF_IS_OTHERCON, &othercon->flags);
803 		}
804 		if (!othercon->sock) {
805 			newcon->othercon = othercon;
806 			othercon->sock = newsock;
807 			newsock->sk->sk_user_data = othercon;
808 			add_sock(newsock, othercon);
809 			addcon = othercon;
810 		}
811 		else {
812 			printk("Extra connection from node %d attempted\n", nodeid);
813 			result = -EAGAIN;
814 			mutex_unlock(&newcon->sock_mutex);
815 			goto accept_err;
816 		}
817 	}
818 	else {
819 		newsock->sk->sk_user_data = newcon;
820 		newcon->rx_action = receive_from_sock;
821 		/* accept copies the sk after we've saved the callbacks, so we
822 		   don't want to save them a second time or comm errors will
823 		   result in calling sk_error_report recursively. */
824 		add_sock(newsock, newcon);
825 		addcon = newcon;
826 	}
827 
828 	mutex_unlock(&newcon->sock_mutex);
829 
830 	/*
831 	 * Add it to the active queue in case we got data
832 	 * between processing the accept adding the socket
833 	 * to the read_sockets list
834 	 */
835 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
836 		queue_work(recv_workqueue, &addcon->rwork);
837 	mutex_unlock(&con->sock_mutex);
838 
839 	return 0;
840 
841 accept_err:
842 	mutex_unlock(&con->sock_mutex);
843 	sock_release(newsock);
844 
845 	if (result != -EAGAIN)
846 		log_print("error accepting connection from node: %d", result);
847 	return result;
848 }
849 
850 static int sctp_accept_from_sock(struct connection *con)
851 {
852 	/* Check that the new node is in the lockspace */
853 	struct sctp_prim prim;
854 	int nodeid;
855 	int prim_len, ret;
856 	int addr_len;
857 	struct connection *newcon;
858 	struct connection *addcon;
859 	struct socket *newsock;
860 
861 	mutex_lock(&connections_lock);
862 	if (!dlm_allow_conn) {
863 		mutex_unlock(&connections_lock);
864 		return -1;
865 	}
866 	mutex_unlock(&connections_lock);
867 
868 	mutex_lock_nested(&con->sock_mutex, 0);
869 
870 	ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
871 	if (ret < 0)
872 		goto accept_err;
873 
874 	memset(&prim, 0, sizeof(struct sctp_prim));
875 	prim_len = sizeof(struct sctp_prim);
876 
877 	ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
878 				(char *)&prim, &prim_len);
879 	if (ret < 0) {
880 		log_print("getsockopt/sctp_primary_addr failed: %d", ret);
881 		goto accept_err;
882 	}
883 
884 	make_sockaddr(&prim.ssp_addr, 0, &addr_len);
885 	ret = addr_to_nodeid(&prim.ssp_addr, &nodeid);
886 	if (ret) {
887 		unsigned char *b = (unsigned char *)&prim.ssp_addr;
888 
889 		log_print("reject connect from unknown addr");
890 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
891 				     b, sizeof(struct sockaddr_storage));
892 		goto accept_err;
893 	}
894 
895 	newcon = nodeid2con(nodeid, GFP_NOFS);
896 	if (!newcon) {
897 		ret = -ENOMEM;
898 		goto accept_err;
899 	}
900 
901 	mutex_lock_nested(&newcon->sock_mutex, 1);
902 
903 	if (newcon->sock) {
904 		struct connection *othercon = newcon->othercon;
905 
906 		if (!othercon) {
907 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
908 			if (!othercon) {
909 				log_print("failed to allocate incoming socket");
910 				mutex_unlock(&newcon->sock_mutex);
911 				ret = -ENOMEM;
912 				goto accept_err;
913 			}
914 			othercon->nodeid = nodeid;
915 			othercon->rx_action = receive_from_sock;
916 			mutex_init(&othercon->sock_mutex);
917 			INIT_WORK(&othercon->swork, process_send_sockets);
918 			INIT_WORK(&othercon->rwork, process_recv_sockets);
919 			set_bit(CF_IS_OTHERCON, &othercon->flags);
920 		}
921 		if (!othercon->sock) {
922 			newcon->othercon = othercon;
923 			othercon->sock = newsock;
924 			newsock->sk->sk_user_data = othercon;
925 			add_sock(newsock, othercon);
926 			addcon = othercon;
927 		} else {
928 			printk("Extra connection from node %d attempted\n", nodeid);
929 			ret = -EAGAIN;
930 			mutex_unlock(&newcon->sock_mutex);
931 			goto accept_err;
932 		}
933 	} else {
934 		newsock->sk->sk_user_data = newcon;
935 		newcon->rx_action = receive_from_sock;
936 		add_sock(newsock, newcon);
937 		addcon = newcon;
938 	}
939 
940 	log_print("connected to %d", nodeid);
941 
942 	mutex_unlock(&newcon->sock_mutex);
943 
944 	/*
