xref: /openbmc/linux/fs/dlm/lowcomms.c (revision a701d28e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11 
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44 
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55 
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60 
61 #define NEEDED_RMEM (4*1024*1024)
62 #define CONN_HASH_SIZE 32
63 
64 /* Number of messages to send before rescheduling */
65 #define MAX_SEND_MSG_COUNT 25
66 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
67 
68 struct connection {
69 	struct socket *sock;	/* NULL if not connected */
70 	uint32_t nodeid;	/* So we know who we are in the list */
71 	struct mutex sock_mutex;
72 	unsigned long flags;
73 #define CF_READ_PENDING 1
74 #define CF_WRITE_PENDING 2
75 #define CF_INIT_PENDING 4
76 #define CF_IS_OTHERCON 5
77 #define CF_CLOSE 6
78 #define CF_APP_LIMITED 7
79 #define CF_CLOSING 8
80 #define CF_SHUTDOWN 9
81 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
82 	spinlock_t writequeue_lock;
83 	int (*rx_action) (struct connection *);	/* What to do when active */
84 	void (*connect_action) (struct connection *);	/* What to do to connect */
85 	void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
86 	int retries;
87 #define MAX_CONNECT_RETRIES 3
88 	struct hlist_node list;
89 	struct connection *othercon;
90 	struct work_struct rwork; /* Receive workqueue */
91 	struct work_struct swork; /* Send workqueue */
92 	wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
93 	unsigned char *rx_buf;
94 	int rx_buflen;
95 	int rx_leftover;
96 	struct rcu_head rcu;
97 };
98 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
99 
100 /* An entry waiting to be sent */
101 struct writequeue_entry {
102 	struct list_head list;
103 	struct page *page;
104 	int offset;
105 	int len;
106 	int end;
107 	int users;
108 	struct connection *con;
109 };
110 
111 struct dlm_node_addr {
112 	struct list_head list;
113 	int nodeid;
114 	int addr_count;
115 	int curr_addr_index;
116 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
117 };
118 
119 static struct listen_sock_callbacks {
120 	void (*sk_error_report)(struct sock *);
121 	void (*sk_data_ready)(struct sock *);
122 	void (*sk_state_change)(struct sock *);
123 	void (*sk_write_space)(struct sock *);
124 } listen_sock;
125 
126 static LIST_HEAD(dlm_node_addrs);
127 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
128 
129 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
130 static int dlm_local_count;
131 static int dlm_allow_conn;
132 
133 /* Work queues */
134 static struct workqueue_struct *recv_workqueue;
135 static struct workqueue_struct *send_workqueue;
136 
137 static struct hlist_head connection_hash[CONN_HASH_SIZE];
138 static DEFINE_SPINLOCK(connections_lock);
139 DEFINE_STATIC_SRCU(connections_srcu);
140 
141 static void process_recv_sockets(struct work_struct *work);
142 static void process_send_sockets(struct work_struct *work);
143 
144 
145 /* This is deliberately very simple because most clusters have simple
146    sequential nodeids, so we should be able to go straight to a connection
147    struct in the array */
148 static inline int nodeid_hash(int nodeid)
149 {
150 	return nodeid & (CONN_HASH_SIZE-1);
151 }
152 
153 static struct connection *__find_con(int nodeid)
154 {
155 	int r, idx;
156 	struct connection *con;
157 
158 	r = nodeid_hash(nodeid);
159 
160 	idx = srcu_read_lock(&connections_srcu);
161 	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
162 		if (con->nodeid == nodeid) {
163 			srcu_read_unlock(&connections_srcu, idx);
164 			return con;
165 		}
166 	}
167 	srcu_read_unlock(&connections_srcu, idx);
168 
169 	return NULL;
170 }
171 
172 /*
173  * If 'allocation' is zero then we don't attempt to create a new
174  * connection structure for this node.
175  */
176 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
177 {
178 	struct connection *con, *tmp;
179 	int r;
180 
181 	con = __find_con(nodeid);
182 	if (con || !alloc)
183 		return con;
184 
185 	con = kzalloc(sizeof(*con), alloc);
186 	if (!con)
187 		return NULL;
188 
189 	con->rx_buflen = dlm_config.ci_buffer_size;
190 	con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS);
191 	if (!con->rx_buf) {
192 		kfree(con);
193 		return NULL;
194 	}
195 
196 	con->nodeid = nodeid;
197 	mutex_init(&con->sock_mutex);
198 	INIT_LIST_HEAD(&con->writequeue);
199 	spin_lock_init(&con->writequeue_lock);
200 	INIT_WORK(&con->swork, process_send_sockets);
201 	INIT_WORK(&con->rwork, process_recv_sockets);
202 	init_waitqueue_head(&con->shutdown_wait);
203 
204 	/* Setup action pointers for child sockets */
205 	if (con->nodeid) {
206 		struct connection *zerocon = __find_con(0);
207 
208 		con->connect_action = zerocon->connect_action;
209 		if (!con->rx_action)
210 			con->rx_action = zerocon->rx_action;
211 	}
212 
213 	r = nodeid_hash(nodeid);
214 
215 	spin_lock(&connections_lock);
216 	/* Because multiple workqueues/threads calls this function it can
217 	 * race on multiple cpu's. Instead of locking hot path __find_con()
218 	 * we just check in rare cases of recently added nodes again
219 	 * under protection of connections_lock. If this is the case we
220 	 * abort our connection creation and return the existing connection.
