xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 82ced6fd)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <net/sctp/user.h>
55 #include <net/ipv6.h>
56 
57 #include "dlm_internal.h"
58 #include "lowcomms.h"
59 #include "midcomms.h"
60 #include "config.h"
61 
62 #define NEEDED_RMEM (4*1024*1024)
63 #define CONN_HASH_SIZE 32
64 
65 struct cbuf {
66 	unsigned int base;
67 	unsigned int len;
68 	unsigned int mask;
69 };
70 
71 static void cbuf_add(struct cbuf *cb, int n)
72 {
73 	cb->len += n;
74 }
75 
76 static int cbuf_data(struct cbuf *cb)
77 {
78 	return ((cb->base + cb->len) & cb->mask);
79 }
80 
81 static void cbuf_init(struct cbuf *cb, int size)
82 {
83 	cb->base = cb->len = 0;
84 	cb->mask = size-1;
85 }
86 
87 static void cbuf_eat(struct cbuf *cb, int n)
88 {
89 	cb->len  -= n;
90 	cb->base += n;
91 	cb->base &= cb->mask;
92 }
93 
94 static bool cbuf_empty(struct cbuf *cb)
95 {
96 	return cb->len == 0;
97 }
98 
99 struct connection {
100 	struct socket *sock;	/* NULL if not connected */
101 	uint32_t nodeid;	/* So we know who we are in the list */
102 	struct mutex sock_mutex;
103 	unsigned long flags;
104 #define CF_READ_PENDING 1
105 #define CF_WRITE_PENDING 2
106 #define CF_CONNECT_PENDING 3
107 #define CF_INIT_PENDING 4
108 #define CF_IS_OTHERCON 5
109 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
110 	spinlock_t writequeue_lock;
111 	int (*rx_action) (struct connection *);	/* What to do when active */
112 	void (*connect_action) (struct connection *);	/* What to do to connect */
113 	struct page *rx_page;
114 	struct cbuf cb;
115 	int retries;
116 #define MAX_CONNECT_RETRIES 3
117 	int sctp_assoc;
118 	struct hlist_node list;
119 	struct connection *othercon;
120 	struct work_struct rwork; /* Receive workqueue */
121 	struct work_struct swork; /* Send workqueue */
122 };
123 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
124 
125 /* An entry waiting to be sent */
126 struct writequeue_entry {
127 	struct list_head list;
128 	struct page *page;
129 	int offset;
130 	int len;
131 	int end;
132 	int users;
133 	struct connection *con;
134 };
135 
136 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
137 static int dlm_local_count;
138 
139 /* Work queues */
140 static struct workqueue_struct *recv_workqueue;
141 static struct workqueue_struct *send_workqueue;
142 
143 static struct hlist_head connection_hash[CONN_HASH_SIZE];
144 static DEFINE_MUTEX(connections_lock);
145 static struct kmem_cache *con_cache;
146 
147 static void process_recv_sockets(struct work_struct *work);
148 static void process_send_sockets(struct work_struct *work);
149 
150 
151 /* This is deliberately very simple because most clusters have simple
152    sequential nodeids, so we should be able to go straight to a connection
153    struct in the array */
154 static inline int nodeid_hash(int nodeid)
155 {
156 	return nodeid & (CONN_HASH_SIZE-1);
157 }
158 
159 static struct connection *__find_con(int nodeid)
160 {
161 	int r;
162 	struct hlist_node *h;
163 	struct connection *con;
164 
165 	r = nodeid_hash(nodeid);
166 
167 	hlist_for_each_entry(con, h, &connection_hash[r], list) {
168 		if (con->nodeid == nodeid)
169 			return con;
170 	}
171 	return NULL;
172 }
173 
174 /*
175  * If 'allocation' is zero then we don't attempt to create a new
176  * connection structure for this node.
177  */
178 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
179 {
180 	struct connection *con = NULL;
181 	int r;
182 
183 	con = __find_con(nodeid);
184 	if (con || !alloc)
185 		return con;
186 
187 	con = kmem_cache_zalloc(con_cache, alloc);
188 	if (!con)
189 		return NULL;
190 
191 	r = nodeid_hash(nodeid);
192 	hlist_add_head(&con->list, &connection_hash[r]);
193 
194 	con->nodeid = nodeid;
195 	mutex_init(&con->sock_mutex);
196 	INIT_LIST_HEAD(&con->writequeue);
197 	spin_lock_init(&con->writequeue_lock);
198 	INIT_WORK(&con->swork, process_send_sockets);
199 	INIT_WORK(&con->rwork, process_recv_sockets);
200 
201 	/* Setup action pointers for child sockets */
202 	if (con->nodeid) {
203 		struct connection *zerocon = __find_con(0);
204 
205 		con->connect_action = zerocon->connect_action;
206 		if (!con->rx_action)
207 			con->rx_action = zerocon->rx_action;
208 	}
209 
210 	return con;
211 }
212 
213 /* Loop round all connections */
214 static void foreach_conn(void (*conn_func)(struct connection *c))
215 {
216 	int i;
217 	struct hlist_node *h, *n;
218 	struct connection *con;
219 
220 	for (i = 0; i < CONN_HASH_SIZE; i++) {
221 		hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
222 			conn_func(con);
223 		}
224 	}
225 }
226 
227 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
228 {
229 	struct connection *con;
230 
231 	mutex_lock(&connections_lock);
232 	con = __nodeid2con(nodeid, allocation);
233 	mutex_unlock(&connections_lock);
234 
235 	return con;
236 }
237 
238 /* This is a bit drastic, but only called when things go wrong */
239 static struct connection *assoc2con(int assoc_id)
240 {
241 	int i;
242 	struct hlist_node *h;
243 	struct connection *con;
244 
245 	mutex_lock(&connections_lock);
