xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 54fbe0c1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11 
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44 
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55 
56 #include <trace/events/dlm.h>
57 
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "memory.h"
62 #include "config.h"
63 
64 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
65 #define NEEDED_RMEM (4*1024*1024)
66 
67 struct connection {
68 	struct socket *sock;	/* NULL if not connected */
69 	uint32_t nodeid;	/* So we know who we are in the list */
70 	/* this semaphore is used to allow parallel recv/send in read
71 	 * lock mode. When we release a sock we need to held the write lock.
72 	 *
73 	 * However this is locking code and not nice. When we remove the
74 	 * othercon handling we can look into other mechanism to synchronize
75 	 * io handling to call sock_release() at the right time.
76 	 */
77 	struct rw_semaphore sock_lock;
78 	unsigned long flags;
79 #define CF_APP_LIMITED 0
80 #define CF_RECV_PENDING 1
81 #define CF_SEND_PENDING 2
82 #define CF_RECV_INTR 3
83 #define CF_IO_STOP 4
84 #define CF_IS_OTHERCON 5
85 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
86 	spinlock_t writequeue_lock;
87 	int retries;
88 	struct hlist_node list;
89 	/* due some connect()/accept() races we currently have this cross over
90 	 * connection attempt second connection for one node.
91 	 *
92 	 * There is a solution to avoid the race by introducing a connect
93 	 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
94 	 * connect. Otherside can connect but will only be considered that
95 	 * the other side wants to have a reconnect.
96 	 *
97 	 * However changing to this behaviour will break backwards compatible.
98 	 * In a DLM protocol major version upgrade we should remove this!
99 	 */
100 	struct connection *othercon;
101 	struct work_struct rwork; /* receive worker */
102 	struct work_struct swork; /* send worker */
103 	wait_queue_head_t shutdown_wait;
104 	unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
105 	int rx_leftover;
106 	int mark;
107 	int addr_count;
108 	int curr_addr_index;
109 	struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
110 	spinlock_t addrs_lock;
111 	struct rcu_head rcu;
112 };
113 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
114 
115 struct listen_connection {
116 	struct socket *sock;
117 	struct work_struct rwork;
118 };
119 
120 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
121 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
122 
123 /* An entry waiting to be sent */
124 struct writequeue_entry {
125 	struct list_head list;
126 	struct page *page;
127 	int offset;
128 	int len;
129 	int end;
130 	int users;
131 	bool dirty;
132 	struct connection *con;
133 	struct list_head msgs;
134 	struct kref ref;
135 };
136 
137 struct dlm_msg {
138 	struct writequeue_entry *entry;
139 	struct dlm_msg *orig_msg;
140 	bool retransmit;
141 	void *ppc;
142 	int len;
143 	int idx; /* new()/commit() idx exchange */
144 
145 	struct list_head list;
146 	struct kref ref;
147 };
148 
149 struct processqueue_entry {
150 	unsigned char *buf;
151 	int nodeid;
152 	int buflen;
153 
154 	struct list_head list;
155 };
156 
157 struct dlm_proto_ops {
158 	bool try_new_addr;
159 	const char *name;
160 	int proto;
161 
162 	int (*connect)(struct connection *con, struct socket *sock,
163 		       struct sockaddr *addr, int addr_len);
164 	void (*sockopts)(struct socket *sock);
165 	int (*bind)(struct socket *sock);
166 	int (*listen_validate)(void);
167 	void (*listen_sockopts)(struct socket *sock);
168 	int (*listen_bind)(struct socket *sock);
169 };
170 
171 static struct listen_sock_callbacks {
172 	void (*sk_error_report)(struct sock *);
173 	void (*sk_data_ready)(struct sock *);
174 	void (*sk_state_change)(struct sock *);
175 	void (*sk_write_space)(struct sock *);
176 } listen_sock;
177 
178 static struct listen_connection listen_con;
179 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
180 static int dlm_local_count;
