1 /****************************************************************************** 2 ******************************************************************************* 3 ** 4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 5 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. 6 ** 7 ** This copyrighted material is made available to anyone wishing to use, 8 ** modify, copy, or redistribute it subject to the terms and conditions 9 ** of the GNU General Public License v.2. 10 ** 11 ******************************************************************************* 12 ******************************************************************************/ 13 14 /* 15 * lowcomms.c 16 * 17 * This is the "low-level" comms layer. 18 * 19 * It is responsible for sending/receiving messages 20 * from other nodes in the cluster. 21 * 22 * Cluster nodes are referred to by their nodeids. nodeids are 23 * simply 32 bit numbers to the locking module - if they need to 24 * be expanded for the cluster infrastructure then that is its 25 * responsibility. It is this layer's 26 * responsibility to resolve these into IP address or 27 * whatever it needs for inter-node communication. 28 * 29 * The comms level is two kernel threads that deal mainly with 30 * the receiving of messages from other nodes and passing them 31 * up to the mid-level comms layer (which understands the 32 * message format) for execution by the locking core, and 33 * a send thread which does all the setting up of connections 34 * to remote nodes and the sending of data. Threads are not allowed 35 * to send their own data because it may cause them to wait in times 36 * of high load. Also, this way, the sending thread can collect together 37 * messages bound for one node and send them in one block. 38 * 39 * lowcomms will choose to use either TCP or SCTP as its transport layer 40 * depending on the configuration variable 'protocol'. This should be set 41 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a 42 * cluster-wide mechanism as it must be the same on all nodes of the cluster 43 * for the DLM to function. 44 * 45 */ 46 47 #include <asm/ioctls.h> 48 #include <net/sock.h> 49 #include <net/tcp.h> 50 #include <linux/pagemap.h> 51 #include <linux/file.h> 52 #include <linux/mutex.h> 53 #include <linux/sctp.h> 54 #include <linux/slab.h> 55 #include <net/sctp/sctp.h> 56 #include <net/ipv6.h> 57 58 #include "dlm_internal.h" 59 #include "lowcomms.h" 60 #include "midcomms.h" 61 #include "config.h" 62 63 #define NEEDED_RMEM (4*1024*1024) 64 #define CONN_HASH_SIZE 32 65 66 /* Number of messages to send before rescheduling */ 67 #define MAX_SEND_MSG_COUNT 25 68 69 struct cbuf { 70 unsigned int base; 71 unsigned int len; 72 unsigned int mask; 73 }; 74 75 static void cbuf_add(struct cbuf *cb, int n) 76 { 77 cb->len += n; 78 } 79 80 static int cbuf_data(struct cbuf *cb) 81 { 82 return ((cb->base + cb->len) & cb->mask); 83 } 84 85 static void cbuf_init(struct cbuf *cb, int size) 86 { 87 cb->base = cb->len = 0; 88 cb->mask = size-1; 89 } 90 91 static void cbuf_eat(struct cbuf *cb, int n) 92 { 93 cb->len -= n; 94 cb->base += n; 95 cb->base &= cb->mask; 96 } 97 98 static bool cbuf_empty(struct cbuf *cb) 99 { 100 return cb->len == 0; 101 } 102 103 struct connection { 104 struct socket *sock; /* NULL if not connected */ 105 uint32_t nodeid; /* So we know who we are in the list */ 106 struct mutex sock_mutex; 107 unsigned long flags; 108 #define CF_READ_PENDING 1 109 #define CF_WRITE_PENDING 2 110 #define CF_INIT_PENDING 4 111 #define CF_IS_OTHERCON 5 112 #define CF_CLOSE 6 113 #define CF_APP_LIMITED 7 114 #define CF_CLOSING 8 115 struct list_head writequeue; /* List of outgoing writequeue_entries */ 116 spinlock_t writequeue_lock; 117 int (*rx_action) (struct connection *); /* What to do when active */ 118 void (*connect_action) (struct connection *); /* What to do to connect */ 119 struct page *rx_page; 120 struct cbuf cb; 121 int retries; 122 #define MAX_CONNECT_RETRIES 3 123 struct hlist_node list; 124 struct connection *othercon; 125 struct work_struct rwork; /* Receive workqueue */ 126 struct work_struct swork; /* Send workqueue */ 127 }; 128 #define sock2con(x) ((struct connection *)(x)->sk_user_data) 129 130 /* An entry waiting to be sent */ 131 struct writequeue_entry { 132 struct list_head list; 133 struct page *page; 134 int offset; 135 int len; 136 int end; 137 int users; 138 struct connection *con; 139 }; 140 141 struct dlm_node_addr { 142 struct list_head list; 143 int nodeid; 144 int addr_count; 145 int curr_addr_index; 146 struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT]; 147 }; 148 149 static struct listen_sock_callbacks { 150 void (*sk_error_report)(struct sock *); 151 void (*sk_data_ready)(struct sock *); 152 void (*sk_state_change)(struct sock *); 153 void (*sk_write_space)(struct sock *); 154 } listen_sock; 155 156 static LIST_HEAD(dlm_node_addrs); 157 static DEFINE_SPINLOCK(dlm_node_addrs_spin); 158 159 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT]; 160 static int dlm_local_count; 161 static int dlm_allow_conn; 162 163 /* Work queues */ 164 static struct workqueue_struct *recv_workqueue; 165 static struct workqueue_struct *send_workqueue; 166 167 static struct hlist_head connection_hash[CONN_HASH_SIZE]; 168 static DEFINE_MUTEX(connections_lock); 169 static struct kmem_cache *con_cache; 170 171 static void process_recv_sockets(struct work_struct *work); 172 static void process_send_sockets(struct work_struct *work); 173 174 175 /* This is deliberately very simple because most clusters have simple 176 sequential nodeids, so we should be able to go straight to a connection 177 struct in the array */ 178 static inline int nodeid_hash(int nodeid) 179 { 180 return nodeid & (CONN_HASH_SIZE-1); 181 } 182 183 static struct connection *__find_con(int nodeid) 184 { 185 int r; 186 struct connection *con; 187 188 r = nodeid_hash(nodeid); 189 190 hlist_for_each_entry(con, &connection_hash[r], list) { 191 if (con->nodeid == nodeid) 192 return con; 193 } 194 return NULL; 195 } 196 197 /* 198 * If 'allocation' is zero then we don't attempt to create a new 199 * connection structure for this