246 
247 	for (i = 0 ; i < CONN_HASH_SIZE; i++) {
248 		hlist_for_each_entry(con, h, &connection_hash[i], list) {
249 			if (con && con->sctp_assoc == assoc_id) {
250 				mutex_unlock(&connections_lock);
251 				return con;
252 			}
253 		}
254 	}
255 	mutex_unlock(&connections_lock);
256 	return NULL;
257 }
258 
259 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
260 {
261 	struct sockaddr_storage addr;
262 	int error;
263 
264 	if (!dlm_local_count)
265 		return -1;
266 
267 	error = dlm_nodeid_to_addr(nodeid, &addr);
268 	if (error)
269 		return error;
270 
271 	if (dlm_local_addr[0]->ss_family == AF_INET) {
272 		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
273 		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
274 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
275 	} else {
276 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
277 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
278 		ipv6_addr_copy(&ret6->sin6_addr, &in6->sin6_addr);
279 	}
280 
281 	return 0;
282 }
283 
284 /* Data available on socket or listen socket received a connect */
285 static void lowcomms_data_ready(struct sock *sk, int count_unused)
286 {
287 	struct connection *con = sock2con(sk);
288 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
289 		queue_work(recv_workqueue, &con->rwork);
290 }
291 
292 static void lowcomms_write_space(struct sock *sk)
293 {
294 	struct connection *con = sock2con(sk);
295 
296 	if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
297 		queue_work(send_workqueue, &con->swork);
298 }
299 
300 static inline void lowcomms_connect_sock(struct connection *con)
301 {
302 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
303 		queue_work(send_workqueue, &con->swork);
304 }
305 
306 static void lowcomms_state_change(struct sock *sk)
307 {
308 	if (sk->sk_state == TCP_ESTABLISHED)
309 		lowcomms_write_space(sk);
310 }
311 
312 /* Make a socket active */
313 static int add_sock(struct socket *sock, struct connection *con)
314 {
315 	con->sock = sock;
316 
317 	/* Install a data_ready callback */
318 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
319 	con->sock->sk->sk_write_space = lowcomms_write_space;
320 	con->sock->sk->sk_state_change = lowcomms_state_change;
321 	con->sock->sk->sk_user_data = con;
322 	con->sock->sk->sk_allocation = GFP_NOFS;
323 	return 0;
324 }
325 
326 /* Add the port number to an IPv6 or 4 sockaddr and return the address
327    length */
328 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
329 			  int *addr_len)
330 {
331 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
332 	if (saddr->ss_family == AF_INET) {
333 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
334 		in4_addr->sin_port = cpu_to_be16(port);
335 		*addr_len = sizeof(struct sockaddr_in);
336 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
337 	} else {
338 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
339 		in6_addr->sin6_port = cpu_to_be16(port);
340 		*addr_len = sizeof(struct sockaddr_in6);
341 	}
342 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
343 }
344 
345 /* Close a remote connection and tidy up */
346 static void close_connection(struct connection *con, bool and_other)
347 {
348 	mutex_lock(&con->sock_mutex);
349 
350 	if (con->sock) {
351 		sock_release(con->sock);
352 		con->sock = NULL;
353 	}
354 	if (con->othercon && and_other) {
355 		/* Will only re-enter once. */
356 		close_connection(con->othercon, false);
357 	}
358 	if (con->rx_page) {
359 		__free_page(con->rx_page);
360 		con->rx_page = NULL;
361 	}
362 
363 	con->retries = 0;
364 	mutex_unlock(&con->sock_mutex);
365 }
366 
367 /* We only send shutdown messages to nodes that are not part of the cluster */
368 static void sctp_send_shutdown(sctp_assoc_t associd)
369 {
370 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
371 	struct msghdr outmessage;
372 	struct cmsghdr *cmsg;
373 	struct sctp_sndrcvinfo *sinfo;
374 	int ret;
375 	struct connection *con;
376 
377 	con = nodeid2con(0,0);
378 	BUG_ON(con == NULL);
379 
380 	outmessage.msg_name = NULL;
381 	outmessage.msg_namelen = 0;
382 	outmessage.msg_control = outcmsg;
383 	outmessage.msg_controllen = sizeof(outcmsg);
384 	outmessage.msg_flags = MSG_EOR;
385 
386 	cmsg = CMSG_FIRSTHDR(&outmessage);
387 	cmsg->cmsg_level = IPPROTO_SCTP;
388 	cmsg->cmsg_type = SCTP_SNDRCV;
389 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
390 	outmessage.msg_controllen = cmsg->cmsg_len;
391 	sinfo = CMSG_DATA(cmsg);
392 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
393 
394 	sinfo->sinfo_flags |= MSG_EOF;
395 	sinfo->sinfo_assoc_id = associd;
396 
397 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
398 
399 	if (ret != 0)
400 		log_print("send EOF to node failed: %d", ret);
401 }
402 
403 static void sctp_init_failed_foreach(struct connection *con)
404 {
405 	con->sctp_assoc = 0;
406 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
407 		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
408 			queue_work(send_workqueue, &con->swork);
409 	}
410 }
411 
412 /* INIT failed but we don't know which node...
