xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 63c43812ee99efe7903955bae8cd928e9582477a)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
57 
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62 
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65 
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68 
69 struct cbuf {
70 	unsigned int base;
71 	unsigned int len;
72 	unsigned int mask;
73 };
74 
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77 	cb->len += n;
78 }
79 
80 static int cbuf_data(struct cbuf *cb)
81 {
82 	return ((cb->base + cb->len) & cb->mask);
83 }
84 
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87 	cb->base = cb->len = 0;
88 	cb->mask = size-1;
89 }
90 
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93 	cb->len  -= n;
94 	cb->base += n;
95 	cb->base &= cb->mask;
96 }
97 
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100 	return cb->len == 0;
101 }
102 
103 struct connection {
104 	struct socket *sock;	/* NULL if not connected */
105 	uint32_t nodeid;	/* So we know who we are in the list */
106 	struct mutex sock_mutex;
107 	unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_CONNECT_PENDING 3
111 #define CF_INIT_PENDING 4
112 #define CF_IS_OTHERCON 5
113 #define CF_CLOSE 6
114 #define CF_APP_LIMITED 7
115 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
116 	spinlock_t writequeue_lock;
117 	int (*rx_action) (struct connection *);	/* What to do when active */
118 	void (*connect_action) (struct connection *);	/* What to do to connect */
119 	struct page *rx_page;
120 	struct cbuf cb;
121 	int retries;
122 #define MAX_CONNECT_RETRIES 3
123 	int sctp_assoc;
124 	struct hlist_node list;
125 	struct connection *othercon;
126 	struct work_struct rwork; /* Receive workqueue */
127 	struct work_struct swork; /* Send workqueue */
128 	bool try_new_addr;
129 };
130 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
131 
132 /* An entry waiting to be sent */
133 struct writequeue_entry {
134 	struct list_head list;
135 	struct page *page;
136 	int offset;
137 	int len;
138 	int end;
139 	int users;
140 	struct connection *con;
141 };
142 
143 struct dlm_node_addr {
144 	struct list_head list;
145 	int nodeid;
146 	int addr_count;
147 	int curr_addr_index;
148 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
149 };
150 
151 static LIST_HEAD(dlm_node_addrs);
152 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
153 
154 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
155 static int dlm_local_count;
156 static int dlm_allow_conn;
157 
158 /* Work queues */
159 static struct workqueue_struct *recv_workqueue;
160 static struct workqueue_struct *send_workqueue;
161 
162 static struct hlist_head connection_hash[CONN_HASH_SIZE];
163 static DEFINE_MUTEX(connections_lock);
164 static struct kmem_cache *con_cache;
165 
166 static void process_recv_sockets(struct work_struct *work);
167 static void process_send_sockets(struct work_struct *work);
168 
169 
170 /* This is deliberately very simple because most clusters have simple
171    sequential nodeids, so we should be able to go straight to a connection
172    struct in the array */
173 static inline int nodeid_hash(int nodeid)
174 {
175 	return nodeid & (CONN_HASH_SIZE-1);
176 }
177 
178 static struct connection *__find_con(int nodeid)
179 {
180 	int r;
181 	struct connection *con;
182 
183 	r = nodeid_hash(nodeid);
184 
185 	hlist_for_each_entry(con, &connection_hash[r], list) {
186 		if (con->nodeid == nodeid)
187 			return con;
188 	}
189 	return NULL;
190 }
191 
192 /*
193  * If 'allocation' is zero then we don't attempt to create a new
194  * connection structure for this node.
195  */
196 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
197 {
198 	struct connection *con = NULL;
199 	int r;
200 
201 	con = __find_con(nodeid);
202 	if (con || !alloc)
203 		return con;
204 
205 	con = kmem_cache_zalloc(con_cache, alloc);
206 	if (!con)
207 		return NULL;
208 
209 	r = nodeid_hash(nodeid);
210 	hlist_add_head(&con->list, &connection_hash[r]);
211 
212 	con->nodeid = nodeid;
213 	mutex_init(&con->sock_mutex);
214 	INIT_LIST_HEAD(&con->writequeue);
215 	spin_lock_init(&con->writequeue_lock);
216 	INIT_WORK(&con->swork, process_send_sockets);
217 	INIT_WORK(&con->rwork, process_recv_sockets);
218 
219 	/* Setup action pointers for child sockets */
220 	if (con->nodeid) {
221 		struct connection *zerocon = __find_con(0);
222 
223 		con->connect_action = zerocon->connect_action;
224 		if (!con->rx_action)
225 			con->rx_action = zerocon->rx_action;
226 	}
227 
228 	return con;
229 }
230 
231 /* Loop round all connections */
232 static void foreach_conn(void (*conn_func)(struct connection *c))
233 {
234 	int i;
235 	struct hlist_node *n;
236 	struct connection *con;
237 
238 	for (i = 0; i < CONN_HASH_SIZE; i++) {
239 		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
240 			conn_func(con);
241 	}
242 }
243 
244 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
245 {
246 	struct connection *con;
247 
248 	mutex_lock(&connections_lock);
249 	con = __nodeid2con(nodeid, allocation);
250 	mutex_unlock(&connections_lock);
251 
252 	return con;
253 }
254 
255 /* This is a bit drastic, but only called when things go wrong */
256 static struct connection *assoc2con(int assoc_id)
257 {
258 	int i;
259 	struct connection *con;
260 
261 	mutex_lock(&connections_lock);
262 
263 	for (i = 0 ; i < CONN_HASH_SIZE; i++) {
264 		hlist_for_each_entry(con, &connection_hash[i], list) {
265 			if (con->sctp_assoc == assoc_id) {
266 				mutex_unlock(&connections_lock);
267 				return con;
268 			}
269 		}
270 	}
271 	mutex_unlock(&connections_lock);
272 	return NULL;
273 }
274 
275 static struct dlm_node_addr *find_node_addr(int nodeid)
276 {
277 	struct dlm_node_addr *na;
278 
279 	list_for_each_entry(na, &dlm_node_addrs, list) {
280 		if (na->nodeid == nodeid)
281 			return na;
282 	}
283 	return NULL;
284 }
285 
286 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
287 {
288 	switch (x->ss_family) {
289 	case AF_INET: {
290 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
291 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
292 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
293 			return 0;
294 		if (sinx->sin_port != siny->sin_port)
295 			return 0;
296 		break;
297 	}
298 	case AF_INET6: {
299 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
300 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
301 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
302 			return 0;
303 		if (sinx->sin6_port != siny->sin6_port)
304 			return 0;
305 		break;
306 	}
307 	default:
308 		return 0;
309 	}
310 	return 1;
311 }
312 
313 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
314 			  struct sockaddr *sa_out, bool try_new_addr)
315 {
316 	struct sockaddr_storage sas;
317 	struct dlm_node_addr *na;
318 
319 	if (!dlm_local_count)
320 		return -1;
321 
322 	spin_lock(&dlm_node_addrs_spin);
323 	na = find_node_addr(nodeid);
324 	if (na && na->addr_count) {
325 		if (try_new_addr) {
326 			na->curr_addr_index++;
327 			if (na->curr_addr_index == na->addr_count)
328 				na->curr_addr_index = 0;
329 		}
330 
331 		memcpy(&sas, na->addr[na->curr_addr_index ],
