xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 6ee73861)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <net/sctp/user.h>
55 #include <net/ipv6.h>
56 
57 #include "dlm_internal.h"
58 #include "lowcomms.h"
59 #include "midcomms.h"
60 #include "config.h"
61 
62 #define NEEDED_RMEM (4*1024*1024)
63 #define CONN_HASH_SIZE 32
64 
65 struct cbuf {
66 	unsigned int base;
67 	unsigned int len;
68 	unsigned int mask;
69 };
70 
71 static void cbuf_add(struct cbuf *cb, int n)
72 {
73 	cb->len += n;
74 }
75 
76 static int cbuf_data(struct cbuf *cb)
77 {
78 	return ((cb->base + cb->len) & cb->mask);
79 }
80 
81 static void cbuf_init(struct cbuf *cb, int size)
82 {
83 	cb->base = cb->len = 0;
84 	cb->mask = size-1;
85 }
86 
87 static void cbuf_eat(struct cbuf *cb, int n)
88 {
89 	cb->len  -= n;
90 	cb->base += n;
91 	cb->base &= cb->mask;
92 }
93 
94 static bool cbuf_empty(struct cbuf *cb)
95 {
96 	return cb->len == 0;
97 }
98 
99 struct connection {
100 	struct socket *sock;	/* NULL if not connected */
101 	uint32_t nodeid;	/* So we know who we are in the list */
102 	struct mutex sock_mutex;
103 	unsigned long flags;
104 #define CF_READ_PENDING 1
105 #define CF_WRITE_PENDING 2
106 #define CF_CONNECT_PENDING 3
107 #define CF_INIT_PENDING 4
108 #define CF_IS_OTHERCON 5
109 #define CF_CLOSE 6
110 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
111 	spinlock_t writequeue_lock;
112 	int (*rx_action) (struct connection *);	/* What to do when active */
113 	void (*connect_action) (struct connection *);	/* What to do to connect */
114 	struct page *rx_page;
115 	struct cbuf cb;
116 	int retries;
117 #define MAX_CONNECT_RETRIES 3
118 	int sctp_assoc;
119 	struct hlist_node list;
120 	struct connection *othercon;
121 	struct work_struct rwork; /* Receive workqueue */
122 	struct work_struct swork; /* Send workqueue */
123 };
124 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
125 
126 /* An entry waiting to be sent */
127 struct writequeue_entry {
128 	struct list_head list;
129 	struct page *page;
130 	int offset;
131 	int len;
132 	int end;
133 	int users;
134 	struct connection *con;
135 };
136 
137 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
138 static int dlm_local_count;
139 
140 /* Work queues */
141 static struct workqueue_struct *recv_workqueue;
142 static struct workqueue_struct *send_workqueue;
143 
144 static struct hlist_head connection_hash[CONN_HASH_SIZE];
145 static DEFINE_MUTEX(connections_lock);
146 static struct kmem_cache *con_cache;
147 
148 static void process_recv_sockets(struct work_struct *work);
149 static void process_send_sockets(struct work_struct *work);
150 
151 
152 /* This is deliberately very simple because most clusters have simple
153    sequential nodeids, so we should be able to go straight to a connection
154    struct in the array */
155 static inline int nodeid_hash(int nodeid)
156 {
157 	return nodeid & (CONN_HASH_SIZE-1);
158 }
159 
160 static struct connection *__find_con(int nodeid)
161 {
162 	int r;
163 	struct hlist_node *h;
164 	struct connection *con;
165 
166 	r = nodeid_hash(nodeid);
167 
168 	hlist_for_each_entry(con, h, &connection_hash[r], list) {
169 		if (con->nodeid == nodeid)
170 			return con;
171 	}
172 	return NULL;
173 }
174 
175 /*
176  * If 'allocation' is zero then we don't attempt to create a new
177  * connection structure for this node.
178  */
179 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
180 {
181 	struct connection *con = NULL;
182 	int r;
183 
184 	con = __find_con(nodeid);
185 	if (con || !alloc)
186 		return con;
187 
188 	con = kmem_cache_zalloc(con_cache, alloc);
189 	if (!con)
190 		return NULL;
191 
192 	r = nodeid_hash(nodeid);
193 	hlist_add_head(&con->list, &connection_hash[r]);
194 
195 	con->nodeid = nodeid;
196 	mutex_init(&con->sock_mutex);
197 	INIT_LIST_HEAD(&con->writequeue);
198 	spin_lock_init(&con->writequeue_lock);
199 	INIT_WORK(&con->swork, process_send_sockets);
200 	INIT_WORK(&con->rwork, process_recv_sockets);
201 
202 	/* Setup action pointers for child sockets */
203 	if (con->nodeid) {
204 		struct connection *zerocon = __find_con(0);
205 
206 		con->connect_action = zerocon->connect_action;
207 		if (!con->rx_action)
208 			con->rx_action = zerocon->rx_action;
209 	}
210 
211 	return con;
212 }
213 
214 /* Loop round all connections */
215 static void foreach_conn(void (*conn_func)(struct connection *c))
216 {
217 	int i;
218 	struct hlist_node *h, *n;
219 	struct connection *con;
220 
221 	for (i = 0; i < CONN_HASH_SIZE; i++) {
222 		hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
223 			conn_func(con);
224 		}
225 	}
226 }
227 
228 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
229 {
230 	struct connection *con;
231 
232 	mutex_lock(&connections_lock);
233 	con = __nodeid2con(nodeid, allocation);
234 	mutex_unlock(&connections_lock);
235 
236 	return con;
237 }
238 
239 /* This is a bit drastic, but only called when things go wrong */
240 static struct connection *assoc2con(int assoc_id)
241 {
242 	int i;
243 	struct hlist_node *h;
244 	struct connection *con;
245 
246 	mutex_lock(&connections_lock);
247 
248 	for (i = 0 ; i < CONN_HASH_SIZE; i++) {
249 		hlist_for_each_entry(con, h, &connection_hash[i], list) {
250 			if (con && con->sctp_assoc == assoc_id) {
251 				mutex_unlock(&connections_lock);
252 				return con;