221 	 */
222 	tmp = __find_con(nodeid);
223 	if (tmp) {
224 		spin_unlock(&connections_lock);
225 		kfree(con->rx_buf);
226 		kfree(con);
227 		return tmp;
228 	}
229 
230 	hlist_add_head_rcu(&con->list, &connection_hash[r]);
231 	spin_unlock(&connections_lock);
232 
233 	return con;
234 }
235 
236 /* Loop round all connections */
237 static void foreach_conn(void (*conn_func)(struct connection *c))
238 {
239 	int i, idx;
240 	struct connection *con;
241 
242 	idx = srcu_read_lock(&connections_srcu);
243 	for (i = 0; i < CONN_HASH_SIZE; i++) {
244 		hlist_for_each_entry_rcu(con, &connection_hash[i], list)
245 			conn_func(con);
246 	}
247 	srcu_read_unlock(&connections_srcu, idx);
248 }
249 
250 static struct dlm_node_addr *find_node_addr(int nodeid)
251 {
252 	struct dlm_node_addr *na;
253 
254 	list_for_each_entry(na, &dlm_node_addrs, list) {
255 		if (na->nodeid == nodeid)
256 			return na;
257 	}
258 	return NULL;
259 }
260 
261 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
262 {
263 	switch (x->ss_family) {
264 	case AF_INET: {
265 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
266 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
267 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
268 			return 0;
269 		if (sinx->sin_port != siny->sin_port)
270 			return 0;
271 		break;
272 	}
273 	case AF_INET6: {
274 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
275 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
276 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
277 			return 0;
278 		if (sinx->sin6_port != siny->sin6_port)
279 			return 0;
280 		break;
281 	}
282 	default:
283 		return 0;
284 	}
285 	return 1;
286 }
287 
288 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
289 			  struct sockaddr *sa_out, bool try_new_addr)
290 {
291 	struct sockaddr_storage sas;
292 	struct dlm_node_addr *na;
293 
294 	if (!dlm_local_count)
295 		return -1;
296 
297 	spin_lock(&dlm_node_addrs_spin);
298 	na = find_node_addr(nodeid);
299 	if (na && na->addr_count) {
300 		memcpy(&sas, na->addr[na->curr_addr_index],
301 		       sizeof(struct sockaddr_storage));
302 
303 		if (try_new_addr) {
304 			na->curr_addr_index++;
305 			if (na->curr_addr_index == na->addr_count)
306 				na->curr_addr_index = 0;
307 		}
308 	}
309 	spin_unlock(&dlm_node_addrs_spin);
310 
311 	if (!na)
312 		return -EEXIST;
313 
314 	if (!na->addr_count)
315 		return -ENOENT;
316 
317 	if (sas_out)
318 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
319 
320 	if (!sa_out)
321 		return 0;
322 
323 	if (dlm_local_addr[0]->ss_family == AF_INET) {
324 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
325 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
326 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
327 	} else {
328 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
329 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
330 		ret6->sin6_addr = in6->sin6_addr;
331 	}
332 
333 	return 0;
334 }
335 
336 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
337 {
338 	struct dlm_node_addr *na;
339 	int rv = -EEXIST;
340 	int addr_i;
341 
342 	spin_lock(&dlm_node_addrs_spin);
343 	list_for_each_entry(na, &dlm_node_addrs, list) {
344 		if (!na->addr_count)
345 			continue;
346 
347 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
348 			if (addr_compare(na->addr[addr_i], addr)) {
349 				*nodeid = na->nodeid;
350 				rv = 0;
351 				goto unlock;
352 			}
353 		}
354 	}
355 unlock:
356 	spin_unlock(&dlm_node_addrs_spin);
357 	return rv;
358 }
359 
360 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
361 {
362 	struct sockaddr_storage *new_addr;
363 	struct dlm_node_addr *new_node, *na;
364 
365 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
366 	if (!new_node)
367 		return -ENOMEM;
368 
369 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
370 	if (!new_addr) {
371 		kfree(new_node);
372 		return -ENOMEM;
373 	}
374 
375 	memcpy(new_addr, addr, len);
376 
377 	spin_lock(&dlm_node_addrs_spin);
378 	na = find_node_addr(nodeid);
379 	if (!na) {
380 		new_node->nodeid = nodeid;
381 		new_node->addr[0] = new_addr;
382 		new_node->addr_count = 1;
383 		list_add(&new_node->list, &dlm_node_addrs);
384 		spin_unlock(&dlm_node_addrs_spin);
385 		return 0;
386 	}
387 
388 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
389 		spin_unlock(&dlm_node_addrs_spin);
390 		kfree(new_addr);
391 		kfree(new_node);
392 		return -ENOSPC;
393 	}
394 
395 	na->addr[na->addr_count++] = new_addr;
396 	spin_unlock(&dlm_node_addrs_spin);
397 	kfree(new_node);
398 	return 0;
399 }
400 
401 /* Data available on socket or listen socket received a connect */
402 static void lowcomms_data_ready(struct sock *sk)
403 {
404 	struct connection *con;
405 
406 	read_lock_bh(&sk->sk_callback_lock);
407 	con = sock2con(sk);
408 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
409 		queue_work(recv_workqueue, &con->rwork);
410 	read_unlock_bh(&sk->sk_callback_lock);
411 }
412 
413 static void lowcomms_write_space(struct sock *sk)
414 {
415 	struct connection *con;
416 
417 	read_lock_bh(&sk->sk_callback_lock);
418 	con = sock2con(sk);
419 	if (!con)
420 		goto out;
421 
422 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
423 
424 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
425 		con->sock->sk->sk_write_pending--;
426 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
427 	}
428 
429 	queue_work(send_workqueue, &con->swork);
430 out:
431 	read_unlock_bh(&sk->sk_callback_lock);
432 }
433 
434 static inline void lowcomms_connect_sock(struct connection *con)
435 {
436 	if (test_bit(CF_CLOSE, &con->flags))
437 		return;
438 	queue_work(send_workqueue, &con->swork);
439 	cond_resched();
440 }
441 
442 static void lowcomms_state_change(struct sock *sk)
443 {
444 	/* SCTP layer is not calling sk_data_ready when the connection
445 	 * is done, so we catch the signal through here. Also, it
446 	 * doesn't switch socket state when entering shutdown, so we
447 	 * skip the write in that case.
