1 /****************************************************************************** 2 ******************************************************************************* 3 ** 4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 5 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. 6 ** 7 ** This copyrighted material is made available to anyone wishing to use, 8 ** modify, copy, or redistribute it subject to the terms and conditions 9 ** of the GNU General Public License v.2. 10 ** 11 ******************************************************************************* 12 ******************************************************************************/ 13 14 /* 15 * lowcomms.c 16 * 17 * This is the "low-level" comms layer. 18 * 19 * It is responsible for sending/receiving messages 20 * from other nodes in the cluster. 21 * 22 * Cluster nodes are referred to by their nodeids. nodeids are 23 * simply 32 bit numbers to the locking module - if they need to 24 * be expanded for the cluster infrastructure then that is its 25 * responsibility. It is this layer's 26 * responsibility to resolve these into IP address or 27 * whatever it needs for inter-node communication. 28 * 29 * The comms level is two kernel threads that deal mainly with 30 * the receiving of messages from other nodes and passing them 31 * up to the mid-level comms layer (which understands the 32 * message format) for execution by the locking core, and 33 * a send thread which does all the setting up of connections 34 * to remote nodes and the sending of data. Threads are not allowed 35 * to send their own data because it may cause them to wait in times 36 * of high load. Also, this way, the sending thread can collect together 37 * messages bound for one node and send them in one block. 38 * 39 * lowcomms will choose to use either TCP or SCTP as its transport layer 40 * depending on the configuration variable 'protocol'. This should be set 41 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a 42 * cluster-wide mechanism as it must be the same on all nodes of the cluster 43 * for the DLM to function. 44 * 45 */ 46 47 #include <asm/ioctls.h> 48 #include <net/sock.h> 49 #include <net/tcp.h> 50 #include <linux/pagemap.h> 51 #include <linux/file.h> 52 #include <linux/mutex.h> 53 #include <linux/sctp.h> 54 #include <linux/slab.h> 55 #include <net/sctp/sctp.h> 56 #include <net/ipv6.h> 57 58 #include "dlm_internal.h" 59 #include "lowcomms.h" 60 #include "midcomms.h" 61 #include "config.h" 62 63 #define NEEDED_RMEM (4*1024*1024) 64 #define CONN_HASH_SIZE 32 65 66 /* Number of messages to send before rescheduling */ 67 #define MAX_SEND_MSG_COUNT 25 68 69 struct cbuf { 70 unsigned int base; 71 unsigned int len; 72 unsigned int mask; 73 }; 74 75 static void cbuf_add(struct cbuf *cb, int n) 76 { 77 cb->len += n; 78 } 79 80 static int cbuf_data(struct cbuf *cb) 81 { 82 return ((cb->base + cb->len) & cb->mask); 83 } 84 85 static void cbuf_init(struct cbuf *cb, int size) 86 { 87 cb->base = cb->len = 0; 88 cb->mask = size-1; 89 } 90 91 static void cbuf_eat(struct cbuf *cb, int n) 92 { 93 cb->len -= n; 94 cb->base += n; 95 cb->base &= cb->mask; 96 } 97 98 static bool cbuf_empty(struct cbuf *cb) 99 { 100 return cb->len == 0; 101 } 102 103 struct connection { 104 struct socket *sock; /* NULL if not connected */ 105 uint32_t nodeid; /* So we know who we are in the list */ 106 struct mutex sock_mutex; 107 unsigned long flags; 108 #define CF_READ_PENDING 1 109 #define CF_WRITE_PENDING 2 110 #define CF_INIT_PENDING 4 111 #define CF_IS_OTHERCON 5 112 #define CF_CLOSE 6 113 #define CF_APP_LIMITED 7 114 #define CF_CLOSING 8 115 struct list_head writequeue; /* List of outgoing writequeue_entries */ 116 spinlock_t writequeue_lock; 117 int (*rx_action) (struct connection *); /* What to do when active */ 118 void (*connect_action) (struct connection *); /* What to do to connect */ 119 struct page *rx_page; 120 struct cbuf cb; 121 int retries; 122 #define MAX_CONNECT_RETRIES 3 123 struct hlist_node list; 124 struct connection *othercon; 125 struct work_struct rwork; /* Receive workqueue */ 126 struct work_struct swork; /* Send workqueue */ 127 }; 128 #define sock2con(x) ((struct connection *)(x)->sk_user_data) 129 130 /* An entry waiting to be sent */ 131 struct writequeue_entry { 132 struct list_head list; 133 struct page *page; 134 int offset; 135 int len; 136 int end; 137 int users; 138 struct connection *con; 139 }; 140 141 struct dlm_node_addr { 142 struct list_head list; 143 int nodeid; 144 int addr_count; 145 int curr_addr_index; 146 struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT]; 147 }; 148 149 static struct listen_sock_callbacks { 150 void (*sk_error_report)(struct sock *); 151 void (*sk_data_ready)(struct sock *); 152 void (*sk_state_change)(struct sock *); 153 void (*sk_write_space)(struct sock *); 154 } listen_sock; 155 156 static LIST_HEAD(dlm_node_addrs); 157 static DEFINE_SPINLOCK(dlm_node_addrs_spin); 158 159 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT]; 160 static int dlm_local_count; 161 static int dlm_allow_conn; 162 163 /* Work queues */ 164 static struct workqueue_struct *recv_workqueue; 165 static struct workqueue_struct *send_workqueue; 166 167 static struct hlist_head connection_hash[CONN_HASH_SIZE]; 168 static DEFINE_MUTEX(connections_lock); 169 static struct kmem_cache *con_cache; 170 171 static void process_recv_sockets(struct work_struct *work); 172 static void process_send_sockets(struct work_struct *work); 173 174 175 /* This is deliberately very simple because most clusters have simple 176 sequential nodeids, so we should be able to go straight to a connection 177 struct in the array */ 178 static inline int nodeid_hash(int nodeid) 179 { 180 return nodeid & (CONN_HASH_SIZE-1); 181 } 182 183 static struct connection *__find_con(int nodeid) 184 { 185 int r; 186 struct connection *con; 187 188 r = nodeid_hash(nodeid); 189 190 hlist_for_each_entry(con, &connection_hash[r], list) { 191 if (con->nodeid == nodeid) 192 return con; 193 } 194 return NULL; 195 } 196 197 /* 198 * If 'allocation' is zero then we don't attempt to create a new 199 * connection structure for this