xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 95e9fd10)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/user.h>
57 #include <net/ipv6.h>
58 
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "config.h"
63 
64 #define NEEDED_RMEM (4*1024*1024)
65 #define CONN_HASH_SIZE 32
66 
67 /* Number of messages to send before rescheduling */
68 #define MAX_SEND_MSG_COUNT 25
69 
70 struct cbuf {
71 	unsigned int base;
72 	unsigned int len;
73 	unsigned int mask;
74 };
75 
76 static void cbuf_add(struct cbuf *cb, int n)
77 {
78 	cb->len += n;
79 }
80 
81 static int cbuf_data(struct cbuf *cb)
82 {
83 	return ((cb->base + cb->len) & cb->mask);
84 }
85 
86 static void cbuf_init(struct cbuf *cb, int size)
87 {
88 	cb->base = cb->len = 0;
89 	cb->mask = size-1;
90 }
91 
92 static void cbuf_eat(struct cbuf *cb, int n)
93 {
94 	cb->len  -= n;
95 	cb->base += n;
96 	cb->base &= cb->mask;
97 }
98 
99 static bool cbuf_empty(struct cbuf *cb)
100 {
101 	return cb->len == 0;
102 }
103 
104 struct connection {
105 	struct socket *sock;	/* NULL if not connected */
106 	uint32_t nodeid;	/* So we know who we are in the list */
107 	struct mutex sock_mutex;
108 	unsigned long flags;
109 #define CF_READ_PENDING 1
110 #define CF_WRITE_PENDING 2
111 #define CF_CONNECT_PENDING 3
112 #define CF_INIT_PENDING 4
113 #define CF_IS_OTHERCON 5
114 #define CF_CLOSE 6
115 #define CF_APP_LIMITED 7
116 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
117 	spinlock_t writequeue_lock;
118 	int (*rx_action) (struct connection *);	/* What to do when active */
119 	void (*connect_action) (struct connection *);	/* What to do to connect */
120 	struct page *rx_page;
121 	struct cbuf cb;
122 	int retries;
123 #define MAX_CONNECT_RETRIES 3
124 	int sctp_assoc;
125 	struct hlist_node list;
126 	struct connection *othercon;
127 	struct work_struct rwork; /* Receive workqueue */
128 	struct work_struct swork; /* Send workqueue */
129 };
130 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
131 
132 /* An entry waiting to be sent */
133 struct writequeue_entry {
134 	struct list_head list;
135 	struct page *page;
136 	int offset;
137 	int len;
138 	int end;
139 	int users;
140 	struct connection *con;
141 };
142 
143 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
144 static int dlm_local_count;
145 static int dlm_allow_conn;
146 
147 /* Work queues */
148 static struct workqueue_struct *recv_workqueue;
149 static struct workqueue_struct *send_workqueue;
150 
151 static struct hlist_head connection_hash[CONN_HASH_SIZE];
152 static DEFINE_MUTEX(connections_lock);
153 static struct kmem_cache *con_cache;
154 
155 static void process_recv_sockets(struct work_struct *work);
156 static void process_send_sockets(struct work_struct *work);
157 
158 
159 /* This is deliberately very simple because most clusters have simple
160    sequential nodeids, so we should be able to go straight to a connection
161    struct in the array */
162 static inline int nodeid_hash(int nodeid)
163 {
164 	return nodeid & (CONN_HASH_SIZE-1);
165 }
166 
167 static struct connection *__find_con(int nodeid)
168 {
169 	int r;
170 	struct hlist_node *h;
171 	struct connection *con;
172 
173 	r = nodeid_hash(nodeid);
174 
175 	hlist_for_each_entry(con, h, &connection_hash[r], list) {
176 		if (con->nodeid == nodeid)
177 			return con;
178 	}
179 	return NULL;
180 }
181 
182 /*
183  * If 'allocation' is zero then we don't attempt to create a new
184  * connection structure for this node.
185  */
186 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
187 {
188 	struct connection *con = NULL;
189 	int r;
190 
191 	con = __find_con(nodeid);
192 	if (con || !alloc)
193 		return con;
194 
195 	con = kmem_cache_zalloc(con_cache, alloc);
196 	if (!con)
197 		return NULL;
198 
199 	r = nodeid_hash(nodeid);
200 	hlist_add_head(&con->list, &connection_hash[r]);
201 
202 	con->nodeid = nodeid;
203 	mutex_init(&con->sock_mutex);
204 	INIT_LIST_HEAD(&con->writequeue);
205 	spin_lock_init(&con->writequeue_lock);
206 	INIT_WORK(&con->swork, process_send_sockets);
207 	INIT_WORK(&con->rwork, process_recv_sockets);
208 
209 	/* Setup action pointers for child sockets */
210 	if (con->nodeid) {
211 		struct connection *zerocon = __find_con(0);
212 
213 		con->connect_action = zerocon->connect_action;
214 		if (!con->rx_action)
215 			con->rx_action = zerocon->rx_action;
216 	}
217 
218 	return con;
219 }
220 
221 /* Loop round all connections */
222 static void foreach_conn(void (*conn_func)(struct connection *c))
223 {
224 	int i;
225 	struct hlist_node *h, *n;
226 	struct connection *con;
227 
228 	for (i = 0; i < CONN_HASH_SIZE; i++) {
229 		hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
230 			conn_func(con);
231 		}
232 	}
233 }
234 
235 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
236 {
237 	struct connection *con;
238 
239 	mutex_lock(&connections_lock);
240 	con = __nodeid2con(nodeid, allocation);
241 	mutex_unlock(&connections_lock);
242 
243 	return con;
244 }
245 
246 /* This is a bit drastic, but only called when things go wrong */
247 static struct connection *assoc2con(int assoc_id)
248 {
249 	int i;
250 	struct hlist_node *h;
251 	struct connection *con;
252 
253 	mutex_lock(&connections_lock);
254 
255 	for (i = 0 ; i < CONN_HASH_SIZE; i++) {
256 		hlist_for_each_entry(con, h, &connection_hash[i], list) {
257 			if (con->sctp_assoc == assoc_id) {
258 				mutex_unlock(&connections_lock);
259 				return con;
260 			}
261 		}
262 	}
263 	mutex_unlock(&connections_lock);