181 
182 /* Work queues */
183 static struct workqueue_struct *io_workqueue;
184 static struct workqueue_struct *process_workqueue;
185 
186 static struct hlist_head connection_hash[CONN_HASH_SIZE];
187 static DEFINE_SPINLOCK(connections_lock);
188 DEFINE_STATIC_SRCU(connections_srcu);
189 
190 static const struct dlm_proto_ops *dlm_proto_ops;
191 
192 #define DLM_IO_SUCCESS 0
193 #define DLM_IO_END 1
194 #define DLM_IO_EOF 2
195 #define DLM_IO_RESCHED 3
196 
197 static void process_recv_sockets(struct work_struct *work);
198 static void process_send_sockets(struct work_struct *work);
199 static void process_dlm_messages(struct work_struct *work);
200 
201 static DECLARE_WORK(process_work, process_dlm_messages);
202 static DEFINE_SPINLOCK(processqueue_lock);
203 static bool process_dlm_messages_pending;
204 static LIST_HEAD(processqueue);
205 
206 bool dlm_lowcomms_is_running(void)
207 {
208 	return !!listen_con.sock;
209 }
210 
211 static void lowcomms_queue_swork(struct connection *con)
212 {
213 	assert_spin_locked(&con->writequeue_lock);
214 
215 	if (!test_bit(CF_IO_STOP, &con->flags) &&
216 	    !test_bit(CF_APP_LIMITED, &con->flags) &&
217 	    !test_and_set_bit(CF_SEND_PENDING, &con->flags))
218 		queue_work(io_workqueue, &con->swork);
219 }
220 
221 static void lowcomms_queue_rwork(struct connection *con)
222 {
223 #ifdef CONFIG_LOCKDEP
224 	WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
225 #endif
226 
227 	if (!test_bit(CF_IO_STOP, &con->flags) &&
228 	    !test_and_set_bit(CF_RECV_PENDING, &con->flags))
229 		queue_work(io_workqueue, &con->rwork);
230 }
231 
232 static void writequeue_entry_ctor(void *data)
233 {
234 	struct writequeue_entry *entry = data;
235 
236 	INIT_LIST_HEAD(&entry->msgs);
237 }
238 
239 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
240 {
241 	return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
242 				 0, 0, writequeue_entry_ctor);
243 }
244 
245 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
246 {
247 	return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
248 }
249 
250 /* need to held writequeue_lock */
251 static struct writequeue_entry *con_next_wq(struct connection *con)
252 {
253 	struct writequeue_entry *e;
254 
255 	e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
256 				     list);
257 	/* if len is zero nothing is to send, if there are users filling
258 	 * buffers we wait until the users are done so we can send more.
259 	 */
260 	if (!e || e->users || e->len == 0)
261 		return NULL;
262 
263 	return e;
264 }
265 
266 static struct connection *__find_con(int nodeid, int r)
267 {
268 	struct connection *con;
269 
270 	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
271 		if (con->nodeid == nodeid)
272 			return con;
273 	}
274 
275 	return NULL;
276 }
277 
278 static void dlm_con_init(struct connection *con, int nodeid)
279 {
280 	con->nodeid = nodeid;
281 	init_rwsem(&con->sock_lock);
282 	INIT_LIST_HEAD(&con->writequeue);
283 	spin_lock_init(&con->writequeue_lock);
284 	INIT_WORK(&con->swork, process_send_sockets);
285 	INIT_WORK(&con->rwork, process_recv_sockets);
286 	spin_lock_init(&con->addrs_lock);
287 	init_waitqueue_head(&con->shutdown_wait);
288 }
289 
290 /*
291  * If 'allocation' is zero then we don't attempt to create a new
292  * connection structure for this node.
293  */
294 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
295 {
296 	struct connection *con, *tmp;
297 	int r;
298 
299 	r = nodeid_hash(nodeid);
300 	con = __find_con(nodeid, r);
301 	if (con || !alloc)
302 		return con;
303 
304 	con = kzalloc(sizeof(*con), alloc);
305 	if (!con)
306 		return NULL;
307 
308 	dlm_con_init(con, nodeid);
309 
310 	spin_lock(&connections_lock);
311 	/* Because multiple workqueues/threads calls this function it can
312 	 * race on multiple cpu's. Instead of locking hot path __find_con()
313 	 * we just check in rare cases of recently added nodes again
314 	 * under protection of connections_lock. If this is the case we
315 	 * abort our connection creation and return the existing connection.