253 			}
254 		}
255 	}
256 	mutex_unlock(&connections_lock);
257 	return NULL;
258 }
259 
260 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
261 {
262 	struct sockaddr_storage addr;
263 	int error;
264 
265 	if (!dlm_local_count)
266 		return -1;
267 
268 	error = dlm_nodeid_to_addr(nodeid, &addr);
269 	if (error)
270 		return error;
271 
272 	if (dlm_local_addr[0]->ss_family == AF_INET) {
273 		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
274 		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
275 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
276 	} else {
277 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
278 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
279 		ipv6_addr_copy(&ret6->sin6_addr, &in6->sin6_addr);
280 	}
281 
282 	return 0;
283 }
284 
285 /* Data available on socket or listen socket received a connect */
286 static void lowcomms_data_ready(struct sock *sk, int count_unused)
287 {
288 	struct connection *con = sock2con(sk);
289 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
290 		queue_work(recv_workqueue, &con->rwork);
291 }
292 
293 static void lowcomms_write_space(struct sock *sk)
294 {
295 	struct connection *con = sock2con(sk);
296 
297 	if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
298 		queue_work(send_workqueue, &con->swork);
299 }
300 
301 static inline void lowcomms_connect_sock(struct connection *con)
302 {
303 	if (test_bit(CF_CLOSE, &con->flags))
304 		return;
305 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
306 		queue_work(send_workqueue, &con->swork);
307 }
308 
309 static void lowcomms_state_change(struct sock *sk)
310 {
311 	if (sk->sk_state == TCP_ESTABLISHED)
312 		lowcomms_write_space(sk);
313 }
314 
315 int dlm_lowcomms_connect_node(int nodeid)
316 {
317 	struct connection *con;
318 
319 	/* with sctp there's no connecting without sending */
320 	if (dlm_config.ci_protocol != 0)
321 		return 0;
322 
323 	if (nodeid == dlm_our_nodeid())
324 		return 0;
325 
326 	con = nodeid2con(nodeid, GFP_NOFS);
327 	if (!con)
328 		return -ENOMEM;
329 	lowcomms_connect_sock(con);
330 	return 0;
331 }
332 
333 /* Make a socket active */
334 static int add_sock(struct socket *sock, struct connection *con)
335 {
336 	con->sock = sock;
337 
338 	/* Install a data_ready callback */
339 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
340 	con->sock->sk->sk_write_space = lowcomms_write_space;
341 	con->sock->sk->sk_state_change = lowcomms_state_change;
342 	con->sock->sk->sk_user_data = con;
343 	con->sock->sk->sk_allocation = GFP_NOFS;
344 	return 0;
345 }
346 
347 /* Add the port number to an IPv6 or 4 sockaddr and return the address
348    length */
349 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
350 			  int *addr_len)
351 {
352 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
353 	if (saddr->ss_family == AF_INET) {
354 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
355 		in4_addr->sin_port = cpu_to_be16(port);
356 		*addr_len = sizeof(struct sockaddr_in);
357 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
358 	} else {
359 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
360 		in6_addr->sin6_port = cpu_to_be16(port);
361 		*addr_len = sizeof(struct sockaddr_in6);
362 	}
363 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
364 }
365 
366 /* Close a remote connection and tidy up */
367 static void close_connection(struct connection *con, bool and_other)
368 {
369 	mutex_lock(&con->sock_mutex);
370 
371 	if (con->sock) {
372 		sock_release(con->sock);
373 		con->sock = NULL;
374 	}
375 	if (con->othercon && and_other) {
376 		/* Will only re-enter once. */
377 		close_connection(con->othercon, false);
378 	}
379 	if (con->rx_page) {
380 		__free_page(con->rx_page);
381 		con->rx_page = NULL;
382 	}
383 
384 	con->retries = 0;
385 	mutex_unlock(&con->sock_mutex);
386 }
387 
388 /* We only send shutdown messages to nodes that are not part of the cluster */
389 static void sctp_send_shutdown(sctp_assoc_t associd)
390 {
391 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
392 	struct msghdr outmessage;
393 	struct cmsghdr *cmsg;
394 	struct sctp_sndrcvinfo *sinfo;
395 	int ret;
396 	struct connection *con;
397 
398 	con = nodeid2con(0,0);
399 	BUG_ON(con == NULL);
400 
401 	outmessage.msg_name = NULL;
402 	outmessage.msg_namelen = 0;
403 	outmessage.msg_control = outcmsg;
404 	outmessage.msg_controllen = sizeof(outcmsg);
405 	outmessage.msg_flags = MSG_EOR;
406 
407 	cmsg = CMSG_FIRSTHDR(&outmessage);
408 	cmsg->cmsg_level = IPPROTO_SCTP;
409 	cmsg->cmsg_type = SCTP_SNDRCV;
410 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
411 	outmessage.msg_controllen = cmsg->cmsg_len;
412 	sinfo = CMSG_DATA(cmsg);
413 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
414 
415 	sinfo->sinfo_flags |= MSG_EOF;
416 	sinfo->sinfo_assoc_id = associd;
417 
418 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
419 
420 	if (ret != 0)
421 		log_print("send EOF to node failed: %d", ret);
422 }
423 
424 static void sctp_init_failed_foreach(struct connection *con)
425 {
426 	con->sctp_assoc = 0;
427 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
428 		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
429 			queue_work(send_workqueue, &con->swork);
430 	}
431 }
432 
433 /* INIT failed but we don't know which node...