264 	return NULL;
265 }
266 
267 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
268 {
269 	struct sockaddr_storage addr;
270 	int error;
271 
272 	if (!dlm_local_count)
273 		return -1;
274 
275 	error = dlm_nodeid_to_addr(nodeid, &addr);
276 	if (error)
277 		return error;
278 
279 	if (dlm_local_addr[0]->ss_family == AF_INET) {
280 		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
281 		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
282 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
283 	} else {
284 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
285 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
286 		ret6->sin6_addr = in6->sin6_addr;
287 	}
288 
289 	return 0;
290 }
291 
292 /* Data available on socket or listen socket received a connect */
293 static void lowcomms_data_ready(struct sock *sk, int count_unused)
294 {
295 	struct connection *con = sock2con(sk);
296 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
297 		queue_work(recv_workqueue, &con->rwork);
298 }
299 
300 static void lowcomms_write_space(struct sock *sk)
301 {
302 	struct connection *con = sock2con(sk);
303 
304 	if (!con)
305 		return;
306 
307 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
308 
309 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
310 		con->sock->sk->sk_write_pending--;
311 		clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
312 	}
313 
314 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
315 		queue_work(send_workqueue, &con->swork);
316 }
317 
318 static inline void lowcomms_connect_sock(struct connection *con)
319 {
320 	if (test_bit(CF_CLOSE, &con->flags))
321 		return;
322 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
323 		queue_work(send_workqueue, &con->swork);
324 }
325 
326 static void lowcomms_state_change(struct sock *sk)
327 {
328 	if (sk->sk_state == TCP_ESTABLISHED)
329 		lowcomms_write_space(sk);
330 }
331 
332 int dlm_lowcomms_connect_node(int nodeid)
333 {
334 	struct connection *con;
335 
336 	/* with sctp there's no connecting without sending */
337 	if (dlm_config.ci_protocol != 0)
338 		return 0;
339 
340 	if (nodeid == dlm_our_nodeid())
341 		return 0;
342 
343 	con = nodeid2con(nodeid, GFP_NOFS);
344 	if (!con)
345 		return -ENOMEM;
346 	lowcomms_connect_sock(con);
347 	return 0;
348 }
349 
350 /* Make a socket active */
351 static int add_sock(struct socket *sock, struct connection *con)
352 {
353 	con->sock = sock;
354 
355 	/* Install a data_ready callback */
356 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
357 	con->sock->sk->sk_write_space = lowcomms_write_space;
358 	con->sock->sk->sk_state_change = lowcomms_state_change;
359 	con->sock->sk->sk_user_data = con;
360 	con->sock->sk->sk_allocation = GFP_NOFS;
361 	return 0;
362 }
363 
364 /* Add the port number to an IPv6 or 4 sockaddr and return the address
365    length */
366 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
367 			  int *addr_len)
368 {
369 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
370 	if (saddr->ss_family == AF_INET) {
371 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
372 		in4_addr->sin_port = cpu_to_be16(port);
373 		*addr_len = sizeof(struct sockaddr_in);
374 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
375 	} else {
376 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
377 		in6_addr->sin6_port = cpu_to_be16(port);
378 		*addr_len = sizeof(struct sockaddr_in6);
379 	}
380 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
381 }
382 
383 /* Close a remote connection and tidy up */
384 static void close_connection(struct connection *con, bool and_other)
385 {
386 	mutex_lock(&con->sock_mutex);
387 
388 	if (con->sock) {
389 		sock_release(con->sock);
390 		con->sock = NULL;
391 	}
392 	if (con->othercon && and_other) {
393 		/* Will only re-enter once. */
394 		close_connection(con->othercon, false);
395 	}
396 	if (con->rx_page) {
397 		__free_page(con->rx_page);
398 		con->rx_page = NULL;
399 	}
400 
401 	con->retries = 0;
402 	mutex_unlock(&con->sock_mutex);
403 }
404 
405 /* We only send shutdown messages to nodes that are not part of the cluster */
406 static void sctp_send_shutdown(sctp_assoc_t associd)
407 {
408 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
409 	struct msghdr outmessage;
410 	struct cmsghdr *cmsg;
411 	struct sctp_sndrcvinfo *sinfo;
412 	int ret;
413 	struct connection *con;
414 
415 	con = nodeid2con(0,0);
416 	BUG_ON(con == NULL);
417 
418 	outmessage.msg_name = NULL;
419 	outmessage.msg_namelen = 0;
420 	outmessage.msg_control = outcmsg;
421 	outmessage.msg_controllen = sizeof(outcmsg);
422 	outmessage.msg_flags = MSG_EOR;
423 
424 	cmsg = CMSG_FIRSTHDR(&outmessage);
425 	cmsg->cmsg_level = IPPROTO_SCTP;
426 	cmsg->cmsg_type = SCTP_SNDRCV;
427 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
428 	outmessage.msg_controllen = cmsg->cmsg_len;
429 	sinfo = CMSG_DATA(cmsg);
430 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
431 
432 	sinfo->sinfo_flags |= MSG_EOF;
433 	sinfo->sinfo_assoc_id = associd;
434 
435 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
436 
437 	if (ret != 0)
438 		log_print("send EOF to node failed: %d", ret);
439 }
440 
441 static void sctp_init_failed_foreach(struct connection *con)
442 {
443 	con->sctp_assoc = 0;
444 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
445 		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
446 			queue_work(send_workqueue, &con->swork);
447 	}
448 }
449 
450 /* INIT failed but we don't know which node...