332 			sizeof(struct sockaddr_storage));
333 	}
334 	spin_unlock(&dlm_node_addrs_spin);
335 
336 	if (!na)
337 		return -EEXIST;
338 
339 	if (!na->addr_count)
340 		return -ENOENT;
341 
342 	if (sas_out)
343 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
344 
345 	if (!sa_out)
346 		return 0;
347 
348 	if (dlm_local_addr[0]->ss_family == AF_INET) {
349 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
350 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
351 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
352 	} else {
353 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
354 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
355 		ret6->sin6_addr = in6->sin6_addr;
356 	}
357 
358 	return 0;
359 }
360 
361 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
362 {
363 	struct dlm_node_addr *na;
364 	int rv = -EEXIST;
365 	int addr_i;
366 
367 	spin_lock(&dlm_node_addrs_spin);
368 	list_for_each_entry(na, &dlm_node_addrs, list) {
369 		if (!na->addr_count)
370 			continue;
371 
372 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
373 			if (addr_compare(na->addr[addr_i], addr)) {
374 				*nodeid = na->nodeid;
375 				rv = 0;
376 				goto unlock;
377 			}
378 		}
379 	}
380 unlock:
381 	spin_unlock(&dlm_node_addrs_spin);
382 	return rv;
383 }
384 
385 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
386 {
387 	struct sockaddr_storage *new_addr;
388 	struct dlm_node_addr *new_node, *na;
389 
390 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
391 	if (!new_node)
392 		return -ENOMEM;
393 
394 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
395 	if (!new_addr) {
396 		kfree(new_node);
397 		return -ENOMEM;
398 	}
399 
400 	memcpy(new_addr, addr, len);
401 
402 	spin_lock(&dlm_node_addrs_spin);
403 	na = find_node_addr(nodeid);
404 	if (!na) {
405 		new_node->nodeid = nodeid;
406 		new_node->addr[0] = new_addr;
407 		new_node->addr_count = 1;
408 		list_add(&new_node->list, &dlm_node_addrs);
409 		spin_unlock(&dlm_node_addrs_spin);
410 		return 0;
411 	}
412 
413 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
414 		spin_unlock(&dlm_node_addrs_spin);
415 		kfree(new_addr);
416 		kfree(new_node);
417 		return -ENOSPC;
418 	}
419 
420 	na->addr[na->addr_count++] = new_addr;
421 	spin_unlock(&dlm_node_addrs_spin);
422 	kfree(new_node);
423 	return 0;
424 }
425 
426 /* Data available on socket or listen socket received a connect */
427 static void lowcomms_data_ready(struct sock *sk)
428 {
429 	struct connection *con = sock2con(sk);
430 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
431 		queue_work(recv_workqueue, &con->rwork);
432 }
433 
434 static void lowcomms_write_space(struct sock *sk)
435 {
436 	struct connection *con = sock2con(sk);
437 
438 	if (!con)
439 		return;
440 
441 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
442 
443 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
444 		con->sock->sk->sk_write_pending--;
445 		clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
446 	}
447 
448 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
449 		queue_work(send_workqueue, &con->swork);
450 }
451 
452 static inline void lowcomms_connect_sock(struct connection *con)
453 {
454 	if (test_bit(CF_CLOSE, &con->flags))
455 		return;
456 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
457 		queue_work(send_workqueue, &con->swork);
458 }
459 
460 static void lowcomms_state_change(struct sock *sk)
461 {
462 	if (sk->sk_state == TCP_ESTABLISHED)
463 		lowcomms_write_space(sk);
464 }
465 
466 int dlm_lowcomms_connect_node(int nodeid)
467 {
468 	struct connection *con;
469 
470 	/* with sctp there's no connecting without sending */
471 	if (dlm_config.ci_protocol != 0)
472 		return 0;
473 
474 	if (nodeid == dlm_our_nodeid())
475 		return 0;
476 
477 	con = nodeid2con(nodeid, GFP_NOFS);
478 	if (!con)
479 		return -ENOMEM;
480 	lowcomms_connect_sock(con);
481 	return 0;
482 }
483 
484 /* Make a socket active */
485 static void add_sock(struct socket *sock, struct connection *con)
486 {
487 	con->sock = sock;
488 
489 	/* Install a data_ready callback */
490 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
491 	con->sock->sk->sk_write_space = lowcomms_write_space;
492 	con->sock->sk->sk_state_change = lowcomms_state_change;
493 	con->sock->sk->sk_user_data = con;
494 	con->sock->sk->sk_allocation = GFP_NOFS;
495 }
496 
497 /* Add the port number to an IPv6 or 4 sockaddr and return the address
498    length */
499 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
500 			  int *addr_len)
501 {
502 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
503 	if (saddr->ss_family == AF_INET) {
504 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
505 		in4_addr->sin_port = cpu_to_be16(port);
506 		*addr_len = sizeof(struct sockaddr_in);
507 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
508 	} else {
509 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
510 		in6_addr->sin6_port = cpu_to_be16(port);
511 		*addr_len = sizeof(struct sockaddr_in6);
512 	}
513 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
514 }
515 
516 /* Close a remote connection and tidy up */
517 static void close_connection(struct connection *con, bool and_other)
518 {
519 	mutex_lock(&con->sock_mutex);
520 
521 	if (con->sock) {
522 		sock_release(con->sock);
523 		con->sock = NULL;
524 	}
525 	if (con->othercon && and_other) {
526 		/* Will only re-enter once. */
527 		close_connection(con->othercon, false);
528 	}
529 	if (con->rx_page) {
530 		__free_page(con->rx_page);
531 		con->rx_page = NULL;
532 	}
533 
534 	con->retries = 0;
535 	mutex_unlock(&con->sock_mutex);
536 }
537 
538 /* We only send shutdown messages to nodes that are not part of the cluster */
539 static void sctp_send_shutdown(sctp_assoc_t associd)
540 {
541 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
542 	struct msghdr outmessage;
543 	struct cmsghdr *cmsg;
544 	struct sctp_sndrcvinfo *sinfo;
545 	int ret;
546 	struct connection *con;
547 
548 	con = nodeid2con(0,0);
549 	BUG_ON(con == NULL);
550 
551 	outmessage.msg_name = NULL;
552 	outmessage.msg_namelen = 0;
553 	outmessage.msg_control = outcmsg;
554 	outmessage.msg_controllen = sizeof(outcmsg);
555 	outmessage.msg_flags = MSG_EOR;
556 
557 	cmsg = CMSG_FIRSTHDR(&outmessage);
558 	cmsg->cmsg_level = IPPROTO_SCTP;
559 	cmsg->cmsg_type = SCTP_SNDRCV;
560 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
561 	outmessage.msg_controllen = cmsg->cmsg_len;
562 	sinfo = CMSG_DATA(cmsg);
563 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
564 
565 	sinfo->sinfo_flags |= MSG_EOF;
566 	sinfo->sinfo_assoc_id = associd;
567 
568 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
569 
570 	if (ret != 0)
571 		log_print("send EOF to node failed: %d", ret);
572 }
573 
574 static void sctp_init_failed_foreach(struct connection *con)
575 {
576 
577 	/*
578 	 * Don't try to recover base con and handle race where the
579 	 * other node's assoc init creates a assoc and we get that
580 	 * notification, then we get a notification that our attempt
581 	 * failed due. This happens when we are still trying the primary
582 	 * address, but the other node has already tried secondary addrs
583 	 * and found one that worked.
