xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 988419a9)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
57 
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62 
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65 
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68 
69 struct cbuf {
70 	unsigned int base;
71 	unsigned int len;
72 	unsigned int mask;
73 };
74 
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77 	cb->len += n;
78 }
79 
80 static int cbuf_data(struct cbuf *cb)
81 {
82 	return ((cb->base + cb->len) & cb->mask);
83 }
84 
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87 	cb->base = cb->len = 0;
88 	cb->mask = size-1;
89 }
90 
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93 	cb->len  -= n;
94 	cb->base += n;
95 	cb->base &= cb->mask;
96 }
97 
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100 	return cb->len == 0;
101 }
102 
103 struct connection {
104 	struct socket *sock;	/* NULL if not connected */
105 	uint32_t nodeid;	/* So we know who we are in the list */
106 	struct mutex sock_mutex;
107 	unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_INIT_PENDING 4
110 #define CF_IS_OTHERCON 5
111 #define CF_CLOSE 6
112 #define CF_APP_LIMITED 7
113 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
114 	spinlock_t writequeue_lock;
115 	int (*rx_action) (struct connection *);	/* What to do when active */
116 	void (*connect_action) (struct connection *);	/* What to do to connect */
117 	struct page *rx_page;
118 	struct cbuf cb;
119 	int retries;
120 #define MAX_CONNECT_RETRIES 3
121 	struct hlist_node list;
122 	struct connection *othercon;
123 	struct work_struct rwork; /* Receive workqueue */
124 	struct work_struct swork; /* Send workqueue */
125 };
126 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
127 
128 /* An entry waiting to be sent */
129 struct writequeue_entry {
130 	struct list_head list;
131 	struct page *page;
132 	int offset;
133 	int len;
134 	int end;
135 	int users;
136 	struct connection *con;
137 };
138 
139 struct dlm_node_addr {
140 	struct list_head list;
141 	int nodeid;
142 	int addr_count;
143 	int curr_addr_index;
144 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
145 };
146 
147 static struct listen_sock_callbacks {
148 	void (*sk_error_report)(struct sock *);
149 	void (*sk_data_ready)(struct sock *);
150 	void (*sk_state_change)(struct sock *);
151 	void (*sk_write_space)(struct sock *);
152 } listen_sock;
153 
154 static LIST_HEAD(dlm_node_addrs);
155 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
156 
157 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
158 static int dlm_local_count;
159 static int dlm_allow_conn;
160 
161 /* Work queues */
162 static struct workqueue_struct *recv_workqueue;
163 static struct workqueue_struct *send_workqueue;
164 
165 static struct hlist_head connection_hash[CONN_HASH_SIZE];
166 static DEFINE_MUTEX(connections_lock);
167 static struct kmem_cache *con_cache;
168 
169 static void process_recv_sockets(struct work_struct *work);
170 static void process_send_sockets(struct work_struct *work);
171 
172 
173 /* This is deliberately very simple because most clusters have simple
174    sequential nodeids, so we should be able to go straight to a connection
175    struct in the array */
176 static inline int nodeid_hash(int nodeid)
177 {
178 	return nodeid & (CONN_HASH_SIZE-1);
179 }
180 
181 static struct connection *__find_con(int nodeid)
182 {
183 	int r;
184 	struct connection *con;
185 
186 	r = nodeid_hash(nodeid);
187 
188 	hlist_for_each_entry(con, &connection_hash[r], list) {
189 		if (con->nodeid == nodeid)
190 			return con;
191 	}
192 	return NULL;
193 }
194 
195 /*
196  * If 'allocation' is zero then we don't attempt to create a new
197  * connection structure for this node.
198  */
199 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
200 {
201 	struct connection *con = NULL;
202 	int r;
203 
204 	con = __find_con(nodeid);
205 	if (con || !alloc)
206 		return con;
207 
208 	con = kmem_cache_zalloc(con_cache, alloc);
209 	if (!con)
210 		return NULL;
211 
212 	r = nodeid_hash(nodeid);
213 	hlist_add_head(&con->list, &connection_hash[r]);
214 
215 	con->nodeid = nodeid;
216 	mutex_init(&con->sock_mutex);
217 	INIT_LIST_HEAD(&con->writequeue);
218 	spin_lock_init(&con->writequeue_lock);
219 	INIT_WORK(&con->swork, process_send_sockets);
220 	INIT_WORK(&con->rwork, process_recv_sockets);
221 
222 	/* Setup action pointers for child sockets */
223 	if (con->nodeid) {
224 		struct connection *zerocon = __find_con(0);
225 
226 		con->connect_action = zerocon->connect_action;
227 		if (!con->rx_action)
228 			con->rx_action = zerocon->rx_action;
229 	}
230 
231 	return con;
232 }
233 
234 /* Loop round all connections */
235 static void foreach_conn(void (*conn_func)(struct connection *c))
236 {
237 	int i;
238 	struct hlist_node *n;
239 	struct connection *con;
240 
241 	for (i = 0; i < CONN_HASH_SIZE; i++) {
242 		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
243 			conn_func(con);
244 	}
245 }
246 
247 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
248 {
249 	struct connection *con;
250 
251 	mutex_lock(&connections_lock);
252 	con = __nodeid2con(nodeid, allocation);
253 	mutex_unlock(&connections_lock);
254 
255 	return con;
256 }
257 
258 static struct dlm_node_addr *find_node_addr(int nodeid)
259 {
260 	struct dlm_node_addr *na;
261 
262 	list_for_each_entry(na, &dlm_node_addrs, list) {
263 		if (na->nodeid == nodeid)
264 			return na;
265 	}
266 	return NULL;
267 }
268 
269 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
270 {
271 	switch (x->ss_family) {
272 	case AF_INET: {
273 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
274 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
275 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
276 			return 0;
277 		if (sinx->sin_port != siny->sin_port)
278 			return 0;
279 		break;
280 	}