434    restart INIT on all pending nodes */
435 static void sctp_init_failed(void)
436 {
437 	mutex_lock(&connections_lock);
438 
439 	foreach_conn(sctp_init_failed_foreach);
440 
441 	mutex_unlock(&connections_lock);
442 }
443 
444 /* Something happened to an association */
445 static void process_sctp_notification(struct connection *con,
446 				      struct msghdr *msg, char *buf)
447 {
448 	union sctp_notification *sn = (union sctp_notification *)buf;
449 
450 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
451 		switch (sn->sn_assoc_change.sac_state) {
452 
453 		case SCTP_COMM_UP:
454 		case SCTP_RESTART:
455 		{
456 			/* Check that the new node is in the lockspace */
457 			struct sctp_prim prim;
458 			int nodeid;
459 			int prim_len, ret;
460 			int addr_len;
461 			struct connection *new_con;
462 			sctp_peeloff_arg_t parg;
463 			int parglen = sizeof(parg);
464 			int err;
465 
466 			/*
467 			 * We get this before any data for an association.
468 			 * We verify that the node is in the cluster and
469 			 * then peel off a socket for it.
470 			 */
471 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
472 				log_print("COMM_UP for invalid assoc ID %d",
473 					 (int)sn->sn_assoc_change.sac_assoc_id);
474 				sctp_init_failed();
475 				return;
476 			}
477 			memset(&prim, 0, sizeof(struct sctp_prim));
478 			prim_len = sizeof(struct sctp_prim);
479 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
480 
481 			ret = kernel_getsockopt(con->sock,
482 						IPPROTO_SCTP,
483 						SCTP_PRIMARY_ADDR,
484 						(char*)&prim,
485 						&prim_len);
486 			if (ret < 0) {
487 				log_print("getsockopt/sctp_primary_addr on "
488 					  "new assoc %d failed : %d",
489 					  (int)sn->sn_assoc_change.sac_assoc_id,
490 					  ret);
491 
492 				/* Retry INIT later */
493 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
494 				if (new_con)
495 					clear_bit(CF_CONNECT_PENDING, &con->flags);
496 				return;
497 			}
498 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
499 			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
500 				int i;
501 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
502 				log_print("reject connect from unknown addr");
503 				for (i=0; i<sizeof(struct sockaddr_storage);i++)
504 					printk("%02x ", b[i]);
505 				printk("\n");
506 				sctp_send_shutdown(prim.ssp_assoc_id);
507 				return;
508 			}
509 
510 			new_con = nodeid2con(nodeid, GFP_NOFS);
511 			if (!new_con)
512 				return;
513 
514 			/* Peel off a new sock */
515 			parg.associd = sn->sn_assoc_change.sac_assoc_id;
516 			ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
517 						SCTP_SOCKOPT_PEELOFF,
518 						(void *)&parg, &parglen);
519 			if (ret < 0) {
520 				log_print("Can't peel off a socket for "
521 					  "connection %d to node %d: err=%d",
522 					  parg.associd, nodeid, ret);
523 				return;
524 			}
525 			new_con->sock = sockfd_lookup(parg.sd, &err);
526 			if (!new_con->sock) {
527 				log_print("sockfd_lookup error %d", err);
528 				return;
529 			}
530 			add_sock(new_con->sock, new_con);
531 			sockfd_put(new_con->sock);
532 
533 			log_print("connecting to %d sctp association %d",
534 				 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
535 
536 			/* Send any pending writes */
537 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
538 			clear_bit(CF_INIT_PENDING, &con->flags);
539 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
540 				queue_work(send_workqueue, &new_con->swork);
541 			}
542 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
543 				queue_work(recv_workqueue, &new_con->rwork);
544 		}
545 		break;
546 
547 		case SCTP_COMM_LOST:
548 		case SCTP_SHUTDOWN_COMP:
549 		{
550 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
551 			if (con) {
552 				con->sctp_assoc = 0;
553 			}
554 		}
555 		break;
556 
557 		/* We don't know which INIT failed, so clear the PENDING flags
558 		 * on them all.  if assoc_id is zero then it will then try
559 		 * again */
560 
561 		case SCTP_CANT_STR_ASSOC:
562 		{
563 			log_print("Can't start SCTP association - retrying");
564 			sctp_init_failed();
565 		}
566 		break;
567 
568 		default:
569 			log_print("unexpected SCTP assoc change id=%d state=%d",
570 				  (int)sn->sn_assoc_change.sac_assoc_id,
571 				  sn->sn_assoc_change.sac_state);
572 		}
573 	}
574 }
575 
576 /* Data received from remote end */
577 static int receive_from_sock(struct connection *con)
578 {
579 	int ret = 0;
580 	struct msghdr msg = {};
581 	struct kvec iov[2];
582 	unsigned len;
583 	int r;
584 	int call_again_soon = 0;
585 	int nvec;
586 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
587 
588 	mutex_lock(&con->sock_mutex);
589 
590 	if (con->sock == NULL) {
591 		ret = -EAGAIN;
592 		goto out_close;
593 	}
594 
595 	if (con->rx_page == NULL) {
596 		/*
597 		 * This doesn't need to be atomic, but I think it should
598 		 * improve performance if it is.
599 		 */
600 		con->rx_page = alloc_page(GFP_ATOMIC);
601 		if (con->rx_page == NULL)
602 			goto out_resched;
603 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
604 	}
605 
606 	/* Only SCTP needs these really */
607 	memset(&incmsg, 0, sizeof(incmsg));
608 	msg.msg_control = incmsg;
609 	msg.msg_controllen = sizeof(incmsg);
610 
611 	/*
612 	 * iov[0] is the bit of the circular buffer between the current end
613 	 * point (cb.base + cb.len) and the end of the buffer.