584 	 */
585 	if (!con->nodeid || con->sctp_assoc)
586 		return;
587 
588 	log_print("Retrying SCTP association init for node %d\n", con->nodeid);
589 
590 	con->try_new_addr = true;
591 	con->sctp_assoc = 0;
592 	if (test_and_clear_bit(CF_INIT_PENDING, &con->flags)) {
593 		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
594 			queue_work(send_workqueue, &con->swork);
595 	}
596 }
597 
598 /* INIT failed but we don't know which node...
599    restart INIT on all pending nodes */
600 static void sctp_init_failed(void)
601 {
602 	mutex_lock(&connections_lock);
603 
604 	foreach_conn(sctp_init_failed_foreach);
605 
606 	mutex_unlock(&connections_lock);
607 }
608 
609 static void retry_failed_sctp_send(struct connection *recv_con,
610 				   struct sctp_send_failed *sn_send_failed,
611 				   char *buf)
612 {
613 	int len = sn_send_failed->ssf_length - sizeof(struct sctp_send_failed);
614 	struct dlm_mhandle *mh;
615 	struct connection *con;
616 	char *retry_buf;
617 	int nodeid = sn_send_failed->ssf_info.sinfo_ppid;
618 
619 	log_print("Retry sending %d bytes to node id %d", len, nodeid);
620 
621 	if (!nodeid) {
622 		log_print("Shouldn't resend data via listening connection.");
623 		return;
624 	}
625 
626 	con = nodeid2con(nodeid, 0);
627 	if (!con) {
628 		log_print("Could not look up con for nodeid %d\n",
629 			  nodeid);
630 		return;
631 	}
632 
633 	mh = dlm_lowcomms_get_buffer(nodeid, len, GFP_NOFS, &retry_buf);
634 	if (!mh) {
635 		log_print("Could not allocate buf for retry.");
636 		return;
637 	}
638 	memcpy(retry_buf, buf + sizeof(struct sctp_send_failed), len);
639 	dlm_lowcomms_commit_buffer(mh);
640 
641 	/*
642 	 * If we got a assoc changed event before the send failed event then
643 	 * we only need to retry the send.
644 	 */
645 	if (con->sctp_assoc) {
646 		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
647 			queue_work(send_workqueue, &con->swork);
648 	} else
649 		sctp_init_failed_foreach(con);
650 }
651 
652 /* Something happened to an association */
653 static void process_sctp_notification(struct connection *con,
654 				      struct msghdr *msg, char *buf)
655 {
656 	union sctp_notification *sn = (union sctp_notification *)buf;
657 	struct linger linger;
658 
659 	switch (sn->sn_header.sn_type) {
660 	case SCTP_SEND_FAILED:
661 		retry_failed_sctp_send(con, &sn->sn_send_failed, buf);
662 		break;
663 	case SCTP_ASSOC_CHANGE:
664 		switch (sn->sn_assoc_change.sac_state) {
665 		case SCTP_COMM_UP:
666 		case SCTP_RESTART:
667 		{
668 			/* Check that the new node is in the lockspace */
669 			struct sctp_prim prim;
670 			int nodeid;
671 			int prim_len, ret;
672 			int addr_len;
673 			struct connection *new_con;
674 
675 			/*
676 			 * We get this before any data for an association.
677 			 * We verify that the node is in the cluster and
678 			 * then peel off a socket for it.
679 			 */
680 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
681 				log_print("COMM_UP for invalid assoc ID %d",
682 					 (int)sn->sn_assoc_change.sac_assoc_id);
683 				sctp_init_failed();
684 				return;
685 			}
686 			memset(&prim, 0, sizeof(struct sctp_prim));
687 			prim_len = sizeof(struct sctp_prim);
688 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
689 
690 			ret = kernel_getsockopt(con->sock,
691 						IPPROTO_SCTP,
692 						SCTP_PRIMARY_ADDR,
693 						(char*)&prim,
694 						&prim_len);
695 			if (ret < 0) {
696 				log_print("getsockopt/sctp_primary_addr on "
697 					  "new assoc %d failed : %d",
698 					  (int)sn->sn_assoc_change.sac_assoc_id,
699 					  ret);
700 
701 				/* Retry INIT later */
702 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
703 				if (new_con)
704 					clear_bit(CF_CONNECT_PENDING, &con->flags);
705 				return;
706 			}
707 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
708 			if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
709 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
710 				log_print("reject connect from unknown addr");
711 				print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
712 						     b, sizeof(struct sockaddr_storage));
713 				sctp_send_shutdown(prim.ssp_assoc_id);
714 				return;
715 			}
716 
717 			new_con = nodeid2con(nodeid, GFP_NOFS);
718 			if (!new_con)
719 				return;
720 
721 			/* Peel off a new sock */
722 			lock_sock(con->sock->sk);
723 			ret = sctp_do_peeloff(con->sock->sk,
724 				sn->sn_assoc_change.sac_assoc_id,
725 				&new_con->sock);
726 			release_sock(con->sock->sk);
727 			if (ret < 0) {
728 				log_print("Can't peel off a socket for "
729 					  "connection %d to node %d: err=%d",
730 					  (int)sn->sn_assoc_change.sac_assoc_id,
731 					  nodeid, ret);
732 				return;
733 			}
734 			add_sock(new_con->sock, new_con);
735 
736 			linger.l_onoff = 1;
737 			linger.l_linger = 0;
738 			ret = kernel_setsockopt(new_con->sock, SOL_SOCKET, SO_LINGER,
739 						(char *)&linger, sizeof(linger));
740 			if (ret < 0)
741 				log_print("set socket option SO_LINGER failed");
742 
743 			log_print("connecting to %d sctp association %d",
744 				 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
745 
746 			new_con->sctp_assoc = sn->sn_assoc_change.sac_assoc_id;
747 			new_con->try_new_addr = false;
748 			/* Send any pending writes */
749 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
750 			clear_bit(CF_INIT_PENDING, &new_con->flags);
751 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
752 				queue_work(send_workqueue, &new_con->swork);
753 			}
754 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
755 				queue_work(recv_workqueue, &new_con->rwork);
756 		}
757 		break;
758 
759 		case SCTP_COMM_LOST:
760 		case SCTP_SHUTDOWN_COMP:
761 		{
762 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
763 			if (con) {
764 				con->sctp_assoc = 0;
765 			}
766 		}
767 		break;
768 
769 		case SCTP_CANT_STR_ASSOC:
770 		{
771 			/* Will retry init when we get the send failed notification */
772 			log_print("Can't start SCTP association - retrying");
773 		}
774 		break;
775 
776 		default:
777 			log_print("unexpected SCTP assoc change id=%d state=%d",
778 				  (int)sn->sn_assoc_change.sac_assoc_id,
779 				  sn->sn_assoc_change.sac_state);
780 		}
781 	default:
782 		; /* fall through */
783 	}
784 }
785 
786 /* Data received from remote end */
787 static int receive_from_sock(struct connection *con)
788 {
789 	int ret = 0;
790 	struct msghdr msg = {};
791 	struct kvec iov[2];
792 	unsigned len;
793 	int r;
794 	int call_again_soon = 0;
795 	int nvec;
796 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
797 
798 	mutex_lock(&con->sock_mutex);
799 
800 	if (con->sock == NULL) {
801 		ret = -EAGAIN;
802 		goto out_close;
803 	}
804 
805 	if (con->rx_page == NULL) {
806 		/*
807 		 * This doesn't need to be atomic, but I think it should
808 		 * improve performance if it is.