451    restart INIT on all pending nodes */
452 static void sctp_init_failed(void)
453 {
454 	mutex_lock(&connections_lock);
455 
456 	foreach_conn(sctp_init_failed_foreach);
457 
458 	mutex_unlock(&connections_lock);
459 }
460 
461 /* Something happened to an association */
462 static void process_sctp_notification(struct connection *con,
463 				      struct msghdr *msg, char *buf)
464 {
465 	union sctp_notification *sn = (union sctp_notification *)buf;
466 
467 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
468 		switch (sn->sn_assoc_change.sac_state) {
469 
470 		case SCTP_COMM_UP:
471 		case SCTP_RESTART:
472 		{
473 			/* Check that the new node is in the lockspace */
474 			struct sctp_prim prim;
475 			int nodeid;
476 			int prim_len, ret;
477 			int addr_len;
478 			struct connection *new_con;
479 
480 			/*
481 			 * We get this before any data for an association.
482 			 * We verify that the node is in the cluster and
483 			 * then peel off a socket for it.
484 			 */
485 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
486 				log_print("COMM_UP for invalid assoc ID %d",
487 					 (int)sn->sn_assoc_change.sac_assoc_id);
488 				sctp_init_failed();
489 				return;
490 			}
491 			memset(&prim, 0, sizeof(struct sctp_prim));
492 			prim_len = sizeof(struct sctp_prim);
493 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
494 
495 			ret = kernel_getsockopt(con->sock,
496 						IPPROTO_SCTP,
497 						SCTP_PRIMARY_ADDR,
498 						(char*)&prim,
499 						&prim_len);
500 			if (ret < 0) {
501 				log_print("getsockopt/sctp_primary_addr on "
502 					  "new assoc %d failed : %d",
503 					  (int)sn->sn_assoc_change.sac_assoc_id,
504 					  ret);
505 
506 				/* Retry INIT later */
507 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
508 				if (new_con)
509 					clear_bit(CF_CONNECT_PENDING, &con->flags);
510 				return;
511 			}
512 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
513 			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
514 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
515 				log_print("reject connect from unknown addr");
516 				print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
517 						     b, sizeof(struct sockaddr_storage));
518 				sctp_send_shutdown(prim.ssp_assoc_id);
519 				return;
520 			}
521 
522 			new_con = nodeid2con(nodeid, GFP_NOFS);
523 			if (!new_con)
524 				return;
525 
526 			/* Peel off a new sock */
527 			sctp_lock_sock(con->sock->sk);
528 			ret = sctp_do_peeloff(con->sock->sk,
529 				sn->sn_assoc_change.sac_assoc_id,
530 				&new_con->sock);
531 			sctp_release_sock(con->sock->sk);
532 			if (ret < 0) {
533 				log_print("Can't peel off a socket for "
534 					  "connection %d to node %d: err=%d",
535 					  (int)sn->sn_assoc_change.sac_assoc_id,
536 					  nodeid, ret);
537 				return;
538 			}
539 			add_sock(new_con->sock, new_con);
540 
541 			log_print("connecting to %d sctp association %d",
542 				 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
543 
544 			/* Send any pending writes */
545 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
546 			clear_bit(CF_INIT_PENDING, &con->flags);
547 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
548 				queue_work(send_workqueue, &new_con->swork);
549 			}
550 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
551 				queue_work(recv_workqueue, &new_con->rwork);
552 		}
553 		break;
554 
555 		case SCTP_COMM_LOST:
556 		case SCTP_SHUTDOWN_COMP:
557 		{
558 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
559 			if (con) {
560 				con->sctp_assoc = 0;
561 			}
562 		}
563 		break;
564 
565 		/* We don't know which INIT failed, so clear the PENDING flags
566 		 * on them all.  if assoc_id is zero then it will then try
567 		 * again */
568 
569 		case SCTP_CANT_STR_ASSOC:
570 		{
571 			log_print("Can't start SCTP association - retrying");
572 			sctp_init_failed();
573 		}
574 		break;
575 
576 		default:
577 			log_print("unexpected SCTP assoc change id=%d state=%d",
578 				  (int)sn->sn_assoc_change.sac_assoc_id,
579 				  sn->sn_assoc_change.sac_state);
580 		}
581 	}
582 }
583 
584 /* Data received from remote end */
585 static int receive_from_sock(struct connection *con)
586 {
587 	int ret = 0;
588 	struct msghdr msg = {};
589 	struct kvec iov[2];
590 	unsigned len;
591 	int r;
592 	int call_again_soon = 0;
593 	int nvec;
594 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
595 
596 	mutex_lock(&con->sock_mutex);
597 
598 	if (con->sock == NULL) {
599 		ret = -EAGAIN;
600 		goto out_close;
601 	}
602 
603 	if (con->rx_page == NULL) {
604 		/*
605 		 * This doesn't need to be atomic, but I think it should
606 		 * improve performance if it is.
607 		 */
608 		con->rx_page = alloc_page(GFP_ATOMIC);
609 		if (con->rx_page == NULL)
610 			goto out_resched;
611 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
612 	}
613 
614 	/* Only SCTP needs these really */
615 	memset(&incmsg, 0, sizeof(incmsg));
616 	msg.msg_control = incmsg;
617 	msg.msg_controllen = sizeof(incmsg);
618 
619 	/*
620 	 * iov[0] is the bit of the circular buffer between the current end
621 	 * point (cb.base + cb.len) and the end of the buffer.