945 	 * Add it to the active queue in case we got data
946 	 * between processing the accept adding the socket
947 	 * to the read_sockets list
948 	 */
949 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
950 		queue_work(recv_workqueue, &addcon->rwork);
951 	mutex_unlock(&con->sock_mutex);
952 
953 	return 0;
954 
955 accept_err:
956 	mutex_unlock(&con->sock_mutex);
957 	if (newsock)
958 		sock_release(newsock);
959 	if (ret != -EAGAIN)
960 		log_print("error accepting connection from node: %d", ret);
961 
962 	return ret;
963 }
964 
965 static void free_entry(struct writequeue_entry *e)
966 {
967 	__free_page(e->page);
968 	kfree(e);
969 }
970 
971 /*
972  * writequeue_entry_complete - try to delete and free write queue entry
973  * @e: write queue entry to try to delete
974  * @completed: bytes completed
975  *
976  * writequeue_lock must be held.
977  */
978 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
979 {
980 	e->offset += completed;
981 	e->len -= completed;
982 
983 	if (e->len == 0 && e->users == 0) {
984 		list_del(&e->list);
985 		free_entry(e);
986 	}
987 }
988 
989 /*
990  * sctp_bind_addrs - bind a SCTP socket to all our addresses
991  */
992 static int sctp_bind_addrs(struct connection *con, uint16_t port)
993 {
994 	struct sockaddr_storage localaddr;
995 	int i, addr_len, result = 0;
996 
997 	for (i = 0; i < dlm_local_count; i++) {
998 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
999 		make_sockaddr(&localaddr, port, &addr_len);
1000 
1001 		if (!i)
1002 			result = kernel_bind(con->sock,
1003 					     (struct sockaddr *)&localaddr,
1004 					     addr_len);
1005 		else
1006 			result = kernel_setsockopt(con->sock, SOL_SCTP,
1007 						   SCTP_SOCKOPT_BINDX_ADD,
1008 						   (char *)&localaddr, addr_len);
1009 
1010 		if (result < 0) {
1011 			log_print("Can't bind to %d addr number %d, %d.\n",
1012 				  port, i + 1, result);
1013 			break;
1014 		}
1015 	}
1016 	return result;
1017 }
1018 
1019 /* Initiate an SCTP association.
1020    This is a special case of send_to_sock() in that we don't yet have a
1021    peeled-off socket for this association, so we use the listening socket
1022    and add the primary IP address of the remote node.
1023  */
1024 static void sctp_connect_to_sock(struct connection *con)
1025 {
1026 	struct sockaddr_storage daddr;
1027 	int one = 1;
1028 	int result;
1029 	int addr_len;
1030 	struct socket *sock;
1031 
1032 	if (con->nodeid == 0) {
1033 		log_print("attempt to connect sock 0 foiled");
1034 		return;
1035 	}
1036 
1037 	mutex_lock(&con->sock_mutex);
1038 
1039 	/* Some odd races can cause double-connects, ignore them */
1040 	if (con->retries++ > MAX_CONNECT_RETRIES)
1041 		goto out;
1042 
1043 	if (con->sock) {
1044 		log_print("node %d already connected.", con->nodeid);
1045 		goto out;
1046 	}
1047 
1048 	memset(&daddr, 0, sizeof(daddr));
1049 	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
1050 	if (result < 0) {
1051 		log_print("no address for nodeid %d", con->nodeid);
1052 		goto out;
1053 	}
1054 
1055 	/* Create a socket to communicate with */
1056 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1057 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1058 	if (result < 0)
1059 		goto socket_err;
1060 
1061 	sock->sk->sk_user_data = con;
1062 	con->rx_action = receive_from_sock;
1063 	con->connect_action = sctp_connect_to_sock;
1064 	add_sock(sock, con);
1065 
1066 	/* Bind to all addresses. */
1067 	if (sctp_bind_addrs(con, 0))
1068 		goto bind_err;
1069 
1070 	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1071 
1072 	log_print("connecting to %d", con->nodeid);
1073 
1074 	/* Turn off Nagle's algorithm */
1075 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1076 			  sizeof(one));
1077 
1078 	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1079 				   O_NONBLOCK);
1080 	if (result == -EINPROGRESS)
1081 		result = 0;
1082 	if (result == 0)
1083 		goto out;
1084 
1085 bind_err:
1086 	con->sock = NULL;
1087 	sock_release(sock);
1088 
1089 socket_err:
1090 	/*
1091 	 * Some errors are fatal and this list might need adjusting. For other
1092 	 * errors we try again until the max number of retries is reached.