809 		 */
810 		con->rx_page = alloc_page(GFP_ATOMIC);
811 		if (con->rx_page == NULL)
812 			goto out_resched;
813 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
814 	}
815 
816 	/* Only SCTP needs these really */
817 	memset(&incmsg, 0, sizeof(incmsg));
818 	msg.msg_control = incmsg;
819 	msg.msg_controllen = sizeof(incmsg);
820 
821 	/*
822 	 * iov[0] is the bit of the circular buffer between the current end
823 	 * point (cb.base + cb.len) and the end of the buffer.
824 	 */
825 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
826 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
827 	iov[1].iov_len = 0;
828 	nvec = 1;
829 
830 	/*
831 	 * iov[1] is the bit of the circular buffer between the start of the
832 	 * buffer and the start of the currently used section (cb.base)
833 	 */
834 	if (cbuf_data(&con->cb) >= con->cb.base) {
835 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
836 		iov[1].iov_len = con->cb.base;
837 		iov[1].iov_base = page_address(con->rx_page);
838 		nvec = 2;
839 	}
840 	len = iov[0].iov_len + iov[1].iov_len;
841 
842 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
843 			       MSG_DONTWAIT | MSG_NOSIGNAL);
844 	if (ret <= 0)
845 		goto out_close;
846 
847 	/* Process SCTP notifications */
848 	if (msg.msg_flags & MSG_NOTIFICATION) {
849 		msg.msg_control = incmsg;
850 		msg.msg_controllen = sizeof(incmsg);
851 
852 		process_sctp_notification(con, &msg,
853 				page_address(con->rx_page) + con->cb.base);
854 		mutex_unlock(&con->sock_mutex);
855 		return 0;
856 	}
857 	BUG_ON(con->nodeid == 0);
858 
859 	if (ret == len)
860 		call_again_soon = 1;
861 	cbuf_add(&con->cb, ret);
862 	ret = dlm_process_incoming_buffer(con->nodeid,
863 					  page_address(con->rx_page),
864 					  con->cb.base, con->cb.len,
865 					  PAGE_CACHE_SIZE);
866 	if (ret == -EBADMSG) {
867 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
868 			  "iov_len=%u, iov_base[0]=%p, read=%d",
869 			  page_address(con->rx_page), con->cb.base, con->cb.len,
870 			  len, iov[0].iov_base, r);
871 	}
872 	if (ret < 0)
873 		goto out_close;
874 	cbuf_eat(&con->cb, ret);
875 
876 	if (cbuf_empty(&con->cb) && !call_again_soon) {
877 		__free_page(con->rx_page);
878 		con->rx_page = NULL;
879 	}
880 
881 	if (call_again_soon)
882 		goto out_resched;
883 	mutex_unlock(&con->sock_mutex);
884 	return 0;
885 
886 out_resched:
887 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
888 		queue_work(recv_workqueue, &con->rwork);
889 	mutex_unlock(&con->sock_mutex);
890 	return -EAGAIN;
891 
892 out_close:
893 	mutex_unlock(&con->sock_mutex);
894 	if (ret != -EAGAIN) {
895 		close_connection(con, false);
896 		/* Reconnect when there is something to send */
897 	}
898 	/* Don't return success if we really got EOF */
899 	if (ret == 0)
900 		ret = -EAGAIN;
901 
902 	return ret;
903 }
904 
905 /* Listening socket is busy, accept a connection */
906 static int tcp_accept_from_sock(struct connection *con)
907 {
908 	int result;
909 	struct sockaddr_storage peeraddr;
910 	struct socket *newsock;
911 	int len;
912 	int nodeid;
913 	struct connection *newcon;
914 	struct connection *addcon;
915 
916 	mutex_lock(&connections_lock);
917 	if (!dlm_allow_conn) {
918 		mutex_unlock(&connections_lock);
919 		return -1;
920 	}
921 	mutex_unlock(&connections_lock);
922 
923 	memset(&peeraddr, 0, sizeof(peeraddr));
924 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
925 				  IPPROTO_TCP, &newsock);
926 	if (result < 0)
927 		return -ENOMEM;
928 
929 	mutex_lock_nested(&con->sock_mutex, 0);
930 
931 	result = -ENOTCONN;
932 	if (con->sock == NULL)
933 		goto accept_err;
934 
935 	newsock->type = con->sock->type;
936 	newsock->ops = con->sock->ops;
937 
938 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
939 	if (result < 0)
940 		goto accept_err;
941 
942 	/* Get the connected socket's peer */
943 	memset(&peeraddr, 0, sizeof(peeraddr));
944 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
945 				  &len, 2)) {
946 		result = -ECONNABORTED;
947 		goto accept_err;
948 	}
949 
950 	/* Get the new node's NODEID */
951 	make_sockaddr(&peeraddr, 0, &len);
952 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
953 		unsigned char *b=(unsigned char *)&peeraddr;
954 		log_print("connect from non cluster node");
955 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
956 				     b, sizeof(struct sockaddr_storage));
957 		sock_release(newsock);
958 		mutex_unlock(&con->sock_mutex);
959 		return -1;
960 	}
961 
962 	log_print("got connection from %d", nodeid);
963 
964 	/*  Check to see if we already have a connection to this node. This
965 	 *  could happen if the two nodes initiate a connection at roughly
966 	 *  the same time and the connections cross on the wire.