281 	case AF_INET6: {
282 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
283 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
284 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
285 			return 0;
286 		if (sinx->sin6_port != siny->sin6_port)
287 			return 0;
288 		break;
289 	}
290 	default:
291 		return 0;
292 	}
293 	return 1;
294 }
295 
296 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
297 			  struct sockaddr *sa_out, bool try_new_addr)
298 {
299 	struct sockaddr_storage sas;
300 	struct dlm_node_addr *na;
301 
302 	if (!dlm_local_count)
303 		return -1;
304 
305 	spin_lock(&dlm_node_addrs_spin);
306 	na = find_node_addr(nodeid);
307 	if (na && na->addr_count) {
308 		memcpy(&sas, na->addr[na->curr_addr_index],
309 		       sizeof(struct sockaddr_storage));
310 
311 		if (try_new_addr) {
312 			na->curr_addr_index++;
313 			if (na->curr_addr_index == na->addr_count)
314 				na->curr_addr_index = 0;
315 		}
316 	}
317 	spin_unlock(&dlm_node_addrs_spin);
318 
319 	if (!na)
320 		return -EEXIST;
321 
322 	if (!na->addr_count)
323 		return -ENOENT;
324 
325 	if (sas_out)
326 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
327 
328 	if (!sa_out)
329 		return 0;
330 
331 	if (dlm_local_addr[0]->ss_family == AF_INET) {
332 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
333 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
334 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
335 	} else {
336 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
337 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
338 		ret6->sin6_addr = in6->sin6_addr;
339 	}
340 
341 	return 0;
342 }
343 
344 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
345 {
346 	struct dlm_node_addr *na;
347 	int rv = -EEXIST;
348 	int addr_i;
349 
350 	spin_lock(&dlm_node_addrs_spin);
351 	list_for_each_entry(na, &dlm_node_addrs, list) {
352 		if (!na->addr_count)
353 			continue;
354 
355 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
356 			if (addr_compare(na->addr[addr_i], addr)) {
357 				*nodeid = na->nodeid;
358 				rv = 0;
359 				goto unlock;
360 			}
361 		}
362 	}
363 unlock:
364 	spin_unlock(&dlm_node_addrs_spin);
365 	return rv;
366 }
367 
368 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
369 {
370 	struct sockaddr_storage *new_addr;
371 	struct dlm_node_addr *new_node, *na;
372 
373 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
374 	if (!new_node)
375 		return -ENOMEM;
376 
377 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
378 	if (!new_addr) {
379 		kfree(new_node);
380 		return -ENOMEM;
381 	}
382 
383 	memcpy(new_addr, addr, len);
384 
385 	spin_lock(&dlm_node_addrs_spin);
386 	na = find_node_addr(nodeid);
387 	if (!na) {
388 		new_node->nodeid = nodeid;
389 		new_node->addr[0] = new_addr;
390 		new_node->addr_count = 1;
391 		list_add(&new_node->list, &dlm_node_addrs);
392 		spin_unlock(&dlm_node_addrs_spin);
393 		return 0;
394 	}
395 
396 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
397 		spin_unlock(&dlm_node_addrs_spin);
398 		kfree(new_addr);
399 		kfree(new_node);
400 		return -ENOSPC;
401 	}
402 
403 	na->addr[na->addr_count++] = new_addr;
404 	spin_unlock(&dlm_node_addrs_spin);
405 	kfree(new_node);
406 	return 0;
407 }
408 
409 /* Data available on socket or listen socket received a connect */
410 static void lowcomms_data_ready(struct sock *sk)
411 {
412 	struct connection *con = sock2con(sk);
413 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
414 		queue_work(recv_workqueue, &con->rwork);
415 }
416 
417 static void lowcomms_write_space(struct sock *sk)
418 {
419 	struct connection *con = sock2con(sk);
420 
421 	if (!con)
422 		return;
423 
424 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
425 
426 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
427 		con->sock->sk->sk_write_pending--;
428 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
429 	}
430 
431 	queue_work(send_workqueue, &con->swork);
432 }
433 
434 static inline void lowcomms_connect_sock(struct connection *con)
435 {
436 	if (test_bit(CF_CLOSE, &con->flags))
437 		return;
438 	queue_work(send_workqueue, &con->swork);
439 	cond_resched();
440 }
441 
442 static void lowcomms_state_change(struct sock *sk)
443 {
444 	/* SCTP layer is not calling sk_data_ready when the connection
445 	 * is done, so we catch the signal through here. Also, it
446 	 * doesn't switch socket state when entering shutdown, so we
447 	 * skip the write in that case.
448 	 */
449 	if (sk->sk_shutdown) {
450 		if (sk->sk_shutdown == RCV_SHUTDOWN)
451 			lowcomms_data_ready(sk);
452 	} else if (sk->sk_state == TCP_ESTABLISHED) {
453 		lowcomms_write_space(sk);
454 	}
455 }
456 
457 int dlm_lowcomms_connect_node(int nodeid)
458 {
459 	struct connection *con;
460 
461 	if (nodeid == dlm_our_nodeid())
462 		return 0;
463 
464 	con = nodeid2con(nodeid, GFP_NOFS);
465 	if (!con)
466 		return -ENOMEM;
467 	lowcomms_connect_sock(con);
468 	return 0;
469 }
470 
471 static void lowcomms_error_report(struct sock *sk)
472 {
473 	struct connection *con;
474 	struct sockaddr_storage saddr;
475 	int buflen;
476 	void (*orig_report)(struct sock *) = NULL;
477 
478 	read_lock_bh(&sk->sk_callback_lock);
479 	con = sock2con(sk);
480 	if (con == NULL)
481 		goto out;
482 
483 	orig_report = listen_sock.sk_error_report;
484 	if (con->sock == NULL ||
485 	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr, &buflen)) {
486 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
487 				   "sending to node %d, port %d, "
488 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
489 				   con->nodeid, dlm_config.ci_tcp_port,
490 				   sk->sk_err, sk->sk_err_soft);
491 	} else if (saddr.ss_family == AF_INET) {
492 		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
493 
494 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
495 				   "sending to node %d at %pI4, port %d, "