node. 200 */ 201 static struct connection *__nodeid2con(int nodeid, gfp_t alloc) 202 { 203 struct connection *con = NULL; 204 int r; 205 206 con = __find_con(nodeid); 207 if (con || !alloc) 208 return con; 209 210 con = kmem_cache_zalloc(con_cache, alloc); 211 if (!con) 212 return NULL; 213 214 r = nodeid_hash(nodeid); 215 hlist_add_head(&con->list, &connection_hash[r]); 216 217 con->nodeid = nodeid; 218 mutex_init(&con->sock_mutex); 219 INIT_LIST_HEAD(&con->writequeue); 220 spin_lock_init(&con->writequeue_lock); 221 INIT_WORK(&con->swork, process_send_sockets); 222 INIT_WORK(&con->rwork, process_recv_sockets); 223 224 /* Setup action pointers for child sockets */ 225 if (con->nodeid) { 226 struct connection *zerocon = __find_con(0); 227 228 con->connect_action = zerocon->connect_action; 229 if (!con->rx_action) 230 con->rx_action = zerocon->rx_action; 231 } 232 233 return con; 234 } 235 236 /* Loop round all connections */ 237 static void foreach_conn(void (*conn_func)(struct connection *c)) 238 { 239 int i; 240 struct hlist_node *n; 241 struct connection *con; 242 243 for (i = 0; i < CONN_HASH_SIZE; i++) { 244 hlist_for_each_entry_safe(con, n, &connection_hash[i], list) 245 conn_func(con); 246 } 247 } 248 249 static struct connection *nodeid2con(int nodeid, gfp_t allocation) 250 { 251 struct connection *con; 252 253 mutex_lock(&connections_lock); 254 con = __nodeid2con(nodeid, allocation); 255 mutex_unlock(&connections_lock); 256 257 return con; 258 } 259 260 static struct dlm_node_addr *find_node_addr(int nodeid) 261 { 262 struct dlm_node_addr *na; 263 264 list_for_each_entry(na, &dlm_node_addrs, list) { 265 if (na->nodeid == nodeid) 266 return na; 267 } 268 return NULL; 269 } 270 271 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y) 272 { 273 switch (x->ss_family) { 274 case AF_INET: { 275 struct sockaddr_in *sinx = (struct sockaddr_in *)x; 276 struct sockaddr_in *siny = (struct sockaddr_in *)y; 277 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr) 278 return 0; 279 if (sinx->sin_port != siny->sin_port) 280 return 0; 281 break; 282 } 283 case AF_INET6: { 284 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x; 285 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y; 286 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr)) 287 return 0; 288 if (sinx->sin6_port != siny->sin6_port) 289 return 0; 290 break; 291 } 292 default: 293 return 0; 294 } 295 return 1; 296 } 297 298 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out, 299 struct sockaddr *sa_out, bool try_new_addr) 300 { 301 struct sockaddr_storage sas; 302 struct dlm_node_addr *na; 303 304 if (!dlm_local_count) 305 return -1; 306 307 spin_lock(&dlm_node_addrs_spin); 308 na = find_node_addr(nodeid); 309 if (na && na->addr_count) { 310 memcpy(&sas, na->addr[na->curr_addr_index], 311 sizeof(struct sockaddr_storage)); 312 313 if (try_new_addr) { 314 na->curr_addr_index++; 315 if (na->curr_addr_index == na->addr_count) 316 na->curr_addr_index = 0; 317 } 318 } 319 spin_unlock(&dlm_node_addrs_spin); 320 321 if (!na) 322 return -EEXIST; 323 324 if (!na->addr_count) 325 return -ENOENT; 326 327 if (sas_out) 328 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage)); 329 330 if (!sa_out) 331 return 0; 332 333 if (dlm_local_addr[0]->ss_family == AF_INET) { 334 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas; 335 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out; 336 ret4->sin_addr.s_addr = in4->sin_addr.s_addr; 337 } else { 338 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas; 339 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out; 340 ret6->sin6_addr = in6->sin6_addr; 341 } 342 343 return 0; 344 } 345 346 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid) 347 { 348 struct dlm_node_addr *na; 349 int rv = -EEXIST; 350 int addr_i; 351 352 spin_lock(&dlm_node_addrs_spin); 353 list_for_each_entry(na, &dlm_node_addrs, list) { 354 if (!na->addr_count) 355 continue; 356 357 for (addr_i = 0; addr_i < na->addr_count; addr_i++) { 358 if (addr_compare(na->addr[addr_i], addr)) { 359 *nodeid = na->nodeid; 360 rv = 0; 361 goto unlock; 362 } 363 } 364 } 365 unlock: 366 spin_unlock(&dlm_node_addrs_spin); 367 return rv; 368 } 369 370 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len) 371 { 372 struct sockaddr_storage *new_addr; 373 struct dlm_node_addr *new_node, *na; 374 375 new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS); 376 if (!new_node) 377 return -ENOMEM; 378 379 new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS); 380 if (!new_addr) { 381 kfree(new_node); 382 return -ENOMEM; 383 } 384 385 memcpy(new_addr, addr, len); 386 387 spin_lock(&dlm_node_addrs_spin); 388 na = find_node_addr(nodeid); 389 if (!na) { 390 new_node->nodeid = nodeid; 391 new_node->addr[0] = new_addr; 392 new_node->addr_count = 1; 393 list_add(&new_node->list, &dlm_node_addrs); 394 spin_unlock(&dlm_node_addrs_spin); 395 return 0; 396 } 397 398 if (na->addr_count >= DLM_MAX_ADDR_COUNT) { 399 spin_unlock(&dlm_node_addrs_spin); 400 kfree(new_addr); 401 kfree(new_node); 402 return -ENOSPC; 403 } 404 405 na->addr[na->addr_count++] = new_addr; 406 spin_unlock(&dlm_node_addrs_spin); 407 kfree(new_node); 408 return 0; 409 } 410 411 /* Data available on socket or listen socket received a connect */ 412 static void lowcomms_data_ready(struct sock *sk) 413 { 414 struct connection *con; 415 416 read_lock_bh(&sk->sk_callback_lock); 417 con = sock2con(sk); 418 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags)) 419 queue_work(recv_workqueue, &con->rwork); 420 read_unlock_bh(&sk->sk_callback_lock); 421 } 422 423 static void lowcomms_write_space(struct sock *sk) 424 { 425 struct connection *con; 426 427 read_lock_bh(&sk->sk_callback_lock); 428 con = sock2con(sk); 429 if (!con) 430 goto out; 431 432 clear_bit(SOCK_NOSPACE, &con->sock->flags); 433 434 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) { 435 con->sock->sk->sk_write_pending--; 436 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags); 437 } 438 439 queue_work(send_workqueue, &con->swork); 440 out: 441 read_unlock_bh(&sk->sk_callback_lock); 442 } 443 444 static inline void