967 	 *  In this case we store the incoming one in "othercon"
968 	 */
969 	newcon = nodeid2con(nodeid, GFP_NOFS);
970 	if (!newcon) {
971 		result = -ENOMEM;
972 		goto accept_err;
973 	}
974 	mutex_lock_nested(&newcon->sock_mutex, 1);
975 	if (newcon->sock) {
976 		struct connection *othercon = newcon->othercon;
977 
978 		if (!othercon) {
979 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
980 			if (!othercon) {
981 				log_print("failed to allocate incoming socket");
982 				mutex_unlock(&newcon->sock_mutex);
983 				result = -ENOMEM;
984 				goto accept_err;
985 			}
986 			othercon->nodeid = nodeid;
987 			othercon->rx_action = receive_from_sock;
988 			mutex_init(&othercon->sock_mutex);
989 			INIT_WORK(&othercon->swork, process_send_sockets);
990 			INIT_WORK(&othercon->rwork, process_recv_sockets);
991 			set_bit(CF_IS_OTHERCON, &othercon->flags);
992 		}
993 		if (!othercon->sock) {
994 			newcon->othercon = othercon;
995 			othercon->sock = newsock;
996 			newsock->sk->sk_user_data = othercon;
997 			add_sock(newsock, othercon);
998 			addcon = othercon;
999 		}
1000 		else {
1001 			printk("Extra connection from node %d attempted\n", nodeid);
1002 			result = -EAGAIN;
1003 			mutex_unlock(&newcon->sock_mutex);
1004 			goto accept_err;
1005 		}
1006 	}
1007 	else {
1008 		newsock->sk->sk_user_data = newcon;
1009 		newcon->rx_action = receive_from_sock;
1010 		add_sock(newsock, newcon);
1011 		addcon = newcon;
1012 	}
1013 
1014 	mutex_unlock(&newcon->sock_mutex);
1015 
1016 	/*
1017 	 * Add it to the active queue in case we got data
1018 	 * between processing the accept adding the socket
1019 	 * to the read_sockets list
1020 	 */
1021 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
1022 		queue_work(recv_workqueue, &addcon->rwork);
1023 	mutex_unlock(&con->sock_mutex);
1024 
1025 	return 0;
1026 
1027 accept_err:
1028 	mutex_unlock(&con->sock_mutex);
1029 	sock_release(newsock);
1030 
1031 	if (result != -EAGAIN)
1032 		log_print("error accepting connection from node: %d", result);
1033 	return result;
1034 }
1035 
1036 static void free_entry(struct writequeue_entry *e)
1037 {
1038 	__free_page(e->page);
1039 	kfree(e);
1040 }
1041 
1042 /*
1043  * writequeue_entry_complete - try to delete and free write queue entry
1044  * @e: write queue entry to try to delete
1045  * @completed: bytes completed
1046  *
1047  * writequeue_lock must be held.
1048  */
1049 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1050 {
1051 	e->offset += completed;
1052 	e->len -= completed;
1053 
1054 	if (e->len == 0 && e->users == 0) {
1055 		list_del(&e->list);
1056 		free_entry(e);
1057 	}
1058 }
1059 
1060 /* Initiate an SCTP association.
1061    This is a special case of send_to_sock() in that we don't yet have a
1062    peeled-off socket for this association, so we use the listening socket
1063    and add the primary IP address of the remote node.
1064  */
1065 static void sctp_init_assoc(struct connection *con)
1066 {
1067 	struct sockaddr_storage rem_addr;
1068 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
1069 	struct msghdr outmessage;
1070 	struct cmsghdr *cmsg;
1071 	struct sctp_sndrcvinfo *sinfo;
1072 	struct connection *base_con;
1073 	struct writequeue_entry *e;
1074 	int len, offset;
1075 	int ret;
1076 	int addrlen;
1077 	struct kvec iov[1];
1078 
1079 	mutex_lock(&con->sock_mutex);
1080 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
1081 		goto unlock;
1082 
1083 	if (nodeid_to_addr(con->nodeid, NULL, (struct sockaddr *)&rem_addr,
1084 			   con->try_new_addr)) {
1085 		log_print("no address for nodeid %d", con->nodeid);
1086 		goto unlock;
1087 	}
1088 	base_con = nodeid2con(0, 0);
1089 	BUG_ON(base_con == NULL);
1090 
1091 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
1092 
1093 	outmessage.msg_name = &rem_addr;
1094 	outmessage.msg_namelen = addrlen;
1095 	outmessage.msg_control = outcmsg;
1096 	outmessage.msg_controllen = sizeof(outcmsg);
1097 	outmessage.msg_flags = MSG_EOR;
1098 
1099 	spin_lock(&con->writequeue_lock);
1100 
1101 	if (list_empty(&con->writequeue)) {
1102 		spin_unlock(&con->writequeue_lock);
1103 		log_print("writequeue empty for nodeid %d", con->nodeid);
1104 		goto unlock;
1105 	}
1106 
1107 	e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
1108 	len = e->len;
1109 	offset = e->offset;
1110 
1111 	/* Send the first block off the write queue */
1112 	iov[0].iov_base = page_address(e->page)+offset;
1113 	iov[0].iov_len = len;
1114 	spin_unlock(&con->writequeue_lock);
1115 
1116 	if (rem_addr.ss_family == AF_INET) {
1117 		struct sockaddr_in *sin = (struct sockaddr_in *)&rem_addr;
1118 		log_print("Trying to connect to %pI4", &sin->sin_addr.s_addr);
1119 	} else {
1120 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&rem_addr;
1121 		log_print("Trying to connect to %pI6", &sin6->sin6_addr);
1122 	}
1123 
1124 	cmsg = CMSG_FIRSTHDR(&outmessage);
1125 	cmsg->cmsg_level = IPPROTO_SCTP;
1126 	cmsg->cmsg_type = SCTP_SNDRCV;
1127 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
1128 	sinfo = CMSG_DATA(cmsg);
1129 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
1130 	sinfo->sinfo_ppid = cpu_to_le32(con->nodeid);
1131 	outmessage.msg_controllen = cmsg->cmsg_len;
1132 	sinfo->sinfo_flags |= SCTP_ADDR_OVER;
1133 
1134 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
1135 	if (ret < 0) {
1136 		log_print("Send first packet to node %d failed: %d",
1137 			  con->nodeid, ret);
1138 
1139 		/* Try again later */
1140 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1141 		clear_bit(CF_INIT_PENDING, &con->flags);
1142 	}
1143 	else {
1144 		spin_lock(&con->writequeue_lock);
1145 		writequeue_entry_complete(e, ret);
1146 		spin_unlock(&con->writequeue_lock);
1147 	}
1148 
1149 unlock:
1150 	mutex_unlock(&con->sock_mutex);
1151 }
1152 
1153 /* Connect a new socket to its peer */
1154 static void tcp_connect_to_sock(struct connection *con)
1155 {
1156 	struct sockaddr_storage saddr, src_addr;
1157 	int addr_len;
1158 	struct socket *sock = NULL;