413    restart INIT on all pending nodes */
414 static void sctp_init_failed(void)
415 {
416 	mutex_lock(&connections_lock);
417 
418 	foreach_conn(sctp_init_failed_foreach);
419 
420 	mutex_unlock(&connections_lock);
421 }
422 
423 /* Something happened to an association */
424 static void process_sctp_notification(struct connection *con,
425 				      struct msghdr *msg, char *buf)
426 {
427 	union sctp_notification *sn = (union sctp_notification *)buf;
428 
429 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
430 		switch (sn->sn_assoc_change.sac_state) {
431 
432 		case SCTP_COMM_UP:
433 		case SCTP_RESTART:
434 		{
435 			/* Check that the new node is in the lockspace */
436 			struct sctp_prim prim;
437 			int nodeid;
438 			int prim_len, ret;
439 			int addr_len;
440 			struct connection *new_con;
441 			struct file *file;
442 			sctp_peeloff_arg_t parg;
443 			int parglen = sizeof(parg);
444 
445 			/*
446 			 * We get this before any data for an association.
447 			 * We verify that the node is in the cluster and
448 			 * then peel off a socket for it.
449 			 */
450 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
451 				log_print("COMM_UP for invalid assoc ID %d",
452 					 (int)sn->sn_assoc_change.sac_assoc_id);
453 				sctp_init_failed();
454 				return;
455 			}
456 			memset(&prim, 0, sizeof(struct sctp_prim));
457 			prim_len = sizeof(struct sctp_prim);
458 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
459 
460 			ret = kernel_getsockopt(con->sock,
461 						IPPROTO_SCTP,
462 						SCTP_PRIMARY_ADDR,
463 						(char*)&prim,
464 						&prim_len);
465 			if (ret < 0) {
466 				log_print("getsockopt/sctp_primary_addr on "
467 					  "new assoc %d failed : %d",
468 					  (int)sn->sn_assoc_change.sac_assoc_id,
469 					  ret);
470 
471 				/* Retry INIT later */
472 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
473 				if (new_con)
474 					clear_bit(CF_CONNECT_PENDING, &con->flags);
475 				return;
476 			}
477 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
478 			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
479 				int i;
480 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
481 				log_print("reject connect from unknown addr");
482 				for (i=0; i<sizeof(struct sockaddr_storage);i++)
483 					printk("%02x ", b[i]);
484 				printk("\n");
485 				sctp_send_shutdown(prim.ssp_assoc_id);
486 				return;
487 			}
488 
489 			new_con = nodeid2con(nodeid, GFP_KERNEL);
490 			if (!new_con)
491 				return;
492 
493 			/* Peel off a new sock */
494 			parg.associd = sn->sn_assoc_change.sac_assoc_id;
495 			ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
496 						SCTP_SOCKOPT_PEELOFF,
497 						(void *)&parg, &parglen);
498 			if (ret) {
499 				log_print("Can't peel off a socket for "
500 					  "connection %d to node %d: err=%d\n",
501 					  parg.associd, nodeid, ret);
502 			}
503 			file = fget(parg.sd);
504 			new_con->sock = SOCKET_I(file->f_dentry->d_inode);
505 			add_sock(new_con->sock, new_con);
506 			fput(file);
507 			put_unused_fd(parg.sd);
508 
509 			log_print("got new/restarted association %d nodeid %d",
510 				 (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
511 
512 			/* Send any pending writes */
513 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
514 			clear_bit(CF_INIT_PENDING, &con->flags);
515 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
516 				queue_work(send_workqueue, &new_con->swork);
517 			}
518 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
519 				queue_work(recv_workqueue, &new_con->rwork);
520 		}
521 		break;
522 
523 		case SCTP_COMM_LOST:
524 		case SCTP_SHUTDOWN_COMP:
525 		{
526 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
527 			if (con) {
528 				con->sctp_assoc = 0;
529 			}
530 		}
531 		break;
532 
533 		/* We don't know which INIT failed, so clear the PENDING flags
534 		 * on them all.  if assoc_id is zero then it will then try
535 		 * again */
536 
537 		case SCTP_CANT_STR_ASSOC:
538 		{
539 			log_print("Can't start SCTP association - retrying");
540 			sctp_init_failed();
541 		}
542 		break;
543 
544 		default:
545 			log_print("unexpected SCTP assoc change id=%d state=%d",
546 				  (int)sn->sn_assoc_change.sac_assoc_id,
547 				  sn->sn_assoc_change.sac_state);
548 		}
549 	}
550 }
551 
552 /* Data received from remote end */
553 static int receive_from_sock(struct connection *con)
554 {
555 	int ret = 0;
556 	struct msghdr msg = {};
557 	struct kvec iov[2];
558 	unsigned len;
559 	int r;
560 	int call_again_soon = 0;
561 	int nvec;
562 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
563 
564 	mutex_lock(&con->sock_mutex);
565 
566 	if (con->sock == NULL) {
567 		ret = -EAGAIN;
568 		goto out_close;
569 	}
570 
571 	if (con->rx_page == NULL) {
572 		/*
573 		 * This doesn't need to be atomic, but I think it should
574 		 * improve performance if it is.
575 		 */
576 		con->rx_page = alloc_page(GFP_ATOMIC);
577 		if (con->rx_page == NULL)
578 			goto out_resched;
579 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
580 	}
581 
582 	/* Only SCTP needs these really */
583 	memset(&incmsg, 0, sizeof(incmsg));
584 	msg.msg_control = incmsg;
585 	msg.msg_controllen = sizeof(incmsg);
586 
587 	/*
588 	 * iov[0] is the bit of the circular buffer between the current end
589 	 * point (cb.base + cb.len) and the end of the buffer.