1093 	 */
1094 	if (result != -EHOSTUNREACH &&
1095 	    result != -ENETUNREACH &&
1096 	    result != -ENETDOWN &&
1097 	    result != -EINVAL &&
1098 	    result != -EPROTONOSUPPORT) {
1099 		log_print("connect %d try %d error %d", con->nodeid,
1100 			  con->retries, result);
1101 		mutex_unlock(&con->sock_mutex);
1102 		msleep(1000);
1103 		lowcomms_connect_sock(con);
1104 		return;
1105 	}
1106 
1107 out:
1108 	mutex_unlock(&con->sock_mutex);
1109 }
1110 
1111 /* Connect a new socket to its peer */
1112 static void tcp_connect_to_sock(struct connection *con)
1113 {
1114 	struct sockaddr_storage saddr, src_addr;
1115 	int addr_len;
1116 	struct socket *sock = NULL;
1117 	int one = 1;
1118 	int result;
1119 
1120 	if (con->nodeid == 0) {
1121 		log_print("attempt to connect sock 0 foiled");
1122 		return;
1123 	}
1124 
1125 	mutex_lock(&con->sock_mutex);
1126 	if (con->retries++ > MAX_CONNECT_RETRIES)
1127 		goto out;
1128 
1129 	/* Some odd races can cause double-connects, ignore them */
1130 	if (con->sock)
1131 		goto out;
1132 
1133 	/* Create a socket to communicate with */
1134 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1135 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1136 	if (result < 0)
1137 		goto out_err;
1138 
1139 	memset(&saddr, 0, sizeof(saddr));
1140 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1141 	if (result < 0) {
1142 		log_print("no address for nodeid %d", con->nodeid);
1143 		goto out_err;
1144 	}
1145 
1146 	sock->sk->sk_user_data = con;
1147 	con->rx_action = receive_from_sock;
1148 	con->connect_action = tcp_connect_to_sock;
1149 	add_sock(sock, con);
1150 
1151 	/* Bind to our cluster-known address connecting to avoid
1152 	   routing problems */
1153 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1154 	make_sockaddr(&src_addr, 0, &addr_len);
1155 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1156 				 addr_len);
1157 	if (result < 0) {
1158 		log_print("could not bind for connect: %d", result);
1159 		/* This *may* not indicate a critical error */
1160 	}
1161 
1162 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1163 
1164 	log_print("connecting to %d", con->nodeid);
1165 
1166 	/* Turn off Nagle's algorithm */
1167 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1168 			  sizeof(one));
1169 
1170 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1171 				   O_NONBLOCK);
1172 	if (result == -EINPROGRESS)
1173 		result = 0;
1174 	if (result == 0)
1175 		goto out;
1176 
1177 out_err:
1178 	if (con->sock) {
1179 		sock_release(con->sock);
1180 		con->sock = NULL;
1181 	} else if (sock) {
1182 		sock_release(sock);
1183 	}
1184 	/*
1185 	 * Some errors are fatal and this list might need adjusting. For other
1186 	 * errors we try again until the max number of retries is reached.