622 	 */
623 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
624 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
625 	iov[1].iov_len = 0;
626 	nvec = 1;
627 
628 	/*
629 	 * iov[1] is the bit of the circular buffer between the start of the
630 	 * buffer and the start of the currently used section (cb.base)
631 	 */
632 	if (cbuf_data(&con->cb) >= con->cb.base) {
633 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
634 		iov[1].iov_len = con->cb.base;
635 		iov[1].iov_base = page_address(con->rx_page);
636 		nvec = 2;
637 	}
638 	len = iov[0].iov_len + iov[1].iov_len;
639 
640 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
641 			       MSG_DONTWAIT | MSG_NOSIGNAL);
642 	if (ret <= 0)
643 		goto out_close;
644 
645 	/* Process SCTP notifications */
646 	if (msg.msg_flags & MSG_NOTIFICATION) {
647 		msg.msg_control = incmsg;
648 		msg.msg_controllen = sizeof(incmsg);
649 
650 		process_sctp_notification(con, &msg,
651 				page_address(con->rx_page) + con->cb.base);
652 		mutex_unlock(&con->sock_mutex);
653 		return 0;
654 	}
655 	BUG_ON(con->nodeid == 0);
656 
657 	if (ret == len)
658 		call_again_soon = 1;
659 	cbuf_add(&con->cb, ret);
660 	ret = dlm_process_incoming_buffer(con->nodeid,
661 					  page_address(con->rx_page),
662 					  con->cb.base, con->cb.len,
663 					  PAGE_CACHE_SIZE);
664 	if (ret == -EBADMSG) {
665 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
666 			  "iov_len=%u, iov_base[0]=%p, read=%d",
667 			  page_address(con->rx_page), con->cb.base, con->cb.len,
668 			  len, iov[0].iov_base, r);
669 	}
670 	if (ret < 0)
671 		goto out_close;
672 	cbuf_eat(&con->cb, ret);
673 
674 	if (cbuf_empty(&con->cb) && !call_again_soon) {
675 		__free_page(con->rx_page);
676 		con->rx_page = NULL;
677 	}
678 
679 	if (call_again_soon)
680 		goto out_resched;
681 	mutex_unlock(&con->sock_mutex);
682 	return 0;
683 
684 out_resched:
685 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
686 		queue_work(recv_workqueue, &con->rwork);
687 	mutex_unlock(&con->sock_mutex);
688 	return -EAGAIN;
689 
690 out_close:
691 	mutex_unlock(&con->sock_mutex);
692 	if (ret != -EAGAIN) {
693 		close_connection(con, false);
694 		/* Reconnect when there is something to send */
695 	}
696 	/* Don't return success if we really got EOF */
697 	if (ret == 0)
698 		ret = -EAGAIN;
699 
700 	return ret;
701 }
702 
703 /* Listening socket is busy, accept a connection */
704 static int tcp_accept_from_sock(struct connection *con)
705 {
706 	int result;
707 	struct sockaddr_storage peeraddr;
708 	struct socket *newsock;
709 	int len;
710 	int nodeid;
711 	struct connection *newcon;
712 	struct connection *addcon;
713 
714 	mutex_lock(&connections_lock);
715 	if (!dlm_allow_conn) {
716 		mutex_unlock(&connections_lock);
717 		return -1;
718 	}
719 	mutex_unlock(&connections_lock);
720 
721 	memset(&peeraddr, 0, sizeof(peeraddr));
722 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
723 				  IPPROTO_TCP, &newsock);
724 	if (result < 0)
725 		return -ENOMEM;
726 
727 	mutex_lock_nested(&con->sock_mutex, 0);
728 
729 	result = -ENOTCONN;
730 	if (con->sock == NULL)
731 		goto accept_err;
732 
733 	newsock->type = con->sock->type;
734 	newsock->ops = con->sock->ops;
735 
736 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
737 	if (result < 0)
738 		goto accept_err;
739 
740 	/* Get the connected socket's peer */
741 	memset(&peeraddr, 0, sizeof(peeraddr));
742 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
743 				  &len, 2)) {
744 		result = -ECONNABORTED;
745 		goto accept_err;
746 	}
747 
748 	/* Get the new node's NODEID */
749 	make_sockaddr(&peeraddr, 0, &len);
750 	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
751 		unsigned char *b=(unsigned char *)&peeraddr;
752 		log_print("connect from non cluster node");
753 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
754 				     b, sizeof(struct sockaddr_storage));
755 		sock_release(newsock);
756 		mutex_unlock(&con->sock_mutex);
757 		return -1;
758 	}
759 
760 	log_print("got connection from %d", nodeid);
761 
762 	/*  Check to see if we already have a connection to this node. This
763 	 *  could happen if the two nodes initiate a connection at roughly
764 	 *  the same time and the connections cross on the wire.
765 	 *  In this case we store the incoming one in "othercon"
766 	 */
767 	newcon = nodeid2con(nodeid, GFP_NOFS);
768 	if (!newcon) {
769 		result = -ENOMEM;
770 		goto accept_err;
771 	}
772 	mutex_lock_nested(&newcon->sock_mutex, 1);
773 	if (newcon->sock) {
774 		struct connection *othercon = newcon->othercon;
775 
776 		if (!othercon) {
777 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
778 			if (!othercon) {
779 				log_print("failed to allocate incoming socket");
780 				mutex_unlock(&newcon->sock_mutex);
781 				result = -ENOMEM;
782 				goto accept_err;
783 			}
784 			othercon->nodeid = nodeid;
785 			othercon->rx_action = receive_from_sock;
786 			mutex_init(&othercon->sock_mutex);
787 			INIT_WORK(&othercon->swork, process_send_sockets);
788 			INIT_WORK(&othercon->rwork, process_recv_sockets);
789 			set_bit(CF_IS_OTHERCON, &othercon->flags);
790 		}
791 		if (!othercon->sock) {
792 			newcon->othercon = othercon;
793 			othercon->sock = newsock;
794 			newsock->sk->sk_user_data = othercon;
795 			add_sock(newsock, othercon);
796 			addcon = othercon;
797 		}
798 		else {
799 			printk("Extra connection from node %d attempted\n", nodeid);
800 			result = -EAGAIN;
801 			mutex_unlock(&newcon->sock_mutex);
802 			goto accept_err;
803 		}
804 	}
805 	else {
806 		newsock->sk->sk_user_data = newcon;
807 		newcon->rx_action = receive_from_sock;
808 		add_sock(newsock, newcon);
809 		addcon = newcon;
810 	}
811 
812 	mutex_unlock(&newcon->sock_mutex);
813 
814 	/*
815 	 * Add it to the active queue in case we got data
816 	 * between processing the accept adding the socket
817 	 * to the read_sockets list
818 	 */
819 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
820 		queue_work(recv_workqueue, &addcon->rwork);
821 	mutex_unlock(&con->sock_mutex);
822 
823 	return 0;
824 
825 accept_err:
826 	mutex_unlock(&con->sock_mutex);
827 	sock_release(newsock);
828 
829 	if (result != -EAGAIN)
830 		log_print("error accepting connection from node: %d", result);
831 	return result;
832 }
833 
834 static void free_entry(struct writequeue_entry *e)
835 {
836 	__free_page(e->page);
837 	kfree(e);
838 }
839 
840 /* Initiate an SCTP association.