496 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
497 				   con->nodeid, &sin4->sin_addr.s_addr,
498 				   dlm_config.ci_tcp_port, sk->sk_err,
499 				   sk->sk_err_soft);
500 	} else {
501 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
502 
503 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
504 				   "sending to node %d at %u.%u.%u.%u, "
505 				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
506 				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
507 				   sin6->sin6_addr.s6_addr32[1],
508 				   sin6->sin6_addr.s6_addr32[2],
509 				   sin6->sin6_addr.s6_addr32[3],
510 				   dlm_config.ci_tcp_port, sk->sk_err,
511 				   sk->sk_err_soft);
512 	}
513 out:
514 	read_unlock_bh(&sk->sk_callback_lock);
515 	if (orig_report)
516 		orig_report(sk);
517 }
518 
519 /* Note: sk_callback_lock must be locked before calling this function. */
520 static void save_listen_callbacks(struct socket *sock)
521 {
522 	struct sock *sk = sock->sk;
523 
524 	listen_sock.sk_data_ready = sk->sk_data_ready;
525 	listen_sock.sk_state_change = sk->sk_state_change;
526 	listen_sock.sk_write_space = sk->sk_write_space;
527 	listen_sock.sk_error_report = sk->sk_error_report;
528 }
529 
530 static void restore_callbacks(struct socket *sock)
531 {
532 	struct sock *sk = sock->sk;
533 
534 	write_lock_bh(&sk->sk_callback_lock);
535 	sk->sk_user_data = NULL;
536 	sk->sk_data_ready = listen_sock.sk_data_ready;
537 	sk->sk_state_change = listen_sock.sk_state_change;
538 	sk->sk_write_space = listen_sock.sk_write_space;
539 	sk->sk_error_report = listen_sock.sk_error_report;
540 	write_unlock_bh(&sk->sk_callback_lock);
541 }
542 
543 /* Make a socket active */
544 static void add_sock(struct socket *sock, struct connection *con)
545 {
546 	struct sock *sk = sock->sk;
547 
548 	write_lock_bh(&sk->sk_callback_lock);
549 	con->sock = sock;
550 
551 	sk->sk_user_data = con;
552 	/* Install a data_ready callback */
553 	sk->sk_data_ready = lowcomms_data_ready;
554 	sk->sk_write_space = lowcomms_write_space;
555 	sk->sk_state_change = lowcomms_state_change;
556 	sk->sk_allocation = GFP_NOFS;
557 	sk->sk_error_report = lowcomms_error_report;
558 	write_unlock_bh(&sk->sk_callback_lock);
559 }
560 
561 /* Add the port number to an IPv6 or 4 sockaddr and return the address
562    length */
563 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
564 			  int *addr_len)
565 {
566 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
567 	if (saddr->ss_family == AF_INET) {
568 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
569 		in4_addr->sin_port = cpu_to_be16(port);
570 		*addr_len = sizeof(struct sockaddr_in);
571 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
572 	} else {
573 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
574 		in6_addr->sin6_port = cpu_to_be16(port);
575 		*addr_len = sizeof(struct sockaddr_in6);
576 	}
577 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
578 }
579 
580 /* Close a remote connection and tidy up */
581 static void close_connection(struct connection *con, bool and_other,
582 			     bool tx, bool rx)
583 {
584 	if (tx && cancel_work_sync(&con->swork))
585 		log_print("canceled swork for node %d", con->nodeid);
586 	if (rx && cancel_work_sync(&con->rwork))
587 		log_print("canceled rwork for node %d", con->nodeid);
588 
589 	mutex_lock(&con->sock_mutex);
590 	if (con->sock) {
591 		restore_callbacks(con->sock);
592 		sock_release(con->sock);
593 		con->sock = NULL;
594 	}
595 	if (con->othercon && and_other) {
596 		/* Will only re-enter once. */
597 		close_connection(con->othercon, false, true, true);
598 	}
599 	if (con->rx_page) {
600 		__free_page(con->rx_page);
601 		con->rx_page = NULL;
602 	}
603 
604 	con->retries = 0;
605 	mutex_unlock(&con->sock_mutex);
606 }
607 
608 /* Data received from remote end */
609 static int receive_from_sock(struct connection *con)
610 {
611 	int ret = 0;
612 	struct msghdr msg = {};
613 	struct kvec iov[2];
614 	unsigned len;
615 	int r;
616 	int call_again_soon = 0;
617 	int nvec;
618 
619 	mutex_lock(&con->sock_mutex);
620 
621 	if (con->sock == NULL) {
622 		ret = -EAGAIN;
623 		goto out_close;
624 	}
625 	if (con->nodeid == 0) {
626 		ret = -EINVAL;
627 		goto out_close;
628 	}
629 
630 	if (con->rx_page == NULL) {
631 		/*
632 		 * This doesn't need to be atomic, but I think it should
633 		 * improve performance if it is.
634 		 */
635 		con->rx_page = alloc_page(GFP_ATOMIC);
636 		if (con->rx_page == NULL)
637 			goto out_resched;
638 		cbuf_init(&con->cb, PAGE_SIZE);
639 	}
640 
641 	/*
642 	 * iov[0] is the bit of the circular buffer between the current end
643 	 * point (cb.base + cb.len) and the end of the buffer.
644 	 */
645 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
646 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
647 	iov[1].iov_len = 0;
648 	nvec = 1;
649 
650 	/*
651 	 * iov[1] is the bit of the circular buffer between the start of the
652 	 * buffer and the start of the currently used section (cb.base)
653 	 */
654 	if (cbuf_data(&con->cb) >= con->cb.base) {
655 		iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
656 		iov[1].iov_len = con->cb.base;
657 		iov[1].iov_base = page_address(con->rx_page);
658 		nvec = 2;
659 	}
660 	len = iov[0].iov_len + iov[1].iov_len;
661 
662 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
663 			       MSG_DONTWAIT | MSG_NOSIGNAL);
664 	if (ret <= 0)
665 		goto out_close;
666 	else if (ret == len)
667 		call_again_soon = 1;
668 
669 	cbuf_add(&con->cb, ret);
670 	ret = dlm_process_incoming_buffer(con->nodeid,
671 					  page_address(con->rx_page),
672 					  con->cb.base, con->cb.len,
673 					  PAGE_SIZE);
674 	if (ret == -EBADMSG) {
675 		log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
676 			  page_address(con->rx_page), con->cb.base,
677 			  con->cb.len, r);
678 	}
679 	if (ret < 0)
680 		goto out_close;
681 	cbuf_eat(&con->cb, ret);
682 