node. 200 */ 201 static struct connection *__nodeid2con(int nodeid, gfp_t alloc) 202 { 203 struct connection *con = NULL; 204 int r; 205 206 con = __find_con(nodeid); 207 if (con || !alloc) 208 return con; 209 210 con = kmem_cache_zalloc(con_cache, alloc); 211 if (!con) 212 return NULL; 213 214 r = nodeid_hash(nodeid); 215 hlist_add_head(&con->list, &connection_hash[r]); 216 217 con->nodeid = nodeid; 218 mutex_init(&con->sock_mutex); 219 INIT_LIST_HEAD(&con->writequeue); 220 spin_lock_init(&con->writequeue_lock); 221 INIT_WORK(&con->swork, process_send_sockets); 222 INIT_WORK(&con->rwork, process_recv_sockets); 223 224 /* Setup action pointers for child sockets */ 225 if (con->nodeid) { 226 struct connection *zerocon = __find_con(0); 227 228 con->connect_action = zerocon->connect_action; 229 if (!con->rx_action) 230 con->rx_action = zerocon->rx_action; 231 } 232 233 return con; 234 } 235 236 /* Loop round all connections */ 237 static void foreach_conn(void (*conn_func)(struct connection *c)) 238 { 239 int i; 240 struct hlist_node *n; 241 struct connection *con; 242 243 for (i = 0; i < CONN_HASH_SIZE; i++) { 244 hlist_for_each_entry_safe(con, n, &connection_hash[i], list) 245 conn_func(con); 246 } 247 } 248 249 static struct connection *nodeid2con(int nodeid, gfp_t allocation) 250 { 251 struct connection *con; 252 253 mutex_lock(&connections_lock); 254 con = __nodeid2con(nodeid, allocation); 255 mutex_unlock(&connections_lock); 256 257 return con; 258 } 259 260 static struct dlm_node_addr *find_node_addr(int nodeid) 261 { 262 struct dlm_node_addr *na; 263 264 list_for_each_entry(na, &dlm_node_addrs, list) { 265 if (na->nodeid == nodeid) 266 return na; 267 } 268 return NULL; 269 } 270 271 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y) 272 { 273 switch (x->ss_family) { 274 case AF_INET: { 275 struct sockaddr_in *sinx = (struct sockaddr_in *)x; 276 struct sockaddr_in *siny = (struct sockaddr_in *)y; 277 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr) 278 return 0; 279 if (sinx->sin_port != siny->sin_port) 280 return 0; 281 break; 282 } 283 case AF_INET6: { 284 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x; 285 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y; 286 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr)) 287 return 0; 288 if (sinx->sin6_port != siny->sin6_port) 289 return 0; 290 break; 291 } 292 default: 293 return 0; 294 } 295 return 1; 296 } 297 298 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out, 299 struct sockaddr *sa_out, bool try_new_addr) 300 { 301 struct sockaddr_storage sas; 302 struct dlm_node_addr *na; 303 304 if (!dlm_local_count) 305 return -1; 306 307 spin_lock(&dlm_node_addrs_spin); 308 na = find_node_addr(nodeid); 309 if (na && na->addr_count) { 310 memcpy(&sas, na->addr[na->curr_addr_index], 311 sizeof(struct sockaddr_storage)); 312 313 if (try_new_addr) { 314 na->curr_addr_index++; 315 if (na->curr_addr_index == na->addr_count) 316 na->curr_addr_index = 0; 317 } 318 } 319 spin_unlock(&dlm_node_addrs_spin); 320 321 if (!na) 322 return -EEXIST; 323 324 if (!na->addr_count) 325 return -ENOENT; 326 327 if (sas_out) 328 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage)); 329 330 if (!sa_out) 331 return 0; 332 333 if (dlm_local_addr[0]->ss_family == AF_INET) { 334 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas; 335 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out; 336 ret4->sin_addr.s_addr = in4->sin_addr.s_addr; 337 } else { 338 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas; 339 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out; 340 ret6->sin6_addr = in6->sin6_addr; 341 } 342 343 return 0; 344 } 345 346 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid) 347 { 348 struct dlm_node_addr *na; 349 int rv = -EEXIST; 350 int addr_i; 351 352 spin_lock(&dlm_node_addrs_spin); 353 list_for_each_entry(na, &dlm_node_addrs, list) { 354 if (!na->addr_count) 355 continue; 356 357 for (addr_i = 0; addr_i < na->addr_count; addr_i++) { 358 if (addr_compare(na->addr[addr_i], addr)) { 359 *nodeid = na->nodeid; 360 rv = 0; 361 goto unlock; 362 } 363 } 364 } 365 unlock: 366 spin_unlock(&dlm_node_addrs_spin); 367 return rv; 368 } 369 370 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len) 371 { 372 struct sockaddr_storage *new_addr; 373 struct dlm_node_addr *new_node, *na; 374 375 new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS); 376 if (!new_node) 377 return -ENOMEM; 378 379 new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS); 380 if (!new_addr) { 381 kfree(new_node); 382 return -ENOMEM; 383 } 384 385 memcpy(new_addr, addr, len); 386 387 spin_lock(&dlm_node_addrs_spin); 388 na = find_node_addr(nodeid); 389 if (!na) { 390 new_node->nodeid = nodeid; 391 new_node->addr[0] = new_addr; 392 new_node->addr_count = 1; 393 list_add(&new_node->list, &dlm_node_addrs); 394 spin_unlock(&dlm_node_addrs_spin); 395 return 0; 396 } 397 398 if (na->addr_count >= DLM_MAX_ADDR_COUNT) { 399 spin_unlock(&dlm_node_addrs_spin); 400 kfree(new_addr); 401 kfree(new_node); 402 return -ENOSPC; 403 } 404 405 na->addr[na->addr_count++] = new_addr; 406 spin_unlock(&dlm_node_addrs_spin); 407 kfree(new_node); 408 return 0; 409 } 410 411 /* Data available on socket or listen socket received a connect */ 412 static void lowcomms_data_ready(struct sock *sk) 413 { 414 struct connection *con; 415 416 read_lock_bh(&sk->sk_callback_lock); 417 con = sock2con(sk); 418 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags)) 419 queue_work(recv_workqueue, &con->rwork); 420 read_unlock_bh(&sk->sk_callback_lock); 421 } 422 423 static void lowcomms_write_space(struct sock *sk) 424 { 425 struct connection *con; 426 427 read_lock_bh(&sk->sk_callback_lock); 428 con = sock2con(sk); 429 if (!con) 430 goto out; 431 432 clear_bit(SOCK_NOSPACE, &con->sock->flags); 433 434 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) { 435 con->sock->sk->sk_write_pending--; 436 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags); 437 } 438 439 queue_work(send_workqueue, &con->swork); 440 out: 441 read_unlock_bh(&sk->sk_callback_lock); 442 } 443 444 static inline void