448 	 */
449 	if (sk->sk_shutdown) {
450 		if (sk->sk_shutdown == RCV_SHUTDOWN)
451 			lowcomms_data_ready(sk);
452 	} else if (sk->sk_state == TCP_ESTABLISHED) {
453 		lowcomms_write_space(sk);
454 	}
455 }
456 
457 int dlm_lowcomms_connect_node(int nodeid)
458 {
459 	struct connection *con;
460 
461 	if (nodeid == dlm_our_nodeid())
462 		return 0;
463 
464 	con = nodeid2con(nodeid, GFP_NOFS);
465 	if (!con)
466 		return -ENOMEM;
467 	lowcomms_connect_sock(con);
468 	return 0;
469 }
470 
471 static void lowcomms_error_report(struct sock *sk)
472 {
473 	struct connection *con;
474 	struct sockaddr_storage saddr;
475 	void (*orig_report)(struct sock *) = NULL;
476 
477 	read_lock_bh(&sk->sk_callback_lock);
478 	con = sock2con(sk);
479 	if (con == NULL)
480 		goto out;
481 
482 	orig_report = listen_sock.sk_error_report;
483 	if (con->sock == NULL ||
484 	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
485 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
486 				   "sending to node %d, port %d, "
487 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
488 				   con->nodeid, dlm_config.ci_tcp_port,
489 				   sk->sk_err, sk->sk_err_soft);
490 	} else if (saddr.ss_family == AF_INET) {
491 		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
492 
493 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
494 				   "sending to node %d at %pI4, port %d, "
495 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
496 				   con->nodeid, &sin4->sin_addr.s_addr,
497 				   dlm_config.ci_tcp_port, sk->sk_err,
498 				   sk->sk_err_soft);
499 	} else {
500 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
501 
502 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
503 				   "sending to node %d at %u.%u.%u.%u, "
504 				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
505 				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
506 				   sin6->sin6_addr.s6_addr32[1],
507 				   sin6->sin6_addr.s6_addr32[2],
508 				   sin6->sin6_addr.s6_addr32[3],
509 				   dlm_config.ci_tcp_port, sk->sk_err,
510 				   sk->sk_err_soft);
511 	}
512 out:
513 	read_unlock_bh(&sk->sk_callback_lock);
514 	if (orig_report)
515 		orig_report(sk);
516 }
517 
518 /* Note: sk_callback_lock must be locked before calling this function. */
519 static void save_listen_callbacks(struct socket *sock)
520 {
521 	struct sock *sk = sock->sk;
522 
523 	listen_sock.sk_data_ready = sk->sk_data_ready;
524 	listen_sock.sk_state_change = sk->sk_state_change;
525 	listen_sock.sk_write_space = sk->sk_write_space;
526 	listen_sock.sk_error_report = sk->sk_error_report;
527 }
528 
529 static void restore_callbacks(struct socket *sock)
530 {
531 	struct sock *sk = sock->sk;
532 
533 	write_lock_bh(&sk->sk_callback_lock);
534 	sk->sk_user_data = NULL;
535 	sk->sk_data_ready = listen_sock.sk_data_ready;
536 	sk->sk_state_change = listen_sock.sk_state_change;
537 	sk->sk_write_space = listen_sock.sk_write_space;
538 	sk->sk_error_report = listen_sock.sk_error_report;
539 	write_unlock_bh(&sk->sk_callback_lock);
540 }
541 
542 /* Make a socket active */
543 static void add_sock(struct socket *sock, struct connection *con)
544 {
545 	struct sock *sk = sock->sk;
546 
547 	write_lock_bh(&sk->sk_callback_lock);
548 	con->sock = sock;
549 
550 	sk->sk_user_data = con;
551 	/* Install a data_ready callback */
552 	sk->sk_data_ready = lowcomms_data_ready;
553 	sk->sk_write_space = lowcomms_write_space;
554 	sk->sk_state_change = lowcomms_state_change;
555 	sk->sk_allocation = GFP_NOFS;
556 	sk->sk_error_report = lowcomms_error_report;
557 	write_unlock_bh(&sk->sk_callback_lock);
558 }
559 
560 /* Add the port number to an IPv6 or 4 sockaddr and return the address
561    length */
562 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
563 			  int *addr_len)
564 {
565 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
566 	if (saddr->ss_family == AF_INET) {
567 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
568 		in4_addr->sin_port = cpu_to_be16(port);
569 		*addr_len = sizeof(struct sockaddr_in);
570 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
571 	} else {
572 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
573 		in6_addr->sin6_port = cpu_to_be16(port);
574 		*addr_len = sizeof(struct sockaddr_in6);
575 	}
576 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
577 }
578 
579 /* Close a remote connection and tidy up */
580 static void close_connection(struct connection *con, bool and_other,
581 			     bool tx, bool rx)
582 {
583 	bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
584 
585 	if (tx && !closing && cancel_work_sync(&con->swork)) {
586 		log_print("canceled swork for node %d", con->nodeid);
587 		clear_bit(CF_WRITE_PENDING, &con->flags);
588 	}
589 	if (rx && !closing && cancel_work_sync(&con->rwork)) {
590 		log_print("canceled rwork for node %d", con->nodeid);
591 		clear_bit(CF_READ_PENDING, &con->flags);
592 	}
593 
594 	mutex_lock(&con->sock_mutex);
595 	if (con->sock) {
596 		restore_callbacks(con->sock);
597 		sock_release(con->sock);
598 		con->sock = NULL;
599 	}
600 	if (con->othercon && and_other) {
601 		/* Will only re-enter once. */
602 		close_connection(con->othercon, false, true, true);
603 	}
604 
605 	con->rx_leftover = 0;
606 	con->retries = 0;
607 	mutex_unlock(&con->sock_mutex);
608 	clear_bit(CF_CLOSING, &con->flags);
609 }
610 
611 static void shutdown_connection(struct connection *con)
612 {
613 	int ret;
614 
615 	if (cancel_work_sync(&con->swork)) {
616 		log_print("canceled swork for node %d", con->nodeid);
617 		clear_bit(CF_WRITE_PENDING, &con->flags);
618 	}
619 
620 	mutex_lock(&con->sock_mutex);
621 	/* nothing to shutdown */
622 	if (!con->sock) {
623 		mutex_unlock(&con->sock_mutex);
624 		return;
625 	}
626 
627 	set_bit(CF_SHUTDOWN, &con->flags);
628 	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
629 	mutex_unlock(&con->sock_mutex);
630 	if (ret) {
631 		log_print("Connection %p failed to shutdown: %d will force close",
632 			  con, ret);
633 		goto force_close;
634 	} else {
635 		ret = wait_event_timeout(con->shutdown_wait,
636 					 !test_bit(CF_SHUTDOWN, &con->flags),
637 					 DLM_SHUTDOWN_WAIT_TIMEOUT);
638 		if (ret == 0) {
639 			log_print("Connection %p shutdown timed out, will force close",
640 				  con);
641 			goto force_close;
642 		}
643 	}
644 
645 	return;
646 
647 force_close:
648 	clear_bit(CF_SHUTDOWN, &con->flags);
649 	close_connection(con, false, true, true);
650 }
651 
652 static void dlm_tcp_shutdown(struct connection *con)
653 {
654 	if (con->othercon)
655 		shutdown_connection(con->othercon);
656 	shutdown_connection(con);
657 }
658 
659 static int con_realloc_receive_buf(struct connection *con, int newlen)
660 {
661 	unsigned char *newbuf;
662 
663 	newbuf = kmalloc(newlen, GFP_NOFS);
664 	if (!newbuf)
665 		return -ENOMEM;
666 
667 	/* copy any leftover from last receive */
668 	if (con->rx_leftover)
669 		memmove(newbuf, con->rx_buf, con->rx_leftover);
670 
671 	/* swap to new buffer space */
672 	kfree(con->rx_buf);
673 	con->rx_buflen = newlen;
674 	con->rx_buf = newbuf;
675 
676 	return 0;
677 }
678 
679 /* Data received from remote end */
680 static int receive_from_sock(struct connection *con)
681 {
682 	int call_again_soon = 0;
683 	struct msghdr msg;
684 	struct kvec iov;
685 	int ret, buflen;
686 
687 	mutex_lock(&con->sock_mutex);
688 
689 	if (con->sock == NULL) {
690 		ret = -EAGAIN;
691 		goto out_close;
692 	}
693 
694 	if (con->nodeid == 0) {
695 		ret = -EINVAL;
696 		goto out_close;
697 	}
698 
699 	/* realloc if we get new buffer size to read out */
700 	buflen = dlm_config.ci_buffer_size;
701 	if (con->rx_buflen != buflen && con->rx_leftover <= buflen) {
702 		ret = con_realloc_receive_buf(con, buflen);
703 		if (ret < 0)
704 			goto out_resched;
705 	}
706 
707 	/* calculate new buffer parameter regarding last receive and
708 	 * possible leftover bytes
709 	 */
710 	iov.iov_base = con->rx_buf + con->rx_leftover;
711 	iov.iov_len = con->rx_buflen - con->rx_leftover;
712 
713 	memset(&msg, 0, sizeof(msg));
714 	msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
715 	ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
716 			     msg.msg_flags);
717 	if (ret <= 0)
718 		goto out_close;
719 	else if (ret == iov.iov_len)
720 		call_again_soon = 1;
721 
722 	/* new buflen according readed bytes and leftover from last receive */
723 	buflen = ret + con->rx_leftover;
724 	ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen);
725 	if (ret < 0)
726 		goto out_close;
727 
728 	/* calculate leftover bytes from process and put it into begin of
729 	 * the receive buffer, so next receive we have the full message
730 	 * at the start address of the receive buffer.