683 	if (cbuf_empty(&con->cb) && !call_again_soon) {
684 		__free_page(con->rx_page);
685 		con->rx_page = NULL;
686 	}
687 
688 	if (call_again_soon)
689 		goto out_resched;
690 	mutex_unlock(&con->sock_mutex);
691 	return 0;
692 
693 out_resched:
694 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
695 		queue_work(recv_workqueue, &con->rwork);
696 	mutex_unlock(&con->sock_mutex);
697 	return -EAGAIN;
698 
699 out_close:
700 	mutex_unlock(&con->sock_mutex);
701 	if (ret != -EAGAIN) {
702 		close_connection(con, false, true, false);
703 		/* Reconnect when there is something to send */
704 	}
705 	/* Don't return success if we really got EOF */
706 	if (ret == 0)
707 		ret = -EAGAIN;
708 
709 	return ret;
710 }
711 
712 /* Listening socket is busy, accept a connection */
713 static int tcp_accept_from_sock(struct connection *con)
714 {
715 	int result;
716 	struct sockaddr_storage peeraddr;
717 	struct socket *newsock;
718 	int len;
719 	int nodeid;
720 	struct connection *newcon;
721 	struct connection *addcon;
722 
723 	mutex_lock(&connections_lock);
724 	if (!dlm_allow_conn) {
725 		mutex_unlock(&connections_lock);
726 		return -1;
727 	}
728 	mutex_unlock(&connections_lock);
729 
730 	memset(&peeraddr, 0, sizeof(peeraddr));
731 	result = sock_create_lite(dlm_local_addr[0]->ss_family,
732 				  SOCK_STREAM, IPPROTO_TCP, &newsock);
733 	if (result < 0)
734 		return -ENOMEM;
735 
736 	mutex_lock_nested(&con->sock_mutex, 0);
737 
738 	result = -ENOTCONN;
739 	if (con->sock == NULL)
740 		goto accept_err;
741 
742 	newsock->type = con->sock->type;
743 	newsock->ops = con->sock->ops;
744 
745 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK, true);
746 	if (result < 0)
747 		goto accept_err;
748 
749 	/* Get the connected socket's peer */
750 	memset(&peeraddr, 0, sizeof(peeraddr));
751 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
752 				  &len, 2)) {
753 		result = -ECONNABORTED;
754 		goto accept_err;
755 	}
756 
757 	/* Get the new node's NODEID */
758 	make_sockaddr(&peeraddr, 0, &len);
759 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
760 		unsigned char *b=(unsigned char *)&peeraddr;
761 		log_print("connect from non cluster node");
762 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
763 				     b, sizeof(struct sockaddr_storage));
764 		sock_release(newsock);
765 		mutex_unlock(&con->sock_mutex);
766 		return -1;
767 	}
768 
769 	log_print("got connection from %d", nodeid);
770 
771 	/*  Check to see if we already have a connection to this node. This
772 	 *  could happen if the two nodes initiate a connection at roughly
773 	 *  the same time and the connections cross on the wire.
774 	 *  In this case we store the incoming one in "othercon"
775 	 */
776 	newcon = nodeid2con(nodeid, GFP_NOFS);
777 	if (!newcon) {
778 		result = -ENOMEM;
779 		goto accept_err;
780 	}
781 	mutex_lock_nested(&newcon->sock_mutex, 1);
782 	if (newcon->sock) {
783 		struct connection *othercon = newcon->othercon;
784 
785 		if (!othercon) {
786 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
787 			if (!othercon) {
788 				log_print("failed to allocate incoming socket");
789 				mutex_unlock(&newcon->sock_mutex);
790 				result = -ENOMEM;
791 				goto accept_err;
792 			}
793 			othercon->nodeid = nodeid;
794 			othercon->rx_action = receive_from_sock;
795 			mutex_init(&othercon->sock_mutex);
796 			INIT_WORK(&othercon->swork, process_send_sockets);
797 			INIT_WORK(&othercon->rwork, process_recv_sockets);
798 			set_bit(CF_IS_OTHERCON, &othercon->flags);
799 		}
800 		if (!othercon->sock) {
801 			newcon->othercon = othercon;
802 			othercon->sock = newsock;
803 			newsock->sk->sk_user_data = othercon;
804 			add_sock(newsock, othercon);
805 			addcon = othercon;
806 		}
807 		else {
808 			printk("Extra connection from node %d attempted\n", nodeid);
809 			result = -EAGAIN;
810 			mutex_unlock(&newcon->sock_mutex);
811 			goto accept_err;
812 		}
813 	}
814 	else {
815 		newsock->sk->sk_user_data = newcon;
816 		newcon->rx_action = receive_from_sock;
817 		/* accept copies the sk after we've saved the callbacks, so we
818 		   don't want to save them a second time or comm errors will
819 		   result in calling sk_error_report recursively. */
820 		add_sock(newsock, newcon);
821 		addcon = newcon;
822 	}
823 
824 	mutex_unlock(&newcon->sock_mutex);
825 
826 	/*
827 	 * Add it to the active queue in case we got data
828 	 * between processing the accept adding the socket
829 	 * to the read_sockets list
830 	 */
831 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
832 		queue_work(recv_workqueue, &addcon->rwork);
833 	mutex_unlock(&con->sock_mutex);
834 
835 	return 0;
836 
837 accept_err:
838 	mutex_unlock(&con->sock_mutex);
839 	sock_release(newsock);
840 
841 	if (result != -EAGAIN)
842 		log_print("error accepting connection from node: %d", result);
843 	return result;
844 }
845 
846 static int sctp_accept_from_sock(struct connection *con)
847 {
848 	/* Check that the new node is in the lockspace */
849 	struct sctp_prim prim;
850 	int nodeid;
851 	int prim_len, ret;
852 	int addr_len;
853 	struct connection *newcon;
854 	struct connection *addcon;
855 	struct socket *newsock;
856 
857 	mutex_lock(&connections_lock);
858 	if (!dlm_allow_conn) {
859 		mutex_unlock(&connections_lock);
860 		return -1;
861 	}
862 	mutex_unlock(&connections_lock);
863 
864 	mutex_lock_nested(&con->sock_mutex, 0);
865 
866 	ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
867 	if (ret < 0)
868 		goto accept_err;
869 
870 	memset(&prim, 0, sizeof(struct sctp_prim));
871 	prim_len = sizeof(struct sctp_prim);
872 
873 	ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
874 				(char *)&prim, &prim_len);
875 	if (ret < 0) {
876 		log_print("getsockopt/sctp_primary_addr failed: %d", ret);
877 		goto accept_err;
878 	}
879 
880 	make_sockaddr(&prim.ssp_addr, 0, &addr_len);
881 	ret = addr_to_nodeid(&prim.ssp_addr, &nodeid);