614 	 */
615 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
616 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
617 	iov[1].iov_len = 0;
618 	nvec = 1;
619 
620 	/*
621 	 * iov[1] is the bit of the circular buffer between the start of the
622 	 * buffer and the start of the currently used section (cb.base)
623 	 */
624 	if (cbuf_data(&con->cb) >= con->cb.base) {
625 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
626 		iov[1].iov_len = con->cb.base;
627 		iov[1].iov_base = page_address(con->rx_page);
628 		nvec = 2;
629 	}
630 	len = iov[0].iov_len + iov[1].iov_len;
631 
632 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
633 			       MSG_DONTWAIT | MSG_NOSIGNAL);
634 	if (ret <= 0)
635 		goto out_close;
636 
637 	/* Process SCTP notifications */
638 	if (msg.msg_flags & MSG_NOTIFICATION) {
639 		msg.msg_control = incmsg;
640 		msg.msg_controllen = sizeof(incmsg);
641 
642 		process_sctp_notification(con, &msg,
643 				page_address(con->rx_page) + con->cb.base);
644 		mutex_unlock(&con->sock_mutex);
645 		return 0;
646 	}
647 	BUG_ON(con->nodeid == 0);
648 
649 	if (ret == len)
650 		call_again_soon = 1;
651 	cbuf_add(&con->cb, ret);
652 	ret = dlm_process_incoming_buffer(con->nodeid,
653 					  page_address(con->rx_page),
654 					  con->cb.base, con->cb.len,
655 					  PAGE_CACHE_SIZE);
656 	if (ret == -EBADMSG) {
657 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
658 			  "iov_len=%u, iov_base[0]=%p, read=%d",
659 			  page_address(con->rx_page), con->cb.base, con->cb.len,
660 			  len, iov[0].iov_base, r);
661 	}
662 	if (ret < 0)
663 		goto out_close;
664 	cbuf_eat(&con->cb, ret);
665 
666 	if (cbuf_empty(&con->cb) && !call_again_soon) {
667 		__free_page(con->rx_page);
668 		con->rx_page = NULL;
669 	}
670 
671 	if (call_again_soon)
672 		goto out_resched;
673 	mutex_unlock(&con->sock_mutex);
674 	return 0;
675 
676 out_resched:
677 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
678 		queue_work(recv_workqueue, &con->rwork);
679 	mutex_unlock(&con->sock_mutex);
680 	return -EAGAIN;
681 
682 out_close:
683 	mutex_unlock(&con->sock_mutex);
684 	if (ret != -EAGAIN) {
685 		close_connection(con, false);
686 		/* Reconnect when there is something to send */
687 	}
688 	/* Don't return success if we really got EOF */
689 	if (ret == 0)
690 		ret = -EAGAIN;
691 
692 	return ret;
693 }
694 
695 /* Listening socket is busy, accept a connection */
696 static int tcp_accept_from_sock(struct connection *con)
697 {
698 	int result;
699 	struct sockaddr_storage peeraddr;
700 	struct socket *newsock;
701 	int len;
702 	int nodeid;
703 	struct connection *newcon;
704 	struct connection *addcon;
705 
706 	memset(&peeraddr, 0, sizeof(peeraddr));
707 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
708 				  IPPROTO_TCP, &newsock);
709 	if (result < 0)
710 		return -ENOMEM;
711 
712 	mutex_lock_nested(&con->sock_mutex, 0);
713 
714 	result = -ENOTCONN;
715 	if (con->sock == NULL)
716 		goto accept_err;
717 
718 	newsock->type = con->sock->type;
719 	newsock->ops = con->sock->ops;
720 
721 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
722 	if (result < 0)
723 		goto accept_err;
724 
725 	/* Get the connected socket's peer */
726 	memset(&peeraddr, 0, sizeof(peeraddr));
727 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
728 				  &len, 2)) {
729 		result = -ECONNABORTED;
730 		goto accept_err;
731 	}
732 
733 	/* Get the new node's NODEID */
734 	make_sockaddr(&peeraddr, 0, &len);
735 	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
736 		log_print("connect from non cluster node");
737 		sock_release(newsock);
738 		mutex_unlock(&con->sock_mutex);
739 		return -1;
740 	}
741 
742 	log_print("got connection from %d", nodeid);
743 
744 	/*  Check to see if we already have a connection to this node. This
745 	 *  could happen if the two nodes initiate a connection at roughly
746 	 *  the same time and the connections cross on the wire.