590 	 */
591 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
592 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
593 	iov[1].iov_len = 0;
594 	nvec = 1;
595 
596 	/*
597 	 * iov[1] is the bit of the circular buffer between the start of the
598 	 * buffer and the start of the currently used section (cb.base)
599 	 */
600 	if (cbuf_data(&con->cb) >= con->cb.base) {
601 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
602 		iov[1].iov_len = con->cb.base;
603 		iov[1].iov_base = page_address(con->rx_page);
604 		nvec = 2;
605 	}
606 	len = iov[0].iov_len + iov[1].iov_len;
607 
608 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
609 			       MSG_DONTWAIT | MSG_NOSIGNAL);
610 	if (ret <= 0)
611 		goto out_close;
612 
613 	/* Process SCTP notifications */
614 	if (msg.msg_flags & MSG_NOTIFICATION) {
615 		msg.msg_control = incmsg;
616 		msg.msg_controllen = sizeof(incmsg);
617 
618 		process_sctp_notification(con, &msg,
619 				page_address(con->rx_page) + con->cb.base);
620 		mutex_unlock(&con->sock_mutex);
621 		return 0;
622 	}
623 	BUG_ON(con->nodeid == 0);
624 
625 	if (ret == len)
626 		call_again_soon = 1;
627 	cbuf_add(&con->cb, ret);
628 	ret = dlm_process_incoming_buffer(con->nodeid,
629 					  page_address(con->rx_page),
630 					  con->cb.base, con->cb.len,
631 					  PAGE_CACHE_SIZE);
632 	if (ret == -EBADMSG) {
633 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
634 			  "iov_len=%u, iov_base[0]=%p, read=%d",
635 			  page_address(con->rx_page), con->cb.base, con->cb.len,
636 			  len, iov[0].iov_base, r);
637 	}
638 	if (ret < 0)
639 		goto out_close;
640 	cbuf_eat(&con->cb, ret);
641 
642 	if (cbuf_empty(&con->cb) && !call_again_soon) {
643 		__free_page(con->rx_page);
644 		con->rx_page = NULL;
645 	}
646 
647 	if (call_again_soon)
648 		goto out_resched;
649 	mutex_unlock(&con->sock_mutex);
650 	return 0;
651 
652 out_resched:
653 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
654 		queue_work(recv_workqueue, &con->rwork);
655 	mutex_unlock(&con->sock_mutex);
656 	return -EAGAIN;
657 
658 out_close:
659 	mutex_unlock(&con->sock_mutex);
660 	if (ret != -EAGAIN) {
661 		close_connection(con, false);
662 		/* Reconnect when there is something to send */
663 	}
664 	/* Don't return success if we really got EOF */
665 	if (ret == 0)
666 		ret = -EAGAIN;
667 
668 	return ret;
669 }
670 
671 /* Listening socket is busy, accept a connection */
672 static int tcp_accept_from_sock(struct connection *con)
673 {
674 	int result;
675 	struct sockaddr_storage peeraddr;
676 	struct socket *newsock;
677 	int len;
678 	int nodeid;
679 	struct connection *newcon;
680 	struct connection *addcon;
681 
682 	memset(&peeraddr, 0, sizeof(peeraddr));
683 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
684 				  IPPROTO_TCP, &newsock);
685 	if (result < 0)
686 		return -ENOMEM;
687 
688 	mutex_lock_nested(&con->sock_mutex, 0);
689 
690 	result = -ENOTCONN;
691 	if (con->sock == NULL)
692 		goto accept_err;
693 
694 	newsock->type = con->sock->type;
695 	newsock->ops = con->sock->ops;
696 
697 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
698 	if (result < 0)
699 		goto accept_err;
700 
701 	/* Get the connected socket's peer */
702 	memset(&peeraddr, 0, sizeof(peeraddr));
703 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
704 				  &len, 2)) {
705 		result = -ECONNABORTED;
706 		goto accept_err;
707 	}
708 
709 	/* Get the new node's NODEID */
710 	make_sockaddr(&peeraddr, 0, &len);
711 	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
712 		log_print("connect from non cluster node");
713 		sock_release(newsock);
714 		mutex_unlock(&con->sock_mutex);
715 		return -1;
716 	}
717 
718 	log_print("got connection from %d", nodeid);
719 
720 	/*  Check to see if we already have a connection to this node. This
721 	 *  could happen if the two nodes initiate a connection at roughly
722 	 *  the same time and the connections cross on the wire.
723 	 *  In this case we store the incoming one in "othercon"
724 	 */
725 	newcon = nodeid2con(nodeid, GFP_KERNEL);
726 	if (!newcon) {
727 		result = -ENOMEM;
728 		goto accept_err;
729 	}
730 	mutex_lock_nested(&newcon->sock_mutex, 1);
731 	if (newcon->sock) {
732 		struct connection *othercon = newcon->othercon;
733 
734 		if (!othercon) {
735 			othercon = kmem_cache_zalloc(con_cache, GFP_KERNEL);
736 			if (!othercon) {
737 				log_print("failed to allocate incoming socket");
738 				mutex_unlock(&newcon->sock_mutex);
739 				result = -ENOMEM;
740 				goto accept_err;
741 			}
742 			othercon->nodeid = nodeid;
743 			othercon->rx_action = receive_from_sock;
744 			mutex_init(&othercon->sock_mutex);
745 			INIT_WORK(&othercon->swork, process_send_sockets);
746 			INIT_WORK(&othercon->rwork, process_recv_sockets);
747 			set_bit(CF_IS_OTHERCON, &othercon->flags);
748 		}
749 		if (!othercon->sock) {
750 			newcon->othercon = othercon;
751 			othercon->sock = newsock;
752 			newsock->sk->sk_user_data = othercon;
753 			add_sock(newsock, othercon);
754 			addcon = othercon;
755 		}
756 		else {
757 			printk("Extra connection from node %d attempted\n", nodeid);
758 			result = -EAGAIN;
759 			mutex_unlock(&newcon->sock_mutex);
760 			goto accept_err;
761 		}
762 	}
763 	else {
764 		newsock->sk->sk_user_data = newcon;
765 		newcon->rx_action = receive_from_sock;
766 		add_sock(newsock, newcon);
767 		addcon = newcon;
768 	}
769 
770 	mutex_unlock(&newcon->sock_mutex);
771 
772 	/*
773 	 * Add it to the active queue in case we got data
774 	 * beween processing the accept adding the socket
775 	 * to the read_sockets list
776 	 */
777 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
778 		queue_work(recv_workqueue, &addcon->rwork);
779 	mutex_unlock(&con->sock_mutex);
780 
781 	return 0;
782 
783 accept_err:
784 	mutex_unlock(&con->sock_mutex);
785 	sock_release(newsock);
786 
787 	if (result != -EAGAIN)
788 		log_print("error accepting connection from node: %d", result);
789 	return result;
790 }
791 
792 static void free_entry(struct writequeue_entry *e)
793 {
794 	__free_page(e->page);
795 	kfree(e);
796 }
797 
798 /* Initiate an SCTP association.