316 	 */
317 	tmp = __find_con(nodeid, r);
318 	if (tmp) {
319 		spin_unlock(&connections_lock);
320 		kfree(con);
321 		return tmp;
322 	}
323 
324 	hlist_add_head_rcu(&con->list, &connection_hash[r]);
325 	spin_unlock(&connections_lock);
326 
327 	return con;
328 }
329 
330 static int addr_compare(const struct sockaddr_storage *x,
331 			const struct sockaddr_storage *y)
332 {
333 	switch (x->ss_family) {
334 	case AF_INET: {
335 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
336 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
337 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
338 			return 0;
339 		if (sinx->sin_port != siny->sin_port)
340 			return 0;
341 		break;
342 	}
343 	case AF_INET6: {
344 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
345 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
346 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
347 			return 0;
348 		if (sinx->sin6_port != siny->sin6_port)
349 			return 0;
350 		break;
351 	}
352 	default:
353 		return 0;
354 	}
355 	return 1;
356 }
357 
358 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
359 			  struct sockaddr *sa_out, bool try_new_addr,
360 			  unsigned int *mark)
361 {
362 	struct sockaddr_storage sas;
363 	struct connection *con;
364 	int idx;
365 
366 	if (!dlm_local_count)
367 		return -1;
368 
369 	idx = srcu_read_lock(&connections_srcu);
370 	con = nodeid2con(nodeid, 0);
371 	if (!con) {
372 		srcu_read_unlock(&connections_srcu, idx);
373 		return -ENOENT;
374 	}
375 
376 	spin_lock(&con->addrs_lock);
377 	if (!con->addr_count) {
378 		spin_unlock(&con->addrs_lock);
379 		srcu_read_unlock(&connections_srcu, idx);
380 		return -ENOENT;
381 	}
382 
383 	memcpy(&sas, &con->addr[con->curr_addr_index],
384 	       sizeof(struct sockaddr_storage));
385 
386 	if (try_new_addr) {
387 		con->curr_addr_index++;
388 		if (con->curr_addr_index == con->addr_count)
389 			con->curr_addr_index = 0;
390 	}
391 
392 	*mark = con->mark;
393 	spin_unlock(&con->addrs_lock);
394 
395 	if (sas_out)
396 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
397 
398 	if (!sa_out) {
399 		srcu_read_unlock(&connections_srcu, idx);
400 		return 0;
401 	}
402 
403 	if (dlm_local_addr[0].ss_family == AF_INET) {
404 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
405 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
406 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
407 	} else {
408 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
409 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
410 		ret6->sin6_addr = in6->sin6_addr;
411 	}
412 
413 	srcu_read_unlock(&connections_srcu, idx);
414 	return 0;
415 }
416 
417 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
418 			  unsigned int *mark)
419 {
420 	struct connection *con;
421 	int i, idx, addr_i;
422 
423 	idx = srcu_read_lock(&connections_srcu);
424 	for (i = 0; i < CONN_HASH_SIZE; i++) {
425 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
426 			WARN_ON_ONCE(!con->addr_count);
427 
428 			spin_lock(&con->addrs_lock);
429 			for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
430 				if (addr_compare(&con->addr[addr_i], addr)) {
431 					*nodeid = con->nodeid;
432 					*mark = con->mark;
433 					spin_unlock(&con->addrs_lock);
434 					srcu_read_unlock(&connections_srcu, idx);
435 					return 0;
436 				}
437 			}
438 			spin_unlock(&con->addrs_lock);
439 		}
440 	}
441 	srcu_read_unlock(&connections_srcu, idx);
442 
443 	return -ENOENT;
444 }
445 
446 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
447 				      const struct sockaddr_storage *addr)
448 {
449 	int i;
450 
451 	for (i = 0; i < con->addr_count; i++) {
452 		if (addr_compare(&con->addr[i], addr))
453 			return true;
454 	}
455 
456 	return false;
457 }
458 
459 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
460 {
461 	struct connection *con;
462 	bool ret, idx;
463 
464 	idx = srcu_read_lock(&connections_srcu);
465 	con = nodeid2con(nodeid, GFP_NOFS);
466 	if (!con) {
467 		srcu_read_unlock(&connections_srcu, idx);
468 		return -ENOMEM;
469 	}
470 
471 	spin_lock(&con->addrs_lock);
472 	if (!con->addr_count) {
473 		memcpy(&con->addr[0], addr, sizeof(*addr));
474 		con->addr_count = 1;
475 		con->mark = dlm_config.ci_mark;
476 		spin_unlock(&con->addrs_lock);
477 		srcu_read_unlock(&connections_srcu, idx);
478 		return 0;
479 	}
480 
481 	ret = dlm_lowcomms_con_has_addr(con, addr);
482 	if (ret) {
483 		spin_unlock(&con->addrs_lock);
484 		srcu_read_unlock(&connections_srcu, idx);
485 		return -EEXIST;
486 	}
487 
488 	if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
489 		spin_unlock(&con->addrs_lock);
490 		srcu_read_unlock(&connections_srcu, idx);
491 		return -ENOSPC;
492 	}
493 
494 	memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
495 	srcu_read_unlock(&connections_srcu, idx);
496 	spin_unlock(&con->addrs_lock);
497 	return 0;
498 }
499 
500 /* Data available on socket or listen socket received a connect */
501 static void lowcomms_data_ready(struct sock *sk)
502 {
503 	struct connection *con = sock2con(sk);
504 
505 	set_bit(CF_RECV_INTR, &con->flags);
506 	lowcomms_queue_rwork(con);
507 }
508 
509 static void lowcomms_write_space(struct sock *sk)
510 {
511 	struct connection *con = sock2con(sk);
512 
513 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
514 
515 	spin_lock_bh(&con->writequeue_lock);
516 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
517 		con->sock->sk->sk_write_pending--;
518 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
519 	}
520 
521 	lowcomms_queue_swork(con);
522 	spin_unlock_bh(&con->writequeue_lock);
523 }
524 
525 static void lowcomms_state_change(struct sock *sk)
526 {
527 	/* SCTP layer is not calling sk_data_ready when the connection
528 	 * is done, so we catch the signal through here.