747 	 *  In this case we store the incoming one in "othercon"
748 	 */
749 	newcon = nodeid2con(nodeid, GFP_NOFS);
750 	if (!newcon) {
751 		result = -ENOMEM;
752 		goto accept_err;
753 	}
754 	mutex_lock_nested(&newcon->sock_mutex, 1);
755 	if (newcon->sock) {
756 		struct connection *othercon = newcon->othercon;
757 
758 		if (!othercon) {
759 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
760 			if (!othercon) {
761 				log_print("failed to allocate incoming socket");
762 				mutex_unlock(&newcon->sock_mutex);
763 				result = -ENOMEM;
764 				goto accept_err;
765 			}
766 			othercon->nodeid = nodeid;
767 			othercon->rx_action = receive_from_sock;
768 			mutex_init(&othercon->sock_mutex);
769 			INIT_WORK(&othercon->swork, process_send_sockets);
770 			INIT_WORK(&othercon->rwork, process_recv_sockets);
771 			set_bit(CF_IS_OTHERCON, &othercon->flags);
772 		}
773 		if (!othercon->sock) {
774 			newcon->othercon = othercon;
775 			othercon->sock = newsock;
776 			newsock->sk->sk_user_data = othercon;
777 			add_sock(newsock, othercon);
778 			addcon = othercon;
779 		}
780 		else {
781 			printk("Extra connection from node %d attempted\n", nodeid);
782 			result = -EAGAIN;
783 			mutex_unlock(&newcon->sock_mutex);
784 			goto accept_err;
785 		}
786 	}
787 	else {
788 		newsock->sk->sk_user_data = newcon;
789 		newcon->rx_action = receive_from_sock;
790 		add_sock(newsock, newcon);
791 		addcon = newcon;
792 	}
793 
794 	mutex_unlock(&newcon->sock_mutex);
795 
796 	/*
797 	 * Add it to the active queue in case we got data
798 	 * beween processing the accept adding the socket
799 	 * to the read_sockets list
800 	 */
801 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
802 		queue_work(recv_workqueue, &addcon->rwork);
803 	mutex_unlock(&con->sock_mutex);
804 
805 	return 0;
806 
807 accept_err:
808 	mutex_unlock(&con->sock_mutex);
809 	sock_release(newsock);
810 
811 	if (result != -EAGAIN)
812 		log_print("error accepting connection from node: %d", result);
813 	return result;
814 }
815 
816 static void free_entry(struct writequeue_entry *e)
817 {
818 	__free_page(e->page);
819 	kfree(e);
820 }
821 
822 /* Initiate an SCTP association.
823    This is a special case of send_to_sock() in that we don't yet have a
824    peeled-off socket for this association, so we use the listening socket
825    and add the primary IP address of the remote node.
826  */
827 static void sctp_init_assoc(struct connection *con)
828 {
829 	struct sockaddr_storage rem_addr;
830 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
831 	struct msghdr outmessage;
832 	struct cmsghdr *cmsg;
833 	struct sctp_sndrcvinfo *sinfo;
834 	struct connection *base_con;
835 	struct writequeue_entry *e;
836 	int len, offset;
837 	int ret;
838 	int addrlen;
839 	struct kvec iov[1];
840 
841 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
842 		return;
843 
844 	if (con->retries++ > MAX_CONNECT_RETRIES)
845 		return;
846 
847 	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
848 		log_print("no address for nodeid %d", con->nodeid);
849 		return;
850 	}
851 	base_con = nodeid2con(0, 0);
852 	BUG_ON(base_con == NULL);
853 
854 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
855 
856 	outmessage.msg_name = &rem_addr;
857 	outmessage.msg_namelen = addrlen;
858 	outmessage.msg_control = outcmsg;
859 	outmessage.msg_controllen = sizeof(outcmsg);
860 	outmessage.msg_flags = MSG_EOR;
861 
862 	spin_lock(&con->writequeue_lock);
863 
864 	if (list_empty(&con->writequeue)) {
865 		spin_unlock(&con->writequeue_lock);
866 		log_print("writequeue empty for nodeid %d", con->nodeid);
867 		return;
868 	}
869 
870 	e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
871 	len = e->len;
872 	offset = e->offset;
873 	spin_unlock(&con->writequeue_lock);
874 
875 	/* Send the first block off the write queue */
876 	iov[0].iov_base = page_address(e->page)+offset;
877 	iov[0].iov_len = len;
878 
879 	cmsg = CMSG_FIRSTHDR(&outmessage);
880 	cmsg->cmsg_level = IPPROTO_SCTP;
881 	cmsg->cmsg_type = SCTP_SNDRCV;
882 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
883 	sinfo = CMSG_DATA(cmsg);
884 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
885 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
886 	outmessage.msg_controllen = cmsg->cmsg_len;
887 
888 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
889 	if (ret < 0) {
890 		log_print("Send first packet to node %d failed: %d",
891 			  con->nodeid, ret);
892 
893 		/* Try again later */
894 		clear_bit(CF_CONNECT_PENDING, &con->flags);
895 		clear_bit(CF_INIT_PENDING, &con->flags);
896 	}
897 	else {
898 		spin_lock(&con->writequeue_lock);
899 		e->offset += ret;
900 		e->len -= ret;
901 
902 		if (e->len == 0 && e->users == 0) {
903 			list_del(&e->list);
904 			free_entry(e);
905 		}
906 		spin_unlock(&con->writequeue_lock);
907 	}
908 }
909 
910 /* Connect a new socket to its peer */
911 static void tcp_connect_to_sock(struct connection *con)
912 {
913 	int result = -EHOSTUNREACH;
914 	struct sockaddr_storage saddr, src_addr;
915 	int addr_len;
916 	struct socket *sock = NULL;
917 
918 	if (con->nodeid == 0) {
919 		log_print("attempt to connect sock 0 foiled");
920 		return;
921 	}
922 
923 	mutex_lock(&con->sock_mutex);
924 	if (con->retries++ > MAX_CONNECT_RETRIES)
925 		goto out;
926 
927 	/* Some odd races can cause double-connects, ignore them */
928 	if (con->sock) {
929 		result = 0;
930 		goto out;
931 	}
932 
933 	/* Create a socket to communicate with */
934 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
935 				  IPPROTO_TCP, &sock);
936 	if (result < 0)
937 		goto out_err;
938 
939 	memset(&saddr, 0, sizeof(saddr));
940 	if (dlm_nodeid_to_addr(con->nodeid, &saddr))
941 		goto out_err;
942 
943 	sock->sk->sk_user_data = con;
944 	con->rx_action = receive_from_sock;
945 	con->connect_action = tcp_connect_to_sock;
946 	add_sock(sock, con);
947 
948 	/* Bind to our cluster-known address connecting to avoid
949 	   routing problems */
950 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
951 	make_sockaddr(&src_addr, 0, &addr_len);
952 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
953 				 addr_len);
954 	if (result < 0) {
955 		log_print("could not bind for connect: %d", result);
956 		/* This *may* not indicate a critical error */
957 	}
958 
959 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
960 
961 	log_print("connecting to %d", con->nodeid);
962 	result =
963 		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
964 				   O_NONBLOCK);
965 	if (result == -EINPROGRESS)
966 		result = 0;
967 	if (result == 0)
968 		goto out;
969 
970 out_err:
971 	if (con->sock) {
972 		sock_release(con->sock);
973 		con->sock = NULL;
974 	} else if (sock) {
975 		sock_release(sock);
976 	}
977 	/*
978 	 * Some errors are fatal and this list might need adjusting. For other
979 	 * errors we try again until the max number of retries is reached.