841    This is a special case of send_to_sock() in that we don't yet have a
842    peeled-off socket for this association, so we use the listening socket
843    and add the primary IP address of the remote node.
844  */
845 static void sctp_init_assoc(struct connection *con)
846 {
847 	struct sockaddr_storage rem_addr;
848 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
849 	struct msghdr outmessage;
850 	struct cmsghdr *cmsg;
851 	struct sctp_sndrcvinfo *sinfo;
852 	struct connection *base_con;
853 	struct writequeue_entry *e;
854 	int len, offset;
855 	int ret;
856 	int addrlen;
857 	struct kvec iov[1];
858 
859 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
860 		return;
861 
862 	if (con->retries++ > MAX_CONNECT_RETRIES)
863 		return;
864 
865 	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
866 		log_print("no address for nodeid %d", con->nodeid);
867 		return;
868 	}
869 	base_con = nodeid2con(0, 0);
870 	BUG_ON(base_con == NULL);
871 
872 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
873 
874 	outmessage.msg_name = &rem_addr;
875 	outmessage.msg_namelen = addrlen;
876 	outmessage.msg_control = outcmsg;
877 	outmessage.msg_controllen = sizeof(outcmsg);
878 	outmessage.msg_flags = MSG_EOR;
879 
880 	spin_lock(&con->writequeue_lock);
881 
882 	if (list_empty(&con->writequeue)) {
883 		spin_unlock(&con->writequeue_lock);
884 		log_print("writequeue empty for nodeid %d", con->nodeid);
885 		return;
886 	}
887 
888 	e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
889 	len = e->len;
890 	offset = e->offset;
891 	spin_unlock(&con->writequeue_lock);
892 
893 	/* Send the first block off the write queue */
894 	iov[0].iov_base = page_address(e->page)+offset;
895 	iov[0].iov_len = len;
896 
897 	cmsg = CMSG_FIRSTHDR(&outmessage);
898 	cmsg->cmsg_level = IPPROTO_SCTP;
899 	cmsg->cmsg_type = SCTP_SNDRCV;
900 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
901 	sinfo = CMSG_DATA(cmsg);
902 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
903 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
904 	outmessage.msg_controllen = cmsg->cmsg_len;
905 
906 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
907 	if (ret < 0) {
908 		log_print("Send first packet to node %d failed: %d",
909 			  con->nodeid, ret);
910 
911 		/* Try again later */
912 		clear_bit(CF_CONNECT_PENDING, &con->flags);
913 		clear_bit(CF_INIT_PENDING, &con->flags);
914 	}
915 	else {
916 		spin_lock(&con->writequeue_lock);
917 		e->offset += ret;
918 		e->len -= ret;
919 
920 		if (e->len == 0 && e->users == 0) {
921 			list_del(&e->list);
922 			free_entry(e);
923 		}
924 		spin_unlock(&con->writequeue_lock);
925 	}
926 }
927 
928 /* Connect a new socket to its peer */
929 static void tcp_connect_to_sock(struct connection *con)
930 {
931 	int result = -EHOSTUNREACH;
932 	struct sockaddr_storage saddr, src_addr;
933 	int addr_len;
934 	struct socket *sock = NULL;
935 	int one = 1;
936 
937 	if (con->nodeid == 0) {
938 		log_print("attempt to connect sock 0 foiled");
939 		return;
940 	}
941 
942 	mutex_lock(&con->sock_mutex);
943 	if (con->retries++ > MAX_CONNECT_RETRIES)
944 		goto out;
945 
946 	/* Some odd races can cause double-connects, ignore them */
947 	if (con->sock) {
948 		result = 0;
949 		goto out;
950 	}
951 
952 	/* Create a socket to communicate with */
953 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
954 				  IPPROTO_TCP, &sock);
955 	if (result < 0)
956 		goto out_err;
957 
958 	memset(&saddr, 0, sizeof(saddr));
959 	if (dlm_nodeid_to_addr(con->nodeid, &saddr))
960 		goto out_err;
961 
962 	sock->sk->sk_user_data = con;
963 	con->rx_action = receive_from_sock;
964 	con->connect_action = tcp_connect_to_sock;
965 	add_sock(sock, con);
966 
967 	/* Bind to our cluster-known address connecting to avoid
968 	   routing problems */
969 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
970 	make_sockaddr(&src_addr, 0, &addr_len);
971 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
972 				 addr_len);
973 	if (result < 0) {
974 		log_print("could not bind for connect: %d", result);
975 		/* This *may* not indicate a critical error */
976 	}
977 
978 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
979 
980 	log_print("connecting to %d", con->nodeid);
981 
982 	/* Turn off Nagle's algorithm */
983 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
984 			  sizeof(one));
985 
986 	result =
987 		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
988 				   O_NONBLOCK);
989 	if (result == -EINPROGRESS)
990 		result = 0;
991 	if (result == 0)
992 		goto out;
993 
994 out_err:
995 	if (con->sock) {
996 		sock_release(con->sock);
997 		con->sock = NULL;
998 	} else if (sock) {
999 		sock_release(sock);
1000 	}
1001 	/*
1002 	 * Some errors are fatal and this list might need adjusting. For other
1003 	 * errors we try again until the max number of retries is reached.