529 	 */
530 	if (sk->sk_shutdown == RCV_SHUTDOWN)
531 		lowcomms_data_ready(sk);
532 }
533 
534 static void lowcomms_listen_data_ready(struct sock *sk)
535 {
536 	queue_work(io_workqueue, &listen_con.rwork);
537 }
538 
539 int dlm_lowcomms_connect_node(int nodeid)
540 {
541 	struct connection *con;
542 	int idx;
543 
544 	if (nodeid == dlm_our_nodeid())
545 		return 0;
546 
547 	idx = srcu_read_lock(&connections_srcu);
548 	con = nodeid2con(nodeid, 0);
549 	if (WARN_ON_ONCE(!con)) {
550 		srcu_read_unlock(&connections_srcu, idx);
551 		return -ENOENT;
552 	}
553 
554 	down_read(&con->sock_lock);
555 	if (!con->sock) {
556 		spin_lock_bh(&con->writequeue_lock);
557 		lowcomms_queue_swork(con);
558 		spin_unlock_bh(&con->writequeue_lock);
559 	}
560 	up_read(&con->sock_lock);
561 	srcu_read_unlock(&connections_srcu, idx);
562 
563 	cond_resched();
564 	return 0;
565 }
566 
567 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
568 {
569 	struct connection *con;
570 	int idx;
571 
572 	idx = srcu_read_lock(&connections_srcu);
573 	con = nodeid2con(nodeid, 0);
574 	if (!con) {
575 		srcu_read_unlock(&connections_srcu, idx);
576 		return -ENOENT;
577 	}
578 
579 	spin_lock(&con->addrs_lock);
580 	con->mark = mark;
581 	spin_unlock(&con->addrs_lock);
582 	srcu_read_unlock(&connections_srcu, idx);
583 	return 0;
584 }
585 
586 static void lowcomms_error_report(struct sock *sk)
587 {
588 	struct connection *con = sock2con(sk);
589 	struct inet_sock *inet;
590 
591 	inet = inet_sk(sk);
592 	switch (sk->sk_family) {
593 	case AF_INET:
594 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
595 				   "sending to node %d at %pI4, dport %d, "
596 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
597 				   con->nodeid, &inet->inet_daddr,
598 				   ntohs(inet->inet_dport), sk->sk_err,
599 				   sk->sk_err_soft);
600 		break;
601 #if IS_ENABLED(CONFIG_IPV6)
602 	case AF_INET6:
603 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
604 				   "sending to node %d at %pI6c, "
605 				   "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
606 				   con->nodeid, &sk->sk_v6_daddr,
607 				   ntohs(inet->inet_dport), sk->sk_err,
608 				   sk->sk_err_soft);
609 		break;
610 #endif
611 	default:
612 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
613 				   "invalid socket family %d set, "
614 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
615 				   sk->sk_family, sk->sk_err, sk->sk_err_soft);
616 		break;
617 	}
618 
619 	dlm_midcomms_unack_msg_resend(con->nodeid);
620 
621 	listen_sock.sk_error_report(sk);
622 }
623 
624 static void restore_callbacks(struct sock *sk)
625 {
626 #ifdef CONFIG_LOCKDEP
627 	WARN_ON_ONCE(!lockdep_sock_is_held(sk));
628 #endif
629 
630 	sk->sk_user_data = NULL;
631 	sk->sk_data_ready = listen_sock.sk_data_ready;
632 	sk->sk_state_change = listen_sock.sk_state_change;
633 	sk->sk_write_space = listen_sock.sk_write_space;
634 	sk->sk_error_report = listen_sock.sk_error_report;
635 }
636 
637 /* Make a socket active */
638 static void add_sock(struct socket *sock, struct connection *con)
639 {
640 	struct sock *sk = sock->sk;
641 
642 	lock_sock(sk);
643 	con->sock = sock;
644 
645 	sk->sk_user_data = con;
646 	sk->sk_data_ready = lowcomms_data_ready;
647 	sk->sk_write_space = lowcomms_write_space;
648 	if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
649 		sk->sk_state_change = lowcomms_state_change;
650 	sk->sk_allocation = GFP_NOFS;
651 	sk->sk_use_task_frag = false;
652 	sk->sk_error_report = lowcomms_error_report;
653 	release_sock(sk);
654 }
655 
656 /* Add the port number to an IPv6 or 4 sockaddr and return the address