980 	 */
981 	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
982 	    result != -ENETDOWN && result != -EINVAL
983 	    && result != -EPROTONOSUPPORT) {
984 		lowcomms_connect_sock(con);
985 		result = 0;
986 	}
987 out:
988 	mutex_unlock(&con->sock_mutex);
989 	return;
990 }
991 
992 static struct socket *tcp_create_listen_sock(struct connection *con,
993 					     struct sockaddr_storage *saddr)
994 {
995 	struct socket *sock = NULL;
996 	int result = 0;
997 	int one = 1;
998 	int addr_len;
999 
1000 	if (dlm_local_addr[0]->ss_family == AF_INET)
1001 		addr_len = sizeof(struct sockaddr_in);
1002 	else
1003 		addr_len = sizeof(struct sockaddr_in6);
1004 
1005 	/* Create a socket to communicate with */
1006 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1007 				  IPPROTO_TCP, &sock);
1008 	if (result < 0) {
1009 		log_print("Can't create listening comms socket");
1010 		goto create_out;
1011 	}
1012 
1013 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1014 				   (char *)&one, sizeof(one));
1015 
1016 	if (result < 0) {
1017 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1018 	}
1019 	sock->sk->sk_user_data = con;
1020 	con->rx_action = tcp_accept_from_sock;
1021 	con->connect_action = tcp_connect_to_sock;
1022 	con->sock = sock;
1023 
1024 	/* Bind to our port */
1025 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1026 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1027 	if (result < 0) {
1028 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1029 		sock_release(sock);
1030 		sock = NULL;
1031 		con->sock = NULL;
1032 		goto create_out;
1033 	}
1034 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1035 				 (char *)&one, sizeof(one));
1036 	if (result < 0) {
1037 		log_print("Set keepalive failed: %d", result);
1038 	}
1039 
1040 	result = sock->ops->listen(sock, 5);
1041 	if (result < 0) {
1042 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1043 		sock_release(sock);
1044 		sock = NULL;
1045 		goto create_out;
1046 	}
1047 
1048 create_out:
1049 	return sock;
1050 }
1051 
1052 /* Get local addresses */
1053 static void init_local(void)
1054 {
1055 	struct sockaddr_storage sas, *addr;
1056 	int i;
1057 
1058 	dlm_local_count = 0;
1059 	for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1060 		if (dlm_our_addr(&sas, i))
1061 			break;
1062 
1063 		addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1064 		if (!addr)
1065 			break;
1066 		memcpy(addr, &sas, sizeof(*addr));
1067 		dlm_local_addr[dlm_local_count++] = addr;
1068 	}
1069 }
1070 
1071 /* Bind to an IP address. SCTP allows multiple address so it can do
1072    multi-homing */
1073 static int add_sctp_bind_addr(struct connection *sctp_con,
1074 			      struct sockaddr_storage *addr,
1075 			      int addr_len, int num)
1076 {
1077 	int result = 0;
1078 
1079 	if (num == 1)
1080 		result = kernel_bind(sctp_con->sock,
1081 				     (struct sockaddr *) addr,
1082 				     addr_len);
1083 	else
1084 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1085 					   SCTP_SOCKOPT_BINDX_ADD,
1086 					   (char *)addr, addr_len);
1087 
1088 	if (result < 0)
1089 		log_print("Can't bind to port %d addr number %d",
1090 			  dlm_config.ci_tcp_port, num);
1091 
1092 	return result;
1093 }
1094 
1095 /* Initialise SCTP socket and bind to all interfaces */
1096 static int sctp_listen_for_all(void)
1097 {
1098 	struct socket *sock = NULL;
1099 	struct sockaddr_storage localaddr;
1100 	struct sctp_event_subscribe subscribe;
1101 	int result = -EINVAL, num = 1, i, addr_len;
1102 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1103 	int bufsize = NEEDED_RMEM;
1104 
1105 	if (!con)
1106 		return -ENOMEM;
1107 
1108 	log_print("Using SCTP for communications");
1109 
1110 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1111 				  IPPROTO_SCTP, &sock);
1112 	if (result < 0) {
1113 		log_print("Can't create comms socket, check SCTP is loaded");
1114 		goto out;
1115 	}
1116 
1117 	/* Listen for events */
1118 	memset(&subscribe, 0, sizeof(subscribe));
1119 	subscribe.sctp_data_io_event = 1;
1120 	subscribe.sctp_association_event = 1;
1121 	subscribe.sctp_send_failure_event = 1;
1122 	subscribe.sctp_shutdown_event = 1;
1123 	subscribe.sctp_partial_delivery_event = 1;
1124 
1125 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1126 				 (char *)&bufsize, sizeof(bufsize));
1127 	if (result)
1128 		log_print("Error increasing buffer space on socket %d", result);
1129 
1130 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1131 				   (char *)&subscribe, sizeof(subscribe));
1132 	if (result < 0) {
1133 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1134 			  result);
1135 		goto create_delsock;
1136 	}
1137 
1138 	/* Init con struct */
1139 	sock->sk->sk_user_data = con;
1140 	con->sock = sock;
1141 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1142 	con->rx_action = receive_from_sock;
1143 	con->connect_action = sctp_init_assoc;