731 	 */
732 	con->rx_leftover = buflen - ret;
733 	if (con->rx_leftover) {
734 		memmove(con->rx_buf, con->rx_buf + ret,
735 			con->rx_leftover);
736 		call_again_soon = true;
737 	}
738 
739 	if (call_again_soon)
740 		goto out_resched;
741 
742 	mutex_unlock(&con->sock_mutex);
743 	return 0;
744 
745 out_resched:
746 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
747 		queue_work(recv_workqueue, &con->rwork);
748 	mutex_unlock(&con->sock_mutex);
749 	return -EAGAIN;
750 
751 out_close:
752 	mutex_unlock(&con->sock_mutex);
753 	if (ret != -EAGAIN) {
754 		/* Reconnect when there is something to send */
755 		close_connection(con, false, true, false);
756 		if (ret == 0) {
757 			log_print("connection %p got EOF from %d",
758 				  con, con->nodeid);
759 			/* handling for tcp shutdown */
760 			clear_bit(CF_SHUTDOWN, &con->flags);
761 			wake_up(&con->shutdown_wait);
762 			/* signal to breaking receive worker */
763 			ret = -1;
764 		}
765 	}
766 	return ret;
767 }
768 
769 /* Listening socket is busy, accept a connection */
770 static int accept_from_sock(struct connection *con)
771 {
772 	int result;
773 	struct sockaddr_storage peeraddr;
774 	struct socket *newsock;
775 	int len;
776 	int nodeid;
777 	struct connection *newcon;
778 	struct connection *addcon;
779 	unsigned int mark;
780 
781 	if (!dlm_allow_conn) {
782 		return -1;
783 	}
784 
785 	mutex_lock_nested(&con->sock_mutex, 0);
786 
787 	if (!con->sock) {
788 		mutex_unlock(&con->sock_mutex);
789 		return -ENOTCONN;
790 	}
791 
792 	result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
793 	if (result < 0)
794 		goto accept_err;
795 
796 	/* Get the connected socket's peer */
797 	memset(&peeraddr, 0, sizeof(peeraddr));
798 	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
799 	if (len < 0) {
800 		result = -ECONNABORTED;
801 		goto accept_err;
802 	}
803 
804 	/* Get the new node's NODEID */
805 	make_sockaddr(&peeraddr, 0, &len);
806 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
807 		unsigned char *b=(unsigned char *)&peeraddr;
808 		log_print("connect from non cluster node");
809 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
810 				     b, sizeof(struct sockaddr_storage));
811 		sock_release(newsock);
812 		mutex_unlock(&con->sock_mutex);
813 		return -1;
814 	}
815 
816 	dlm_comm_mark(nodeid, &mark);
817 	sock_set_mark(newsock->sk, mark);
818 
819 	log_print("got connection from %d", nodeid);
820 
821 	/*  Check to see if we already have a connection to this node. This
822 	 *  could happen if the two nodes initiate a connection at roughly
823 	 *  the same time and the connections cross on the wire.
824 	 *  In this case we store the incoming one in "othercon"
825 	 */
826 	newcon = nodeid2con(nodeid, GFP_NOFS);
827 	if (!newcon) {
828 		result = -ENOMEM;
829 		goto accept_err;
830 	}
831 	mutex_lock_nested(&newcon->sock_mutex, 1);
832 	if (newcon->sock) {
833 		struct connection *othercon = newcon->othercon;
834 
835 		if (!othercon) {
836 			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
837 			if (!othercon) {
838 				log_print("failed to allocate incoming socket");
839 				mutex_unlock(&newcon->sock_mutex);
840 				result = -ENOMEM;
841 				goto accept_err;
842 			}
843 
844 			othercon->rx_buflen = dlm_config.ci_buffer_size;
845 			othercon->rx_buf = kmalloc(othercon->rx_buflen, GFP_NOFS);
846 			if (!othercon->rx_buf) {
847 				mutex_unlock(&newcon->sock_mutex);
848 				kfree(othercon);
849 				log_print("failed to allocate incoming socket receive buffer");
850 				result = -ENOMEM;
851 				goto accept_err;
852 			}
853 
854 			othercon->nodeid = nodeid;
855 			othercon->rx_action = receive_from_sock;
856 			mutex_init(&othercon->sock_mutex);
857 			INIT_LIST_HEAD(&othercon->writequeue);
858 			spin_lock_init(&othercon->writequeue_lock);
859 			INIT_WORK(&othercon->swork, process_send_sockets);
860 			INIT_WORK(&othercon->rwork, process_recv_sockets);
861 			init_waitqueue_head(&othercon->shutdown_wait);
862 			set_bit(CF_IS_OTHERCON, &othercon->flags);
863 		} else {
864 			/* close other sock con if we have something new */
865 			close_connection(othercon, false, true, false);
866 		}
867 
868 		mutex_lock_nested(&othercon->sock_mutex, 2);
869 		newcon->othercon = othercon;
870 		add_sock(newsock, othercon);
871 		addcon = othercon;
872 		mutex_unlock(&othercon->sock_mutex);
873 	}
874 	else {
875 		newcon->rx_action = receive_from_sock;
876 		/* accept copies the sk after we've saved the callbacks, so we
877 		   don't want to save them a second time or comm errors will
878 		   result in calling sk_error_report recursively. */
879 		add_sock(newsock, newcon);
880 		addcon = newcon;
881 	}
882 
883 	mutex_unlock(&newcon->sock_mutex);
884 
885 	/*
886 	 * Add it to the active queue in case we got data
887 	 * between processing the accept adding the socket
888 	 * to the read_sockets list
889 	 */
890 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
891 		queue_work(recv_workqueue, &addcon->rwork);
892 	mutex_unlock(&con->sock_mutex);
893 
894 	return 0;
895 
896 accept_err:
897 	mutex_unlock(&con->sock_mutex);
898 	if (newsock)
899 		sock_release(newsock);
900 
901 	if (result != -EAGAIN)
902 		log_print("error accepting connection from node: %d", result);
903 	return result;
904 }
905 
906 static void free_entry(struct writequeue_entry *e)
907 {
908 	__free_page(e->page);
909 	kfree(e);
910 }
911 
912 /*
913  * writequeue_entry_complete - try to delete and free write queue entry
914  * @e: write queue entry to try to delete
915  * @completed: bytes completed
916  *
917  * writequeue_lock must be held.