1159 	int one = 1;
1160 	int result;
1161 
1162 	if (con->nodeid == 0) {
1163 		log_print("attempt to connect sock 0 foiled");
1164 		return;
1165 	}
1166 
1167 	mutex_lock(&con->sock_mutex);
1168 	if (con->retries++ > MAX_CONNECT_RETRIES)
1169 		goto out;
1170 
1171 	/* Some odd races can cause double-connects, ignore them */
1172 	if (con->sock)
1173 		goto out;
1174 
1175 	/* Create a socket to communicate with */
1176 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1177 				  IPPROTO_TCP, &sock);
1178 	if (result < 0)
1179 		goto out_err;
1180 
1181 	memset(&saddr, 0, sizeof(saddr));
1182 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1183 	if (result < 0) {
1184 		log_print("no address for nodeid %d", con->nodeid);
1185 		goto out_err;
1186 	}
1187 
1188 	sock->sk->sk_user_data = con;
1189 	con->rx_action = receive_from_sock;
1190 	con->connect_action = tcp_connect_to_sock;
1191 	add_sock(sock, con);
1192 
1193 	/* Bind to our cluster-known address connecting to avoid
1194 	   routing problems */
1195 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1196 	make_sockaddr(&src_addr, 0, &addr_len);
1197 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1198 				 addr_len);
1199 	if (result < 0) {
1200 		log_print("could not bind for connect: %d", result);
1201 		/* This *may* not indicate a critical error */
1202 	}
1203 
1204 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1205 
1206 	log_print("connecting to %d", con->nodeid);
1207 
1208 	/* Turn off Nagle's algorithm */
1209 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1210 			  sizeof(one));
1211 
1212 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1213 				   O_NONBLOCK);
1214 	if (result == -EINPROGRESS)
1215 		result = 0;
1216 	if (result == 0)
1217 		goto out;
1218 
1219 out_err:
1220 	if (con->sock) {
1221 		sock_release(con->sock);
1222 		con->sock = NULL;
1223 	} else if (sock) {
1224 		sock_release(sock);
1225 	}
1226 	/*
1227 	 * Some errors are fatal and this list might need adjusting. For other
1228 	 * errors we try again until the max number of retries is reached.
1229 	 */
1230 	if (result != -EHOSTUNREACH &&
1231 	    result != -ENETUNREACH &&
1232 	    result != -ENETDOWN &&
1233 	    result != -EINVAL &&
1234 	    result != -EPROTONOSUPPORT) {
1235 		log_print("connect %d try %d error %d", con->nodeid,
1236 			  con->retries, result);
1237 		mutex_unlock(&con->sock_mutex);
1238 		msleep(1000);
1239 		lowcomms_connect_sock(con);
1240 		return;
1241 	}
1242 out:
1243 	mutex_unlock(&con->sock_mutex);
1244 	return;
1245 }
1246 
1247 static struct socket *tcp_create_listen_sock(struct connection *con,
1248 					     struct sockaddr_storage *saddr)
1249 {
1250 	struct socket *sock = NULL;
1251 	int result = 0;
1252 	int one = 1;
1253 	int addr_len;
1254 
1255 	if (dlm_local_addr[0]->ss_family == AF_INET)
1256 		addr_len = sizeof(struct sockaddr_in);
1257 	else
1258 		addr_len = sizeof(struct sockaddr_in6);
1259 
1260 	/* Create a socket to communicate with */
1261 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1262 				  IPPROTO_TCP, &sock);
1263 	if (result < 0) {
1264 		log_print("Can't create listening comms socket");
1265 		goto create_out;
1266 	}
1267 
1268 	/* Turn off Nagle's algorithm */
1269 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1270 			  sizeof(one));
1271 
1272 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1273 				   (char *)&one, sizeof(one));
1274 
1275 	if (result < 0) {
1276 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1277 	}
1278 	con->rx_action = tcp_accept_from_sock;
1279 	con->connect_action = tcp_connect_to_sock;
1280 
1281 	/* Bind to our port */
1282 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1283 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1284 	if (result < 0) {
1285 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1286 		sock_release(sock);
1287 		sock = NULL;
1288 		con->sock = NULL;
1289 		goto create_out;
1290 	}
1291 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1292 				 (char *)&one, sizeof(one));
1293 	if (result < 0) {
1294 		log_print("Set keepalive failed: %d", result);
1295 	}
1296 
1297 	result = sock->ops->listen(sock, 5);
1298 	if (result < 0) {
1299 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1300 		sock_release(sock);
1301 		sock = NULL;
1302 		goto create_out;
1303 	}
1304 
1305 create_out:
1306 	return sock;
1307 }
1308 
1309 /* Get local addresses */
1310 static void init_local(void)
1311 {
1312 	struct sockaddr_storage sas, *addr;
1313 	int i;
1314 
1315 	dlm_local_count = 0;
1316 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1317 		if (dlm_our_addr(&sas, i))
1318 			break;
1319 
1320 		addr = kmalloc(sizeof(*addr), GFP_NOFS);
1321 		if (!addr)
1322 			break;
1323 		memcpy(addr, &sas, sizeof(*addr));
1324 		dlm_local_addr[dlm_local_count++] = addr;
1325 	}
1326 }
1327 
1328 /* Bind to an IP address. SCTP allows multiple address so it can do
1329    multi-homing */
1330 static int add_sctp_bind_addr(struct connection *sctp_con,
1331 			      struct sockaddr_storage *addr,
1332 			      int addr_len, int num)
1333 {
1334 	int result = 0;
1335 
1336 	if (num == 1)
1337 		result = kernel_bind(sctp_con->sock,
1338 				     (struct sockaddr *) addr,
1339 				     addr_len);
1340 	else
1341 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1342 					   SCTP_SOCKOPT_BINDX_ADD,
1343 					   (char *)addr, addr_len);
1344 
1345 	if (result < 0)
1346 		log_print("Can't bind to port %d addr number %d",
1347 			  dlm_config.ci_tcp_port, num);
1348 
1349 	return result;
1350 }
1351 
1352 /* Initialise SCTP socket and bind to all interfaces */
1353 static int sctp_listen_for_all(void)
1354 {
1355 	struct socket *sock = NULL;
1356 	struct sockaddr_storage localaddr;
1357 	struct sctp_event_subscribe subscribe;
1358 	int result = -EINVAL, num = 1, i, addr_len;
1359 	struct connection *con = nodeid2con(0, GFP_NOFS);
1360 	int bufsize = NEEDED_RMEM;
1361 	int one = 1;
1362 
1363 	if (!con)