lowcomms_connect_sock(struct connection *con) 445 { 446 if (test_bit(CF_CLOSE, &con->flags)) 447 return; 448 queue_work(send_workqueue, &con->swork); 449 cond_resched(); 450 } 451 452 static void lowcomms_state_change(struct sock *sk) 453 { 454 /* SCTP layer is not calling sk_data_ready when the connection 455 * is done, so we catch the signal through here. Also, it 456 * doesn't switch socket state when entering shutdown, so we 457 * skip the write in that case. 458 */ 459 if (sk->sk_shutdown) { 460 if (sk->sk_shutdown == RCV_SHUTDOWN) 461 lowcomms_data_ready(sk); 462 } else if (sk->sk_state == TCP_ESTABLISHED) { 463 lowcomms_write_space(sk); 464 } 465 } 466 467 int dlm_lowcomms_connect_node(int nodeid) 468 { 469 struct connection *con; 470 471 if (nodeid == dlm_our_nodeid()) 472 return 0; 473 474 con = nodeid2con(nodeid, GFP_NOFS); 475 if (!con) 476 return -ENOMEM; 477 lowcomms_connect_sock(con); 478 return 0; 479 } 480 481 static void lowcomms_error_report(struct sock *sk) 482 { 483 struct connection *con; 484 struct sockaddr_storage saddr; 485 int buflen; 486 void (*orig_report)(struct sock *) = NULL; 487 488 read_lock_bh(&sk->sk_callback_lock); 489 con = sock2con(sk); 490 if (con == NULL) 491 goto out; 492 493 orig_report = listen_sock.sk_error_report; 494 if (con->sock == NULL || 495 kernel_getpeername(con->sock, (struct sockaddr *)&saddr, &buflen)) { 496 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 497 "sending to node %d, port %d, " 498 "sk_err=%d/%d\n", dlm_our_nodeid(), 499 con->nodeid, dlm_config.ci_tcp_port, 500 sk->sk_err, sk->sk_err_soft); 501 } else if (saddr.ss_family == AF_INET) { 502 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr; 503 504 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 505 "sending to node %d at %pI4, port %d, " 506 "sk_err=%d/%d\n", dlm_our_nodeid(), 507 con->nodeid, &sin4->sin_addr.s_addr, 508 dlm_config.ci_tcp_port, sk->sk_err, 509 sk->sk_err_soft); 510 } else { 511 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr; 512 513 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 514 "sending to node %d at %u.%u.%u.%u, " 515 "port %d, sk_err=%d/%d\n", dlm_our_nodeid(), 516 con->nodeid, sin6->sin6_addr.s6_addr32[0], 517 sin6->sin6_addr.s6_addr32[1], 518 sin6->sin6_addr.s6_addr32[2], 519 sin6->sin6_addr.s6_addr32[3], 520 dlm_config.ci_tcp_port, sk->sk_err, 521 sk->sk_err_soft); 522 } 523 out: 524 read_unlock_bh(&sk->sk_callback_lock); 525 if (orig_report) 526 orig_report(sk); 527 } 528 529 /* Note: sk_callback_lock must be locked before calling this function. */ 530 static void save_listen_callbacks(struct socket *sock) 531 { 532 struct sock *sk = sock->sk; 533 534 listen_sock.sk_data_ready = sk->sk_data_ready; 535 listen_sock.sk_state_change = sk->sk_state_change; 536 listen_sock.sk_write_space = sk->sk_write_space; 537 listen_sock.sk_error_report = sk->sk_error_report; 538 } 539 540 static void restore_callbacks(struct socket *sock) 541 { 542 struct sock *sk = sock->sk; 543 544 write_lock_bh(&sk->sk_callback_lock); 545 sk->sk_user_data = NULL; 546 sk->sk_data_ready = listen_sock.sk_data_ready; 547 sk->sk_state_change = listen_sock.sk_state_change; 548 sk->sk_write_space = listen_sock.sk_write_space; 549 sk->sk_error_report = listen_sock.sk_error_report; 550 write_unlock_bh(&sk->sk_callback_lock); 551 } 552 553 /* Make a socket active */ 554 static void add_sock(struct socket *sock, struct connection *con) 555 { 556 struct sock *sk = sock->sk; 557 558 write_lock_bh(&sk->sk_callback_lock); 559 con->sock = sock; 560 561 sk->sk_user_data = con; 562 /* Install a data_ready callback */ 563 sk->sk_data_ready = lowcomms_data_ready; 564 sk->sk_write_space = lowcomms_write_space; 565 sk->sk_state_change = lowcomms_state_change; 566 sk->sk_allocation = GFP_NOFS; 567 sk->sk_error_report = lowcomms_error_report; 568 write_unlock_bh(&sk->sk_callback_lock); 569 } 570 571 /* Add the port number to an IPv6 or 4 sockaddr and return the address 572 length */ 573 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port, 574 int *addr_len) 575 { 576 saddr->ss_family = dlm_local_addr[0]->ss_family; 577 if (saddr->ss_family == AF_INET) { 578 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; 579 in4_addr->sin_port = cpu_to_be16(port); 580 *addr_len = sizeof(struct sockaddr_in); 581 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); 582 } else { 583 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; 584 in6_addr->sin6_port = cpu_to_be16(port); 585 *addr_len = sizeof(struct sockaddr_in6); 586 } 587 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); 588 } 589 590 /* Close a remote connection and tidy up */ 591 static void close_connection(struct connection *con, bool and_other, 592 bool tx, bool rx) 593 { 594 bool closing = test_and_set_bit(CF_CLOSING, &con->flags); 595 596 if (tx && !closing && cancel_work_sync(&con->swork)) { 597 log_print("canceled swork for node %d", con->nodeid); 598 clear_bit(CF_WRITE_PENDING, &con->flags); 599 } 600 if (rx && !closing && cancel_work_sync(&con->rwork)) { 601 log_print("canceled rwork for node %d", con->nodeid); 602 clear_bit(CF_READ_PENDING, &con->flags); 603 } 604 605 mutex_lock(&con->sock_mutex); 606 if (con->sock) { 607 restore_callbacks(con->sock); 608 sock_release(con->sock); 609 con->sock = NULL; 610 } 611 if (con->othercon && and_other) { 612 /* Will only re-enter once. */ 613 close_connection(con->othercon, false, true, true); 614 } 615 if (con->rx_page) { 616 __free_page(con->rx_page); 617 con->rx_page = NULL; 618 } 619 620 con->retries = 0; 621 mutex_unlock(&con->sock_mutex); 622 clear_bit(CF_CLOSING, &con->flags); 623 } 624 625 /* Data received from remote end */ 626 static int receive_from_sock(struct connection *con) 627 { 628 int ret = 0; 629 struct msghdr msg = {}; 630 struct kvec iov[2]; 631 unsigned len; 632 int r; 633 int call_again_soon = 0; 634 int nvec; 635 636 mutex_lock(&con->sock_mutex); 637 638 if (con->sock == NULL) { 639 ret = -EAGAIN; 640 goto out_close; 641 } 642 if (con->nodeid == 0) { 643 ret = -EINVAL; 644 goto out_close; 645 } 646 647 if (con->rx_page == NULL) { 648 /* 649 * This doesn't need to be atomic, but I think it should 650 * improve performance if it is. 651 */ 652 con->rx_page = alloc_page(GFP_ATOMIC); 653 if (con->rx_page == NULL) 654 goto out_resched; 655 cbuf_init(&con->cb, PAGE_SIZE); 656 } 657 658 /* 659 * iov[0] is the bit of the circular buffer between the current end 660 * point (cb.base + cb.len) and the end of the buffer. 