882 	if (ret) {
883 		unsigned char *b = (unsigned char *)&prim.ssp_addr;
884 
885 		log_print("reject connect from unknown addr");
886 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
887 				     b, sizeof(struct sockaddr_storage));
888 		goto accept_err;
889 	}
890 
891 	newcon = nodeid2con(nodeid, GFP_NOFS);
892 	if (!newcon) {
893 		ret = -ENOMEM;
894 		goto accept_err;
895 	}
896 
897 	mutex_lock_nested(&newcon->sock_mutex, 1);
898 
899 	if (newcon->sock) {
900 		struct connection *othercon = newcon->othercon;
901 
902 		if (!othercon) {
903 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
904 			if (!othercon) {
905 				log_print("failed to allocate incoming socket");
906 				mutex_unlock(&newcon->sock_mutex);
907 				ret = -ENOMEM;
908 				goto accept_err;
909 			}
910 			othercon->nodeid = nodeid;
911 			othercon->rx_action = receive_from_sock;
912 			mutex_init(&othercon->sock_mutex);
913 			INIT_WORK(&othercon->swork, process_send_sockets);
914 			INIT_WORK(&othercon->rwork, process_recv_sockets);
915 			set_bit(CF_IS_OTHERCON, &othercon->flags);
916 		}
917 		if (!othercon->sock) {
918 			newcon->othercon = othercon;
919 			othercon->sock = newsock;
920 			newsock->sk->sk_user_data = othercon;
921 			add_sock(newsock, othercon);
922 			addcon = othercon;
923 		} else {
924 			printk("Extra connection from node %d attempted\n", nodeid);
925 			ret = -EAGAIN;
926 			mutex_unlock(&newcon->sock_mutex);
927 			goto accept_err;
928 		}
929 	} else {
930 		newsock->sk->sk_user_data = newcon;
931 		newcon->rx_action = receive_from_sock;
932 		add_sock(newsock, newcon);
933 		addcon = newcon;
934 	}
935 
936 	log_print("connected to %d", nodeid);
937 
938 	mutex_unlock(&newcon->sock_mutex);
939 
940 	/*
941 	 * Add it to the active queue in case we got data
942 	 * between processing the accept adding the socket
943 	 * to the read_sockets list
944 	 */
945 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
946 		queue_work(recv_workqueue, &addcon->rwork);
947 	mutex_unlock(&con->sock_mutex);
948 
949 	return 0;
950 
951 accept_err:
952 	mutex_unlock(&con->sock_mutex);
953 	if (newsock)
954 		sock_release(newsock);
955 	if (ret != -EAGAIN)
956 		log_print("error accepting connection from node: %d", ret);
957 
958 	return ret;
959 }
960 
961 static void free_entry(struct writequeue_entry *e)
962 {
963 	__free_page(e->page);
964 	kfree(e);
965 }
966 
967 /*
968  * writequeue_entry_complete - try to delete and free write queue entry
969  * @e: write queue entry to try to delete
970  * @completed: bytes completed
971  *
972  * writequeue_lock must be held.
973  */
974 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
975 {
976 	e->offset += completed;
977 	e->len -= completed;
978 
979 	if (e->len == 0 && e->users == 0) {
980 		list_del(&e->list);
981 		free_entry(e);
982 	}
983 }
984 
985 /*
986  * sctp_bind_addrs - bind a SCTP socket to all our addresses
987  */
988 static int sctp_bind_addrs(struct connection *con, uint16_t port)
989 {
990 	struct sockaddr_storage localaddr;
991 	int i, addr_len, result = 0;
992 
993 	for (i = 0; i < dlm_local_count; i++) {
994 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
995 		make_sockaddr(&localaddr, port, &addr_len);
996 
997 		if (!i)
998 			result = kernel_bind(con->sock,
999 					     (struct sockaddr *)&localaddr,
1000 					     addr_len);
1001 		else
1002 			result = kernel_setsockopt(con->sock, SOL_SCTP,
1003 						   SCTP_SOCKOPT_BINDX_ADD,
1004 						   (char *)&localaddr, addr_len);
1005 
1006 		if (result < 0) {
1007 			log_print("Can't bind to %d addr number %d, %d.\n",
1008 				  port, i + 1, result);
1009 			break;
1010 		}
1011 	}
1012 	return result;
1013 }
1014 
1015 /* Initiate an SCTP association.
1016    This is a special case of send_to_sock() in that we don't yet have a
1017    peeled-off socket for this association, so we use the listening socket
1018    and add the primary IP address of the remote node.
1019  */
1020 static void sctp_connect_to_sock(struct connection *con)
1021 {
1022 	struct sockaddr_storage daddr;
1023 	int one = 1;
1024 	int result;
1025 	int addr_len;
1026 	struct socket *sock;
1027 
1028 	if (con->nodeid == 0) {
1029 		log_print("attempt to connect sock 0 foiled");
1030 		return;
1031 	}
1032 
1033 	mutex_lock(&con->sock_mutex);
1034 
1035 	/* Some odd races can cause double-connects, ignore them */
1036 	if (con->retries++ > MAX_CONNECT_RETRIES)
1037 		goto out;
1038 
1039 	if (con->sock) {
1040 		log_print("node %d already connected.", con->nodeid);
1041 		goto out;
1042 	}
1043 
1044 	memset(&daddr, 0, sizeof(daddr));
1045 	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
1046 	if (result < 0) {
1047 		log_print("no address for nodeid %d", con->nodeid);
1048 		goto out;
1049 	}
1050 
1051 	/* Create a socket to communicate with */
1052 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1053 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1054 	if (result < 0)
1055 		goto socket_err;
1056 
1057 	sock->sk->sk_user_data = con;
1058 	con->rx_action = receive_from_sock;
1059 	con->connect_action = sctp_connect_to_sock;
1060 	add_sock(sock, con);
1061 
1062 	/* Bind to all addresses. */
1063 	if (sctp_bind_addrs(con, 0))
1064 		goto bind_err;
1065 
1066 	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1067 
1068 	log_print("connecting to %d", con->nodeid);
1069 
1070 	/* Turn off Nagle's algorithm */
1071 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1072 			  sizeof(one));
1073 
1074 	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1075 				   O_NONBLOCK);
1076 	if (result == -EINPROGRESS)
1077 		result = 0;
1078 	if (result == 0)
1079 		goto out;
1080 
1081 bind_err:
1082 	con->sock = NULL;
1083 	sock_release(sock);
1084 
1085 socket_err:
1086 	/*
1087 	 * Some errors are fatal and this list might need adjusting. For other
1088 	 * errors we try again until the max number of retries is reached.