1144 
1145 	/* Bind to all interfaces. */
1146 	for (i = 0; i < dlm_local_count; i++) {
1147 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1148 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1149 
1150 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1151 		if (result)
1152 			goto create_delsock;
1153 		++num;
1154 	}
1155 
1156 	result = sock->ops->listen(sock, 5);
1157 	if (result < 0) {
1158 		log_print("Can't set socket listening");
1159 		goto create_delsock;
1160 	}
1161 
1162 	return 0;
1163 
1164 create_delsock:
1165 	sock_release(sock);
1166 	con->sock = NULL;
1167 out:
1168 	return result;
1169 }
1170 
1171 static int tcp_listen_for_all(void)
1172 {
1173 	struct socket *sock = NULL;
1174 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1175 	int result = -EINVAL;
1176 
1177 	if (!con)
1178 		return -ENOMEM;
1179 
1180 	/* We don't support multi-homed hosts */
1181 	if (dlm_local_addr[1] != NULL) {
1182 		log_print("TCP protocol can't handle multi-homed hosts, "
1183 			  "try SCTP");
1184 		return -EINVAL;
1185 	}
1186 
1187 	log_print("Using TCP for communications");
1188 
1189 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1190 	if (sock) {
1191 		add_sock(sock, con);
1192 		result = 0;
1193 	}
1194 	else {
1195 		result = -EADDRINUSE;
1196 	}
1197 
1198 	return result;
1199 }
1200 
1201 
1202 
1203 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1204 						     gfp_t allocation)
1205 {
1206 	struct writequeue_entry *entry;
1207 
1208 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1209 	if (!entry)
1210 		return NULL;
1211 
1212 	entry->page = alloc_page(allocation);
1213 	if (!entry->page) {
1214 		kfree(entry);
1215 		return NULL;
1216 	}
1217 
1218 	entry->offset = 0;
1219 	entry->len = 0;
1220 	entry->end = 0;
1221 	entry->users = 0;
1222 	entry->con = con;
1223 
1224 	return entry;
1225 }
1226 
1227 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1228 {
1229 	struct connection *con;
1230 	struct writequeue_entry *e;
1231 	int offset = 0;
1232 	int users = 0;
1233 
1234 	con = nodeid2con(nodeid, allocation);
1235 	if (!con)
1236 		return NULL;
1237 
1238 	spin_lock(&con->writequeue_lock);
1239 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1240 	if ((&e->list == &con->writequeue) ||
1241 	    (PAGE_CACHE_SIZE - e->end < len)) {
1242 		e = NULL;
1243 	} else {
1244 		offset = e->end;
1245 		e->end += len;
1246 		users = e->users++;
1247 	}
1248 	spin_unlock(&con->writequeue_lock);
1249 
1250 	if (e) {
1251 	got_one:
1252 		*ppc = page_address(e->page) + offset;
1253 		return e;
1254 	}
1255 
1256 	e = new_writequeue_entry(con, allocation);
1257 	if (e) {
1258 		spin_lock(&con->writequeue_lock);
1259 		offset = e->end;
1260 		e->end += len;
1261 		users = e->users++;
1262 		list_add_tail(&e->list, &con->writequeue);
1263 		spin_unlock(&con->writequeue_lock);
1264 		goto got_one;
1265 	}
1266 	return NULL;
1267 }
1268 
1269 void dlm_lowcomms_commit_buffer(void *mh)
1270 {
1271 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1272 	struct connection *con = e->con;
1273 	int users;
1274 
1275 	spin_lock(&con->writequeue_lock);
1276 	users = --e->users;
1277 	if (users)
1278 		goto out;
1279 	e->len = e->end - e->offset;
1280 	spin_unlock(&con->writequeue_lock);
1281 
1282 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1283 		queue_work(send_workqueue, &con->swork);
1284 	}
1285 	return;
1286 
1287 out:
1288 	spin_unlock(&con->writequeue_lock);
1289 	return;
1290 }
1291 
1292 /* Send a message */
1293 static void send_to_sock(struct connection *con)
1294 {
1295 	int ret = 0;
1296 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1297 	struct writequeue_entry *e;
1298 	int len, offset;
1299 
1300 	mutex_lock(&con->sock_mutex);
1301 	if (con->sock == NULL)
1302 		goto out_connect;
1303 
1304 	spin_lock(&con->writequeue_lock);
1305 	for (;;) {
1306 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1307 			       list);
1308 		if ((struct list_head *) e == &con->writequeue)
1309 			break;
1310 
1311 		len = e->len;
1312 		offset = e->offset;
1313 		BUG_ON(len == 0 && e->users == 0);
1314 		spin_unlock(&con->writequeue_lock);
1315 
1316 		ret = 0;
1317 		if (len) {
1318 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1319 					      msg_flags);
1320 			if (ret == -EAGAIN || ret == 0) {
1321 				cond_resched();
1322 				goto out;
1323 			}
1324 			if (ret <= 0)
1325 				goto send_error;
1326 		}
1327 			/* Don't starve people filling buffers */
1328 			cond_resched();
1329 
1330 		spin_lock(&con->writequeue_lock);
1331 		e->offset += ret;
1332 		e->len -= ret;
1333 
1334 		if (e->len == 0 && e->users == 0) {
1335 			list_del(&e->list);
1336 			free_entry(e);
1337 			continue;
1338 		}
1339 	}
1340 	spin_unlock(&con->writequeue_lock);
1341 out:
1342 	mutex_unlock(&con->sock_mutex);
1343 	return;
1344 
1345 send_error:
1346 	mutex_unlock(&con->sock_mutex);