918  */
919 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
920 {
921 	e->offset += completed;
922 	e->len -= completed;
923 
924 	if (e->len == 0 && e->users == 0) {
925 		list_del(&e->list);
926 		free_entry(e);
927 	}
928 }
929 
930 /*
931  * sctp_bind_addrs - bind a SCTP socket to all our addresses
932  */
933 static int sctp_bind_addrs(struct connection *con, uint16_t port)
934 {
935 	struct sockaddr_storage localaddr;
936 	struct sockaddr *addr = (struct sockaddr *)&localaddr;
937 	int i, addr_len, result = 0;
938 
939 	for (i = 0; i < dlm_local_count; i++) {
940 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
941 		make_sockaddr(&localaddr, port, &addr_len);
942 
943 		if (!i)
944 			result = kernel_bind(con->sock, addr, addr_len);
945 		else
946 			result = sock_bind_add(con->sock->sk, addr, addr_len);
947 
948 		if (result < 0) {
949 			log_print("Can't bind to %d addr number %d, %d.\n",
950 				  port, i + 1, result);
951 			break;
952 		}
953 	}
954 	return result;
955 }
956 
957 /* Initiate an SCTP association.
958    This is a special case of send_to_sock() in that we don't yet have a
959    peeled-off socket for this association, so we use the listening socket
960    and add the primary IP address of the remote node.
961  */
962 static void sctp_connect_to_sock(struct connection *con)
963 {
964 	struct sockaddr_storage daddr;
965 	int result;
966 	int addr_len;
967 	struct socket *sock;
968 	unsigned int mark;
969 
970 	if (con->nodeid == 0) {
971 		log_print("attempt to connect sock 0 foiled");
972 		return;
973 	}
974 
975 	dlm_comm_mark(con->nodeid, &mark);
976 
977 	mutex_lock(&con->sock_mutex);
978 
979 	/* Some odd races can cause double-connects, ignore them */
980 	if (con->retries++ > MAX_CONNECT_RETRIES)
981 		goto out;
982 
983 	if (con->sock) {
984 		log_print("node %d already connected.", con->nodeid);
985 		goto out;
986 	}
987 
988 	memset(&daddr, 0, sizeof(daddr));
989 	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
990 	if (result < 0) {
991 		log_print("no address for nodeid %d", con->nodeid);
992 		goto out;
993 	}
994 
995 	/* Create a socket to communicate with */
996 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
997 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
998 	if (result < 0)
999 		goto socket_err;
1000 
1001 	sock_set_mark(sock->sk, mark);
1002 
1003 	con->rx_action = receive_from_sock;
1004 	con->connect_action = sctp_connect_to_sock;
1005 	add_sock(sock, con);
1006 
1007 	/* Bind to all addresses. */
1008 	if (sctp_bind_addrs(con, 0))
1009 		goto bind_err;
1010 
1011 	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1012 
1013 	log_print("connecting to %d", con->nodeid);
1014 
1015 	/* Turn off Nagle's algorithm */
1016 	sctp_sock_set_nodelay(sock->sk);
1017 
1018 	/*
1019 	 * Make sock->ops->connect() function return in specified time,
1020 	 * since O_NONBLOCK argument in connect() function does not work here,
1021 	 * then, we should restore the default value of this attribute.
1022 	 */
1023 	sock_set_sndtimeo(sock->sk, 5);
1024 	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1025 				   0);
1026 	sock_set_sndtimeo(sock->sk, 0);
1027 
1028 	if (result == -EINPROGRESS)
1029 		result = 0;
1030 	if (result == 0)
1031 		goto out;
1032 
1033 bind_err:
1034 	con->sock = NULL;
1035 	sock_release(sock);
1036 
1037 socket_err:
1038 	/*
1039 	 * Some errors are fatal and this list might need adjusting. For other
1040 	 * errors we try again until the max number of retries is reached.
1041 	 */
1042 	if (result != -EHOSTUNREACH &&
1043 	    result != -ENETUNREACH &&
1044 	    result != -ENETDOWN &&
1045 	    result != -EINVAL &&
1046 	    result != -EPROTONOSUPPORT) {
1047 		log_print("connect %d try %d error %d", con->nodeid,
1048 			  con->retries, result);
1049 		mutex_unlock(&con->sock_mutex);
1050 		msleep(1000);
1051 		lowcomms_connect_sock(con);
1052 		return;
1053 	}
1054 
1055 out:
1056 	mutex_unlock(&con->sock_mutex);
1057 }
1058 
1059 /* Connect a new socket to its peer */
1060 static void tcp_connect_to_sock(struct connection *con)
1061 {
1062 	struct sockaddr_storage saddr, src_addr;
1063 	int addr_len;
1064 	struct socket *sock = NULL;
1065 	unsigned int mark;
1066 	int result;
1067 
1068 	if (con->nodeid == 0) {
1069 		log_print("attempt to connect sock 0 foiled");
1070 		return;
1071 	}
1072 
1073 	dlm_comm_mark(con->nodeid, &mark);
1074 
1075 	mutex_lock(&con->sock_mutex);
1076 	if (con->retries++ > MAX_CONNECT_RETRIES)
1077 		goto out;
1078 
1079 	/* Some odd races can cause double-connects, ignore them */
1080 	if (con->sock)
1081 		goto out;
1082 
1083 	/* Create a socket to communicate with */
1084 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1085 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1086 	if (result < 0)
1087 		goto out_err;
1088 
1089 	sock_set_mark(sock->sk, mark);
1090 
1091 	memset(&saddr, 0, sizeof(saddr));
1092 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1093 	if (result < 0) {
1094 		log_print("no address for nodeid %d", con->nodeid);
1095 		goto out_err;
1096 	}
1097 
1098 	con->rx_action = receive_from_sock;
1099 	con->connect_action = tcp_connect_to_sock;
1100 	con->shutdown_action = dlm_tcp_shutdown;
1101 	add_sock(sock, con);
1102 
1103 	/* Bind to our cluster-known address connecting to avoid
1104 	   routing problems */
1105 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1106 	make_sockaddr(&src_addr, 0, &addr_len);
1107 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1108 				 addr_len);
1109 	if (result < 0) {
1110 		log_print("could not bind for connect: %d", result);
1111 		/* This *may* not indicate a critical error */
1112 	}
1113 
1114 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1115 
1116 	log_print("connecting to %d", con->nodeid);
1117 
1118 	/* Turn off Nagle's algorithm */
1119 	tcp_sock_set_nodelay(sock->sk);
1120 
1121 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1122 				   O_NONBLOCK);
1123 	if (result == -EINPROGRESS)
1124 		result = 0;
1125 	if (result == 0)
1126 		goto out;
1127 
1128 out_err:
1129 	if (con->sock) {
1130 		sock_release(con->sock);
1131 		con->sock = NULL;
1132 	} else if (sock) {
1133 		sock_release(sock);
1134 	}
1135 	/*
1136 	 * Some errors are fatal and this list might need adjusting. For other
1137 	 * errors we try again until the max number of retries is reached.