1089 	 */
1090 	if (result != -EHOSTUNREACH &&
1091 	    result != -ENETUNREACH &&
1092 	    result != -ENETDOWN &&
1093 	    result != -EINVAL &&
1094 	    result != -EPROTONOSUPPORT) {
1095 		log_print("connect %d try %d error %d", con->nodeid,
1096 			  con->retries, result);
1097 		mutex_unlock(&con->sock_mutex);
1098 		msleep(1000);
1099 		lowcomms_connect_sock(con);
1100 		return;
1101 	}
1102 
1103 out:
1104 	mutex_unlock(&con->sock_mutex);
1105 }
1106 
1107 /* Connect a new socket to its peer */
1108 static void tcp_connect_to_sock(struct connection *con)
1109 {
1110 	struct sockaddr_storage saddr, src_addr;
1111 	int addr_len;
1112 	struct socket *sock = NULL;
1113 	int one = 1;
1114 	int result;
1115 
1116 	if (con->nodeid == 0) {
1117 		log_print("attempt to connect sock 0 foiled");
1118 		return;
1119 	}
1120 
1121 	mutex_lock(&con->sock_mutex);
1122 	if (con->retries++ > MAX_CONNECT_RETRIES)
1123 		goto out;
1124 
1125 	/* Some odd races can cause double-connects, ignore them */
1126 	if (con->sock)
1127 		goto out;
1128 
1129 	/* Create a socket to communicate with */
1130 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1131 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1132 	if (result < 0)
1133 		goto out_err;
1134 
1135 	memset(&saddr, 0, sizeof(saddr));
1136 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1137 	if (result < 0) {
1138 		log_print("no address for nodeid %d", con->nodeid);
1139 		goto out_err;
1140 	}
1141 
1142 	sock->sk->sk_user_data = con;
1143 	con->rx_action = receive_from_sock;
1144 	con->connect_action = tcp_connect_to_sock;
1145 	add_sock(sock, con);
1146 
1147 	/* Bind to our cluster-known address connecting to avoid
1148 	   routing problems */
1149 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1150 	make_sockaddr(&src_addr, 0, &addr_len);
1151 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1152 				 addr_len);
1153 	if (result < 0) {
1154 		log_print("could not bind for connect: %d", result);
1155 		/* This *may* not indicate a critical error */
1156 	}
1157 
1158 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1159 
1160 	log_print("connecting to %d", con->nodeid);
1161 
1162 	/* Turn off Nagle's algorithm */
1163 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1164 			  sizeof(one));
1165 
1166 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1167 				   O_NONBLOCK);
1168 	if (result == -EINPROGRESS)
1169 		result = 0;
1170 	if (result == 0)
1171 		goto out;
1172 
1173 out_err:
1174 	if (con->sock) {
1175 		sock_release(con->sock);
1176 		con->sock = NULL;
1177 	} else if (sock) {
1178 		sock_release(sock);
1179 	}
1180 	/*
1181 	 * Some errors are fatal and this list might need adjusting. For other
1182 	 * errors we try again until the max number of retries is reached.
1183 	 */
1184 	if (result != -EHOSTUNREACH &&
1185 	    result != -ENETUNREACH &&
1186 	    result != -ENETDOWN &&
1187 	    result != -EINVAL &&
1188 	    result != -EPROTONOSUPPORT) {
1189 		log_print("connect %d try %d error %d", con->nodeid,
1190 			  con->retries, result);
1191 		mutex_unlock(&con->sock_mutex);
1192 		msleep(1000);
1193 		lowcomms_connect_sock(con);
1194 		return;
1195 	}
1196 out:
1197 	mutex_unlock(&con->sock_mutex);
1198 	return;
1199 }
1200 
1201 static struct socket *tcp_create_listen_sock(struct connection *con,
1202 					     struct sockaddr_storage *saddr)
1203 {
1204 	struct socket *sock = NULL;
1205 	int result = 0;
1206 	int one = 1;
1207 	int addr_len;
1208 
1209 	if (dlm_local_addr[0]->ss_family == AF_INET)
1210 		addr_len = sizeof(struct sockaddr_in);
1211 	else
1212 		addr_len = sizeof(struct sockaddr_in6);
1213 
1214 	/* Create a socket to communicate with */
1215 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1216 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1217 	if (result < 0) {
1218 		log_print("Can't create listening comms socket");
1219 		goto create_out;
1220 	}
1221 
1222 	/* Turn off Nagle's algorithm */
1223 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1224 			  sizeof(one));
1225 
1226 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1227 				   (char *)&one, sizeof(one));
1228 
1229 	if (result < 0) {
1230 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1231 	}
1232 	sock->sk->sk_user_data = con;
1233 	save_listen_callbacks(sock);
1234 	con->rx_action = tcp_accept_from_sock;
1235 	con->connect_action = tcp_connect_to_sock;
1236 
1237 	/* Bind to our port */
1238 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1239 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1240 	if (result < 0) {
1241 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1242 		sock_release(sock);
1243 		sock = NULL;
1244 		con->sock = NULL;
1245 		goto create_out;
1246 	}
1247 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1248 				 (char *)&one, sizeof(one));
1249 	if (result < 0) {
1250 		log_print("Set keepalive failed: %d", result);
1251 	}
1252 
1253 	result = sock->ops->listen(sock, 5);
1254 	if (result < 0) {
1255 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1256 		sock_release(sock);
1257 		sock = NULL;
1258 		goto create_out;
1259 	}
1260 
1261 create_out:
1262 	return sock;
1263 }
1264 
1265 /* Get local addresses */
1266 static void init_local(void)
1267 {
1268 	struct sockaddr_storage sas, *addr;
1269 	int i;
1270 
1271 	dlm_local_count = 0;
1272 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1273 		if (dlm_our_addr(&sas, i))
1274 			break;
1275 
1276 		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1277 		if (!addr)
1278 			break;
1279 		dlm_local_addr[dlm_local_count++] = addr;
1280 	}
1281 }
1282 