799    This is a special case of send_to_sock() in that we don't yet have a
800    peeled-off socket for this association, so we use the listening socket
801    and add the primary IP address of the remote node.
802  */
803 static void sctp_init_assoc(struct connection *con)
804 {
805 	struct sockaddr_storage rem_addr;
806 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
807 	struct msghdr outmessage;
808 	struct cmsghdr *cmsg;
809 	struct sctp_sndrcvinfo *sinfo;
810 	struct connection *base_con;
811 	struct writequeue_entry *e;
812 	int len, offset;
813 	int ret;
814 	int addrlen;
815 	struct kvec iov[1];
816 
817 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
818 		return;
819 
820 	if (con->retries++ > MAX_CONNECT_RETRIES)
821 		return;
822 
823 	log_print("Initiating association with node %d", con->nodeid);
824 
825 	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
826 		log_print("no address for nodeid %d", con->nodeid);
827 		return;
828 	}
829 	base_con = nodeid2con(0, 0);
830 	BUG_ON(base_con == NULL);
831 
832 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
833 
834 	outmessage.msg_name = &rem_addr;
835 	outmessage.msg_namelen = addrlen;
836 	outmessage.msg_control = outcmsg;
837 	outmessage.msg_controllen = sizeof(outcmsg);
838 	outmessage.msg_flags = MSG_EOR;
839 
840 	spin_lock(&con->writequeue_lock);
841 	e = list_entry(con->writequeue.next, struct writequeue_entry,
842 		       list);
843 
844 	BUG_ON((struct list_head *) e == &con->writequeue);
845 
846 	len = e->len;
847 	offset = e->offset;
848 	spin_unlock(&con->writequeue_lock);
849 
850 	/* Send the first block off the write queue */
851 	iov[0].iov_base = page_address(e->page)+offset;
852 	iov[0].iov_len = len;
853 
854 	cmsg = CMSG_FIRSTHDR(&outmessage);
855 	cmsg->cmsg_level = IPPROTO_SCTP;
856 	cmsg->cmsg_type = SCTP_SNDRCV;
857 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
858 	sinfo = CMSG_DATA(cmsg);
859 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
860 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
861 	outmessage.msg_controllen = cmsg->cmsg_len;
862 
863 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
864 	if (ret < 0) {
865 		log_print("Send first packet to node %d failed: %d",
866 			  con->nodeid, ret);
867 
868 		/* Try again later */
869 		clear_bit(CF_CONNECT_PENDING, &con->flags);
870 		clear_bit(CF_INIT_PENDING, &con->flags);
871 	}
872 	else {
873 		spin_lock(&con->writequeue_lock);
874 		e->offset += ret;
875 		e->len -= ret;
876 
877 		if (e->len == 0 && e->users == 0) {
878 			list_del(&e->list);
879 			free_entry(e);
880 		}
881 		spin_unlock(&con->writequeue_lock);
882 	}
883 }
884 
885 /* Connect a new socket to its peer */
886 static void tcp_connect_to_sock(struct connection *con)
887 {
888 	int result = -EHOSTUNREACH;
889 	struct sockaddr_storage saddr, src_addr;
890 	int addr_len;
891 	struct socket *sock;
892 
893 	if (con->nodeid == 0) {
894 		log_print("attempt to connect sock 0 foiled");
895 		return;
896 	}
897 
898 	mutex_lock(&con->sock_mutex);
899 	if (con->retries++ > MAX_CONNECT_RETRIES)
900 		goto out;
901 
902 	/* Some odd races can cause double-connects, ignore them */
903 	if (con->sock) {
904 		result = 0;
905 		goto out;
906 	}
907 
908 	/* Create a socket to communicate with */
909 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
910 				  IPPROTO_TCP, &sock);
911 	if (result < 0)
912 		goto out_err;
913 
914 	memset(&saddr, 0, sizeof(saddr));
915 	if (dlm_nodeid_to_addr(con->nodeid, &saddr)) {
916 		sock_release(sock);
917 		goto out_err;
918 	}
919 
920 	sock->sk->sk_user_data = con;
921 	con->rx_action = receive_from_sock;
922 	con->connect_action = tcp_connect_to_sock;
923 	add_sock(sock, con);
924 
925 	/* Bind to our cluster-known address connecting to avoid
926 	   routing problems */
927 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
928 	make_sockaddr(&src_addr, 0, &addr_len);
929 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
930 				 addr_len);
931 	if (result < 0) {
932 		log_print("could not bind for connect: %d", result);
933 		/* This *may* not indicate a critical error */
934 	}
935 
936 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
937 
938 	log_print("connecting to %d", con->nodeid);
939 	result =
940 		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
941 				   O_NONBLOCK);
942 	if (result == -EINPROGRESS)
943 		result = 0;
944 	if (result == 0)
945 		goto out;
946 
947 out_err:
948 	if (con->sock) {
949 		sock_release(con->sock);
950 		con->sock = NULL;
951 	}
952 	/*
953 	 * Some errors are fatal and this list might need adjusting. For other
954 	 * errors we try again until the max number of retries is reached.