lowcomms_connect_sock(struct connection *con) 445 { 446 if (test_bit(CF_CLOSE, &con->flags)) 447 return; 448 queue_work(send_workqueue, &con->swork); 449 cond_resched(); 450 } 451 452 static void lowcomms_state_change(struct sock *sk) 453 { 454 /* SCTP layer is not calling sk_data_ready when the connection 455 * is done, so we catch the signal through here. Also, it 456 * doesn't switch socket state when entering shutdown, so we 457 * skip the write in that case. 458 */ 459 if (sk->sk_shutdown) { 460 if (sk->sk_shutdown == RCV_SHUTDOWN) 461 lowcomms_data_ready(sk); 462 } else if (sk->sk_state == TCP_ESTABLISHED) { 463 lowcomms_write_space(sk); 464 } 465 } 466 467 int dlm_lowcomms_connect_node(int nodeid) 468 { 469 struct connection *con; 470 471 if (nodeid == dlm_our_nodeid()) 472 return 0; 473 474 con = nodeid2con(nodeid, GFP_NOFS); 475 if (!con) 476 return -ENOMEM; 477 lowcomms_connect_sock(con); 478 return 0; 479 } 480 481 static void lowcomms_error_report(struct sock *sk) 482 { 483 struct connection *con; 484 struct sockaddr_storage saddr; 485 void (*orig_report)(struct sock *) = NULL; 486 487 read_lock_bh(&sk->sk_callback_lock); 488 con = sock2con(sk); 489 if (con == NULL) 490 goto out; 491 492 orig_report = listen_sock.sk_error_report; 493 if (con->sock == NULL || 494 kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) { 495 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 496 "sending to node %d, port %d, " 497 "sk_err=%d/%d\n", dlm_our_nodeid(), 498 con->nodeid, dlm_config.ci_tcp_port, 499 sk->sk_err, sk->sk_err_soft); 500 } else if (saddr.ss_family == AF_INET) { 501 struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr; 502 503 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 504 "sending to node %d at %pI4, port %d, " 505 "sk_err=%d/%d\n", dlm_our_nodeid(), 506 con->nodeid, &sin4->sin_addr.s_addr, 507 dlm_config.ci_tcp_port, sk->sk_err, 508 sk->sk_err_soft); 509 } else { 510 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr; 511 512 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 513 "sending to node %d at %u.%u.%u.%u, " 514 "port %d, sk_err=%d/%d\n", dlm_our_nodeid(), 515 con->nodeid, sin6->sin6_addr.s6_addr32[0], 516 sin6->sin6_addr.s6_addr32[1], 517 sin6->sin6_addr.s6_addr32[2], 518 sin6->sin6_addr.s6_addr32[3], 519 dlm_config.ci_tcp_port, sk->sk_err, 520 sk->sk_err_soft); 521 } 522 out: 523 read_unlock_bh(&sk->sk_callback_lock); 524 if (orig_report) 525 orig_report(sk); 526 } 527 528 /* Note: sk_callback_lock must be locked before calling this function. */ 529 static void save_listen_callbacks(struct socket *sock) 530 { 531 struct sock *sk = sock->sk; 532 533 listen_sock.sk_data_ready = sk->sk_data_ready; 534 listen_sock.sk_state_change = sk->sk_state_change; 535 listen_sock.sk_write_space = sk->sk_write_space; 536 listen_sock.sk_error_report = sk->sk_error_report; 537 } 538 539 static void restore_callbacks(struct socket *sock) 540 { 541 struct sock *sk = sock->sk; 542 543 write_lock_bh(&sk->sk_callback_lock); 544 sk->sk_user_data = NULL; 545 sk->sk_data_ready = listen_sock.sk_data_ready; 546 sk->sk_state_change = listen_sock.sk_state_change; 547 sk->sk_write_space = listen_sock.sk_write_space; 548 sk->sk_error_report = listen_sock.sk_error_report; 549 write_unlock_bh(&sk->sk_callback_lock); 550 } 551 552 /* Make a socket active */ 553 static void add_sock(struct socket *sock, struct connection *con) 554 { 555 struct sock *sk = sock->sk; 556 557 write_lock_bh(&sk->sk_callback_lock); 558 con->sock = sock; 559 560 sk->sk_user_data = con; 561 /* Install a data_ready callback */ 562 sk->sk_data_ready = lowcomms_data_ready; 563 sk->sk_write_space = lowcomms_write_space; 564 sk->sk_state_change = lowcomms_state_change; 565 sk->sk_allocation = GFP_NOFS; 566 sk->sk_error_report = lowcomms_error_report; 567 write_unlock_bh(&sk->sk_callback_lock); 568 } 569 570 /* Add the port number to an IPv6 or 4 sockaddr and return the address 571 length */ 572 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port, 573 int *addr_len) 574 { 575 saddr->ss_family = dlm_local_addr[0]->ss_family; 576 if (saddr->ss_family == AF_INET) { 577 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; 578 in4_addr->sin_port = cpu_to_be16(port); 579 *addr_len = sizeof(struct sockaddr_in); 580 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); 581 } else { 582 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; 583 in6_addr->sin6_port = cpu_to_be16(port); 584 *addr_len = sizeof(struct sockaddr_in6); 585 } 586 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); 587 } 588 589 /* Close a remote connection and tidy up */ 590 static void close_connection(struct connection *con, bool and_other, 591 bool tx, bool rx) 592 { 593 bool closing = test_and_set_bit(CF_CLOSING, &con->flags); 594 595 if (tx && !closing && cancel_work_sync(&con->swork)) { 596 log_print("canceled swork for node %d", con->nodeid); 597 clear_bit(CF_WRITE_PENDING, &con->flags); 598 } 599 if (rx && !closing && cancel_work_sync(&con->rwork)) { 600 log_print("canceled rwork for node %d", con->nodeid); 601 clear_bit(CF_READ_PENDING, &con->flags); 602 } 603 604 mutex_lock(&con->sock_mutex); 605 if (con->sock) { 606 restore_callbacks(con->sock); 607 sock_release(con->sock); 608 con->sock = NULL; 609 } 610 if (con->othercon && and_other) { 611 /* Will only re-enter once. */ 612 close_connection(con->othercon, false, true, true); 613 } 614 if (con->rx_page) { 615 __free_page(con->rx_page); 616 con->rx_page = NULL; 617 } 618 619 con->retries = 0; 620 mutex_unlock(&con->sock_mutex); 621 clear_bit(CF_CLOSING, &con->flags); 622 } 623 624 /* Data received from remote end */ 625 static int receive_from_sock(struct connection *con) 626 { 627 int ret = 0; 628 struct msghdr msg = {}; 629 struct kvec iov[2]; 630 unsigned len; 631 int r; 632 int call_again_soon = 0; 633 int nvec; 634 635 mutex_lock(&con->sock_mutex); 636 637 if (con->sock == NULL) { 638 ret = -EAGAIN; 639 goto out_close; 640 } 641 if (con->nodeid == 0) { 642 ret = -EINVAL; 643 goto out_close; 644 } 645 646 if (con->rx_page == NULL) { 647 /* 648 * This doesn't need to be atomic, but I think it should 649 * improve performance if it is. 650 */ 651 con->rx_page = alloc_page(GFP_ATOMIC); 652 if (con->rx_page == NULL) 653 goto out_resched; 654 cbuf_init(&con->cb, PAGE_SIZE); 655 } 656 657 /* 658 * iov[0] is the bit of the circular buffer between the current end 659 * point (cb.base + cb.len) and the end of the buffer. 