661 */ 662 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb); 663 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb); 664 iov[1].iov_len = 0; 665 nvec = 1; 666 667 /* 668 * iov[1] is the bit of the circular buffer between the start of the 669 * buffer and the start of the currently used section (cb.base) 670 */ 671 if (cbuf_data(&con->cb) >= con->cb.base) { 672 iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb); 673 iov[1].iov_len = con->cb.base; 674 iov[1].iov_base = page_address(con->rx_page); 675 nvec = 2; 676 } 677 len = iov[0].iov_len + iov[1].iov_len; 678 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, iov, nvec, len); 679 680 r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL); 681 if (ret <= 0) 682 goto out_close; 683 else if (ret == len) 684 call_again_soon = 1; 685 686 cbuf_add(&con->cb, ret); 687 ret = dlm_process_incoming_buffer(con->nodeid, 688 page_address(con->rx_page), 689 con->cb.base, con->cb.len, 690 PAGE_SIZE); 691 if (ret == -EBADMSG) { 692 log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d", 693 page_address(con->rx_page), con->cb.base, 694 con->cb.len, r); 695 } 696 if (ret < 0) 697 goto out_close; 698 cbuf_eat(&con->cb, ret); 699 700 if (cbuf_empty(&con->cb) && !call_again_soon) { 701 __free_page(con->rx_page); 702 con->rx_page = NULL; 703 } 704 705 if (call_again_soon) 706 goto out_resched; 707 mutex_unlock(&con->sock_mutex); 708 return 0; 709 710 out_resched: 711 if (!test_and_set_bit(CF_READ_PENDING, &con->flags)) 712 queue_work(recv_workqueue, &con->rwork); 713 mutex_unlock(&con->sock_mutex); 714 return -EAGAIN; 715 716 out_close: 717 mutex_unlock(&con->sock_mutex); 718 if (ret != -EAGAIN) { 719 close_connection(con, true, true, false); 720 /* Reconnect when there is something to send */ 721 } 722 /* Don't return success if we really got EOF */ 723 if (ret == 0) 724 ret = -EAGAIN; 725 726 return ret; 727 } 728 729 /* Listening socket is busy, accept a connection */ 730 static int tcp_accept_from_sock(struct connection *con) 731 { 732 int result; 733 struct sockaddr_storage peeraddr; 734 struct socket *newsock; 735 int len; 736 int nodeid; 737 struct connection *newcon; 738 struct connection *addcon; 739 740 mutex_lock(&connections_lock); 741 if (!dlm_allow_conn) { 742 mutex_unlock(&connections_lock); 743 return -1; 744 } 745 mutex_unlock(&connections_lock); 746 747 mutex_lock_nested(&con->sock_mutex, 0); 748 749 if (!con->sock) { 750 mutex_unlock(&con->sock_mutex); 751 return -ENOTCONN; 752 } 753 754 result = kernel_accept(con->sock, &newsock, O_NONBLOCK); 755 if (result < 0) 756 goto accept_err; 757 758 /* Get the connected socket's peer */ 759 memset(&peeraddr, 0, sizeof(peeraddr)); 760 if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 761 &len, 2)) { 762 result = -ECONNABORTED; 763 goto accept_err; 764 } 765 766 /* Get the new node's NODEID */ 767 make_sockaddr(&peeraddr, 0, &len); 768 if (addr_to_nodeid(&peeraddr, &nodeid)) { 769 unsigned char *b=(unsigned char *)&peeraddr; 770 log_print("connect from non cluster node"); 771 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 772 b, sizeof(struct sockaddr_storage)); 773 sock_release(newsock); 774 mutex_unlock(&con->sock_mutex); 775 return -1; 776 } 777 778 log_print("got connection from %d", nodeid); 779 780 /* Check to see if we already have a connection to this node. This 781 * could happen if the two nodes initiate a connection at roughly 782 * the same time and the connections cross on the wire. 783 * In this case we store the incoming one in "othercon" 784 */ 785 newcon = nodeid2con(nodeid, GFP_NOFS); 786 if (!newcon) { 787 result = -ENOMEM; 788 goto accept_err; 789 } 790 mutex_lock_nested(&newcon->sock_mutex, 1); 791 if (newcon->sock) { 792 struct connection *othercon = newcon->othercon; 793 794 if (!othercon) { 795 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS); 796 if (!othercon) { 797 log_print("failed to allocate incoming socket"); 798 mutex_unlock(&newcon->sock_mutex); 799 result = -ENOMEM; 800 goto accept_err; 801 } 802 othercon->nodeid = nodeid; 803 othercon->rx_action = receive_from_sock; 804 mutex_init(&othercon->sock_mutex); 805 INIT_LIST_HEAD(&othercon->writequeue); 806 spin_lock_init(&othercon->writequeue_lock); 807 INIT_WORK(&othercon->swork, process_send_sockets); 808 INIT_WORK(&othercon->rwork, process_recv_sockets); 809 set_bit(CF_IS_OTHERCON, &othercon->flags); 810 } 811 mutex_lock_nested(&othercon->sock_mutex, 2); 812 if (!othercon->sock) { 813 newcon->othercon = othercon; 814 add_sock(newsock, othercon); 815 addcon = othercon; 816 mutex_unlock(&othercon->sock_mutex); 817 } 818 else { 819 printk("Extra connection from node %d attempted\n", nodeid); 820 result = -EAGAIN; 821 mutex_unlock(&othercon->sock_mutex); 822 mutex_unlock(&newcon->sock_mutex); 823 goto accept_err; 824 } 825 } 826 else { 827 newcon->rx_action = receive_from_sock; 828 /* accept copies the sk after we've saved the callbacks, so we 829 don't want to save them a second time or comm errors will 830 result in calling sk_error_report recursively. */ 831 add_sock(newsock, newcon); 832 addcon = newcon; 833 } 834 835 mutex_unlock(&newcon->sock_mutex); 836 837 /* 838 * Add it to the active queue in case we got data 839 * between processing the accept adding the socket 840 * to the read_sockets list 841 */ 842 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags)) 843 queue_work(recv_workqueue, &addcon->rwork); 844 mutex_unlock(&con->sock_mutex); 845 846 return 0; 847 848 accept_err: 849 mutex_unlock(&con->sock_mutex); 850 if (newsock) 851 sock_release(newsock); 852 853 if (result != -EAGAIN) 854 log_print("error accepting connection from node: %d", result); 855 return result; 856 } 857 858 static int sctp_accept_from_sock(struct connection *con) 859 { 860 /* Check that the new node is in the lockspace */ 861 struct sctp_prim prim; 862 int nodeid; 863 int prim_len, ret; 864 int addr_len; 865 struct connection *newcon; 866 struct connection *addcon; 867 struct socket *newsock; 868 869 mutex_lock(&connections_lock); 870 if (!dlm_allow_conn) { 871 mutex_unlock(&connections_lock); 872 return -1; 873 } 874 mutex_unlock(&connections_lock); 875 876 mutex_lock_nested(&con->sock_mutex, 0); 877 878 ret = kernel_accept(con->sock, &newsock, O_NONBLOCK); 879 if (ret < 0) 880 goto accept_err; 881 882 memset(&prim, 0, sizeof(struct sctp_prim)); 883 prim_len = sizeof(struct sctp_prim); 884 885 ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR, 886 (char *)&prim, &prim_len); 887 if (ret < 0) { 888 log_print("getsockopt/sctp_primary_addr failed: %d", ret); 889 goto accept_err; 890 } 891 892 make_sockaddr(&prim.ssp_addr, 0, &addr_len); 893 ret = addr_to_nodeid(&prim.ssp_addr, &nodeid); 894 if (ret) { 895 unsigned char *b = (unsigned char *)&prim.ssp_addr; 896 897 log_print("reject connect from unknown addr"); 898 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 899 b, sizeof(struct sockaddr_storage)); 900 goto accept_err; 901 } 902 903 newcon = nodeid2con(nodeid, GFP_NOFS); 904 if (!newcon) { 905 ret = -ENOMEM; 906 goto accept_err; 907 } 908 909 mutex_lock_nested(&newcon->sock_mutex, 1); 910 911 if (newcon->sock) { 912 struct connection *othercon = newcon->othercon; 913 914 if (!othercon) { 915 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS); 916 if (!othercon) { 917 log_print("failed to allocate incoming socket"); 918 mutex_unlock(&newcon->sock_mutex); 919 ret = -ENOMEM; 920 goto accept_err; 921 } 922 othercon->nodeid = nodeid; 923 othercon->rx_action = receive_from_sock; 924 mutex_init(&othercon->sock_mutex); 925 INIT_LIST_HEAD(&othercon->writequeue); 926 spin_lock_init(&othercon->writequeue_lock); 927 INIT_WORK(&othercon->swork, process_send_sockets); 928 INIT_WORK(&othercon->rwork, process_recv_sockets); 929 set_bit(CF_IS_OTHERCON, &othercon->flags); 930 } 931 mutex_lock_nested(&othercon->sock_mutex, 2); 932 if (!othercon->sock) { 933 newcon->othercon = othercon; 934 add_sock(newsock, othercon); 935 addcon = othercon; 936 mutex_unlock(&othercon->sock_mutex); 937 } else { 938 printk("Extra connection from node %d attempted\n", nodeid); 939 ret = -EAGAIN; 940 mutex_unlock(&othercon->sock_mutex); 941 mutex_unlock(&newcon->sock_mutex); 942 goto accept_err; 943 } 944 } else { 945 newcon->rx_action = receive_from_sock; 946 add_sock(newsock, newcon); 947 addcon = newcon; 948 } 949 950 log_print("connected to %d", nodeid); 951 952 mutex_unlock(&newcon->sock_mutex); 953 954 /* 955 * Add it to the active queue in case we got data 956 * between processing the accept adding the socket 957 * to the read_sockets list 958 */ 959 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags)) 960 queue_work(recv_workqueue, &addcon->rwork); 961 mutex_unlock(&con->sock_mutex); 962 963 return 0; 964 965 accept_err: 966 mutex_unlock(&con->sock_mutex); 967 if (newsock) 968 sock_release(newsock); 969 if (ret != -EAGAIN) 970 log_print("error accepting connection from node: %d", ret); 971 972 return ret; 973 } 974 975 static void free_entry(struct writequeue_entry *e) 976 { 977 __free_page(e->page); 978 kfree(e); 979 } 980 981 /* 982 * writequeue_entry_complete - try to delete and free write queue entry 983 * @e: write queue entry to try to delete 984 * @completed: bytes completed 985 * 986 * writequeue_lock must be held. 987 */ 988 static void writequeue_entry_complete(struct writequeue_entry *e, int completed) 989 { 990 e->offset += completed; 991 e->len -= completed; 992 993 if (e->len == 0 && e->users == 0) { 994 list_del(&e->list); 995 free_entry(e); 996 } 997 } 998 999 /* 1000 * sctp_bind_addrs - bind a SCTP socket to all our addresses 1001 */ 1002 static int sctp_bind_addrs(struct connection *con, uint16_t port) 1003 { 1004 struct sockaddr_storage localaddr; 1005 int i, addr_len, result = 0; 1006 1007 for (i = 0; i < dlm_local_count; i++) { 1008 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr)); 1009 make_sockaddr(&localaddr, port, &addr_len); 1010 1011 if (!i) 1012 result = kernel_bind(con->sock, 1013 (struct sockaddr *)&localaddr, 1014 addr_len); 1015 else 1016 result = kernel_setsockopt(con->sock, SOL_SCTP, 1017 SCTP_SOCKOPT_BINDX_ADD, 1018 (char *)&localaddr, addr_len); 1019 1020 if (result < 0) { 1021 log_print("Can't bind to %d addr number %d, %d.\n", 1022 port, i + 1, result); 1023 break; 1024 } 1025 } 1026 return result; 1027 } 1028 1029 /* Initiate an SCTP association. 1030 This is a special case of send_to_sock() in that we don't yet have a 1031 peeled-off socket for this association, so we use the listening socket 1032 and add the primary IP address of the remote node. 1033 */ 1034 static void sctp_connect_to_sock(struct connection *con) 1035 { 1036 struct sockaddr_storage daddr; 1037 int one = 1; 1038 int result; 1039 int addr_len; 1040 struct socket *sock; 1041 1042 if (con->nodeid == 0) { 1043 log_print("attempt to connect sock 0 foiled"); 1044 return; 1045 } 1046 1047 mutex_lock(&con->sock_mutex); 1048 1049 /* Some odd races can cause double-connects, ignore them */ 1050 if (con->retries++ > MAX_CONNECT_RETRIES) 1051 goto out; 1052 1053 if (con->sock) { 1054 log_print("node %d already connected.", con->nodeid); 1055 goto out; 1056 } 1057 1058 memset(&daddr, 0, sizeof(daddr)); 1059 result = nodeid_to_addr(con->nodeid, &daddr, NULL, true); 1060 if (result < 0) { 1061 log_print("no address for nodeid %d", con->nodeid); 1062 goto out; 1063 } 1064 1065 /* Create a socket to communicate with */ 1066 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1067 SOCK_STREAM, IPPROTO_SCTP, &sock); 1068 if (result < 0) 1069 goto socket_err; 1070 1071 con->rx_action = receive_from_sock; 1072 con->connect_action = sctp_connect_to_sock; 1073 add_sock(sock, con); 1074 1075 /* Bind to all addresses. */ 1076 if (sctp_bind_addrs(con, 0)) 1077 goto bind_err; 1078 1079 make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len); 1080 1081 log_print("connecting to %d", con->nodeid); 1082 1083 /* Turn off Nagle's algorithm */ 1084 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one, 1085 sizeof(one)); 1086 1087 result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len, 1088 O_NONBLOCK); 1089 if (result == -EINPROGRESS) 1090 result = 0; 1091 if (result == 0) 1092 goto out; 1093 1094 bind_err: 1095 con->sock = NULL; 1096 sock_release(sock); 1097 1098 socket_err: 1099 /* 1100 * Some errors are fatal and this list might need adjusting. For other 1101 * errors we try again until the max number of retries is reached. 