955 	 */
956 	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
957 	    result != -ENETDOWN && result != -EINVAL
958 	    && result != -EPROTONOSUPPORT) {
959 		lowcomms_connect_sock(con);
960 		result = 0;
961 	}
962 out:
963 	mutex_unlock(&con->sock_mutex);
964 	return;
965 }
966 
967 static struct socket *tcp_create_listen_sock(struct connection *con,
968 					     struct sockaddr_storage *saddr)
969 {
970 	struct socket *sock = NULL;
971 	int result = 0;
972 	int one = 1;
973 	int addr_len;
974 
975 	if (dlm_local_addr[0]->ss_family == AF_INET)
976 		addr_len = sizeof(struct sockaddr_in);
977 	else
978 		addr_len = sizeof(struct sockaddr_in6);
979 
980 	/* Create a socket to communicate with */
981 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
982 				  IPPROTO_TCP, &sock);
983 	if (result < 0) {
984 		log_print("Can't create listening comms socket");
985 		goto create_out;
986 	}
987 
988 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
989 				   (char *)&one, sizeof(one));
990 
991 	if (result < 0) {
992 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
993 	}
994 	sock->sk->sk_user_data = con;
995 	con->rx_action = tcp_accept_from_sock;
996 	con->connect_action = tcp_connect_to_sock;
997 	con->sock = sock;
998 
999 	/* Bind to our port */
1000 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1001 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1002 	if (result < 0) {
1003 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1004 		sock_release(sock);
1005 		sock = NULL;
1006 		con->sock = NULL;
1007 		goto create_out;
1008 	}
1009 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1010 				 (char *)&one, sizeof(one));
1011 	if (result < 0) {
1012 		log_print("Set keepalive failed: %d", result);
1013 	}
1014 
1015 	result = sock->ops->listen(sock, 5);
1016 	if (result < 0) {
1017 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1018 		sock_release(sock);
1019 		sock = NULL;
1020 		goto create_out;
1021 	}
1022 
1023 create_out:
1024 	return sock;
1025 }
1026 
1027 /* Get local addresses */
1028 static void init_local(void)
1029 {
1030 	struct sockaddr_storage sas, *addr;
1031 	int i;
1032 
1033 	dlm_local_count = 0;
1034 	for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1035 		if (dlm_our_addr(&sas, i))
1036 			break;
1037 
1038 		addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1039 		if (!addr)
1040 			break;
1041 		memcpy(addr, &sas, sizeof(*addr));
1042 		dlm_local_addr[dlm_local_count++] = addr;
1043 	}
1044 }
1045 
1046 /* Bind to an IP address. SCTP allows multiple address so it can do
1047    multi-homing */
1048 static int add_sctp_bind_addr(struct connection *sctp_con,
1049 			      struct sockaddr_storage *addr,
1050 			      int addr_len, int num)
1051 {
1052 	int result = 0;
1053 
1054 	if (num == 1)
1055 		result = kernel_bind(sctp_con->sock,
1056 				     (struct sockaddr *) addr,
1057 				     addr_len);
1058 	else
1059 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1060 					   SCTP_SOCKOPT_BINDX_ADD,
1061 					   (char *)addr, addr_len);
1062 
1063 	if (result < 0)
1064 		log_print("Can't bind to port %d addr number %d",
1065 			  dlm_config.ci_tcp_port, num);
1066 
1067 	return result;
1068 }
1069 
1070 /* Initialise SCTP socket and bind to all interfaces */
1071 static int sctp_listen_for_all(void)
1072 {
1073 	struct socket *sock = NULL;
1074 	struct sockaddr_storage localaddr;
1075 	struct sctp_event_subscribe subscribe;
1076 	int result = -EINVAL, num = 1, i, addr_len;
1077 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1078 	int bufsize = NEEDED_RMEM;
1079 
1080 	if (!con)
1081 		return -ENOMEM;
1082 
1083 	log_print("Using SCTP for communications");
1084 
1085 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1086 				  IPPROTO_SCTP, &sock);
1087 	if (result < 0) {
1088 		log_print("Can't create comms socket, check SCTP is loaded");
1089 		goto out;
1090 	}
1091 
1092 	/* Listen for events */
1093 	memset(&subscribe, 0, sizeof(subscribe));
1094 	subscribe.sctp_data_io_event = 1;
1095 	subscribe.sctp_association_event = 1;
1096 	subscribe.sctp_send_failure_event = 1;
1097 	subscribe.sctp_shutdown_event = 1;
1098 	subscribe.sctp_partial_delivery_event = 1;
1099 
1100 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1101 				 (char *)&bufsize, sizeof(bufsize));
1102 	if (result)
1103 		log_print("Error increasing buffer space on socket %d", result);
1104 
1105 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1106 				   (char *)&subscribe, sizeof(subscribe));
1107 	if (result < 0) {
1108 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1109 			  result);
1110 		goto create_delsock;
1111 	}
1112 
1113 	/* Init con struct */
1114 	sock->sk->sk_user_data = con;
1115 	con->sock = sock;