1138 	 */
1139 	if (result != -EHOSTUNREACH &&
1140 	    result != -ENETUNREACH &&
1141 	    result != -ENETDOWN &&
1142 	    result != -EINVAL &&
1143 	    result != -EPROTONOSUPPORT) {
1144 		log_print("connect %d try %d error %d", con->nodeid,
1145 			  con->retries, result);
1146 		mutex_unlock(&con->sock_mutex);
1147 		msleep(1000);
1148 		lowcomms_connect_sock(con);
1149 		return;
1150 	}
1151 out:
1152 	mutex_unlock(&con->sock_mutex);
1153 	return;
1154 }
1155 
1156 static struct socket *tcp_create_listen_sock(struct connection *con,
1157 					     struct sockaddr_storage *saddr)
1158 {
1159 	struct socket *sock = NULL;
1160 	int result = 0;
1161 	int addr_len;
1162 
1163 	if (dlm_local_addr[0]->ss_family == AF_INET)
1164 		addr_len = sizeof(struct sockaddr_in);
1165 	else
1166 		addr_len = sizeof(struct sockaddr_in6);
1167 
1168 	/* Create a socket to communicate with */
1169 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1170 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1171 	if (result < 0) {
1172 		log_print("Can't create listening comms socket");
1173 		goto create_out;
1174 	}
1175 
1176 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1177 
1178 	/* Turn off Nagle's algorithm */
1179 	tcp_sock_set_nodelay(sock->sk);
1180 
1181 	sock_set_reuseaddr(sock->sk);
1182 
1183 	write_lock_bh(&sock->sk->sk_callback_lock);
1184 	sock->sk->sk_user_data = con;
1185 	save_listen_callbacks(sock);
1186 	con->rx_action = accept_from_sock;
1187 	con->connect_action = tcp_connect_to_sock;
1188 	write_unlock_bh(&sock->sk->sk_callback_lock);
1189 
1190 	/* Bind to our port */
1191 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1192 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1193 	if (result < 0) {
1194 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1195 		sock_release(sock);
1196 		sock = NULL;
1197 		con->sock = NULL;
1198 		goto create_out;
1199 	}
1200 	sock_set_keepalive(sock->sk);
1201 
1202 	result = sock->ops->listen(sock, 5);
1203 	if (result < 0) {
1204 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1205 		sock_release(sock);
1206 		sock = NULL;
1207 		goto create_out;
1208 	}
1209 
1210 create_out:
1211 	return sock;
1212 }
1213 
1214 /* Get local addresses */
1215 static void init_local(void)
1216 {
1217 	struct sockaddr_storage sas, *addr;
1218 	int i;
1219 
1220 	dlm_local_count = 0;
1221 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1222 		if (dlm_our_addr(&sas, i))
1223 			break;
1224 
1225 		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1226 		if (!addr)
1227 			break;
1228 		dlm_local_addr[dlm_local_count++] = addr;
1229 	}
1230 }
1231 
1232 static void deinit_local(void)
1233 {
1234 	int i;
1235 
1236 	for (i = 0; i < dlm_local_count; i++)
1237 		kfree(dlm_local_addr[i]);
1238 }
1239 
1240 /* Initialise SCTP socket and bind to all interfaces */
1241 static int sctp_listen_for_all(void)
1242 {
1243 	struct socket *sock = NULL;
1244 	int result = -EINVAL;
1245 	struct connection *con = nodeid2con(0, GFP_NOFS);
1246 
1247 	if (!con)
1248 		return -ENOMEM;
1249 
1250 	log_print("Using SCTP for communications");
1251 
1252 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1253 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1254 	if (result < 0) {
1255 		log_print("Can't create comms socket, check SCTP is loaded");
1256 		goto out;
1257 	}
1258 
1259 	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1260 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1261 	sctp_sock_set_nodelay(sock->sk);
1262 
1263 	write_lock_bh(&sock->sk->sk_callback_lock);
1264 	/* Init con struct */
1265 	sock->sk->sk_user_data = con;
1266 	save_listen_callbacks(sock);
1267 	con->sock = sock;
1268 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1269 	con->rx_action = accept_from_sock;
1270 	con->connect_action = sctp_connect_to_sock;
1271 
1272 	write_unlock_bh(&sock->sk->sk_callback_lock);
1273 
1274 	/* Bind to all addresses. */
1275 	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1276 		goto create_delsock;
1277 
1278 	result = sock->ops->listen(sock, 5);
1279 	if (result < 0) {
1280 		log_print("Can't set socket listening");
1281 		goto create_delsock;
1282 	}
1283 
1284 	return 0;
1285 
1286 create_delsock:
1287 	sock_release(sock);
1288 	con->sock = NULL;
1289 out:
1290 	return result;
1291 }
1292 
1293 static int tcp_listen_for_all(void)
1294 {
1295 	struct socket *sock = NULL;
1296 	struct connection *con = nodeid2con(0, GFP_NOFS);
1297 	int result = -EINVAL;
1298 
1299 	if (!con)
1300 		return -ENOMEM;
1301 
1302 	/* We don't support multi-homed hosts */
1303 	if (dlm_local_addr[1] != NULL) {
1304 		log_print("TCP protocol can't handle multi-homed hosts, "
1305 			  "try SCTP");
1306 		return -EINVAL;
1307 	}
1308 
1309 	log_print("Using TCP for communications");
1310 
1311 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1312 	if (sock) {
1313 		add_sock(sock, con);
1314 		result = 0;
1315 	}
1316 	else {
1317 		result = -EADDRINUSE;
1318 	}
1319 
1320 	return result;
1321 }
1322 
1323 
1324 
1325 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1326 						     gfp_t allocation)
1327 {
1328 	struct writequeue_entry *entry;
1329 
1330 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1331 	if (!entry)