1004 	 */
1005 	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
1006 	    result != -ENETDOWN && result != -EINVAL
1007 	    && result != -EPROTONOSUPPORT) {
1008 		lowcomms_connect_sock(con);
1009 		result = 0;
1010 	}
1011 out:
1012 	mutex_unlock(&con->sock_mutex);
1013 	return;
1014 }
1015 
1016 static struct socket *tcp_create_listen_sock(struct connection *con,
1017 					     struct sockaddr_storage *saddr)
1018 {
1019 	struct socket *sock = NULL;
1020 	int result = 0;
1021 	int one = 1;
1022 	int addr_len;
1023 
1024 	if (dlm_local_addr[0]->ss_family == AF_INET)
1025 		addr_len = sizeof(struct sockaddr_in);
1026 	else
1027 		addr_len = sizeof(struct sockaddr_in6);
1028 
1029 	/* Create a socket to communicate with */
1030 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1031 				  IPPROTO_TCP, &sock);
1032 	if (result < 0) {
1033 		log_print("Can't create listening comms socket");
1034 		goto create_out;
1035 	}
1036 
1037 	/* Turn off Nagle's algorithm */
1038 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1039 			  sizeof(one));
1040 
1041 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1042 				   (char *)&one, sizeof(one));
1043 
1044 	if (result < 0) {
1045 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1046 	}
1047 	sock->sk->sk_user_data = con;
1048 	con->rx_action = tcp_accept_from_sock;
1049 	con->connect_action = tcp_connect_to_sock;
1050 	con->sock = sock;
1051 
1052 	/* Bind to our port */
1053 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1054 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1055 	if (result < 0) {
1056 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1057 		sock_release(sock);
1058 		sock = NULL;
1059 		con->sock = NULL;
1060 		goto create_out;
1061 	}
1062 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1063 				 (char *)&one, sizeof(one));
1064 	if (result < 0) {
1065 		log_print("Set keepalive failed: %d", result);
1066 	}
1067 
1068 	result = sock->ops->listen(sock, 5);
1069 	if (result < 0) {
1070 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1071 		sock_release(sock);
1072 		sock = NULL;
1073 		goto create_out;
1074 	}
1075 
1076 create_out:
1077 	return sock;
1078 }
1079 
1080 /* Get local addresses */
1081 static void init_local(void)
1082 {
1083 	struct sockaddr_storage sas, *addr;
1084 	int i;
1085 
1086 	dlm_local_count = 0;
1087 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1088 		if (dlm_our_addr(&sas, i))
1089 			break;
1090 
1091 		addr = kmalloc(sizeof(*addr), GFP_NOFS);
1092 		if (!addr)
1093 			break;
1094 		memcpy(addr, &sas, sizeof(*addr));
1095 		dlm_local_addr[dlm_local_count++] = addr;
1096 	}
1097 }
1098 
1099 /* Bind to an IP address. SCTP allows multiple address so it can do
1100    multi-homing */
1101 static int add_sctp_bind_addr(struct connection *sctp_con,
1102 			      struct sockaddr_storage *addr,
1103 			      int addr_len, int num)
1104 {
1105 	int result = 0;
1106 
1107 	if (num == 1)
1108 		result = kernel_bind(sctp_con->sock,
1109 				     (struct sockaddr *) addr,
1110 				     addr_len);
1111 	else
1112 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1113 					   SCTP_SOCKOPT_BINDX_ADD,
1114 					   (char *)addr, addr_len);
1115 
1116 	if (result < 0)
1117 		log_print("Can't bind to port %d addr number %d",
1118 			  dlm_config.ci_tcp_port, num);
1119 
1120 	return result;
1121 }
1122 
1123 /* Initialise SCTP socket and bind to all interfaces */
1124 static int sctp_listen_for_all(void)
1125 {
1126 	struct socket *sock = NULL;
1127 	struct sockaddr_storage localaddr;
1128 	struct sctp_event_subscribe subscribe;
1129 	int result = -EINVAL, num = 1, i, addr_len;
1130 	struct connection *con = nodeid2con(0, GFP_NOFS);
1131 	int bufsize = NEEDED_RMEM;
1132 
1133 	if (!con)
1134 		return -ENOMEM;
1135 
1136 	log_print("Using SCTP for communications");
1137 
1138 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1139 				  IPPROTO_SCTP, &sock);
1140 	if (result < 0) {
1141 		log_print("Can't create comms socket, check SCTP is loaded");
1142 		goto out;
1143 	}
1144 
1145 	/* Listen for events */
1146 	memset(&subscribe, 0, sizeof(subscribe));
1147 	subscribe.sctp_data_io_event = 1;
1148 	subscribe.sctp_association_event = 1;
1149 	subscribe.sctp_send_failure_event = 1;
1150 	subscribe.sctp_shutdown_event = 1;
1151 	subscribe.sctp_partial_delivery_event = 1;
1152 
1153 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1154 				 (char *)&bufsize, sizeof(bufsize));
1155 	if (result)
1156 		log_print("Error increasing buffer space on socket %d", result);
1157 
1158 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1159 				   (char *)&subscribe, sizeof(subscribe));
1160 	if (result < 0) {
1161 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1162 			  result);
1163 		goto create_delsock;
1164 	}
1165 