1347 	close_connection(con, false);
1348 	lowcomms_connect_sock(con);
1349 	return;
1350 
1351 out_connect:
1352 	mutex_unlock(&con->sock_mutex);
1353 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1354 		lowcomms_connect_sock(con);
1355 	return;
1356 }
1357 
1358 static void clean_one_writequeue(struct connection *con)
1359 {
1360 	struct writequeue_entry *e, *safe;
1361 
1362 	spin_lock(&con->writequeue_lock);
1363 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1364 		list_del(&e->list);
1365 		free_entry(e);
1366 	}
1367 	spin_unlock(&con->writequeue_lock);
1368 }
1369 
1370 /* Called from recovery when it knows that a node has
1371    left the cluster */
1372 int dlm_lowcomms_close(int nodeid)
1373 {
1374 	struct connection *con;
1375 
1376 	log_print("closing connection to node %d", nodeid);
1377 	con = nodeid2con(nodeid, 0);
1378 	if (con) {
1379 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1380 		clear_bit(CF_WRITE_PENDING, &con->flags);
1381 		set_bit(CF_CLOSE, &con->flags);
1382 		if (cancel_work_sync(&con->swork))
1383 			log_print("canceled swork for node %d", nodeid);
1384 		if (cancel_work_sync(&con->rwork))
1385 			log_print("canceled rwork for node %d", nodeid);
1386 		clean_one_writequeue(con);
1387 		close_connection(con, true);
1388 	}
1389 	return 0;
1390 }
1391 
1392 /* Receive workqueue function */
1393 static void process_recv_sockets(struct work_struct *work)
1394 {
1395 	struct connection *con = container_of(work, struct connection, rwork);
1396 	int err;
1397 
1398 	clear_bit(CF_READ_PENDING, &con->flags);
1399 	do {
1400 		err = con->rx_action(con);
1401 	} while (!err);
1402 }
1403 
1404 /* Send workqueue function */
1405 static void process_send_sockets(struct work_struct *work)
1406 {
1407 	struct connection *con = container_of(work, struct connection, swork);
1408 
1409 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1410 		con->connect_action(con);
1411 		set_bit(CF_WRITE_PENDING, &con->flags);
1412 	}
1413 	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1414 		send_to_sock(con);
1415 }
1416 
1417 
1418 /* Discard all entries on the write queues */
1419 static void clean_writequeues(void)
1420 {
1421 	foreach_conn(clean_one_writequeue);
1422 }
1423 
1424 static void work_stop(void)
1425 {
1426 	destroy_workqueue(recv_workqueue);
1427 	destroy_workqueue(send_workqueue);
1428 }
1429 
1430 static int work_start(void)
1431 {
1432 	int error;
1433 	recv_workqueue = create_workqueue("dlm_recv");
1434 	error = IS_ERR(recv_workqueue);
1435 	if (error) {
1436 		log_print("can't start dlm_recv %d", error);
1437 		return error;
1438 	}
1439 
1440 	send_workqueue = create_singlethread_workqueue("dlm_send");
1441 	error = IS_ERR(send_workqueue);
1442 	if (error) {
1443 		log_print("can't start dlm_send %d", error);
1444 		destroy_workqueue(recv_workqueue);
1445 		return error;
1446 	}
1447 
1448 	return 0;
1449 }
1450 
1451 static void stop_conn(struct connection *con)
1452 {
1453 	con->flags |= 0x0F;
1454 	if (con->sock && con->sock->sk)
1455 		con->sock->sk->sk_user_data = NULL;
1456 }
1457 
1458 static void free_conn(struct connection *con)
1459 {
1460 	close_connection(con, true);
1461 	if (con->othercon)
1462 		kmem_cache_free(con_cache, con->othercon);
1463 	hlist_del(&con->list);
1464 	kmem_cache_free(con_cache, con);
1465 }
1466 
1467 void dlm_lowcomms_stop(void)
1468 {
1469 	/* Set all the flags to prevent any
1470 	   socket activity.
1471 	*/
1472 	mutex_lock(&connections_lock);
1473 	foreach_conn(stop_conn);
1474 	mutex_unlock(&connections_lock);
1475 
1476 	work_stop();
1477 
1478 	mutex_lock(&connections_lock);
1479 	clean_writequeues();
1480 
1481 	foreach_conn(free_conn);
1482 
1483 	mutex_unlock(&connections_lock);
1484 	kmem_cache_destroy(con_cache);
1485 }
1486 
1487 int dlm_lowcomms_start(void)
1488 {
1489 	int error = -EINVAL;
1490 	struct connection *con;
1491 	int i;
1492 
1493 	for (i = 0; i < CONN_HASH_SIZE; i++)
1494 		INIT_HLIST_HEAD(&connection_hash[i]);
1495 
1496 	init_local();
1497 	if (!dlm_local_count) {
1498 		error = -ENOTCONN;
1499 		log_print("no local IP address has been set");
1500 		goto out;
1501 	}
1502 
1503 	error = -ENOMEM;
1504 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1505 				      __alignof__(struct connection), 0,
1506 				      NULL);
1507 	if (!con_cache)
1508 		goto out;
1509 
1510 	/* Start listening */
1511 	if (dlm_config.ci_protocol == 0)
1512 		error = tcp_listen_for_all();
1513 	else
1514 		error = sctp_listen_for_all();
1515 	if (error)
1516 		goto fail_unlisten;
1517 
1518 	error = work_start();
1519 	if (error)
1520 		goto fail_unlisten;
1521 
1522 	return 0;
1523 
1524 fail_unlisten:
1525 	con = nodeid2con(0,0);
1526 	if (con) {
1527 		close_connection(con, false);
1528 		kmem_cache_free(con_cache, con);
1529 	}
1530 	kmem_cache_destroy(con_cache);
1531 
1532 out:
1533 	return error;
1534 }
1535