1187 	 */
1188 	if (result != -EHOSTUNREACH &&
1189 	    result != -ENETUNREACH &&
1190 	    result != -ENETDOWN &&
1191 	    result != -EINVAL &&
1192 	    result != -EPROTONOSUPPORT) {
1193 		log_print("connect %d try %d error %d", con->nodeid,
1194 			  con->retries, result);
1195 		mutex_unlock(&con->sock_mutex);
1196 		msleep(1000);
1197 		lowcomms_connect_sock(con);
1198 		return;
1199 	}
1200 out:
1201 	mutex_unlock(&con->sock_mutex);
1202 	return;
1203 }
1204 
1205 static struct socket *tcp_create_listen_sock(struct connection *con,
1206 					     struct sockaddr_storage *saddr)
1207 {
1208 	struct socket *sock = NULL;
1209 	int result = 0;
1210 	int one = 1;
1211 	int addr_len;
1212 
1213 	if (dlm_local_addr[0]->ss_family == AF_INET)
1214 		addr_len = sizeof(struct sockaddr_in);
1215 	else
1216 		addr_len = sizeof(struct sockaddr_in6);
1217 
1218 	/* Create a socket to communicate with */
1219 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1220 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1221 	if (result < 0) {
1222 		log_print("Can't create listening comms socket");
1223 		goto create_out;
1224 	}
1225 
1226 	/* Turn off Nagle's algorithm */
1227 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1228 			  sizeof(one));
1229 
1230 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1231 				   (char *)&one, sizeof(one));
1232 
1233 	if (result < 0) {
1234 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1235 	}
1236 	sock->sk->sk_user_data = con;
1237 	save_listen_callbacks(sock);
1238 	con->rx_action = tcp_accept_from_sock;
1239 	con->connect_action = tcp_connect_to_sock;
1240 
1241 	/* Bind to our port */
1242 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1243 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1244 	if (result < 0) {
1245 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1246 		sock_release(sock);
1247 		sock = NULL;
1248 		con->sock = NULL;
1249 		goto create_out;
1250 	}
1251 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1252 				 (char *)&one, sizeof(one));
1253 	if (result < 0) {
1254 		log_print("Set keepalive failed: %d", result);
1255 	}
1256 
1257 	result = sock->ops->listen(sock, 5);
1258 	if (result < 0) {
1259 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1260 		sock_release(sock);
1261 		sock = NULL;
1262 		goto create_out;
1263 	}
1264 
1265 create_out:
1266 	return sock;
1267 }
1268 
1269 /* Get local addresses */
1270 static void init_local(void)
1271 {
1272 	struct sockaddr_storage sas, *addr;
1273 	int i;
1274 
1275 	dlm_local_count = 0;
1276 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1277 		if (dlm_our_addr(&sas, i))
1278 			break;
1279 
1280 		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1281 		if (!addr)
1282 			break;
1283 		dlm_local_addr[dlm_local_count++] = addr;
1284 	}
1285 }
1286 
1287 /* Initialise SCTP socket and bind to all interfaces */
1288 static int sctp_listen_for_all(void)
1289 {
1290 	struct socket *sock = NULL;
1291 	int result = -EINVAL;
1292 	struct connection *con = nodeid2con(0, GFP_NOFS);
1293 	int bufsize = NEEDED_RMEM;
1294 	int one = 1;
1295 
1296 	if (!con)
1297 		return -ENOMEM;
1298 
1299 	log_print("Using SCTP for communications");
1300 
1301 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1302 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1303 	if (result < 0) {
1304 		log_print("Can't create comms socket, check SCTP is loaded");
1305 		goto out;
1306 	}
1307 
1308 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1309 				 (char *)&bufsize, sizeof(bufsize));
1310 	if (result)
1311 		log_print("Error increasing buffer space on socket %d", result);
1312 
1313 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1314 				   sizeof(one));
1315 	if (result < 0)
1316 		log_print("Could not set SCTP NODELAY error %d\n", result);
1317 
1318 	write_lock_bh(&sock->sk->sk_callback_lock);
1319 	/* Init con struct */
1320 	sock->sk->sk_user_data = con;
1321 	save_listen_callbacks(sock);
1322 	con->sock = sock;
1323 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1324 	con->rx_action = sctp_accept_from_sock;
1325 	con->connect_action = sctp_connect_to_sock;
1326 
1327 	write_unlock_bh(&sock->sk->sk_callback_lock);
1328 