1102 */ 1103 if (result != -EHOSTUNREACH && 1104 result != -ENETUNREACH && 1105 result != -ENETDOWN && 1106 result != -EINVAL && 1107 result != -EPROTONOSUPPORT) { 1108 log_print("connect %d try %d error %d", con->nodeid, 1109 con->retries, result); 1110 mutex_unlock(&con->sock_mutex); 1111 msleep(1000); 1112 lowcomms_connect_sock(con); 1113 return; 1114 } 1115 1116 out: 1117 mutex_unlock(&con->sock_mutex); 1118 } 1119 1120 /* Connect a new socket to its peer */ 1121 static void tcp_connect_to_sock(struct connection *con) 1122 { 1123 struct sockaddr_storage saddr, src_addr; 1124 int addr_len; 1125 struct socket *sock = NULL; 1126 int one = 1; 1127 int result; 1128 1129 if (con->nodeid == 0) { 1130 log_print("attempt to connect sock 0 foiled"); 1131 return; 1132 } 1133 1134 mutex_lock(&con->sock_mutex); 1135 if (con->retries++ > MAX_CONNECT_RETRIES) 1136 goto out; 1137 1138 /* Some odd races can cause double-connects, ignore them */ 1139 if (con->sock) 1140 goto out; 1141 1142 /* Create a socket to communicate with */ 1143 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1144 SOCK_STREAM, IPPROTO_TCP, &sock); 1145 if (result < 0) 1146 goto out_err; 1147 1148 memset(&saddr, 0, sizeof(saddr)); 1149 result = nodeid_to_addr(con->nodeid, &saddr, NULL, false); 1150 if (result < 0) { 1151 log_print("no address for nodeid %d", con->nodeid); 1152 goto out_err; 1153 } 1154 1155 con->rx_action = receive_from_sock; 1156 con->connect_action = tcp_connect_to_sock; 1157 add_sock(sock, con); 1158 1159 /* Bind to our cluster-known address connecting to avoid 1160 routing problems */ 1161 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr)); 1162 make_sockaddr(&src_addr, 0, &addr_len); 1163 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr, 1164 addr_len); 1165 if (result < 0) { 1166 log_print("could not bind for connect: %d", result); 1167 /* This *may* not indicate a critical error */ 1168 } 1169 1170 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len); 1171 1172 log_print("connecting to %d", con->nodeid); 1173 1174 /* Turn off Nagle's algorithm */ 1175 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one, 1176 sizeof(one)); 1177 1178 result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len, 1179 O_NONBLOCK); 1180 if (result == -EINPROGRESS) 1181 result = 0; 1182 if (result == 0) 1183 goto out; 1184 1185 out_err: 1186 if (con->sock) { 1187 sock_release(con->sock); 1188 con->sock = NULL; 1189 } else if (sock) { 1190 sock_release(sock); 1191 } 1192 /* 1193 * Some errors are fatal and this list might need adjusting. For other 1194 * errors we try again until the max number of retries is reached. 1195 */ 1196 if (result != -EHOSTUNREACH && 1197 result != -ENETUNREACH && 1198 result != -ENETDOWN && 1199 result != -EINVAL && 1200 result != -EPROTONOSUPPORT) { 1201 log_print("connect %d try %d error %d", con->nodeid, 1202 con->retries, result); 1203 mutex_unlock(&con->sock_mutex); 1204 msleep(1000); 1205 lowcomms_connect_sock(con); 1206 return; 1207 } 1208 out: 1209 mutex_unlock(&con->sock_mutex); 1210 return; 1211 } 1212 1213 static struct socket *tcp_create_listen_sock(struct connection *con, 1214 struct sockaddr_storage *saddr) 1215 { 1216 struct socket *sock = NULL; 1217 int result = 0; 1218 int one = 1; 1219 int addr_len; 1220 1221 if (dlm_local_addr[0]->ss_family == AF_INET) 1222 addr_len = sizeof(struct sockaddr_in); 1223 else 1224 addr_len = sizeof(struct sockaddr_in6); 1225 1226 /* Create a socket to communicate with */ 1227 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1228 SOCK_STREAM, IPPROTO_TCP, &sock); 1229 if (result < 0) { 1230 log_print("Can't create listening comms socket"); 1231 goto create_out; 1232 } 1233 1234 /* Turn off Nagle's algorithm */ 1235 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one, 1236 sizeof(one)); 1237 1238 result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, 1239 (char *)&one, sizeof(one)); 1240 1241 if (result < 0) { 1242 log_print("Failed to set SO_REUSEADDR on socket: %d", result); 1243 } 1244 write_lock_bh(&sock->sk->sk_callback_lock); 1245 sock->sk->sk_user_data = con; 1246 save_listen_callbacks(sock); 1247 con->rx_action = tcp_accept_from_sock; 1248 con->connect_action = tcp_connect_to_sock; 1249 write_unlock_bh(&sock->sk->sk_callback_lock); 1250 1251 /* Bind to our port */ 1252 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len); 1253 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len); 1254 if (result < 0) { 1255 log_print("Can't bind to port %d", dlm_config.ci_tcp_port); 1256 sock_release(sock); 1257 sock = NULL; 1258 con->sock = NULL; 1259 goto create_out; 1260 } 1261 result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, 1262 (char *)&one, sizeof(one)); 1263 if (result < 0) { 1264 log_print("Set keepalive failed: %d", result); 1265 } 1266 1267 result = sock->ops->listen(sock, 5); 1268 if (result < 0) { 1269 log_print("Can't listen on port %d", dlm_config.ci_tcp_port); 1270 sock_release(sock); 1271 sock = NULL; 1272 goto create_out; 1273 } 1274 1275 create_out: 1276 return sock; 1277 } 1278 1279 /* Get local addresses */ 1280 static void init_local(void) 1281 { 1282 struct sockaddr_storage sas, *addr; 1283 int i; 1284 1285 dlm_local_count = 0; 1286 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) { 1287 if (dlm_our_addr(&sas, i)) 1288 break; 1289 1290 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS); 1291 if (!addr) 1292 break; 1293 dlm_local_addr[dlm_local_count++] = addr; 1294 } 1295 } 1296 1297 /* Initialise SCTP socket and bind to all interfaces */ 1298 static int sctp_listen_for_all(void) 1299 { 1300 struct socket *sock = NULL; 1301 int result = -EINVAL; 1302 struct