1364 		return -ENOMEM;
1365 
1366 	log_print("Using SCTP for communications");
1367 
1368 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1369 				  IPPROTO_SCTP, &sock);
1370 	if (result < 0) {
1371 		log_print("Can't create comms socket, check SCTP is loaded");
1372 		goto out;
1373 	}
1374 
1375 	/* Listen for events */
1376 	memset(&subscribe, 0, sizeof(subscribe));
1377 	subscribe.sctp_data_io_event = 1;
1378 	subscribe.sctp_association_event = 1;
1379 	subscribe.sctp_send_failure_event = 1;
1380 	subscribe.sctp_shutdown_event = 1;
1381 	subscribe.sctp_partial_delivery_event = 1;
1382 
1383 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1384 				 (char *)&bufsize, sizeof(bufsize));
1385 	if (result)
1386 		log_print("Error increasing buffer space on socket %d", result);
1387 
1388 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1389 				   (char *)&subscribe, sizeof(subscribe));
1390 	if (result < 0) {
1391 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1392 			  result);
1393 		goto create_delsock;
1394 	}
1395 
1396 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1397 				   sizeof(one));
1398 	if (result < 0)
1399 		log_print("Could not set SCTP NODELAY error %d\n", result);
1400 
1401 	/* Init con struct */
1402 	sock->sk->sk_user_data = con;
1403 	con->sock = sock;
1404 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1405 	con->rx_action = receive_from_sock;
1406 	con->connect_action = sctp_init_assoc;
1407 
1408 	/* Bind to all interfaces. */
1409 	for (i = 0; i < dlm_local_count; i++) {
1410 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1411 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1412 
1413 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1414 		if (result)
1415 			goto create_delsock;
1416 		++num;
1417 	}
1418 
1419 	result = sock->ops->listen(sock, 5);
1420 	if (result < 0) {
1421 		log_print("Can't set socket listening");
1422 		goto create_delsock;
1423 	}
1424 
1425 	return 0;
1426 
1427 create_delsock:
1428 	sock_release(sock);
1429 	con->sock = NULL;
1430 out:
1431 	return result;
1432 }
1433 
1434 static int tcp_listen_for_all(void)
1435 {
1436 	struct socket *sock = NULL;
1437 	struct connection *con = nodeid2con(0, GFP_NOFS);
1438 	int result = -EINVAL;
1439 
1440 	if (!con)
1441 		return -ENOMEM;
1442 
1443 	/* We don't support multi-homed hosts */
1444 	if (dlm_local_addr[1] != NULL) {
1445 		log_print("TCP protocol can't handle multi-homed hosts, "
1446 			  "try SCTP");
1447 		return -EINVAL;
1448 	}
1449 
1450 	log_print("Using TCP for communications");
1451 
1452 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1453 	if (sock) {
1454 		add_sock(sock, con);
1455 		result = 0;
1456 	}
1457 	else {
1458 		result = -EADDRINUSE;
1459 	}
1460 
1461 	return result;
1462 }
1463 
1464 
1465 
1466 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1467 						     gfp_t allocation)
1468 {
1469 	struct writequeue_entry *entry;
1470 
1471 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1472 	if (!entry)
1473 		return NULL;
1474 
1475 	entry->page = alloc_page(allocation);
1476 	if (!entry->page) {
1477 		kfree(entry);
1478 		return NULL;
1479 	}
1480 
1481 	entry->offset = 0;
1482 	entry->len = 0;
1483 	entry->end = 0;
1484 	entry->users = 0;
1485 	entry->con = con;
1486 
1487 	return entry;
1488 }
1489 
1490 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1491 {
1492 	struct connection *con;
1493 	struct writequeue_entry *e;
1494 	int offset = 0;
1495 
1496 	con = nodeid2con(nodeid, allocation);
1497 	if (!con)
1498 		return NULL;
1499 
1500 	spin_lock(&con->writequeue_lock);
1501 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1502 	if ((&e->list == &con->writequeue) ||
1503 	    (PAGE_CACHE_SIZE - e->end < len)) {
1504 		e = NULL;
1505 	} else {
1506 		offset = e->end;
1507 		e->end += len;
1508 		e->users++;
1509 	}
1510 	spin_unlock(&con->writequeue_lock);
1511 
1512 	if (e) {
1513 	got_one:
1514 		*ppc = page_address(e->page) + offset;
1515 		return e;
1516 	}
1517 
1518 	e = new_writequeue_entry(con, allocation);
1519 	if (e) {
1520 		spin_lock(&con->writequeue_lock);
1521 		offset = e->end;
1522 		e->end += len;
1523 		e->users++;
1524 		list_add_tail(&e->list, &con->writequeue);
1525 		spin_unlock(&con->writequeue_lock);
1526 		goto got_one;
1527 	}
1528 	return NULL;
1529 }
1530 
1531 void dlm_lowcomms_commit_buffer(void *mh)
1532 {
1533 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1534 	struct connection *con = e->con;
1535 	int users;
1536 
1537 	spin_lock(&con->writequeue_lock);
1538 	users = --e->users;
1539 	if (users)
1540 		goto out;
1541 	e->len = e->end - e->offset;
1542 	spin_unlock(&con->writequeue_lock);
1543 
1544 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1545 		queue_work(send_workqueue, &con->swork);
1546 	}
1547 	return;
1548 
1549 out:
1550 	spin_unlock(&con->writequeue_lock);
1551 	return;
1552 }
1553 
1554 /* Send a message */
1555 static void send_to_sock(struct connection *con)
1556 {
1557 	int ret = 0;
1558 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1559 	struct writequeue_entry *e;
1560 	int len, offset;
1561 	int count = 0;
1562 
1563 	mutex_lock(&con->sock_mutex);
1564 	if (con->sock == NULL)
1565 		goto out_connect;
1566 
1567 	spin_lock(&con->writequeue_lock);
1568 	for (;;) {
1569 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1570 			       list);
1571 		if ((struct list_head *) e == &con->writequeue)
1572 			break;
1573 
1574 		len = e->len;
1575 		offset = e->offset;
1576 		BUG_ON(len == 0 && e->users == 0);
1577 		spin_unlock(&con->writequeue_lock);
1578 
1579 		ret = 0;
1580 		if (len) {
1581 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1582 					      msg_flags);
1583 			if (ret == -EAGAIN || ret == 0) {
1584 				if (ret == -EAGAIN &&
1585 				    test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1586 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1587 					/* Notify TCP that we're limited by the
1588 					 * application window size.