1332 		return NULL;
1333 
1334 	entry->page = alloc_page(allocation);
1335 	if (!entry->page) {
1336 		kfree(entry);
1337 		return NULL;
1338 	}
1339 
1340 	entry->offset = 0;
1341 	entry->len = 0;
1342 	entry->end = 0;
1343 	entry->users = 0;
1344 	entry->con = con;
1345 
1346 	return entry;
1347 }
1348 
1349 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1350 {
1351 	struct connection *con;
1352 	struct writequeue_entry *e;
1353 	int offset = 0;
1354 
1355 	con = nodeid2con(nodeid, allocation);
1356 	if (!con)
1357 		return NULL;
1358 
1359 	spin_lock(&con->writequeue_lock);
1360 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1361 	if ((&e->list == &con->writequeue) ||
1362 	    (PAGE_SIZE - e->end < len)) {
1363 		e = NULL;
1364 	} else {
1365 		offset = e->end;
1366 		e->end += len;
1367 		e->users++;
1368 	}
1369 	spin_unlock(&con->writequeue_lock);
1370 
1371 	if (e) {
1372 	got_one:
1373 		*ppc = page_address(e->page) + offset;
1374 		return e;
1375 	}
1376 
1377 	e = new_writequeue_entry(con, allocation);
1378 	if (e) {
1379 		spin_lock(&con->writequeue_lock);
1380 		offset = e->end;
1381 		e->end += len;
1382 		e->users++;
1383 		list_add_tail(&e->list, &con->writequeue);
1384 		spin_unlock(&con->writequeue_lock);
1385 		goto got_one;
1386 	}
1387 	return NULL;
1388 }
1389 
1390 void dlm_lowcomms_commit_buffer(void *mh)
1391 {
1392 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1393 	struct connection *con = e->con;
1394 	int users;
1395 
1396 	spin_lock(&con->writequeue_lock);
1397 	users = --e->users;
1398 	if (users)
1399 		goto out;
1400 	e->len = e->end - e->offset;
1401 	spin_unlock(&con->writequeue_lock);
1402 
1403 	queue_work(send_workqueue, &con->swork);
1404 	return;
1405 
1406 out:
1407 	spin_unlock(&con->writequeue_lock);
1408 	return;
1409 }
1410 
1411 /* Send a message */
1412 static void send_to_sock(struct connection *con)
1413 {
1414 	int ret = 0;
1415 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1416 	struct writequeue_entry *e;
1417 	int len, offset;
1418 	int count = 0;
1419 
1420 	mutex_lock(&con->sock_mutex);
1421 	if (con->sock == NULL)
1422 		goto out_connect;
1423 
1424 	spin_lock(&con->writequeue_lock);
1425 	for (;;) {
1426 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1427 			       list);
1428 		if ((struct list_head *) e == &con->writequeue)
1429 			break;
1430 
1431 		len = e->len;
1432 		offset = e->offset;
1433 		BUG_ON(len == 0 && e->users == 0);
1434 		spin_unlock(&con->writequeue_lock);
1435 
1436 		ret = 0;
1437 		if (len) {
1438 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1439 					      msg_flags);
1440 			if (ret == -EAGAIN || ret == 0) {
1441 				if (ret == -EAGAIN &&
1442 				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1443 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1444 					/* Notify TCP that we're limited by the
1445 					 * application window size.
1446 					 */
1447 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1448 					con->sock->sk->sk_write_pending++;
1449 				}
1450 				cond_resched();
1451 				goto out;
1452 			} else if (ret < 0)
1453 				goto send_error;
1454 		}
1455 
1456 		/* Don't starve people filling buffers */
1457 		if (++count >= MAX_SEND_MSG_COUNT) {
1458 			cond_resched();
1459 			count = 0;
1460 		}
1461 
1462 		spin_lock(&con->writequeue_lock);
1463 		writequeue_entry_complete(e, ret);
1464 	}
1465 	spin_unlock(&con->writequeue_lock);
1466 out:
1467 	mutex_unlock(&con->sock_mutex);
1468 	return;
1469 
1470 send_error:
1471 	mutex_unlock(&con->sock_mutex);
1472 	close_connection(con, false, false, true);
1473 	/* Requeue the send work. When the work daemon runs again, it will try
1474 	   a new connection, then call this function again. */
1475 	queue_work(send_workqueue, &con->swork);
1476 	return;
1477 
1478 out_connect:
1479 	mutex_unlock(&con->sock_mutex);
1480 	queue_work(send_workqueue, &con->swork);
1481 	cond_resched();
1482 }
1483 
1484 static void clean_one_writequeue(struct connection *con)
1485 {
1486 	struct writequeue_entry *e, *safe;
1487 
1488 	spin_lock(&con->writequeue_lock);
1489 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1490 		list_del(&e->list);
1491 		free_entry(e);
1492 	}
1493 	spin_unlock(&con->writequeue_lock);
1494 }
1495 
1496 /* Called from recovery when it knows that a node has
1497    left the cluster */
1498 int dlm_lowcomms_close(int nodeid)
1499 {
1500 	struct connection *con;
1501 	struct dlm_node_addr *na;
1502 
1503 	log_print("closing connection to node %d", nodeid);
1504 	con = nodeid2con(nodeid, 0);
1505 	if (con) {
1506 		set_bit(CF_CLOSE, &con->flags);
1507 		close_connection(con, true, true, true);
1508 		clean_one_writequeue(con);
1509 	}
1510 
1511 	spin_lock(&dlm_node_addrs_spin);
1512 	na = find_node_addr(nodeid);
1513 	if (na) {
1514 		list_del(&na->list);
1515 		while (na->addr_count--)
1516 			kfree(na->addr[na->addr_count]);
1517 		kfree(na);
1518 	}
1519 	spin_unlock(&dlm_node_addrs_spin);
1520 
1521 	return 0;
1522 }
1523 
1524 /* Receive workqueue function */
1525 static void process_recv_sockets(struct work_struct *work)
1526 {
1527 	struct connection *con = container_of(work, struct connection, rwork);
1528 	int err;
1529 
1530 	clear_bit(CF_READ_PENDING, &con->flags);