connection *con = nodeid2con(0, GFP_NOFS); 1303 int bufsize = NEEDED_RMEM; 1304 int one = 1; 1305 1306 if (!con) 1307 return -ENOMEM; 1308 1309 log_print("Using SCTP for communications"); 1310 1311 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1312 SOCK_STREAM, IPPROTO_SCTP, &sock); 1313 if (result < 0) { 1314 log_print("Can't create comms socket, check SCTP is loaded"); 1315 goto out; 1316 } 1317 1318 result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE, 1319 (char *)&bufsize, sizeof(bufsize)); 1320 if (result) 1321 log_print("Error increasing buffer space on socket %d", result); 1322 1323 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one, 1324 sizeof(one)); 1325 if (result < 0) 1326 log_print("Could not set SCTP NODELAY error %d\n", result); 1327 1328 write_lock_bh(&sock->sk->sk_callback_lock); 1329 /* Init con struct */ 1330 sock->sk->sk_user_data = con; 1331 save_listen_callbacks(sock); 1332 con->sock = sock; 1333 con->sock->sk->sk_data_ready = lowcomms_data_ready; 1334 con->rx_action = sctp_accept_from_sock; 1335 con->connect_action = sctp_connect_to_sock; 1336 1337 write_unlock_bh(&sock->sk->sk_callback_lock); 1338 1339 /* Bind to all addresses. */ 1340 if (sctp_bind_addrs(con, dlm_config.ci_tcp_port)) 1341 goto create_delsock; 1342 1343 result = sock->ops->listen(sock, 5); 1344 if (result < 0) { 1345 log_print("Can't set socket listening"); 1346 goto create_delsock; 1347 } 1348 1349 return 0; 1350 1351 create_delsock: 1352 sock_release(sock); 1353 con->sock = NULL; 1354 out: 1355 return result; 1356 } 1357 1358 static int tcp_listen_for_all(void) 1359 { 1360 struct socket *sock = NULL; 1361 struct connection *con = nodeid2con(0, GFP_NOFS); 1362 int result = -EINVAL; 1363 1364 if (!con) 1365 return -ENOMEM; 1366 1367 /* We don't support multi-homed hosts */ 1368 if (dlm_local_addr[1] != NULL) { 1369 log_print("TCP protocol can't handle multi-homed hosts, " 1370 "try SCTP"); 1371 return -EINVAL; 1372 } 1373 1374 log_print("Using TCP for communications"); 1375 1376 sock = tcp_create_listen_sock(con, dlm_local_addr[0]); 1377 if (sock) { 1378 add_sock(sock, con); 1379 result = 0; 1380 } 1381 else { 1382 result = -EADDRINUSE; 1383 } 1384 1385 return result; 1386 } 1387 1388 1389 1390 static struct writequeue_entry *new_writequeue_entry(struct connection *con, 1391 gfp_t allocation) 1392 { 1393 struct writequeue_entry *entry; 1394 1395 entry = kmalloc(sizeof(struct writequeue_entry), allocation); 1396 if (!entry) 1397 return NULL; 1398 1399 entry->page = alloc_page(allocation); 1400 if (!entry->page) { 1401 kfree(entry); 1402 return NULL; 1403 } 1404 1405 entry->offset = 0; 1406 entry->len = 0; 1407 entry->end = 0; 1408 entry->users = 0; 1409 entry->con = con; 1410 1411 return entry; 1412 } 1413 1414 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc) 1415 { 1416 struct connection *con; 1417 struct writequeue_entry *e; 1418 int offset = 0; 1419 1420 con = nodeid2con(nodeid, allocation); 1421 if (!con) 1422 return NULL; 1423 1424 spin_lock(&con->writequeue_lock); 1425 e = list_entry(con->writequeue.prev, struct writequeue_entry, list); 1426 if ((&e->list == &con->writequeue) || 1427 (PAGE_SIZE - e->end < len)) { 1428 e = NULL; 1429 } else { 1430 offset = e->end; 1431 e->end += len; 1432 e->users++; 1433 } 1434 spin_unlock(&con->writequeue_lock); 1435 1436 if (e) { 1437 got_one: 1438 *ppc = page_address(e->page) + offset; 1439 return e; 1440 } 1441 1442 e = new_writequeue_entry(con, allocation); 1443 if (e) { 1444 spin_lock(&con->writequeue_lock); 1445 offset = e->end; 1446 e->end += len; 1447 e->users++; 1448 list_add_tail(&e->list, &con->writequeue); 1449 spin_unlock(&con->writequeue_lock); 1450 goto got_one; 1451 } 1452 return NULL; 1453 } 1454 1455 void dlm_lowcomms_commit_buffer(void *mh) 1456 { 1457 struct writequeue_entry *e = (struct writequeue_entry *)mh; 1458 struct connection *con = e->con; 1459 int users; 1460 1461 spin_lock(&con->writequeue_lock); 1462 users = --e->users; 1463 if (users) 1464 goto out; 1465 e->len = e->end - e->offset; 1466 spin_unlock(&con->writequeue_lock); 1467 1468 queue_work(send_workqueue, &con->swork); 1469 return; 1470 1471 out: 1472 spin_unlock(&con->writequeue_lock); 1473 return; 1474 } 1475 1476 /* Send a message */ 1477 static void send_to_sock(struct connection *con) 1478 { 1479 int ret = 0; 1480 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1481 struct writequeue_entry *e; 1482 int len, offset; 1483 int count = 0; 1484 1485 mutex_lock(&con->sock_mutex); 1486 if (con->sock == NULL) 1487 goto out_connect; 1488 1489 spin_lock(&con->writequeue_lock); 1490 for (;;) { 1491 e = list_entry(con->writequeue.next, struct writequeue_entry, 1492 list); 1493 if ((struct list_head *) e == &con->writequeue) 1494 break; 1495 1496 len = e->len; 1497 offset = e->offset; 1498 BUG_ON(len == 0 && e->users == 0); 1499 spin_unlock(&con->writequeue_lock); 1500 1501 ret = 0; 1502 if (len) { 1503 ret = kernel_sendpage(con->sock, e->page, offset, len, 1504 msg_flags); 1505 if (ret == -EAGAIN || ret == 0) { 1506 if (ret == -EAGAIN && 1507 test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) && 1508 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) { 1509 /* Notify TCP that we're limited by the 1510 * application window size. 1511 */ 1512 set_bit(SOCK_NOSPACE, &con->sock->flags); 1513 con->sock->sk->sk_write_pending++; 1514 } 1515 cond_resched(); 1516 goto out; 1517 } else if (ret < 0) 1518 goto send_error; 1519 } 1520 1521 /* Don't starve people filling buffers */ 1522 if (++count >= MAX_SEND_MSG_COUNT) { 1523 cond_resched(); 1524 count = 0; 1525 } 1526 1527 spin_lock(&con->writequeue_lock); 1528 writequeue_entry_complete(e, ret); 1529 } 1530 spin_unlock(&con->writequeue_lock); 1531 out: 1532 mutex_unlock(&con->sock_mutex); 1533 return; 1534 1535 send_error: 1536 mutex_unlock(&con->sock_mutex); 1537 close_connection(con, true, false, true); 1538 /* Requeue the send work. When the work daemon runs again, it will try 1539 a new connection, then call this function again. */ 1540 queue_work(send_workqueue, &con->swork); 1541 return; 1542 1543 out_connect: 1544 mutex_unlock(&con->sock_mutex); 