660 */ 661 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb); 662 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb); 663 iov[1].iov_len = 0; 664 nvec = 1; 665 666 /* 667 * iov[1] is the bit of the circular buffer between the start of the 668 * buffer and the start of the currently used section (cb.base) 669 */ 670 if (cbuf_data(&con->cb) >= con->cb.base) { 671 iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb); 672 iov[1].iov_len = con->cb.base; 673 iov[1].iov_base = page_address(con->rx_page); 674 nvec = 2; 675 } 676 len = iov[0].iov_len + iov[1].iov_len; 677 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, iov, nvec, len); 678 679 r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL); 680 if (ret <= 0) 681 goto out_close; 682 else if (ret == len) 683 call_again_soon = 1; 684 685 cbuf_add(&con->cb, ret); 686 ret = dlm_process_incoming_buffer(con->nodeid, 687 page_address(con->rx_page), 688 con->cb.base, con->cb.len, 689 PAGE_SIZE); 690 if (ret == -EBADMSG) { 691 log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d", 692 page_address(con->rx_page), con->cb.base, 693 con->cb.len, r); 694 } 695 if (ret < 0) 696 goto out_close; 697 cbuf_eat(&con->cb, ret); 698 699 if (cbuf_empty(&con->cb) && !call_again_soon) { 700 __free_page(con->rx_page); 701 con->rx_page = NULL; 702 } 703 704 if (call_again_soon) 705 goto out_resched; 706 mutex_unlock(&con->sock_mutex); 707 return 0; 708 709 out_resched: 710 if (!test_and_set_bit(CF_READ_PENDING, &con->flags)) 711 queue_work(recv_workqueue, &con->rwork); 712 mutex_unlock(&con->sock_mutex); 713 return -EAGAIN; 714 715 out_close: 716 mutex_unlock(&con->sock_mutex); 717 if (ret != -EAGAIN) { 718 close_connection(con, true, true, false); 719 /* Reconnect when there is something to send */ 720 } 721 /* Don't return success if we really got EOF */ 722 if (ret == 0) 723 ret = -EAGAIN; 724 725 return ret; 726 } 727 728 /* Listening socket is busy, accept a connection */ 729 static int tcp_accept_from_sock(struct connection *con) 730 { 731 int result; 732 struct sockaddr_storage peeraddr; 733 struct socket *newsock; 734 int len; 735 int nodeid; 736 struct connection *newcon; 737 struct connection *addcon; 738 739 mutex_lock(&connections_lock); 740 if (!dlm_allow_conn) { 741 mutex_unlock(&connections_lock); 742 return -1; 743 } 744 mutex_unlock(&connections_lock); 745 746 mutex_lock_nested(&con->sock_mutex, 0); 747 748 if (!con->sock) { 749 mutex_unlock(&con->sock_mutex); 750 return -ENOTCONN; 751 } 752 753 result = kernel_accept(con->sock, &newsock, O_NONBLOCK); 754 if (result < 0) 755 goto accept_err; 756 757 /* Get the connected socket's peer */ 758 memset(&peeraddr, 0, sizeof(peeraddr)); 759 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2); 760 if (len < 0) { 761 result = -ECONNABORTED; 762 goto accept_err; 763 } 764 765 /* Get the new node's NODEID */ 766 make_sockaddr(&peeraddr, 0, &len); 767 if (addr_to_nodeid(&peeraddr, &nodeid)) { 768 unsigned char *b=(unsigned char *)&peeraddr; 769 log_print("connect from non cluster node"); 770 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 771 b, sizeof(struct sockaddr_storage)); 772 sock_release(newsock); 773 mutex_unlock(&con->sock_mutex); 774 return -1; 775 } 776 777 log_print("got connection from %d", nodeid); 778 779 /* Check to see if we already have a connection to this node. This 780 * could happen if the two nodes initiate a connection at roughly 781 * the same time and the connections cross on the wire. 782 * In this case we store the incoming one in "othercon" 783 */ 784 newcon = nodeid2con(nodeid, GFP_NOFS); 785 if (!newcon) { 786 result = -ENOMEM; 787 goto accept_err; 788 } 789 mutex_lock_nested(&newcon->sock_mutex, 1); 790 if (newcon->sock) { 791 struct connection *othercon = newcon->othercon; 792 793 if (!othercon) { 794 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS); 795 if (!othercon) { 796 log_print("failed to allocate incoming socket"); 797 mutex_unlock(&newcon->sock_mutex); 798 result = -ENOMEM; 799 goto accept_err; 800 } 801 othercon->nodeid = nodeid; 802 othercon->rx_action = receive_from_sock; 803 mutex_init(&othercon->sock_mutex); 804 INIT_LIST_HEAD(&othercon->writequeue); 805 spin_lock_init(&othercon->writequeue_lock); 806 INIT_WORK(&othercon->swork, process_send_sockets); 807 INIT_WORK(&othercon->rwork, process_recv_sockets); 808 set_bit(CF_IS_OTHERCON, &othercon->flags); 809 } 810 mutex_lock_nested(&othercon->sock_mutex, 2); 811 if (!othercon->sock) { 812 newcon->othercon = othercon; 813 add_sock(newsock, othercon); 814 addcon = othercon; 815 mutex_unlock(&othercon->sock_mutex); 816 } 817 else { 818 printk("Extra connection from node %d attempted\n", nodeid); 819 result = -EAGAIN; 820 mutex_unlock(&othercon->sock_mutex); 821 mutex_unlock(&newcon->sock_mutex); 822 goto accept_err; 823 } 824 } 825 else { 826 newcon->rx_action = receive_from_sock; 827 /* accept copies the sk after we've saved the callbacks, so we 828 don't want to save them a second time or comm errors will 829 result in calling sk_error_report recursively. */ 830 add_sock(newsock, newcon); 831 addcon = newcon; 832 } 833 834 mutex_unlock(&newcon->sock_mutex); 835 836 /* 837 * Add it to the active queue in case we got data 838 * between processing the accept adding the socket 839 * to the read_sockets list 840 */ 841 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags)) 842 queue_work(recv_workqueue, &addcon->rwork); 843 mutex_unlock(&con->sock_mutex); 844 845 return 0; 846 847 accept_err: 848 mutex_unlock(&con->sock_mutex); 849 if (newsock) 850 sock_release(newsock); 851 852 if (result != -EAGAIN) 853 log_print("error accepting connection from node: %d", result); 854 return result; 855 } 856 857 static int sctp_accept_from_sock(struct connection *con) 858 { 859 /* Check that the new node is in the lockspace */ 860 struct