1329 	/* Bind to all addresses. */
1330 	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1331 		goto create_delsock;
1332 
1333 	result = sock->ops->listen(sock, 5);
1334 	if (result < 0) {
1335 		log_print("Can't set socket listening");
1336 		goto create_delsock;
1337 	}
1338 
1339 	return 0;
1340 
1341 create_delsock:
1342 	sock_release(sock);
1343 	con->sock = NULL;
1344 out:
1345 	return result;
1346 }
1347 
1348 static int tcp_listen_for_all(void)
1349 {
1350 	struct socket *sock = NULL;
1351 	struct connection *con = nodeid2con(0, GFP_NOFS);
1352 	int result = -EINVAL;
1353 
1354 	if (!con)
1355 		return -ENOMEM;
1356 
1357 	/* We don't support multi-homed hosts */
1358 	if (dlm_local_addr[1] != NULL) {
1359 		log_print("TCP protocol can't handle multi-homed hosts, "
1360 			  "try SCTP");
1361 		return -EINVAL;
1362 	}
1363 
1364 	log_print("Using TCP for communications");
1365 
1366 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1367 	if (sock) {
1368 		add_sock(sock, con);
1369 		result = 0;
1370 	}
1371 	else {
1372 		result = -EADDRINUSE;
1373 	}
1374 
1375 	return result;
1376 }
1377 
1378 
1379 
1380 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1381 						     gfp_t allocation)
1382 {
1383 	struct writequeue_entry *entry;
1384 
1385 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1386 	if (!entry)
1387 		return NULL;
1388 
1389 	entry->page = alloc_page(allocation);
1390 	if (!entry->page) {
1391 		kfree(entry);
1392 		return NULL;
1393 	}
1394 
1395 	entry->offset = 0;
1396 	entry->len = 0;
1397 	entry->end = 0;
1398 	entry->users = 0;
1399 	entry->con = con;
1400 
1401 	return entry;
1402 }
1403 
1404 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1405 {
1406 	struct connection *con;
1407 	struct writequeue_entry *e;
1408 	int offset = 0;
1409 
1410 	con = nodeid2con(nodeid, allocation);
1411 	if (!con)
1412 		return NULL;
1413 
1414 	spin_lock(&con->writequeue_lock);
1415 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1416 	if ((&e->list == &con->writequeue) ||
1417 	    (PAGE_SIZE - e->end < len)) {
1418 		e = NULL;
1419 	} else {
1420 		offset = e->end;
1421 		e->end += len;
1422 		e->users++;
1423 	}
1424 	spin_unlock(&con->writequeue_lock);
1425 
1426 	if (e) {
1427 	got_one:
1428 		*ppc = page_address(e->page) + offset;
1429 		return e;
1430 	}
1431 
1432 	e = new_writequeue_entry(con, allocation);
1433 	if (e) {
1434 		spin_lock(&con->writequeue_lock);
1435 		offset = e->end;
1436 		e->end += len;
1437 		e->users++;
1438 		list_add_tail(&e->list, &con->writequeue);
1439 		spin_unlock(&con->writequeue_lock);
1440 		goto got_one;
1441 	}
1442 	return NULL;
1443 }
1444 
1445 void dlm_lowcomms_commit_buffer(void *mh)
1446 {
1447 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1448 	struct connection *con = e->con;
1449 	int users;
1450 
1451 	spin_lock(&con->writequeue_lock);
1452 	users = --e->users;
1453 	if (users)
1454 		goto out;
1455 	e->len = e->end - e->offset;
1456 	spin_unlock(&con->writequeue_lock);
1457 
1458 	queue_work(send_workqueue, &con->swork);
1459 	return;
1460 
1461 out:
1462 	spin_unlock(&con->writequeue_lock);
1463 	return;
1464 }
1465 
1466 /* Send a message */
1467 static void send_to_sock(struct connection *con)
1468 {
1469 	int ret = 0;
1470 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1471 	struct writequeue_entry *e;
1472 	int len, offset;
1473 	int count = 0;
1474 
1475 	mutex_lock(&con->sock_mutex);
1476 	if (con->sock == NULL)
1477 		goto out_connect;
1478 
1479 	spin_lock(&con->writequeue_lock);
1480 	for (;;) {
1481 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1482 			       list);
1483 		if ((struct list_head *) e == &con->writequeue)
1484 			break;
1485 
1486 		len = e->len;
1487 		offset = e->offset;
1488 		BUG_ON(len == 0 && e->users == 0);
1489 		spin_unlock(&con->writequeue_lock);
1490 
1491 		ret = 0;
1492 		if (len) {
1493 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1494 					      msg_flags);
1495 			if (ret == -EAGAIN || ret == 0) {
1496 				if (ret == -EAGAIN &&
1497 				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1498 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1499 					/* Notify TCP that we're limited by the
1500 					 * application window size.