1545 queue_work(send_workqueue, &con->swork); 1546 cond_resched(); 1547 } 1548 1549 static void clean_one_writequeue(struct connection *con) 1550 { 1551 struct writequeue_entry *e, *safe; 1552 1553 spin_lock(&con->writequeue_lock); 1554 list_for_each_entry_safe(e, safe, &con->writequeue, list) { 1555 list_del(&e->list); 1556 free_entry(e); 1557 } 1558 spin_unlock(&con->writequeue_lock); 1559 } 1560 1561 /* Called from recovery when it knows that a node has 1562 left the cluster */ 1563 int dlm_lowcomms_close(int nodeid) 1564 { 1565 struct connection *con; 1566 struct dlm_node_addr *na; 1567 1568 log_print("closing connection to node %d", nodeid); 1569 con = nodeid2con(nodeid, 0); 1570 if (con) { 1571 set_bit(CF_CLOSE, &con->flags); 1572 close_connection(con, true, true, true); 1573 clean_one_writequeue(con); 1574 } 1575 1576 spin_lock(&dlm_node_addrs_spin); 1577 na = find_node_addr(nodeid); 1578 if (na) { 1579 list_del(&na->list); 1580 while (na->addr_count--) 1581 kfree(na->addr[na->addr_count]); 1582 kfree(na); 1583 } 1584 spin_unlock(&dlm_node_addrs_spin); 1585 1586 return 0; 1587 } 1588 1589 /* Receive workqueue function */ 1590 static void process_recv_sockets(struct work_struct *work) 1591 { 1592 struct connection *con = container_of(work, struct connection, rwork); 1593 int err; 1594 1595 clear_bit(CF_READ_PENDING, &con->flags); 1596 do { 1597 err = con->rx_action(con); 1598 } while (!err); 1599 } 1600 1601 /* Send workqueue function */ 1602 static void process_send_sockets(struct work_struct *work) 1603 { 1604 struct connection *con = container_of(work, struct connection, swork); 1605 1606 clear_bit(CF_WRITE_PENDING, &con->flags); 1607 if (con->sock == NULL) /* not mutex protected so check it inside too */ 1608 con->connect_action(con); 1609 if (!list_empty(&con->writequeue)) 1610 send_to_sock(con); 1611 } 1612 1613 1614 /* Discard all entries on the write queues */ 1615 static void clean_writequeues(void) 1616 { 1617 foreach_conn(clean_one_writequeue); 1618 } 1619 1620 static void work_stop(void) 1621 { 1622 destroy_workqueue(recv_workqueue); 1623 destroy_workqueue(send_workqueue); 1624 } 1625 1626 static int work_start(void) 1627 { 1628 recv_workqueue = alloc_workqueue("dlm_recv", 1629 WQ_UNBOUND | WQ_MEM_RECLAIM, 1); 1630 if (!recv_workqueue) { 1631 log_print("can't start dlm_recv"); 1632 return -ENOMEM; 1633 } 1634 1635 send_workqueue = alloc_workqueue("dlm_send", 1636 WQ_UNBOUND | WQ_MEM_RECLAIM, 1); 1637 if (!send_workqueue) { 1638 log_print("can't start dlm_send"); 1639 destroy_workqueue(recv_workqueue); 1640 return -ENOMEM; 1641 } 1642 1643 return 0; 1644 } 1645 1646 static void _stop_conn(struct connection *con, bool and_other) 1647 { 1648 mutex_lock(&con->sock_mutex); 1649 set_bit(CF_CLOSE, &con->flags); 1650 set_bit(CF_READ_PENDING, &con->flags); 1651 set_bit(CF_WRITE_PENDING, &con->flags); 1652 if (con->sock && con->sock->sk) { 1653 write_lock_bh(&con->sock->sk->sk_callback_lock); 1654 con->sock->sk->sk_user_data = NULL; 1655 write_unlock_bh(&con->sock->sk->sk_callback_lock); 1656 } 1657 if (con->othercon && and_other) 1658 _stop_conn(con->othercon, false); 1659 mutex_unlock(&con->sock_mutex); 1660 } 1661 1662 static void stop_conn(struct connection *con) 1663 { 1664 _stop_conn(con, true); 1665 } 1666 1667 static void free_conn(struct connection *con) 1668 { 1669 close_connection(con, true, true, true); 1670 if (con->othercon) 1671 kmem_cache_free(con_cache, con->othercon); 1672 hlist_del(&con->list); 1673 kmem_cache_free(con_cache, con); 1674 } 1675 1676 static void work_flush(void) 1677 { 1678 int ok; 1679 int i; 1680 struct hlist_node *n; 1681 struct connection *con; 1682 1683 flush_workqueue(recv_workqueue); 1684 flush_workqueue(send_workqueue); 1685 do { 1686 ok = 1; 1687 foreach_conn(stop_conn); 1688 flush_workqueue(recv_workqueue); 1689 flush_workqueue(send_workqueue); 1690 for (i = 0; i < CONN_HASH_SIZE && ok; i++) { 1691 hlist_for_each_entry_safe(con, n, 1692 &connection_hash[i], list) { 1693 ok &= test_bit(CF_READ_PENDING, &con->flags); 1694 ok &= test_bit(CF_WRITE_PENDING, &con->flags); 1695 if (con->othercon) { 1696 ok &= test_bit(CF_READ_PENDING, 1697 &con->othercon->flags); 1698 ok &= test_bit(CF_WRITE_PENDING, 1699 &con->othercon->flags); 1700 } 1701 } 1702 } 1703 } while (!ok); 1704 } 1705 1706 void dlm_lowcomms_stop(void) 1707 { 1708 /* Set all the flags to prevent any 1709 socket activity. 1710 */ 1711 mutex_lock(&connections_lock); 1712 dlm_allow_conn = 0; 1713 mutex_unlock(&connections_lock); 1714 work_flush(); 1715 clean_writequeues(); 1716 foreach_conn(free_conn); 1717 work_stop(); 1718 1719 kmem_cache_destroy(con_cache); 1720 } 1721 1722 int dlm_lowcomms_start(void) 1723 { 1724 int error = -EINVAL; 1725 struct connection *con; 1726 int i; 1727 1728 for (i = 0; i < CONN_HASH_SIZE; i++) 1729 INIT_HLIST_HEAD(&connection_hash[i]); 1730 1731 init_local(); 1732 if (!dlm_local_count) { 1733 error = -ENOTCONN; 1734 log_print("no local IP address has been set"); 1735 goto fail; 1736 } 1737 1738 error = -ENOMEM; 1739 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection), 1740 __alignof__(struct connection), 0, 1741 NULL); 1742 if (!con_cache) 1743 goto fail; 1744 1745 error = work_start(); 1746 if (error) 1747 goto fail_destroy; 1748 1749 dlm_allow_conn = 1; 1750 1751 /* Start listening */ 1752 if (dlm_config.ci_protocol == 0) 1753 error = tcp_listen_for_all(); 1754 else 1755 error = sctp_listen_for_all(); 1756 if (error) 1757 goto fail_unlisten; 1758 1759 return 0; 1760 1761 fail_unlisten: 1762 dlm_allow_conn = 0; 1763 con = nodeid2con(0,0); 1764 if (con) { 1765 close_connection(con, false, true, true); 1766 kmem_cache_free(con_cache, con); 1767 } 1768 fail_destroy: 1769 kmem_cache_destroy(con_cache); 1770 fail: 1771 return error; 1772 } 1773 1774 void dlm_lowcomms_exit(void) 1775 { 1776 struct dlm_node_addr *na, *safe; 1777 1778 spin_lock(&dlm_node_addrs_spin); 1779 list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) { 1780 list_del(&na->list); 1781 while (na->addr_count--) 1782 kfree(na->addr[na->addr_count]); 1783 kfree(na); 1784 } 1785 spin_unlock(&dlm_node_addrs_spin); 1786 } 1787