sctp_prim prim; 861 int nodeid; 862 int prim_len, ret; 863 int addr_len; 864 struct connection *newcon; 865 struct connection *addcon; 866 struct socket *newsock; 867 868 mutex_lock(&connections_lock); 869 if (!dlm_allow_conn) { 870 mutex_unlock(&connections_lock); 871 return -1; 872 } 873 mutex_unlock(&connections_lock); 874 875 mutex_lock_nested(&con->sock_mutex, 0); 876 877 ret = kernel_accept(con->sock, &newsock, O_NONBLOCK); 878 if (ret < 0) 879 goto accept_err; 880 881 memset(&prim, 0, sizeof(struct sctp_prim)); 882 prim_len = sizeof(struct sctp_prim); 883 884 ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR, 885 (char *)&prim, &prim_len); 886 if (ret < 0) { 887 log_print("getsockopt/sctp_primary_addr failed: %d", ret); 888 goto accept_err; 889 } 890 891 make_sockaddr(&prim.ssp_addr, 0, &addr_len); 892 ret = addr_to_nodeid(&prim.ssp_addr, &nodeid); 893 if (ret) { 894 unsigned char *b = (unsigned char *)&prim.ssp_addr; 895 896 log_print("reject connect from unknown addr"); 897 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 898 b, sizeof(struct sockaddr_storage)); 899 goto accept_err; 900 } 901 902 newcon = nodeid2con(nodeid, GFP_NOFS); 903 if (!newcon) { 904 ret = -ENOMEM; 905 goto accept_err; 906 } 907 908 mutex_lock_nested(&newcon->sock_mutex, 1); 909 910 if (newcon->sock) { 911 struct connection *othercon = newcon->othercon; 912 913 if (!othercon) { 914 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS); 915 if (!othercon) { 916 log_print("failed to allocate incoming socket"); 917 mutex_unlock(&newcon->sock_mutex); 918 ret = -ENOMEM; 919 goto accept_err; 920 } 921 othercon->nodeid = nodeid; 922 othercon->rx_action = receive_from_sock; 923 mutex_init(&othercon->sock_mutex); 924 INIT_LIST_HEAD(&othercon->writequeue); 925 spin_lock_init(&othercon->writequeue_lock); 926 INIT_WORK(&othercon->swork, process_send_sockets); 927 INIT_WORK(&othercon->rwork, process_recv_sockets); 928 set_bit(CF_IS_OTHERCON, &othercon->flags); 929 } 930 mutex_lock_nested(&othercon->sock_mutex, 2); 931 if (!othercon->sock) { 932 newcon->othercon = othercon; 933 add_sock(newsock, othercon); 934 addcon = othercon; 935 mutex_unlock(&othercon->sock_mutex); 936 } else { 937 printk("Extra connection from node %d attempted\n", nodeid); 938 ret = -EAGAIN; 939 mutex_unlock(&othercon->sock_mutex); 940 mutex_unlock(&newcon->sock_mutex); 941 goto accept_err; 942 } 943 } else { 944 newcon->rx_action = receive_from_sock; 945 add_sock(newsock, newcon); 946 addcon = newcon; 947 } 948 949 log_print("connected to %d", nodeid); 950 951 mutex_unlock(&newcon->sock_mutex); 952 953 /* 954 * Add it to the active queue in case we got data 955 * between processing the accept adding the socket 956 * to the read_sockets list 957 */ 958 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags)) 959 queue_work(recv_workqueue, &addcon->rwork); 960 mutex_unlock(&con->sock_mutex); 961 962 return 0; 963 964 accept_err: 965 mutex_unlock(&con->sock_mutex); 966 if (newsock) 967 sock_release(newsock); 968 if (ret != -EAGAIN) 969 log_print("error accepting connection from node: %d", ret); 970 971 return ret; 972 } 973 974 static void free_entry(struct writequeue_entry *e) 975 { 976 __free_page(e->page); 977 kfree(e); 978 } 979 980 /* 981 * writequeue_entry_complete - try to delete and free write queue entry 982 * @e: write queue entry to try to delete 983 * @completed: bytes completed 984 * 985 * writequeue_lock must be held. 986 */ 987 static void writequeue_entry_complete(struct writequeue_entry *e, int completed) 988 { 989 e->offset += completed; 990 e->len -= completed; 991 992 if (e->len == 0 && e->users == 0) { 993 list_del(&e->list); 994 free_entry(e); 995 } 996 } 997 998 /* 999 * sctp_bind_addrs - bind a SCTP socket to all our addresses 1000 */ 1001 static int sctp_bind_addrs(struct connection *con, uint16_t port) 1002 { 1003 struct sockaddr_storage localaddr; 1004 int i, addr_len, result = 0; 1005 1006 for (i = 0; i < dlm_local_count; i++) { 1007 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr)); 1008 make_sockaddr(&localaddr, port, &addr_len); 1009 1010 if (!i) 1011 result = kernel_bind(con->sock, 1012 (struct sockaddr *)&localaddr, 1013 addr_len); 1014 else 1015 result = kernel_setsockopt(con->sock, SOL_SCTP, 1016 SCTP_SOCKOPT_BINDX_ADD, 1017 (char *)&localaddr, addr_len); 1018 1019 if (result < 0) { 1020 log_print("Can't bind to %d addr number %d, %d.\n", 1021 port, i + 1, result); 1022 break; 1023 } 1024 } 1025 return result; 1026 } 1027 1028 /* Initiate an SCTP association. 1029 This is a special case of send_to_sock() in that we don't yet have a 1030 peeled-off socket for this association, so we use the listening socket 1031 and add the primary IP address of the remote node. 1032 */ 1033 static void sctp_connect_to_sock(struct connection *con) 1034 { 1035 struct sockaddr_storage daddr; 1036 int one = 1; 1037 int result; 1038 int addr_len; 1039 struct socket *sock; 1040 1041 if (con->nodeid == 0) { 1042 log_print("attempt to connect sock 0 foiled"); 1043 return; 1044 } 1045 1046 mutex_lock(&con->sock_mutex); 1047 1048 /* Some odd races can cause double-connects, ignore them */ 1049 if (con->retries++ > MAX_CONNECT_RETRIES) 1050 goto out; 1051 1052 if (con->sock) { 1053 log_print("node %d already connected.", con->nodeid); 1054 goto out; 1055 } 1056 1057 memset(&daddr, 0, sizeof(daddr)); 1058 result = nodeid_to_addr(con->nodeid, &daddr, NULL, true); 1059 if (result < 0) { 1060 log_print("no address for nodeid %d", con->nodeid); 1061 goto out; 1062 } 1063 1064 /* Create a socket to communicate with */ 1065 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1066 SOCK_STREAM, IPPROTO_SCTP, &sock); 1067 if (result < 0) 1068 goto socket_err; 1069 1070 con->rx_action = receive_from_sock; 1071 con->connect_action = sctp_connect_to_sock; 1072 add_sock(sock, con); 1073 1074 /* Bind to all addresses. */ 1075 if (sctp_bind_addrs(con, 0)) 1076 goto bind_err; 1077 1078 make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len); 1079 1080 log_print("connecting to %d", con->nodeid); 1081 1082 /* Turn off Nagle's algorithm */ 1083 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one, 1084 sizeof(one)); 1085 1086 result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len, 1087 O_NONBLOCK); 1088 if (result == -EINPROGRESS) 1089 result = 0; 1090 if (result == 0) 1091 goto out; 1092 1093 bind_err: 1094 con->sock = NULL; 1095 sock_release(sock); 1096 1097 socket_err: 1098 /* 1099 * Some errors are fatal and this list might need adjusting. For other 1100 * errors we try again until the max number of retries is reached. 