1501 					 */
1502 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1503 					con->sock->sk->sk_write_pending++;
1504 				}
1505 				cond_resched();
1506 				goto out;
1507 			} else if (ret < 0)
1508 				goto send_error;
1509 		}
1510 
1511 		/* Don't starve people filling buffers */
1512 		if (++count >= MAX_SEND_MSG_COUNT) {
1513 			cond_resched();
1514 			count = 0;
1515 		}
1516 
1517 		spin_lock(&con->writequeue_lock);
1518 		writequeue_entry_complete(e, ret);
1519 	}
1520 	spin_unlock(&con->writequeue_lock);
1521 out:
1522 	mutex_unlock(&con->sock_mutex);
1523 	return;
1524 
1525 send_error:
1526 	mutex_unlock(&con->sock_mutex);
1527 	close_connection(con, false, false, true);
1528 	/* Requeue the send work. When the work daemon runs again, it will try
1529 	   a new connection, then call this function again. */
1530 	queue_work(send_workqueue, &con->swork);
1531 	return;
1532 
1533 out_connect:
1534 	mutex_unlock(&con->sock_mutex);
1535 	queue_work(send_workqueue, &con->swork);
1536 	cond_resched();
1537 }
1538 
1539 static void clean_one_writequeue(struct connection *con)
1540 {
1541 	struct writequeue_entry *e, *safe;
1542 
1543 	spin_lock(&con->writequeue_lock);
1544 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1545 		list_del(&e->list);
1546 		free_entry(e);
1547 	}
1548 	spin_unlock(&con->writequeue_lock);
1549 }
1550 
1551 /* Called from recovery when it knows that a node has
1552    left the cluster */
1553 int dlm_lowcomms_close(int nodeid)
1554 {
1555 	struct connection *con;
1556 	struct dlm_node_addr *na;
1557 
1558 	log_print("closing connection to node %d", nodeid);
1559 	con = nodeid2con(nodeid, 0);
1560 	if (con) {
1561 		set_bit(CF_CLOSE, &con->flags);
1562 		close_connection(con, true, true, true);
1563 		clean_one_writequeue(con);
1564 	}
1565 
1566 	spin_lock(&dlm_node_addrs_spin);
1567 	na = find_node_addr(nodeid);
1568 	if (na) {
1569 		list_del(&na->list);
1570 		while (na->addr_count--)
1571 			kfree(na->addr[na->addr_count]);
1572 		kfree(na);
1573 	}
1574 	spin_unlock(&dlm_node_addrs_spin);
1575 
1576 	return 0;
1577 }
1578 
1579 /* Receive workqueue function */
1580 static void process_recv_sockets(struct work_struct *work)
1581 {
1582 	struct connection *con = container_of(work, struct connection, rwork);
1583 	int err;
1584 
1585 	clear_bit(CF_READ_PENDING, &con->flags);
1586 	do {
1587 		err = con->rx_action(con);
1588 	} while (!err);
1589 }
1590 
1591 /* Send workqueue function */
1592 static void process_send_sockets(struct work_struct *work)
1593 {
1594 	struct connection *con = container_of(work, struct connection, swork);
1595 
1596 	if (con->sock == NULL) /* not mutex protected so check it inside too */
1597 		con->connect_action(con);
1598 	if (!list_empty(&con->writequeue))
1599 		send_to_sock(con);
1600 }
1601 
1602 
1603 /* Discard all entries on the write queues */
1604 static void clean_writequeues(void)
1605 {
1606 	foreach_conn(clean_one_writequeue);
1607 }
1608 
1609 static void work_stop(void)
1610 {
1611 	destroy_workqueue(recv_workqueue);
1612 	destroy_workqueue(send_workqueue);
1613 }
1614 
1615 static int work_start(void)
1616 {
1617 	recv_workqueue = alloc_workqueue("dlm_recv",
1618 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1619 	if (!recv_workqueue) {
1620 		log_print("can't start dlm_recv");
1621 		return -ENOMEM;
1622 	}
1623 
1624 	send_workqueue = alloc_workqueue("dlm_send",
1625 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1626 	if (!send_workqueue) {