1116 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1117 	con->rx_action = receive_from_sock;
1118 	con->connect_action = sctp_init_assoc;
1119 
1120 	/* Bind to all interfaces. */
1121 	for (i = 0; i < dlm_local_count; i++) {
1122 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1123 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1124 
1125 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1126 		if (result)
1127 			goto create_delsock;
1128 		++num;
1129 	}
1130 
1131 	result = sock->ops->listen(sock, 5);
1132 	if (result < 0) {
1133 		log_print("Can't set socket listening");
1134 		goto create_delsock;
1135 	}
1136 
1137 	return 0;
1138 
1139 create_delsock:
1140 	sock_release(sock);
1141 	con->sock = NULL;
1142 out:
1143 	return result;
1144 }
1145 
1146 static int tcp_listen_for_all(void)
1147 {
1148 	struct socket *sock = NULL;
1149 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1150 	int result = -EINVAL;
1151 
1152 	if (!con)
1153 		return -ENOMEM;
1154 
1155 	/* We don't support multi-homed hosts */
1156 	if (dlm_local_addr[1] != NULL) {
1157 		log_print("TCP protocol can't handle multi-homed hosts, "
1158 			  "try SCTP");
1159 		return -EINVAL;
1160 	}
1161 
1162 	log_print("Using TCP for communications");
1163 
1164 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1165 	if (sock) {
1166 		add_sock(sock, con);
1167 		result = 0;
1168 	}
1169 	else {
1170 		result = -EADDRINUSE;
1171 	}
1172 
1173 	return result;
1174 }
1175 
1176 
1177 
1178 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1179 						     gfp_t allocation)
1180 {
1181 	struct writequeue_entry *entry;
1182 
1183 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1184 	if (!entry)
1185 		return NULL;
1186 
1187 	entry->page = alloc_page(allocation);
1188 	if (!entry->page) {
1189 		kfree(entry);
1190 		return NULL;
1191 	}
1192 
1193 	entry->offset = 0;
1194 	entry->len = 0;
1195 	entry->end = 0;
1196 	entry->users = 0;
1197 	entry->con = con;
1198 
1199 	return entry;
1200 }
1201 
1202 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1203 {
1204 	struct connection *con;
1205 	struct writequeue_entry *e;
1206 	int offset = 0;
1207 	int users = 0;
1208 
1209 	con = nodeid2con(nodeid, allocation);
1210 	if (!con)
1211 		return NULL;
1212 
1213 	spin_lock(&con->writequeue_lock);
1214 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1215 	if ((&e->list == &con->writequeue) ||
1216 	    (PAGE_CACHE_SIZE - e->end < len)) {
1217 		e = NULL;
1218 	} else {
1219 		offset = e->end;
1220 		e->end += len;
1221 		users = e->users++;
1222 	}
1223 	spin_unlock(&con->writequeue_lock);
1224 
1225 	if (e) {
1226 	got_one:
1227 		*ppc = page_address(e->page) + offset;
1228 		return e;
1229 	}
1230 
1231 	e = new_writequeue_entry(con, allocation);
1232 	if (e) {
1233 		spin_lock(&con->writequeue_lock);
1234 		offset = e->end;
1235 		e->end += len;
1236 		users = e->users++;
1237 		list_add_tail(&e->list, &con->writequeue);
1238 		spin_unlock(&con->writequeue_lock);
1239 		goto got_one;
1240 	}
1241 	return NULL;
1242 }
1243 
1244 void dlm_lowcomms_commit_buffer(void *mh)
1245 {
1246 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1247 	struct connection *con = e->con;
1248 	int users;
1249 
1250 	spin_lock(&con->writequeue_lock);
1251 	users = --e->users;
1252 	if (users)
1253 		goto out;
1254 	e->len = e->end - e->offset;
1255 	spin_unlock(&con->writequeue_lock);
1256 
1257 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1258 		queue_work(send_workqueue, &con->swork);
1259 	}
1260 	return;
1261 
1262 out:
1263 	spin_unlock(&con->writequeue_lock);
1264 	return;
1265 }
1266 
1267 /* Send a message */
1268 static void send_to_sock(struct connection *con)
1269 {
1270 	int ret = 0;
1271 	ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
1272 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1273 	struct writequeue_entry *e;
1274 	int len, offset;
1275 
1276 	mutex_lock(&con->sock_mutex);
1277 	if (con->sock == NULL)
1278 		goto out_connect;
1279 
1280 	sendpage = con->sock->ops->sendpage;
1281 
1282 	spin_lock(&con->writequeue_lock);
1283 	for (;;) {
1284 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1285 			       list);
1286 		if ((struct list_head *) e == &con->writequeue)
1287 			break;
1288 
1289 		len = e->len;
1290 		offset = e->offset;
1291 		BUG_ON(len == 0 && e->users == 0);
1292 		spin_unlock(&con->writequeue_lock);
1293 
1294 		ret = 0;
1295 		if (len) {
1296 			ret = sendpage(con->sock, e->page, offset, len,
1297 				       msg_flags);
1298 			if (ret == -EAGAIN || ret == 0) {
1299 				cond_resched();
1300 				goto out;
1301 			}
1302 			if (ret <= 0)
1303 				goto send_error;
1304 		}
1305 			/* Don't starve people filling buffers */
1306 			cond_resched();
1307 
1308 		spin_lock(&con->writequeue_lock);
1309 		e->offset += ret;