1589 					 */
1590 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1591 					con->sock->sk->sk_write_pending++;
1592 				}
1593 				cond_resched();
1594 				goto out;
1595 			} else if (ret < 0)
1596 				goto send_error;
1597 		}
1598 
1599 		/* Don't starve people filling buffers */
1600 		if (++count >= MAX_SEND_MSG_COUNT) {
1601 			cond_resched();
1602 			count = 0;
1603 		}
1604 
1605 		spin_lock(&con->writequeue_lock);
1606 		writequeue_entry_complete(e, ret);
1607 	}
1608 	spin_unlock(&con->writequeue_lock);
1609 out:
1610 	mutex_unlock(&con->sock_mutex);
1611 	return;
1612 
1613 send_error:
1614 	mutex_unlock(&con->sock_mutex);
1615 	close_connection(con, false);
1616 	lowcomms_connect_sock(con);
1617 	return;
1618 
1619 out_connect:
1620 	mutex_unlock(&con->sock_mutex);
1621 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1622 		lowcomms_connect_sock(con);
1623 }
1624 
1625 static void clean_one_writequeue(struct connection *con)
1626 {
1627 	struct writequeue_entry *e, *safe;
1628 
1629 	spin_lock(&con->writequeue_lock);
1630 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1631 		list_del(&e->list);
1632 		free_entry(e);
1633 	}
1634 	spin_unlock(&con->writequeue_lock);
1635 }
1636 
1637 /* Called from recovery when it knows that a node has
1638    left the cluster */
1639 int dlm_lowcomms_close(int nodeid)
1640 {
1641 	struct connection *con;
1642 	struct dlm_node_addr *na;
1643 
1644 	log_print("closing connection to node %d", nodeid);
1645 	con = nodeid2con(nodeid, 0);
1646 	if (con) {
1647 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1648 		clear_bit(CF_WRITE_PENDING, &con->flags);
1649 		set_bit(CF_CLOSE, &con->flags);
1650 		if (cancel_work_sync(&con->swork))
1651 			log_print("canceled swork for node %d", nodeid);
1652 		if (cancel_work_sync(&con->rwork))
1653 			log_print("canceled rwork for node %d", nodeid);
1654 		clean_one_writequeue(con);
1655 		close_connection(con, true);
1656 	}
1657 
1658 	spin_lock(&dlm_node_addrs_spin);
1659 	na = find_node_addr(nodeid);
1660 	if (na) {
1661 		list_del(&na->list);
1662 		while (na->addr_count--)
1663 			kfree(na->addr[na->addr_count]);
1664 		kfree(na);
1665 	}
1666 	spin_unlock(&dlm_node_addrs_spin);
1667 
1668 	return 0;
1669 }
1670 
1671 /* Receive workqueue function */
1672 static void process_recv_sockets(struct work_struct *work)
1673 {
1674 	struct connection *con = container_of(work, struct connection, rwork);
1675 	int err;
1676 
1677 	clear_bit(CF_READ_PENDING, &con->flags);
1678 	do {
1679 		err = con->rx_action(con);
1680 	} while (!err);
1681 }
1682 
1683 /* Send workqueue function */
1684 static void process_send_sockets(struct work_struct *work)
1685 {
1686 	struct connection *con = container_of(work, struct connection, swork);
1687 
1688 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1689 		con->connect_action(con);
1690 		set_bit(CF_WRITE_PENDING, &con->flags);
1691 	}
1692 	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1693 		send_to_sock(con);
1694 }
1695 
1696 
1697 /* Discard all entries on the write queues */
1698 static void clean_writequeues(void)
1699 {
1700 	foreach_conn(clean_one_writequeue);
1701 }
1702 
1703 static void work_stop(void)
1704 {
1705 	destroy_workqueue(recv_workqueue);
1706 	destroy_workqueue(send_workqueue);
1707 }
1708 
1709 static int work_start(void)
1710 {
1711 	recv_workqueue = alloc_workqueue("dlm_recv",
1712 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1713 	if (!recv_workqueue) {
1714 		log_print("can't start dlm_recv");
1715 		return -ENOMEM;
1716 	}
1717 
1718 	send_workqueue = alloc_workqueue("dlm_send",
1719 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1720 	if (!send_workqueue) {
1721 		log_print("can't start dlm_send");
1722 		destroy_workqueue(recv_workqueue);
1723 		return -ENOMEM;
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 static void stop_conn(struct connection *con)
1730 {
1731 	con->flags |= 0x0F;
1732 	if (con->sock && con->sock->sk)
1733 		con->sock->sk->sk_user_data = NULL;
1734 }
1735 
1736 static void free_conn(struct connection *con)
1737 {
1738 	close_connection(con, true);
1739 	if (con->othercon)
1740 		kmem_cache_free(con_cache, con->othercon);
1741 	hlist_del(&con->list);
1742 	kmem_cache_free(con_cache, con);
1743 }
1744 
1745 void dlm_lowcomms_stop(void)
1746 {
1747 	/* Set all the flags to prevent any
1748 	   socket activity.
1749 	*/
1750 	mutex_lock(&connections_lock);
1751 	dlm_allow_conn = 0;
1752 	foreach_conn(stop_conn);
1753 	mutex_unlock(&connections_lock);
1754 
1755 	work_stop();
1756 
1757 	mutex_lock(&connections_lock);
1758 	clean_writequeues();
1759 
1760 	foreach_conn(free_conn);
1761 
1762 	mutex_unlock(&connections_lock);
1763 	kmem_cache_destroy(con_cache);
1764 }
1765 
1766 int dlm_lowcomms_start(void)
1767 {
1768 	int error = -EINVAL;
1769 	struct connection *con;
1770 	int i;
1771 
1772 	for (i = 0; i < CONN_HASH_SIZE; i++)
1773 		INIT_HLIST_HEAD(&connection_hash[i]);
1774 
1775 	init_local();
1776 	if (!dlm_local_count) {
1777 		error = -ENOTCONN;
1778 		log_print("no local IP address has been set");
1779 		goto fail;
1780 	}
1781 
1782 	error = -ENOMEM;
1783 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1784 				      __alignof__(struct connection), 0,
1785 				      NULL);
1786 	if (!con_cache)
1787 		goto fail;
1788 
1789 	error = work_start();
1790 	if (error)
1791 		goto fail_destroy;
1792 
1793 	dlm_allow_conn = 1;
1794 
1795 	/* Start listening */
1796 	if (dlm_config.ci_protocol == 0)
1797 		error = tcp_listen_for_all();
1798 	else
1799 		error = sctp_listen_for_all();
1800 	if (error)
1801 		goto fail_unlisten;
1802 
1803 	return 0;
1804 
1805 fail_unlisten:
1806 	dlm_allow_conn = 0;
1807 	con = nodeid2con(0,0);
1808 	if (con) {
1809 		close_connection(con, false);
1810 		kmem_cache_free(con_cache, con);
1811 	}
1812 fail_destroy:
1813 	kmem_cache_destroy(con_cache);
1814 fail:
1815 	return error;
1816 }
1817 
1818 void dlm_lowcomms_exit(void)
1819 {
1820 	struct dlm_node_addr *na, *safe;
1821 
1822 	spin_lock(&dlm_node_addrs_spin);
1823 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1824 		list_del(&na->list);
1825 		while (na->addr_count--)
1826 			kfree(na->addr[na->addr_count]);
1827 		kfree(na);
1828 	}
1829 	spin_unlock(&dlm_node_addrs_spin);
1830 }
1831