657    length */
658 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
659 			  int *addr_len)
660 {
661 	saddr->ss_family =  dlm_local_addr[0].ss_family;
662 	if (saddr->ss_family == AF_INET) {
663 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
664 		in4_addr->sin_port = cpu_to_be16(port);
665 		*addr_len = sizeof(struct sockaddr_in);
666 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
667 	} else {
668 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
669 		in6_addr->sin6_port = cpu_to_be16(port);
670 		*addr_len = sizeof(struct sockaddr_in6);
671 	}
672 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
673 }
674 
675 static void dlm_page_release(struct kref *kref)
676 {
677 	struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
678 						  ref);
679 
680 	__free_page(e->page);
681 	dlm_free_writequeue(e);
682 }
683 
684 static void dlm_msg_release(struct kref *kref)
685 {
686 	struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
687 
688 	kref_put(&msg->entry->ref, dlm_page_release);
689 	dlm_free_msg(msg);
690 }
691 
692 static void free_entry(struct writequeue_entry *e)
693 {
694 	struct dlm_msg *msg, *tmp;
695 
696 	list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
697 		if (msg->orig_msg) {
698 			msg->orig_msg->retransmit = false;
699 			kref_put(&msg->orig_msg->ref, dlm_msg_release);
700 		}
701 
702 		list_del(&msg->list);
703 		kref_put(&msg->ref, dlm_msg_release);
704 	}
705 
706 	list_del(&e->list);
707 	kref_put(&e->ref, dlm_page_release);
708 }
709 
710 static void dlm_close_sock(struct socket **sock)
711 {
712 	lock_sock((*sock)->sk);
713 	restore_callbacks((*sock)->sk);
714 	release_sock((*sock)->sk);
715 
716 	sock_release(*sock);
717 	*sock = NULL;
718 }
719 
720 static void allow_connection_io(struct connection *con)
721 {
722 	if (con->othercon)
723 		clear_bit(CF_IO_STOP, &con->othercon->flags);
724 	clear_bit(CF_IO_STOP, &con->flags);
725 }
726 
727 static void stop_connection_io(struct connection *con)
728 {
729 	if (con->othercon)
730 		stop_connection_io(con->othercon);
731 
732 	down_write(&con->sock_lock);
733 	if (con->sock) {
734 		lock_sock(con->sock->sk);
735 		restore_callbacks(con->sock->sk);
736 
737 		spin_lock_bh(&con->writequeue_lock);
738 		set_bit(CF_IO_STOP, &con->flags);
739 		spin_unlock_bh(&con->writequeue_lock);
740 		release_sock(con->sock->sk);
741 	} else {
742 		spin_lock_bh(&con->writequeue_lock);
743 		set_bit(CF_IO_STOP, &con->flags);
744 		spin_unlock_bh(&con->writequeue_lock);
745 	}
746 	up_write(&con->sock_lock);
747 
748 	cancel_work_sync(&con->swork);
749 	cancel_work_sync(&con->rwork);
750 }
751 
752 /* Close a remote connection and tidy up */
753 static void close_connection(struct connection *con, bool and_other)
754 {
755 	struct writequeue_entry *e;
756 
757 	if (con->othercon && and_other)
758 		close_connection(con->othercon, false);
759 
760 	down_write(&con->sock_lock);
761 	if (!con->sock) {
762 		up_write(&con->sock_lock);
763 		return;
764 	}
765 
766 	dlm_close_sock(&con->sock);
767 
768 	/* if we send a writequeue entry only a half way, we drop the
769 	 * whole entry because reconnection and that we not start of the
770 	 * middle of a msg which will confuse the other end.
771 	 *
772 	 * we can always drop messages because retransmits, but what we
773 	 * cannot allow is to transmit half messages which may be processed
774 	 * at the other side.
775 	 *
776 	 * our policy is to start on a clean state when disconnects, we don't
777 	 * know what's send/received on transport layer in this case.