1166 	/* Init con struct */
1167 	sock->sk->sk_user_data = con;
1168 	con->sock = sock;
1169 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1170 	con->rx_action = receive_from_sock;
1171 	con->connect_action = sctp_init_assoc;
1172 
1173 	/* Bind to all interfaces. */
1174 	for (i = 0; i < dlm_local_count; i++) {
1175 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1176 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1177 
1178 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1179 		if (result)
1180 			goto create_delsock;
1181 		++num;
1182 	}
1183 
1184 	result = sock->ops->listen(sock, 5);
1185 	if (result < 0) {
1186 		log_print("Can't set socket listening");
1187 		goto create_delsock;
1188 	}
1189 
1190 	return 0;
1191 
1192 create_delsock:
1193 	sock_release(sock);
1194 	con->sock = NULL;
1195 out:
1196 	return result;
1197 }
1198 
1199 static int tcp_listen_for_all(void)
1200 {
1201 	struct socket *sock = NULL;
1202 	struct connection *con = nodeid2con(0, GFP_NOFS);
1203 	int result = -EINVAL;
1204 
1205 	if (!con)
1206 		return -ENOMEM;
1207 
1208 	/* We don't support multi-homed hosts */
1209 	if (dlm_local_addr[1] != NULL) {
1210 		log_print("TCP protocol can't handle multi-homed hosts, "
1211 			  "try SCTP");
1212 		return -EINVAL;
1213 	}
1214 
1215 	log_print("Using TCP for communications");
1216 
1217 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1218 	if (sock) {
1219 		add_sock(sock, con);
1220 		result = 0;
1221 	}
1222 	else {
1223 		result = -EADDRINUSE;
1224 	}
1225 
1226 	return result;
1227 }
1228 
1229 
1230 
1231 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1232 						     gfp_t allocation)
1233 {
1234 	struct writequeue_entry *entry;
1235 
1236 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1237 	if (!entry)
1238 		return NULL;
1239 
1240 	entry->page = alloc_page(allocation);
1241 	if (!entry->page) {
1242 		kfree(entry);
1243 		return NULL;
1244 	}
1245 
1246 	entry->offset = 0;
1247 	entry->len = 0;
1248 	entry->end = 0;
1249 	entry->users = 0;
1250 	entry->con = con;
1251 
1252 	return entry;
1253 }
1254 
1255 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1256 {
1257 	struct connection *con;
1258 	struct writequeue_entry *e;
1259 	int offset = 0;
1260 	int users = 0;
1261 
1262 	con = nodeid2con(nodeid, allocation);
1263 	if (!con)
1264 		return NULL;
1265 
1266 	spin_lock(&con->writequeue_lock);
1267 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1268 	if ((&e->list == &con->writequeue) ||
1269 	    (PAGE_CACHE_SIZE - e->end < len)) {
1270 		e = NULL;
1271 	} else {
1272 		offset = e->end;
1273 		e->end += len;
1274 		users = e->users++;
1275 	}
1276 	spin_unlock(&con->writequeue_lock);
1277 
1278 	if (e) {
1279 	got_one:
1280 		*ppc = page_address(e->page) + offset;
1281 		return e;
1282 	}
1283 
1284 	e = new_writequeue_entry(con, allocation);
1285 	if (e) {
1286 		spin_lock(&con->writequeue_lock);
1287 		offset = e->end;
1288 		e->end += len;
1289 		users = e->users++;
1290 		list_add_tail(&e->list, &con->writequeue);
1291 		spin_unlock(&con->writequeue_lock);
1292 		goto got_one;
1293 	}
1294 	return NULL;
1295 }
1296 
1297 void dlm_lowcomms_commit_buffer(void *mh)
1298 {
1299 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1300 	struct connection *con = e->con;
1301 	int users;
1302 
1303 	spin_lock(&con->writequeue_lock);
1304 	users = --e->users;
1305 	if (users)
1306 		goto out;
1307 	e->len = e->end - e->offset;
1308 	spin_unlock(&con->writequeue_lock);
1309 
1310 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1311 		queue_work(send_workqueue, &con->swork);
1312 	}
1313 	return;
1314 
1315 out:
1316 	spin_unlock(&con->writequeue_lock);
1317 	return;
1318 }
1319 
1320 /* Send a message */
1321 static void send_to_sock(struct connection *con)
1322 {
1323 	int ret = 0;
1324 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1325 	struct writequeue_entry *e;
1326 	int len, offset;
1327 	int count = 0;
1328 
1329 	mutex_lock(&con->sock_mutex);
1330 	if (con->sock == NULL)
1331 		goto out_connect;
1332 
1333 	spin_lock(&con->writequeue_lock);
1334 	for (;;) {
1335 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1336 			       list);
1337 		if ((struct list_head *) e == &con->writequeue)
1338 			break;
1339 
1340 		len = e->len;
1341 		offset = e->offset;
1342 		BUG_ON(len == 0 && e->users == 0);
1343 		spin_unlock(&con->writequeue_lock);
1344 
1345 		ret = 0;
1346 		if (len) {
1347 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1348 					      msg_flags);
1349 			if (ret == -EAGAIN || ret == 0) {
1350 				if (ret == -EAGAIN &&
1351 				    test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1352 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1353 					/* Notify TCP that we're limited by the
1354 					 * application window size.