1283 /* Initialise SCTP socket and bind to all interfaces */
1284 static int sctp_listen_for_all(void)
1285 {
1286 	struct socket *sock = NULL;
1287 	int result = -EINVAL;
1288 	struct connection *con = nodeid2con(0, GFP_NOFS);
1289 	int bufsize = NEEDED_RMEM;
1290 	int one = 1;
1291 
1292 	if (!con)
1293 		return -ENOMEM;
1294 
1295 	log_print("Using SCTP for communications");
1296 
1297 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1298 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1299 	if (result < 0) {
1300 		log_print("Can't create comms socket, check SCTP is loaded");
1301 		goto out;
1302 	}
1303 
1304 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1305 				 (char *)&bufsize, sizeof(bufsize));
1306 	if (result)
1307 		log_print("Error increasing buffer space on socket %d", result);
1308 
1309 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1310 				   sizeof(one));
1311 	if (result < 0)
1312 		log_print("Could not set SCTP NODELAY error %d\n", result);
1313 
1314 	write_lock_bh(&sock->sk->sk_callback_lock);
1315 	/* Init con struct */
1316 	sock->sk->sk_user_data = con;
1317 	save_listen_callbacks(sock);
1318 	con->sock = sock;
1319 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1320 	con->rx_action = sctp_accept_from_sock;
1321 	con->connect_action = sctp_connect_to_sock;
1322 
1323 	write_unlock_bh(&sock->sk->sk_callback_lock);
1324 
1325 	/* Bind to all addresses. */
1326 	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1327 		goto create_delsock;
1328 
1329 	result = sock->ops->listen(sock, 5);
1330 	if (result < 0) {
1331 		log_print("Can't set socket listening");
1332 		goto create_delsock;
1333 	}
1334 
1335 	return 0;
1336 
1337 create_delsock:
1338 	sock_release(sock);
1339 	con->sock = NULL;
1340 out:
1341 	return result;
1342 }
1343 
1344 static int tcp_listen_for_all(void)
1345 {
1346 	struct socket *sock = NULL;
1347 	struct connection *con = nodeid2con(0, GFP_NOFS);
1348 	int result = -EINVAL;
1349 
1350 	if (!con)
1351 		return -ENOMEM;
1352 
1353 	/* We don't support multi-homed hosts */
1354 	if (dlm_local_addr[1] != NULL) {
1355 		log_print("TCP protocol can't handle multi-homed hosts, "
1356 			  "try SCTP");
1357 		return -EINVAL;
1358 	}
1359 
1360 	log_print("Using TCP for communications");
1361 
1362 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1363 	if (sock) {
1364 		add_sock(sock, con);
1365 		result = 0;
1366 	}
1367 	else {
1368 		result = -EADDRINUSE;
1369 	}
1370 
1371 	return result;
1372 }
1373 
1374 
1375 
1376 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1377 						     gfp_t allocation)
1378 {
1379 	struct writequeue_entry *entry;
1380 
1381 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1382 	if (!entry)
1383 		return NULL;
1384 
1385 	entry->page = alloc_page(allocation);
1386 	if (!entry->page) {
1387 		kfree(entry);
1388 		return NULL;
1389 	}
1390 
1391 	entry->offset = 0;
1392 	entry->len = 0;
1393 	entry->end = 0;
1394 	entry->users = 0;
1395 	entry->con = con;
1396 
1397 	return entry;
1398 }
1399 
1400 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1401 {
1402 	struct connection *con;
1403 	struct writequeue_entry *e;
1404 	int offset = 0;
1405 
1406 	con = nodeid2con(nodeid, allocation);
1407 	if (!con)
1408 		return NULL;
1409 
1410 	spin_lock(&con->writequeue_lock);
1411 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1412 	if ((&e->list == &con->writequeue) ||
1413 	    (PAGE_SIZE - e->end < len)) {
1414 		e = NULL;
1415 	} else {
1416 		offset = e->end;
1417 		e->end += len;
1418 		e->users++;
1419 	}
1420 	spin_unlock(&con->writequeue_lock);
1421 
1422 	if (e) {
1423 	got_one:
1424 		*ppc = page_address(e->page) + offset;
1425 		return e;
1426 	}
1427 
1428 	e = new_writequeue_entry(con, allocation);
1429 	if (e) {
1430 		spin_lock(&con->writequeue_lock);
1431 		offset = e->end;
1432 		e->end += len;
1433 		e->users++;
1434 		list_add_tail(&e->list, &con->writequeue);
1435 		spin_unlock(&con->writequeue_lock);
1436 		goto got_one;
1437 	}
1438 	return NULL;
1439 }
1440 
1441 void dlm_lowcomms_commit_buffer(void *mh)
1442 {
1443 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1444 	struct connection *con = e->con;
1445 	int users;
1446 
1447 	spin_lock(&con->writequeue_lock);
1448 	users = --e->users;
1449 	if (users)
1450 		goto out;
1451 	e->len = e->end - e->offset;
1452 	spin_unlock(&con->writequeue_lock);
1453 
1454 	queue_work(send_workqueue, &con->swork);
1455 	return;
1456 
1457 out:
1458 	spin_unlock(&con->writequeue_lock);
1459 	return;
1460 }
1461 
1462 /* Send a message */
1463 static void send_to_sock(struct connection *con)
1464 {
1465 	int ret = 0;
1466 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1467 	struct writequeue_entry *e;
1468 	int len, offset;
1469 	int count = 0;
1470 
1471 	mutex_lock(&con->sock_mutex);
1472 	if (con->sock == NULL)
1473 		goto out_connect;
1474 
1475 	spin_lock(&con->writequeue_lock);
1476 	for (;;) {
1477 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1478 			       list);
1479 		if ((struct list_head *) e == &con->writequeue)
1480 			break;
1481 
1482 		len = e->len;
1483 		offset = e->offset;
1484 		BUG_ON(len == 0 && e->users == 0);
1485 		spin_unlock(&con->writequeue_lock);
1486 
1487 		ret = 0;
1488 		if (len) {
1489 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1490 					      msg_flags);
1491 			if (ret == -EAGAIN || ret == 0) {
1492 				if (ret == -EAGAIN &&
1493 				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1494 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1495 					/* Notify TCP that we're limited by the
1496 					 * application window size.