778 	 */
779 	spin_lock_bh(&con->writequeue_lock);
780 	if (!list_empty(&con->writequeue)) {
781 		e = list_first_entry(&con->writequeue, struct writequeue_entry,
782 				     list);
783 		if (e->dirty)
784 			free_entry(e);
785 	}
786 	spin_unlock_bh(&con->writequeue_lock);
787 
788 	con->rx_leftover = 0;
789 	con->retries = 0;
790 	clear_bit(CF_APP_LIMITED, &con->flags);
791 	clear_bit(CF_RECV_PENDING, &con->flags);
792 	clear_bit(CF_SEND_PENDING, &con->flags);
793 	up_write(&con->sock_lock);
794 }
795 
796 static void shutdown_connection(struct connection *con, bool and_other)
797 {
798 	int ret;
799 
800 	if (con->othercon && and_other)
801 		shutdown_connection(con->othercon, false);
802 
803 	flush_workqueue(io_workqueue);
804 	down_read(&con->sock_lock);
805 	/* nothing to shutdown */
806 	if (!con->sock) {
807 		up_read(&con->sock_lock);
808 		return;
809 	}
810 
811 	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
812 	up_read(&con->sock_lock);
813 	if (ret) {
814 		log_print("Connection %p failed to shutdown: %d will force close",
815 			  con, ret);
816 		goto force_close;
817 	} else {
818 		ret = wait_event_timeout(con->shutdown_wait, !con->sock,
819 					 DLM_SHUTDOWN_WAIT_TIMEOUT);
820 		if (ret == 0) {
821 			log_print("Connection %p shutdown timed out, will force close",
822 				  con);
823 			goto force_close;
824 		}
825 	}
826 
827 	return;
828 
829 force_close:
830 	close_connection(con, false);
831 }
832 
833 static struct processqueue_entry *new_processqueue_entry(int nodeid,
834 							 int buflen)
835 {
836 	struct processqueue_entry *pentry;
837 
838 	pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
839 	if (!pentry)
840 		return NULL;
841 
842 	pentry->buf = kmalloc(buflen, GFP_NOFS);
843 	if (!pentry->buf) {
844 		kfree(pentry);
845 		return NULL;
846 	}
847 
848 	pentry->nodeid = nodeid;
849 	return pentry;
850 }
851 
852 static void free_processqueue_entry(struct processqueue_entry *pentry)
853 {
854 	kfree(pentry->buf);
855 	kfree(pentry);
856 }
857 
858 struct dlm_processed_nodes {
859 	int nodeid;
860 
861 	struct list_head list;
862 };
863 
864 static void add_processed_node(int nodeid, struct list_head *processed_nodes)
865 {
866 	struct dlm_processed_nodes *n;
867 
868 	list_for_each_entry(n, processed_nodes, list) {
869 		/* we already remembered this node */
870 		if (n->nodeid == nodeid)
871 			return;
872 	}
873 
874 	/* if it's fails in worst case we simple don't send an ack back.
875 	 * We try it next time.
876 	 */
877 	n = kmalloc(sizeof(*n), GFP_NOFS);
878 	if (!n)
879 		return;
880 
881 	n->nodeid = nodeid;
882 	list_add(&n->list, processed_nodes);
883 }
884 
885 static void process_dlm_messages(struct work_struct *work)
886 {
887 	struct dlm_processed_nodes *n, *n_tmp;
888 	struct processqueue_entry *pentry;
889 	LIST_HEAD(processed_nodes);
890 
891 	spin_lock(&processqueue_lock);
892 	pentry = list_first_entry_or_null(&processqueue,
893 					  struct processqueue_entry, list);
894 	if (WARN_ON_ONCE(!pentry)) {
895 		spin_unlock(&processqueue_lock);
896 		return;
897 	}
898 
899 	list_del(&pentry->list);
900 	spin_unlock(&processqueue_lock);
901 
902 	for (;;) {
903 		dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
904 					    pentry->buflen);
905 		add_processed_node(pentry->nodeid, &processed_nodes);
906 		free_processqueue_entry(pentry);
907 
908 		spin_lock(&processqueue_lock);
909 		pentry = list_first_entry_or_null(&processqueue,
910 						  struct processqueue_entry, list);
911 		if (!pentry) {
912 			process_dlm_messages_pending = false;
913 			spin_unlock(&processqueue_lock);
914 			break;
915 		}
916 
917 		list_del(&pentry->list);
918 		spin_unlock(&processqueue_lock);
919 	}
920 
921 	/* send ack back after we processed couple of messages */
922 	list_for_each_entry_safe(n, n_tmp, &processed_nodes, list) {
923 		list_del(&n->list);
924 		dlm_midcomms_receive_done(n->nodeid);
925 		kfree(n);
926 	}
927 }
928 
929 /* Data received from remote end */
930 static int receive_from_sock(struct connection *con, int buflen)
931 {
932 	struct processqueue_entry *pentry;
933 	int ret, buflen_real;
934 	struct msghdr msg;
935 	struct kvec iov;
936 
937 	pentry = new_processqueue_entry(con->nodeid, buflen);
938 	if (!pentry)
939 		return DLM_IO_RESCHED;
940 
941 	memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
942 
943 	/* calculate new buffer parameter regarding last receive and
944 	 * possible leftover bytes
945 	 */
946 	iov.iov_base = pentry->buf + con->rx_leftover;
947 	iov.iov_len = buflen - con->rx_leftover;
948 
949 	memset(&msg, 0, sizeof(msg));
950 	msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
951 	clear_bit(CF_RECV_INTR, &con->flags);
952 again:
953 	ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
954 			     msg.msg_flags);
955 	trace_dlm_recv(con->nodeid, ret);
956 	if (ret == -EAGAIN) {
957 		lock_sock(con->sock->sk);
958 		if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
959 			release_sock(con->sock->sk);
960 			goto again;
961 		}
962 
963 		clear_bit(CF_RECV_PENDING, &con->flags);
964 		release_sock(con->sock->sk);
965 		free_processqueue_entry(pentry);
966 		return DLM_IO_END;
967 	} else if (ret == 0) {
968 		/* close will clear CF_RECV_PENDING */
969 		free_processqueue_entry(pentry);
970 		return DLM_IO_EOF;
971 	} else if (ret < 0) {
972 		free_processqueue_entry(pentry);
973 		return ret;
974 	}
975 
976 	/* new buflen according readed bytes and leftover from last receive */
977 	buflen_real = ret + con->rx_leftover;
978 	ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
979 					   buflen_real);
980 	if (ret < 0) {
981 		free_processqueue_entry(pentry);
982 		return ret;
983 	}
984 
985 	pentry->buflen = ret;
986 
987 	/* calculate leftover bytes from process and put it into begin of
988 	 * the receive buffer, so next receive we have the full message
989 	 * at the start address of the receive buffer.