1355 					 */
1356 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1357 					con->sock->sk->sk_write_pending++;
1358 				}
1359 				cond_resched();
1360 				goto out;
1361 			}
1362 			if (ret <= 0)
1363 				goto send_error;
1364 		}
1365 
1366 		/* Don't starve people filling buffers */
1367 		if (++count >= MAX_SEND_MSG_COUNT) {
1368 			cond_resched();
1369 			count = 0;
1370 		}
1371 
1372 		spin_lock(&con->writequeue_lock);
1373 		e->offset += ret;
1374 		e->len -= ret;
1375 
1376 		if (e->len == 0 && e->users == 0) {
1377 			list_del(&e->list);
1378 			free_entry(e);
1379 			continue;
1380 		}
1381 	}
1382 	spin_unlock(&con->writequeue_lock);
1383 out:
1384 	mutex_unlock(&con->sock_mutex);
1385 	return;
1386 
1387 send_error:
1388 	mutex_unlock(&con->sock_mutex);
1389 	close_connection(con, false);
1390 	lowcomms_connect_sock(con);
1391 	return;
1392 
1393 out_connect:
1394 	mutex_unlock(&con->sock_mutex);
1395 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1396 		lowcomms_connect_sock(con);
1397 	return;
1398 }
1399 
1400 static void clean_one_writequeue(struct connection *con)
1401 {
1402 	struct writequeue_entry *e, *safe;
1403 
1404 	spin_lock(&con->writequeue_lock);
1405 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1406 		list_del(&e->list);
1407 		free_entry(e);
1408 	}
1409 	spin_unlock(&con->writequeue_lock);
1410 }
1411 
1412 /* Called from recovery when it knows that a node has
1413    left the cluster */
1414 int dlm_lowcomms_close(int nodeid)
1415 {
1416 	struct connection *con;
1417 
1418 	log_print("closing connection to node %d", nodeid);
1419 	con = nodeid2con(nodeid, 0);
1420 	if (con) {
1421 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1422 		clear_bit(CF_WRITE_PENDING, &con->flags);
1423 		set_bit(CF_CLOSE, &con->flags);
1424 		if (cancel_work_sync(&con->swork))
1425 			log_print("canceled swork for node %d", nodeid);
1426 		if (cancel_work_sync(&con->rwork))
1427 			log_print("canceled rwork for node %d", nodeid);
1428 		clean_one_writequeue(con);
1429 		close_connection(con, true);
1430 	}
1431 	return 0;
1432 }
1433 
1434 /* Receive workqueue function */
1435 static void process_recv_sockets(struct work_struct *work)
1436 {
1437 	struct connection *con = container_of(work, struct connection, rwork);
1438 	int err;
1439 
1440 	clear_bit(CF_READ_PENDING, &con->flags);
1441 	do {
1442 		err = con->rx_action(con);
1443 	} while (!err);
1444 }
1445 
1446 /* Send workqueue function */
1447 static void process_send_sockets(struct work_struct *work)
1448 {
1449 	struct connection *con = container_of(work, struct connection, swork);
1450 
1451 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1452 		con->connect_action(con);
1453 		set_bit(CF_WRITE_PENDING, &con->flags);
1454 	}
1455 	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1456 		send_to_sock(con);
1457 }
1458 
1459 
1460 /* Discard all entries on the write queues */
1461 static void clean_writequeues(void)
1462 {
1463 	foreach_conn(clean_one_writequeue);
1464 }
1465 
1466 static void work_stop(void)
1467 {
1468 	destroy_workqueue(recv_workqueue);
1469 	destroy_workqueue(send_workqueue);
1470 }
1471 
1472 static int work_start(void)
1473 {
1474 	recv_workqueue = alloc_workqueue("dlm_recv",
1475 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1476 	if (!recv_workqueue) {
1477 		log_print("can't start dlm_recv");
1478 		return -ENOMEM;
1479 	}
1480 
1481 	send_workqueue = alloc_workqueue("dlm_send",
1482 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1483 	if (!send_workqueue) {
1484 		log_print("can't start dlm_send");
1485 		destroy_workqueue(recv_workqueue);
1486 		return -ENOMEM;
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 static void stop_conn(struct connection *con)
1493 {
1494 	con->flags |= 0x0F;
1495 	if (con->sock && con->sock->sk)
1496 		con->sock->sk->sk_user_data = NULL;
1497 }
1498 
1499 static void free_conn(struct connection *con)
1500 {
1501 	close_connection(con, true);
1502 	if (con->othercon)
1503 		kmem_cache_free(con_cache, con->othercon);
1504 	hlist_del(&con->list);
1505 	kmem_cache_free(con_cache, con);
1506 }
1507 
1508 void dlm_lowcomms_stop(void)
1509 {
1510 	/* Set all the flags to prevent any
1511 	   socket activity.
1512 	*/
1513 	mutex_lock(&connections_lock);
1514 	dlm_allow_conn = 0;
1515 	foreach_conn(stop_conn);
1516 	mutex_unlock(&connections_lock);
1517 
1518 	work_stop();
1519 
1520 	mutex_lock(&connections_lock);
1521 	clean_writequeues();
1522 
1523 	foreach_conn(free_conn);
1524 
1525 	mutex_unlock(&connections_lock);
1526 	kmem_cache_destroy(con_cache);
1527 }
1528 
1529 int dlm_lowcomms_start(void)
1530 {
1531 	int error = -EINVAL;
1532 	struct connection *con;
1533 	int i;
1534 
1535 	for (i = 0; i < CONN_HASH_SIZE; i++)
1536 		INIT_HLIST_HEAD(&connection_hash[i]);
1537 
1538 	init_local();
1539 	if (!dlm_local_count) {
1540 		error = -ENOTCONN;
1541 		log_print("no local IP address has been set");
1542 		goto fail;
1543 	}
1544 
1545 	error = -ENOMEM;
1546 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1547 				      __alignof__(struct connection), 0,
1548 				      NULL);
1549 	if (!con_cache)
1550 		goto fail;
1551 
1552 	error = work_start();
1553 	if (error)
1554 		goto fail_destroy;
1555 
1556 	dlm_allow_conn = 1;
1557 
1558 	/* Start listening */
1559 	if (dlm_config.ci_protocol == 0)
1560 		error = tcp_listen_for_all();
1561 	else
1562 		error = sctp_listen_for_all();
1563 	if (error)
1564 		goto fail_unlisten;
1565 
1566 	return 0;
1567 
1568 fail_unlisten:
1569 	dlm_allow_conn = 0;
1570 	con = nodeid2con(0,0);
1571 	if (con) {
1572 		close_connection(con, false);
1573 		kmem_cache_free(con_cache, con);
1574 	}
1575 fail_destroy:
1576 	kmem_cache_destroy(con_cache);
1577 fail:
1578 	return error;
1579 }
1580