1310 		e->len -= ret;
1311 
1312 		if (e->len == 0 && e->users == 0) {
1313 			list_del(&e->list);
1314 			free_entry(e);
1315 			continue;
1316 		}
1317 	}
1318 	spin_unlock(&con->writequeue_lock);
1319 out:
1320 	mutex_unlock(&con->sock_mutex);
1321 	return;
1322 
1323 send_error:
1324 	mutex_unlock(&con->sock_mutex);
1325 	close_connection(con, false);
1326 	lowcomms_connect_sock(con);
1327 	return;
1328 
1329 out_connect:
1330 	mutex_unlock(&con->sock_mutex);
1331 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1332 		lowcomms_connect_sock(con);
1333 	return;
1334 }
1335 
1336 static void clean_one_writequeue(struct connection *con)
1337 {
1338 	struct writequeue_entry *e, *safe;
1339 
1340 	spin_lock(&con->writequeue_lock);
1341 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1342 		list_del(&e->list);
1343 		free_entry(e);
1344 	}
1345 	spin_unlock(&con->writequeue_lock);
1346 }
1347 
1348 /* Called from recovery when it knows that a node has
1349    left the cluster */
1350 int dlm_lowcomms_close(int nodeid)
1351 {
1352 	struct connection *con;
1353 
1354 	log_print("closing connection to node %d", nodeid);
1355 	con = nodeid2con(nodeid, 0);
1356 	if (con) {
1357 		clean_one_writequeue(con);
1358 		close_connection(con, true);
1359 	}
1360 	return 0;
1361 }
1362 
1363 /* Receive workqueue function */
1364 static void process_recv_sockets(struct work_struct *work)
1365 {
1366 	struct connection *con = container_of(work, struct connection, rwork);
1367 	int err;
1368 
1369 	clear_bit(CF_READ_PENDING, &con->flags);
1370 	do {
1371 		err = con->rx_action(con);
1372 	} while (!err);
1373 }
1374 
1375 /* Send workqueue function */
1376 static void process_send_sockets(struct work_struct *work)
1377 {
1378 	struct connection *con = container_of(work, struct connection, swork);
1379 
1380 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1381 		con->connect_action(con);
1382 	}
1383 	clear_bit(CF_WRITE_PENDING, &con->flags);
1384 	send_to_sock(con);
1385 }
1386 
1387 
1388 /* Discard all entries on the write queues */
1389 static void clean_writequeues(void)
1390 {
1391 	foreach_conn(clean_one_writequeue);
1392 }
1393 
1394 static void work_stop(void)
1395 {
1396 	destroy_workqueue(recv_workqueue);
1397 	destroy_workqueue(send_workqueue);
1398 }
1399 
1400 static int work_start(void)
1401 {
1402 	int error;
1403 	recv_workqueue = create_workqueue("dlm_recv");
1404 	error = IS_ERR(recv_workqueue);
1405 	if (error) {
1406 		log_print("can't start dlm_recv %d", error);
1407 		return error;
1408 	}
1409 
1410 	send_workqueue = create_singlethread_workqueue("dlm_send");
1411 	error = IS_ERR(send_workqueue);
1412 	if (error) {
1413 		log_print("can't start dlm_send %d", error);
1414 		destroy_workqueue(recv_workqueue);
1415 		return error;
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 static void stop_conn(struct connection *con)
1422 {
1423 	con->flags |= 0x0F;
1424 	if (con->sock)
1425 		con->sock->sk->sk_user_data = NULL;
1426 }
1427 
1428 static void free_conn(struct connection *con)
1429 {
1430 	close_connection(con, true);
1431 	if (con->othercon)
1432 		kmem_cache_free(con_cache, con->othercon);
1433 	hlist_del(&con->list);
1434 	kmem_cache_free(con_cache, con);
1435 }
1436 
1437 void dlm_lowcomms_stop(void)
1438 {
1439 	/* Set all the flags to prevent any
1440 	   socket activity.
1441 	*/
1442 	mutex_lock(&connections_lock);
1443 	foreach_conn(stop_conn);
1444 	mutex_unlock(&connections_lock);
1445 
1446 	work_stop();
1447 
1448 	mutex_lock(&connections_lock);
1449 	clean_writequeues();
1450 
1451 	foreach_conn(free_conn);
1452 
1453 	mutex_unlock(&connections_lock);
1454 	kmem_cache_destroy(con_cache);
1455 }
1456 
1457 int dlm_lowcomms_start(void)
1458 {
1459 	int error = -EINVAL;
1460 	struct connection *con;
1461 	int i;
1462 
1463 	for (i = 0; i < CONN_HASH_SIZE; i++)
1464 		INIT_HLIST_HEAD(&connection_hash[i]);
1465 
1466 	init_local();
1467 	if (!dlm_local_count) {
1468 		error = -ENOTCONN;
1469 		log_print("no local IP address has been set");
1470 		goto out;
1471 	}
1472 
1473 	error = -ENOMEM;
1474 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1475 				      __alignof__(struct connection), 0,
1476 				      NULL);
1477 	if (!con_cache)
1478 		goto out;
1479 
1480 	/* Start listening */
1481 	if (dlm_config.ci_protocol == 0)
1482 		error = tcp_listen_for_all();
1483 	else
1484 		error = sctp_listen_for_all();
1485 	if (error)
1486 		goto fail_unlisten;
1487 
1488 	error = work_start();
1489 	if (error)
1490 		goto fail_unlisten;
1491 
1492 	return 0;
1493 
1494 fail_unlisten:
1495 	con = nodeid2con(0,0);
1496 	if (con) {
1497 		close_connection(con, false);
1498 		kmem_cache_free(con_cache, con);
1499 	}
1500 	kmem_cache_destroy(con_cache);
1501 
1502 out:
1503 	return error;
1504 }
1505