990 	 */
991 	con->rx_leftover = buflen_real - ret;
992 	memmove(con->rx_leftover_buf, pentry->buf + ret,
993 		con->rx_leftover);
994 
995 	spin_lock(&processqueue_lock);
996 	list_add_tail(&pentry->list, &processqueue);
997 	if (!process_dlm_messages_pending) {
998 		process_dlm_messages_pending = true;
999 		queue_work(process_workqueue, &process_work);
1000 	}
1001 	spin_unlock(&processqueue_lock);
1002 
1003 	return DLM_IO_SUCCESS;
1004 }
1005 
1006 /* Listening socket is busy, accept a connection */
1007 static int accept_from_sock(void)
1008 {
1009 	struct sockaddr_storage peeraddr;
1010 	int len, idx, result, nodeid;
1011 	struct connection *newcon;
1012 	struct socket *newsock;
1013 	unsigned int mark;
1014 
1015 	result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
1016 	if (result == -EAGAIN)
1017 		return DLM_IO_END;
1018 	else if (result < 0)
1019 		goto accept_err;
1020 
1021 	/* Get the connected socket's peer */
1022 	memset(&peeraddr, 0, sizeof(peeraddr));
1023 	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
1024 	if (len < 0) {
1025 		result = -ECONNABORTED;
1026 		goto accept_err;
1027 	}
1028 
1029 	/* Get the new node's NODEID */
1030 	make_sockaddr(&peeraddr, 0, &len);
1031 	if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1032 		switch (peeraddr.ss_family) {
1033 		case AF_INET: {
1034 			struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1035 
1036 			log_print("connect from non cluster IPv4 node %pI4",
1037 				  &sin->sin_addr);
1038 			break;
1039 		}
1040 #if IS_ENABLED(CONFIG_IPV6)
1041 		case AF_INET6: {
1042 			struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1043 
1044 			log_print("connect from non cluster IPv6 node %pI6c",
1045 				  &sin6->sin6_addr);
1046 			break;
1047 		}
1048 #endif
1049 		default:
1050 			log_print("invalid family from non cluster node");
1051 			break;
1052 		}
1053 
1054 		sock_release(newsock);
1055 		return -1;
1056 	}
1057 
1058 	log_print("got connection from %d", nodeid);
1059 
1060 	/*  Check to see if we already have a connection to this node. This
1061 	 *  could happen if the two nodes initiate a connection at roughly
1062 	 *  the same time and the connections cross on the wire.
1063 	 *  In this case we store the incoming one in "othercon"
1064 	 */
1065 	idx = srcu_read_lock(&connections_srcu);
1066 	newcon = nodeid2con(nodeid, 0);
1067 	if (WARN_ON_ONCE(!newcon)) {
1068 		srcu_read_unlock(&connections_srcu, idx);
1069 		result = -ENOENT;
1070 		goto accept_err;
1071 	}
1072 
1073 	sock_set_mark(newsock->sk, mark);
1074 
1075 	down_write(&newcon->sock_lock);
1076 	if (newcon->sock) {
1077 		struct connection *othercon = newcon->othercon;
1078 
1079 		if (!othercon) {
1080 			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1081 			if (!othercon) {
1082 				log_print("failed to allocate incoming socket");
1083 				up_write(&newcon->sock_lock);
1084 				srcu_read_unlock(&connections_srcu, idx);
1085 				result = -ENOMEM;
1086 				goto accept_err;
1087 			}
1088 
1089 			dlm_con_init(othercon, nodeid);
1090 			lockdep_set_subclass(&othercon->sock_lock, 1);
1091 			newcon->othercon = othercon;
1092 			set_bit(CF_IS_OTHERCON, &othercon->flags);
1093 		} else {
1094 			/* close other sock con if we have something new */
1095 			close_connection(othercon, false);
1096 		}
1097 
1098 		down_write(&othercon->sock_lock);
1099 		add_sock(newsock, othercon);
1100 
1101 		/* check if we receved something while adding */
1102 		lock_sock(othercon->sock->sk);
1103 		lowcomms_queue_rwork(othercon);
1104 		release_sock(othercon->sock->sk);
1105 		up_write(&othercon->sock_lock);
1106 	}
1107 	else {
1108 		/* accept copies the sk after we've saved the callbacks, so we
1109 		   don't want to save them a second time or comm errors will
1110 		   result in calling sk_error_report recursively. */
1111 		add_sock(newsock, newcon);
1112 
1113 		/* check if we receved something while adding */
1114 		lock_sock(newcon->sock->sk);
1115 		lowcomms_queue_rwork(newcon);
1116 		release_sock(newcon->sock->sk);
1117 	}
1118 	up_write(&newcon->sock_lock);
1119 	srcu_read_unlock(&connections_srcu, idx);
1120 
1121 	return DLM_IO_SUCCESS;
1122 
1123 accept_err:
1124 	if (newsock)
1125 		sock_release(newsock);
1126 
1127 	return result;
1128 }
1129 
1130 /*
1131  * writequeue_entry_complete - try to delete and free write queue entry
1132  * @e: write queue entry to try to delete
1133  * @completed: bytes completed
1134  *
1135  * writequeue_lock must be held.