1497 					 */
1498 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1499 					con->sock->sk->sk_write_pending++;
1500 				}
1501 				cond_resched();
1502 				goto out;
1503 			} else if (ret < 0)
1504 				goto send_error;
1505 		}
1506 
1507 		/* Don't starve people filling buffers */
1508 		if (++count >= MAX_SEND_MSG_COUNT) {
1509 			cond_resched();
1510 			count = 0;
1511 		}
1512 
1513 		spin_lock(&con->writequeue_lock);
1514 		writequeue_entry_complete(e, ret);
1515 	}
1516 	spin_unlock(&con->writequeue_lock);
1517 out:
1518 	mutex_unlock(&con->sock_mutex);
1519 	return;
1520 
1521 send_error:
1522 	mutex_unlock(&con->sock_mutex);
1523 	close_connection(con, false, false, true);
1524 	/* Requeue the send work. When the work daemon runs again, it will try
1525 	   a new connection, then call this function again. */
1526 	queue_work(send_workqueue, &con->swork);
1527 	return;
1528 
1529 out_connect:
1530 	mutex_unlock(&con->sock_mutex);
1531 	queue_work(send_workqueue, &con->swork);
1532 	cond_resched();
1533 }
1534 
1535 static void clean_one_writequeue(struct connection *con)
1536 {
1537 	struct writequeue_entry *e, *safe;
1538 
1539 	spin_lock(&con->writequeue_lock);
1540 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1541 		list_del(&e->list);
1542 		free_entry(e);
1543 	}
1544 	spin_unlock(&con->writequeue_lock);
1545 }
1546 
1547 /* Called from recovery when it knows that a node has
1548    left the cluster */
1549 int dlm_lowcomms_close(int nodeid)
1550 {
1551 	struct connection *con;
1552 	struct dlm_node_addr *na;
1553 
1554 	log_print("closing connection to node %d", nodeid);
1555 	con = nodeid2con(nodeid, 0);
1556 	if (con) {
1557 		set_bit(CF_CLOSE, &con->flags);
1558 		close_connection(con, true, true, true);
1559 		clean_one_writequeue(con);
1560 	}
1561 
1562 	spin_lock(&dlm_node_addrs_spin);
1563 	na = find_node_addr(nodeid);
1564 	if (na) {
1565 		list_del(&na->list);
1566 		while (na->addr_count--)
1567 			kfree(na->addr[na->addr_count]);
1568 		kfree(na);
1569 	}
1570 	spin_unlock(&dlm_node_addrs_spin);
1571 
1572 	return 0;
1573 }
1574 
1575 /* Receive workqueue function */
1576 static void process_recv_sockets(struct work_struct *work)
1577 {
1578 	struct connection *con = container_of(work, struct connection, rwork);
1579 	int err;
1580 
1581 	clear_bit(CF_READ_PENDING, &con->flags);
1582 	do {
1583 		err = con->rx_action(con);
1584 	} while (!err);
1585 }
1586 
1587 /* Send workqueue function */
1588 static void process_send_sockets(struct work_struct *work)
1589 {
1590 	struct connection *con = container_of(work, struct connection, swork);
1591 
1592 	if (con->sock == NULL) /* not mutex protected so check it inside too */
1593 		con->connect_action(con);
1594 	if (!list_empty(&con->writequeue))
1595 		send_to_sock(con);
1596 }
1597 
1598 
1599 /* Discard all entries on the write queues */
1600 static void clean_writequeues(void)
1601 {
1602 	foreach_conn(clean_one_writequeue);
1603 }
1604 
1605 static void work_stop(void)
1606 {
1607 	destroy_workqueue(recv_workqueue);
1608 	destroy_workqueue(send_workqueue);
1609 }
1610 
1611 static int work_start(void)
1612 {
1613 	recv_workqueue = alloc_workqueue("dlm_recv",
1614 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1615 	if (!recv_workqueue) {
1616 		log_print("can't start dlm_recv");
1617 		return -ENOMEM;
1618 	}
1619 
1620 	send_workqueue = alloc_workqueue("dlm_send",
1621 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1622 	if (!send_workqueue) {
1623 		log_print("can't start dlm_send");
1624 		destroy_workqueue(recv_workqueue);
1625 		return -ENOMEM;
1626 	}
1627 
1628 	return 0;
1629 }
1630 
1631 static void stop_conn(struct connection *con)
1632 {
1633 	con->flags |= 0x0F;
1634 	if (con->sock && con->sock->sk)
1635 		con->sock->sk->sk_user_data = NULL;
1636 }
1637 
1638 static void free_conn(struct connection *con)
1639 {
1640 	close_connection(con, true, true, true);
1641 	if (con->othercon)
1642 		kmem_cache_free(con_cache, con->othercon);
1643 	hlist_del(&con->list);
1644 	kmem_cache_free(con_cache, con);
1645 }
1646 
1647 void dlm_lowcomms_stop(void)
1648 {
1649 	/* Set all the flags to prevent any
1650 	   socket activity.
1651 	*/
1652 	mutex_lock(&connections_lock);
1653 	dlm_allow_conn = 0;
1654 	foreach_conn(stop_conn);
1655 	clean_writequeues();
1656 	foreach_conn(free_conn);
1657 	mutex_unlock(&connections_lock);
1658 
1659 	work_stop();
1660 
1661 	kmem_cache_destroy(con_cache);
1662 }
1663 
1664 int dlm_lowcomms_start(void)
1665 {
1666 	int error = -EINVAL;
1667 	struct connection *con;
1668 	int i;
1669 
1670 	for (i = 0; i < CONN_HASH_SIZE; i++)
1671 		INIT_HLIST_HEAD(&connection_hash[i]);
1672 
1673 	init_local();
1674 	if (!dlm_local_count) {
1675 		error = -ENOTCONN;
1676 		log_print("no local IP address has been set");
1677 		goto fail;
1678 	}
1679 
1680 	error = -ENOMEM;
1681 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1682 				      __alignof__(struct connection), 0,
1683 				      NULL);
1684 	if (!con_cache)
1685 		goto fail;
1686 
1687 	error = work_start();
1688 	if (error)
1689 		goto fail_destroy;
1690 
1691 	dlm_allow_conn = 1;
1692 
1693 	/* Start listening */
1694 	if (dlm_config.ci_protocol == 0)
1695 		error = tcp_listen_for_all();
1696 	else
1697 		error = sctp_listen_for_all();
1698 	if (error)
1699 		goto fail_unlisten;
1700 
1701 	return 0;
1702 
1703 fail_unlisten:
1704 	dlm_allow_conn = 0;
1705 	con = nodeid2con(0,0);
1706 	if (con) {
1707 		close_connection(con, false, true, true);
1708 		kmem_cache_free(con_cache, con);
1709 	}
1710 fail_destroy:
1711 	kmem_cache_destroy(con_cache);
1712 fail:
1713 	return error;
1714 }
1715 
1716 void dlm_lowcomms_exit(void)
1717 {
1718 	struct dlm_node_addr *na, *safe;
1719 
1720 	spin_lock(&dlm_node_addrs_spin);
1721 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1722 		list_del(&na->list);
1723 		while (na->addr_count--)
1724 			kfree(na->addr[na->addr_count]);
1725 		kfree(na);
1726 	}
1727 	spin_unlock(&dlm_node_addrs_spin);
1728 }
1729