1531 	do {
1532 		err = con->rx_action(con);
1533 	} while (!err);
1534 }
1535 
1536 /* Send workqueue function */
1537 static void process_send_sockets(struct work_struct *work)
1538 {
1539 	struct connection *con = container_of(work, struct connection, swork);
1540 
1541 	clear_bit(CF_WRITE_PENDING, &con->flags);
1542 	if (con->sock == NULL) /* not mutex protected so check it inside too */
1543 		con->connect_action(con);
1544 	if (!list_empty(&con->writequeue))
1545 		send_to_sock(con);
1546 }
1547 
1548 static void work_stop(void)
1549 {
1550 	if (recv_workqueue)
1551 		destroy_workqueue(recv_workqueue);
1552 	if (send_workqueue)
1553 		destroy_workqueue(send_workqueue);
1554 }
1555 
1556 static int work_start(void)
1557 {
1558 	recv_workqueue = alloc_workqueue("dlm_recv",
1559 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1560 	if (!recv_workqueue) {
1561 		log_print("can't start dlm_recv");
1562 		return -ENOMEM;
1563 	}
1564 
1565 	send_workqueue = alloc_workqueue("dlm_send",
1566 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1567 	if (!send_workqueue) {
1568 		log_print("can't start dlm_send");
1569 		destroy_workqueue(recv_workqueue);
1570 		return -ENOMEM;
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 static void _stop_conn(struct connection *con, bool and_other)
1577 {
1578 	mutex_lock(&con->sock_mutex);
1579 	set_bit(CF_CLOSE, &con->flags);
1580 	set_bit(CF_READ_PENDING, &con->flags);
1581 	set_bit(CF_WRITE_PENDING, &con->flags);
1582 	if (con->sock && con->sock->sk) {
1583 		write_lock_bh(&con->sock->sk->sk_callback_lock);
1584 		con->sock->sk->sk_user_data = NULL;
1585 		write_unlock_bh(&con->sock->sk->sk_callback_lock);
1586 	}
1587 	if (con->othercon && and_other)
1588 		_stop_conn(con->othercon, false);
1589 	mutex_unlock(&con->sock_mutex);
1590 }
1591 
1592 static void stop_conn(struct connection *con)
1593 {
1594 	_stop_conn(con, true);
1595 }
1596 
1597 static void shutdown_conn(struct connection *con)
1598 {
1599 	if (con->shutdown_action)
1600 		con->shutdown_action(con);
1601 }
1602 
1603 static void connection_release(struct rcu_head *rcu)
1604 {
1605 	struct connection *con = container_of(rcu, struct connection, rcu);
1606 
1607 	kfree(con->rx_buf);
1608 	kfree(con);
1609 }
1610 
1611 static void free_conn(struct connection *con)
1612 {
1613 	close_connection(con, true, true, true);
1614 	spin_lock(&connections_lock);
1615 	hlist_del_rcu(&con->list);
1616 	spin_unlock(&connections_lock);
1617 	if (con->othercon) {
1618 		clean_one_writequeue(con->othercon);
1619 		call_rcu(&con->othercon->rcu, connection_release);
1620 	}
1621 	clean_one_writequeue(con);
1622 	call_rcu(&con->rcu, connection_release);
1623 }
1624 
1625 static void work_flush(void)
1626 {
1627 	int ok, idx;
1628 	int i;
1629 	struct connection *con;
1630 
1631 	do {
1632 		ok = 1;
1633 		foreach_conn(stop_conn);
1634 		if (recv_workqueue)
1635 			flush_workqueue(recv_workqueue);
1636 		if (send_workqueue)
1637 			flush_workqueue(send_workqueue);
1638 		idx = srcu_read_lock(&connections_srcu);
1639 		for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1640 			hlist_for_each_entry_rcu(con, &connection_hash[i],
1641 						 list) {
1642 				ok &= test_bit(CF_READ_PENDING, &con->flags);
1643 				ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1644 				if (con->othercon) {
1645 					ok &= test_bit(CF_READ_PENDING,
1646 						       &con->othercon->flags);
1647 					ok &= test_bit(CF_WRITE_PENDING,
1648 						       &con->othercon->flags);
1649 				}
1650 			}
1651 		}
1652 		srcu_read_unlock(&connections_srcu, idx);
1653 	} while (!ok);
1654 }
1655 
1656 void dlm_lowcomms_stop(void)
1657 {
1658 	/* Set all the flags to prevent any
1659 	   socket activity.
1660 	*/
1661 	dlm_allow_conn = 0;
1662 
1663 	if (recv_workqueue)
1664 		flush_workqueue(recv_workqueue);
1665 	if (send_workqueue)
1666 		flush_workqueue(send_workqueue);
1667 
1668 	foreach_conn(shutdown_conn);
1669 	work_flush();
1670 	foreach_conn(free_conn);
1671 	work_stop();
1672 	deinit_local();
1673 }
1674 
1675 int dlm_lowcomms_start(void)
1676 {
1677 	int error = -EINVAL;
1678 	struct connection *con;
1679 	int i;
1680 
1681 	for (i = 0; i < CONN_HASH_SIZE; i++)
1682 		INIT_HLIST_HEAD(&connection_hash[i]);
1683 
1684 	init_local();
1685 	if (!dlm_local_count) {
1686 		error = -ENOTCONN;
1687 		log_print("no local IP address has been set");
1688 		goto fail;
1689 	}
1690 
1691 	error = work_start();
1692 	if (error)
1693 		goto fail;
1694 
1695 	dlm_allow_conn = 1;
1696 
1697 	/* Start listening */
1698 	if (dlm_config.ci_protocol == 0)
1699 		error = tcp_listen_for_all();
1700 	else
1701 		error = sctp_listen_for_all();
1702 	if (error)
1703 		goto fail_unlisten;
1704 
1705 	return 0;
1706 
1707 fail_unlisten:
1708 	dlm_allow_conn = 0;
1709 	con = nodeid2con(0,0);
1710 	if (con)
1711 		free_conn(con);
1712 fail:
1713 	return error;
1714 }
1715 
1716 void dlm_lowcomms_exit(void)
1717 {
1718 	struct dlm_node_addr *na, *safe;
1719 
1720 	spin_lock(&dlm_node_addrs_spin);
1721 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1722 		list_del(&na->list);
1723 		while (na->addr_count--)
1724 			kfree(na->addr[na->addr_count]);
1725 		kfree(na);
1726 	}
1727 	spin_unlock(&dlm_node_addrs_spin);
1728 }
1729