1101 */ 1102 if (result != -EHOSTUNREACH && 1103 result != -ENETUNREACH && 1104 result != -ENETDOWN && 1105 result != -EINVAL && 1106 result != -EPROTONOSUPPORT) { 1107 log_print("connect %d try %d error %d", con->nodeid, 1108 con->retries, result); 1109 mutex_unlock(&con->sock_mutex); 1110 msleep(1000); 1111 lowcomms_connect_sock(con); 1112 return; 1113 } 1114 1115 out: 1116 mutex_unlock(&con->sock_mutex); 1117 } 1118 1119 /* Connect a new socket to its peer */ 1120 static void tcp_connect_to_sock(struct connection *con) 1121 { 1122 struct sockaddr_storage saddr, src_addr; 1123 int addr_len; 1124 struct socket *sock = NULL; 1125 int one = 1; 1126 int result; 1127 1128 if (con->nodeid == 0) { 1129 log_print("attempt to connect sock 0 foiled"); 1130 return; 1131 } 1132 1133 mutex_lock(&con->sock_mutex); 1134 if (con->retries++ > MAX_CONNECT_RETRIES) 1135 goto out; 1136 1137 /* Some odd races can cause double-connects, ignore them */ 1138 if (con->sock) 1139 goto out; 1140 1141 /* Create a socket to communicate with */ 1142 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1143 SOCK_STREAM, IPPROTO_TCP, &sock); 1144 if (result < 0) 1145 goto out_err; 1146 1147 memset(&saddr, 0, sizeof(saddr)); 1148 result = nodeid_to_addr(con->nodeid, &saddr, NULL, false); 1149 if (result < 0) { 1150 log_print("no address for nodeid %d", con->nodeid); 1151 goto out_err; 1152 } 1153 1154 con->rx_action = receive_from_sock; 1155 con->connect_action = tcp_connect_to_sock; 1156 add_sock(sock, con); 1157 1158 /* Bind to our cluster-known address connecting to avoid 1159 routing problems */ 1160 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr)); 1161 make_sockaddr(&src_addr, 0, &addr_len); 1162 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr, 1163 addr_len); 1164 if (result < 0) { 1165 log_print("could not bind for connect: %d", result); 1166 /* This *may* not indicate a critical error */ 1167 } 1168 1169 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len); 1170 1171 log_print("connecting to %d", con->nodeid); 1172 1173 /* Turn off Nagle's algorithm */ 1174 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one, 1175 sizeof(one)); 1176 1177 result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len, 1178 O_NONBLOCK); 1179 if (result == -EINPROGRESS) 1180 result = 0; 1181 if (result == 0) 1182 goto out; 1183 1184 out_err: 1185 if (con->sock) { 1186 sock_release(con->sock); 1187 con->sock = NULL; 1188 } else if (sock) { 1189 sock_release(sock); 1190 } 1191 /* 1192 * Some errors are fatal and this list might need adjusting. For other 1193 * errors we try again until the max number of retries is reached. 1194 */ 1195 if (result != -EHOSTUNREACH && 1196 result != -ENETUNREACH && 1197 result != -ENETDOWN && 1198 result != -EINVAL && 1199 result != -EPROTONOSUPPORT) { 1200 log_print("connect %d try %d error %d", con->nodeid, 1201 con->retries, result); 1202 mutex_unlock(&con->sock_mutex); 1203 msleep(1000); 1204 lowcomms_connect_sock(con); 1205 return; 1206 } 1207 out: 1208 mutex_unlock(&con->sock_mutex); 1209 return; 1210 } 1211 1212 static struct socket *tcp_create_listen_sock(struct connection *con, 1213 struct sockaddr_storage *saddr) 1214 { 1215 struct socket *sock = NULL; 1216 int result = 0; 1217 int one = 1; 1218 int addr_len; 1219 1220 if (dlm_local_addr[0]->ss_family == AF_INET) 1221 addr_len = sizeof(struct sockaddr_in); 1222 else 1223 addr_len = sizeof(struct sockaddr_in6); 1224 1225 /* Create a socket to communicate with */ 1226 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1227 SOCK_STREAM, IPPROTO_TCP, &sock); 1228 if (result < 0) { 1229 log_print("Can't create listening comms socket"); 1230 goto create_out; 1231 } 1232 1233 /* Turn off Nagle's algorithm */ 1234 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one, 1235 sizeof(one)); 1236 1237 result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, 1238 (char *)&one, sizeof(one)); 1239 1240 if (result < 0) { 1241 log_print("Failed to set SO_REUSEADDR on socket: %d", result); 1242 } 1243 write_lock_bh(&sock->sk->sk_callback_lock); 1244 sock->sk->sk_user_data = con; 1245 save_listen_callbacks(sock); 1246 con->rx_action = tcp_accept_from_sock; 1247 con->connect_action = tcp_connect_to_sock; 1248 write_unlock_bh(&sock->sk->sk_callback_lock); 1249 1250 /* Bind to our port */ 1251 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len); 1252 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len); 1253 if (result < 0) { 1254 log_print("Can't bind to port %d", dlm_config.ci_tcp_port); 1255 sock_release(sock); 1256 sock = NULL; 1257 con->sock = NULL; 1258 goto create_out; 1259 } 1260 result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, 1261 (char *)&one, sizeof(one)); 1262 if (result < 0) { 1263 log_print("Set keepalive failed: %d", result); 1264 } 1265 1266 result = sock->ops->listen(sock, 5); 1267 if (result < 0) { 1268 log_print("Can't listen on port %d", dlm_config.ci_tcp_port); 1269 sock_release(sock); 1270 sock = NULL; 1271 goto create_out; 1272 } 1273 1274 create_out: 1275 return sock; 1276 } 1277 1278 /* Get local addresses */ 1279 static void init_local(void) 1280 { 1281 struct sockaddr_storage sas, *addr; 1282 int i; 1283 1284 dlm_local_count = 0; 1285 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) { 1286 if (dlm_our_addr(&sas, i)) 1287 break; 1288 1289 addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS); 1290 if (!addr) 1291 break; 1292 dlm_local_addr[dlm_local_count++] = addr; 1293 } 1294 } 1295 1296 /* Initialise SCTP socket and bind to all interfaces */ 1297 static int sctp_listen_for_all(void) 1298 { 1299 struct socket *sock = NULL; 1300 int result = -EINVAL; 1301 struct connection *con = nodeid2con(0, GFP_NOFS); 1302 int bufsize = NEEDED_RMEM; 1303 int one = 1; 1304 1305 if (!con) 1306 return -ENOMEM; 1307 1308 log_print("Using SCTP for communications"); 1309 1310 result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family, 1311 SOCK_STREAM, IPPROTO_SCTP, &sock); 1312 if (result < 0) { 1313 log_print("Can't create comms socket, check SCTP is loaded"); 1314 goto out; 1315 } 1316 1317 result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE, 1318 (char *)&bufsize, sizeof(bufsize)); 1319 if (result) 1320 log_print("Error increasing buffer space on socket %d", result); 1321 1322 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one, 1323 sizeof(one)); 1324 if (result < 0) 1325 log_print("Could not set SCTP NODELAY error %d\n", result); 1326 1327 write_lock_bh(&sock->sk->sk_callback_lock); 1328 /* Init con struct */ 1329 sock->sk->sk_user_data = con; 1330 save_listen_callbacks(sock); 1331 con->sock = sock; 1332 con->sock->sk->sk_data_ready = lowcomms_data_ready; 1333 con->rx_action = sctp_accept_from_sock; 1334 con->connect_action = sctp_connect_to_sock; 1335 1336 write_unlock_bh(&sock->sk->sk_callback_lock); 1337 1338 /* Bind to all addresses. */ 1339 if (sctp_bind_addrs(con, dlm_config.ci_tcp_port)) 1340 goto create_delsock; 1341 1342 result = sock->ops->listen(sock, 5); 1343 if (result < 0) { 1344 log_print("Can't set socket listening"); 1345 goto create_delsock; 1346 } 1347 1348 return 0; 1349 1350 create_delsock: 1351 sock_release(sock); 1352 con->sock = NULL; 1353 out: 1354 return result; 1355 } 1356 1357 static int tcp_listen_for_all(void) 1358 { 1359 struct socket *sock = NULL; 1360 struct connection *con = nodeid2con(0, GFP_NOFS); 1361 int result = -EINVAL; 1362 1363 if (!con) 1364 return -ENOMEM; 1365 1366 /* We don't support multi-homed hosts */ 1367 if (dlm_local_addr[1] != NULL) { 1368 log_print("TCP protocol can't handle multi-homed hosts, " 1369 "try SCTP"); 1370 return -EINVAL; 1371 } 1372 1373 log_print("Using TCP for communications"); 1374 1375 sock = tcp_create_listen_sock(con, dlm_local_addr[0]); 1376 if (sock) { 1377 add_sock(sock, con); 1378 result = 0; 1379 } 1380 else { 1381 result = -EADDRINUSE; 1382 } 1383 1384 return result; 1385 } 1386 1387 1388 1389 static struct writequeue_entry *new_writequeue_entry(struct connection *con, 1390 gfp_t allocation) 1391 { 1392 struct writequeue_entry *entry; 1393 1394 entry = kmalloc(sizeof(struct writequeue_entry), allocation); 1395 if (!entry) 1396 return NULL; 1397 1398 entry->page = alloc_page(allocation); 1399 if (!entry->page) { 1400 kfree(entry); 1401 return NULL; 1402 } 1403 1404 entry->offset = 0; 1405 entry->len = 0; 1406 entry->end = 0; 1407 entry->users = 0; 1408 entry->con = con; 1409 1410 return entry; 1411 } 1412 1413 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc) 1414 { 1415 struct connection *con; 1416 struct writequeue_entry *e; 1417 int offset = 0; 1418 1419 con = nodeid2con(nodeid, allocation); 1420 if (!con) 1421 return NULL; 1422 1423 spin_lock(&con->writequeue_lock); 1424 e = list_entry(con->writequeue.prev, struct writequeue_entry, list); 1425 if ((&e->list == &con->writequeue) || 1426 (PAGE_SIZE - e->end < len)) { 1427 e = NULL; 1428 } else { 1429 offset = e->end; 1430 e->end += len; 1431 e->users++; 1432 } 1433 spin_unlock(&con->writequeue_lock); 1434 1435 if (e) { 1436 got_one: 1437 *ppc = page_address(e->page) + offset; 1438 return e; 1439 } 1440 1441 e = new_writequeue_entry(con, allocation); 1442 if (e) { 1443 spin_lock(&con->writequeue_lock); 1444 offset = e->end; 1445 e->end += len; 1446 e->users++; 1447 list_add_tail(&e->list, &con->writequeue); 1448 spin_unlock(&con->writequeue_lock); 1449 goto got_one; 1450 } 1451 return NULL; 1452 } 1453 1454 void dlm_lowcomms_commit_buffer(void *mh) 1455 { 1456 struct writequeue_entry *e = (struct writequeue_entry *)mh; 1457 struct connection *con = e->con; 1458 int users; 1459 1460 spin_lock(&con->writequeue_lock); 1461 users = --e->users; 1462 if (users) 1463 goto out; 1464 e->len = e->end - e->offset; 1465 spin_unlock(&con->writequeue_lock); 1466 1467 queue_work(send_workqueue, &con->swork); 1468 return; 1469 1470 out: 1471 spin_unlock(&con->writequeue_lock); 1472 return; 1473 } 1474 1475 /* Send a message */ 1476 static void send_to_sock(struct connection *con) 1477 { 1478 int ret = 0; 1479 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1480 struct writequeue_entry *e; 1481 int len, offset; 1482 int count = 0; 1483 1484 mutex_lock(&con->sock_mutex); 1485 if (con->sock == NULL) 1486 goto out_connect; 1487 1488 spin_lock(&con->writequeue_lock); 1489 for (;;) { 1490 e = list_entry(con->writequeue.next, struct writequeue_entry, 1491 list); 1492 if ((struct list_head *) e == &con->writequeue) 1493 break; 1494 1495 len = e->len; 1496 offset = e->offset; 1497 BUG_ON(len == 0 && e->users == 0); 1498 spin_unlock(&con->writequeue_lock); 1499 1500 ret = 0; 1501 if (len) { 1502 ret = kernel_sendpage(con->sock, e->page, offset, len, 1503 msg_flags); 1504 if (ret == -EAGAIN || ret == 0) { 1505 if (ret == -EAGAIN && 1506 test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) && 1507 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) { 1508 /* Notify TCP that we're limited by the 1509 * application window size. 1510 */ 1511 set_bit(SOCK_NOSPACE, &con->sock->flags); 1512 con->sock->sk->sk_write_pending++; 1513 } 1514 cond_resched(); 1515 goto out; 1516 } else if (ret < 0) 1517 goto send_error; 1518 } 1519 1520 /* Don't starve people filling buffers */ 1521 if (++count >= MAX_SEND_MSG_COUNT) { 1522 cond_resched(); 1523 count = 0; 1524 } 1525 1526 spin_lock(&con->writequeue_lock); 1527 writequeue_entry_complete(e, ret); 1528 } 1529 spin_unlock(&con->writequeue_lock); 1530 out: 1531 mutex_unlock(&con->sock_mutex); 1532 return; 1533 1534 send_error: 1535 mutex_unlock(&con->sock_mutex); 1536 close_connection(con, true, false, true); 1537 /* Requeue the send work. When the work daemon runs again, it will try 1538 a new connection, then call this function again. */ 1539 queue_work(send_workqueue, &con->swork); 1540 return; 1541 1542 out_connect: 1543 mutex_unlock(&con->sock_mutex); 