1627 		log_print("can't start dlm_send");
1628 		destroy_workqueue(recv_workqueue);
1629 		return -ENOMEM;
1630 	}
1631 
1632 	return 0;
1633 }
1634 
1635 static void _stop_conn(struct connection *con, bool and_other)
1636 {
1637 	mutex_lock(&con->sock_mutex);
1638 	set_bit(CF_READ_PENDING, &con->flags);
1639 	if (con->sock && con->sock->sk)
1640 		con->sock->sk->sk_user_data = NULL;
1641 	if (con->othercon && and_other)
1642 		_stop_conn(con->othercon, false);
1643 	mutex_unlock(&con->sock_mutex);
1644 }
1645 
1646 static void stop_conn(struct connection *con)
1647 {
1648 	_stop_conn(con, true);
1649 }
1650 
1651 static void free_conn(struct connection *con)
1652 {
1653 	close_connection(con, true, true, true);
1654 	if (con->othercon)
1655 		kmem_cache_free(con_cache, con->othercon);
1656 	hlist_del(&con->list);
1657 	kmem_cache_free(con_cache, con);
1658 }
1659 
1660 static void work_flush(void)
1661 {
1662 	int ok;
1663 	int i;
1664 	struct hlist_node *n;
1665 	struct connection *con;
1666 
1667 	flush_workqueue(recv_workqueue);
1668 	flush_workqueue(send_workqueue);
1669 	do {
1670 		ok = 1;
1671 		foreach_conn(stop_conn);
1672 		flush_workqueue(recv_workqueue);
1673 		flush_workqueue(send_workqueue);
1674 		for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1675 			hlist_for_each_entry_safe(con, n,
1676 						  &connection_hash[i], list) {
1677 				ok &= test_bit(CF_READ_PENDING, &con->flags);
1678 				if (con->othercon)
1679 					ok &= test_bit(CF_READ_PENDING,
1680 						       &con->othercon->flags);
1681 			}
1682 		}
1683 	} while (!ok);
1684 }
1685 
1686 void dlm_lowcomms_stop(void)
1687 {
1688 	/* Set all the flags to prevent any
1689 	   socket activity.
1690 	*/
1691 	mutex_lock(&connections_lock);
1692 	dlm_allow_conn = 0;
1693 	mutex_unlock(&connections_lock);
1694 	work_flush();
1695 	clean_writequeues();
1696 	foreach_conn(free_conn);
1697 	work_stop();
1698 
1699 	kmem_cache_destroy(con_cache);
1700 }
1701 
1702 int dlm_lowcomms_start(void)
1703 {
1704 	int error = -EINVAL;
1705 	struct connection *con;
1706 	int i;
1707 
1708 	for (i = 0; i < CONN_HASH_SIZE; i++)
1709 		INIT_HLIST_HEAD(&connection_hash[i]);
1710 
1711 	init_local();
1712 	if (!dlm_local_count) {
1713 		error = -ENOTCONN;
1714 		log_print("no local IP address has been set");
1715 		goto fail;
1716 	}
1717 
1718 	error = -ENOMEM;
1719 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1720 				      __alignof__(struct connection), 0,
1721 				      NULL);
1722 	if (!con_cache)
1723 		goto fail;
1724 
1725 	error = work_start();
1726 	if (error)
1727 		goto fail_destroy;
1728 
1729 	dlm_allow_conn = 1;
1730 
1731 	/* Start listening */
1732 	if (dlm_config.ci_protocol == 0)
1733 		error = tcp_listen_for_all();
1734 	else
1735 		error = sctp_listen_for_all();
1736 	if (error)
1737 		goto fail_unlisten;
1738 
1739 	return 0;
1740 
1741 fail_unlisten:
1742 	dlm_allow_conn = 0;
1743 	con = nodeid2con(0,0);
1744 	if (con) {
1745 		close_connection(con, false, true, true);
1746 		kmem_cache_free(con_cache, con);
1747 	}
1748 fail_destroy:
1749 	kmem_cache_destroy(con_cache);
1750 fail:
1751 	return error;
1752 }
1753 
1754 void dlm_lowcomms_exit(void)
1755 {
1756 	struct dlm_node_addr *na, *safe;
1757 
1758 	spin_lock(&dlm_node_addrs_spin);
1759 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1760 		list_del(&na->list);
1761 		while (na->addr_count--)
1762 			kfree(na->addr[na->addr_count]);
1763 		kfree(na);
1764 	}
1765 	spin_unlock(&dlm_node_addrs_spin);
1766 }
1767