1544 queue_work(send_workqueue, &con->swork); 1545 cond_resched(); 1546 } 1547 1548 static void clean_one_writequeue(struct connection *con) 1549 { 1550 struct writequeue_entry *e, *safe; 1551 1552 spin_lock(&con->writequeue_lock); 1553 list_for_each_entry_safe(e, safe, &con->writequeue, list) { 1554 list_del(&e->list); 1555 free_entry(e); 1556 } 1557 spin_unlock(&con->writequeue_lock); 1558 } 1559 1560 /* Called from recovery when it knows that a node has 1561 left the cluster */ 1562 int dlm_lowcomms_close(int nodeid) 1563 { 1564 struct connection *con; 1565 struct dlm_node_addr *na; 1566 1567 log_print("closing connection to node %d", nodeid); 1568 con = nodeid2con(nodeid, 0); 1569 if (con) { 1570 set_bit(CF_CLOSE, &con->flags); 1571 close_connection(con, true, true, true); 1572 clean_one_writequeue(con); 1573 } 1574 1575 spin_lock(&dlm_node_addrs_spin); 1576 na = find_node_addr(nodeid); 1577 if (na) { 1578 list_del(&na->list); 1579 while (na->addr_count--) 1580 kfree(na->addr[na->addr_count]); 1581 kfree(na); 1582 } 1583 spin_unlock(&dlm_node_addrs_spin); 1584 1585 return 0; 1586 } 1587 1588 /* Receive workqueue function */ 1589 static void process_recv_sockets(struct work_struct *work) 1590 { 1591 struct connection *con = container_of(work, struct connection, rwork); 1592 int err; 1593 1594 clear_bit(CF_READ_PENDING, &con->flags); 1595 do { 1596 err = con->rx_action(con); 1597 } while (!err); 1598 } 1599 1600 /* Send workqueue function */ 1601 static void process_send_sockets(struct work_struct *work) 1602 { 1603 struct connection *con = container_of(work, struct connection, swork); 1604 1605 clear_bit(CF_WRITE_PENDING, &con->flags); 1606 if (con->sock == NULL) /* not mutex protected so check it inside too */ 1607 con->connect_action(con); 1608 if (!list_empty(&con->writequeue)) 1609 send_to_sock(con); 1610 } 1611 1612 1613 /* Discard all entries on the write queues */ 1614 static void clean_writequeues(void) 1615 { 1616 foreach_conn(clean_one_writequeue); 1617 } 1618 1619 static void work_stop(void) 1620 { 1621 destroy_workqueue(recv_workqueue); 1622 destroy_workqueue(send_workqueue); 1623 } 1624 1625 static int work_start(void) 1626 { 1627 recv_workqueue = alloc_workqueue("dlm_recv", 1628 WQ_UNBOUND | WQ_MEM_RECLAIM, 1); 1629 if (!recv_workqueue) { 1630 log_print("can't start dlm_recv"); 1631 return -ENOMEM; 1632 } 1633 1634 send_workqueue = alloc_workqueue("dlm_send", 1635 WQ_UNBOUND | WQ_MEM_RECLAIM, 1); 1636 if (!send_workqueue) { 1637 log_print("can't start dlm_send"); 1638 destroy_workqueue(recv_workqueue); 1639 return -ENOMEM; 1640 } 1641 1642 return 0; 1643 } 1644 1645 static void _stop_conn(struct connection *con, bool and_other) 1646 { 1647 mutex_lock(&con->sock_mutex); 1648 set_bit(CF_CLOSE, &con->flags); 1649 set_bit(CF_READ_PENDING, &con->flags); 1650 set_bit(CF_WRITE_PENDING, &con->flags); 1651 if (con->sock && con->sock->sk) { 1652 write_lock_bh(&con->sock->sk->sk_callback_lock); 1653 con->sock->sk->sk_user_data = NULL; 1654 write_unlock_bh(&con->sock->sk->sk_callback_lock); 1655 } 1656 if (con->othercon && and_other) 1657 _stop_conn(con->othercon, false); 1658 mutex_unlock(&con->sock_mutex); 1659 } 1660 1661 static void stop_conn(struct connection *con) 1662 { 1663 _stop_conn(con, true); 1664 } 1665 1666 static void free_conn(struct connection *con) 1667 { 1668 close_connection(con, true, true, true); 1669 if (con->othercon) 1670 kmem_cache_free(con_cache, con->othercon); 1671 hlist_del(&con->list); 1672 kmem_cache_free(con_cache, con); 1673 } 1674 1675 static void work_flush(void) 1676 { 1677 int ok; 1678 int i; 1679 struct hlist_node *n; 1680 struct connection *con; 1681 1682 flush_workqueue(recv_workqueue); 1683 flush_workqueue(send_workqueue); 1684 do { 1685 ok = 1; 1686 foreach_conn(stop_conn); 1687 flush_workqueue(recv_workqueue); 1688 flush_workqueue(send_workqueue); 1689 for (i = 0; i < CONN_HASH_SIZE && ok; i++) { 1690 hlist_for_each_entry_safe(con, n, 1691 &connection_hash[i], list) { 1692 ok &= test_bit(CF_READ_PENDING, &con->flags); 1693 ok &= test_bit(CF_WRITE_PENDING, &con->flags); 1694 if (con->othercon) { 1695 ok &= test_bit(CF_READ_PENDING, 1696 &con->othercon->flags); 1697 ok &= test_bit(CF_WRITE_PENDING, 1698 &con->othercon->flags); 1699 } 1700 } 1701 } 1702 } while (!ok); 1703 } 1704 1705 void dlm_lowcomms_stop(void) 1706 { 1707 /* Set all the flags to prevent any 1708 socket activity. 1709 */ 1710 mutex_lock(&connections_lock); 1711 dlm_allow_conn = 0; 1712 mutex_unlock(&connections_lock); 1713 work_flush(); 1714 clean_writequeues(); 1715 foreach_conn(free_conn); 1716 work_stop(); 1717 1718 kmem_cache_destroy(con_cache); 1719 } 1720 1721 int dlm_lowcomms_start(void) 1722 { 1723 int error = -EINVAL; 1724 struct connection *con; 1725 int i; 1726 1727 for (i = 0; i < CONN_HASH_SIZE; i++) 1728 INIT_HLIST_HEAD(&connection_hash[i]); 1729 1730 init_local(); 1731 if (!dlm_local_count) { 1732 error = -ENOTCONN; 1733 log_print("no local IP address has been set"); 1734 goto fail; 1735 } 1736 1737 error = -ENOMEM; 1738 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection), 1739 __alignof__(struct connection), 0, 1740 NULL); 1741 if (!con_cache) 1742 goto fail; 1743 1744 error = work_start(); 1745 if (error) 1746 goto fail_destroy; 1747 1748 dlm_allow_conn = 1; 1749 1750 /* Start listening */ 1751 if (dlm_config.ci_protocol == 0) 1752 error = tcp_listen_for_all(); 1753 else 1754 error = sctp_listen_for_all(); 1755 if (error) 1756 goto fail_unlisten; 1757 1758 return 0; 1759 1760 fail_unlisten: 1761 dlm_allow_conn = 0; 1762 con = nodeid2con(0,0); 1763 if (con) { 1764 close_connection(con, false, true, true); 1765 kmem_cache_free(con_cache, con); 1766 } 1767 fail_destroy: 1768 kmem_cache_destroy(con_cache); 1769 fail: 1770 return error; 1771 } 1772 1773 void dlm_lowcomms_exit(void) 1774 { 1775 struct dlm_node_addr *na, *safe; 1776 1777 spin_lock(&dlm_node_addrs_spin); 1778 list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) { 1779 list_del(&na->list); 1780 while (na->addr_count--) 1781 kfree(na->addr[na->addr_count]); 1782 kfree(na); 1783 } 1784 spin_unlock(&dlm_node_addrs_spin); 1785 } 1786