1136  */
1137 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1138 {
1139 	e->offset += completed;
1140 	e->len -= completed;
1141 	/* signal that page was half way transmitted */
1142 	e->dirty = true;
1143 
1144 	if (e->len == 0 && e->users == 0)
1145 		free_entry(e);
1146 }
1147 
1148 /*
1149  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1150  */
1151 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1152 {
1153 	struct sockaddr_storage localaddr;
1154 	struct sockaddr *addr = (struct sockaddr *)&localaddr;
1155 	int i, addr_len, result = 0;
1156 
1157 	for (i = 0; i < dlm_local_count; i++) {
1158 		memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1159 		make_sockaddr(&localaddr, port, &addr_len);
1160 
1161 		if (!i)
1162 			result = kernel_bind(sock, addr, addr_len);
1163 		else
1164 			result = sock_bind_add(sock->sk, addr, addr_len);
1165 
1166 		if (result < 0) {
1167 			log_print("Can't bind to %d addr number %d, %d.\n",
1168 				  port, i + 1, result);
1169 			break;
1170 		}
1171 	}
1172 	return result;
1173 }
1174 
1175 /* Get local addresses */
1176 static void init_local(void)
1177 {
1178 	struct sockaddr_storage sas;
1179 	int i;
1180 
1181 	dlm_local_count = 0;
1182 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1183 		if (dlm_our_addr(&sas, i))
1184 			break;
1185 
1186 		memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1187 	}
1188 }
1189 
1190 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1191 {
1192 	struct writequeue_entry *entry;
1193 
1194 	entry = dlm_allocate_writequeue();
1195 	if (!entry)
1196 		return NULL;
1197 
1198 	entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1199 	if (!entry->page) {
1200 		dlm_free_writequeue(entry);
1201 		return NULL;
1202 	}
1203 
1204 	entry->offset = 0;
1205 	entry->len = 0;
1206 	entry->end = 0;
1207 	entry->dirty = false;
1208 	entry->con = con;
1209 	entry->users = 1;
1210 	kref_init(&entry->ref);
1211 	return entry;
1212 }
1213 
1214 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1215 					     char **ppc, void (*cb)(void *data),
1216 					     void *data)
1217 {
1218 	struct writequeue_entry *e;
1219 
1220 	spin_lock_bh(&con->writequeue_lock);
1221 	if (!list_empty(&con->writequeue)) {
1222 		e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1223 		if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1224 			kref_get(&e->ref);
1225 
1226 			*ppc = page_address(e->page) + e->end;
1227 			if (cb)
1228 				cb(data);
1229 
1230 			e->end += len;
1231 			e->users++;
1232 			goto out;
1233 		}
1234 	}
1235 
1236 	e = new_writequeue_entry(con);
1237 	if (!e)
1238 		goto out;
1239 
1240 	kref_get(&e->ref);
1241 	*ppc = page_address(e->page);
1242 	e->end += len;
1243 	if (cb)
1244 		cb(data);
1245 
1246 	list_add_tail(&e->list, &con->writequeue);
1247 
1248 out:
1249 	spin_unlock_bh(&con->writequeue_lock);
1250 	return e;
1251 };
1252 
1253 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1254 						gfp_t allocation, char **ppc,
1255 						void (*cb)(void *data),
1256 						void *data)
1257 {
1258 	struct writequeue_entry *e;
1259 	struct dlm_msg *msg;
1260 
1261 	msg = dlm_allocate_msg(allocation);
1262 	if (!msg)
1263 		return NULL;
1264 
1265 	kref_init(&msg->ref);
1266 
1267 	e = new_wq_entry(con, len, ppc, cb, data);
1268 	if (!e) {
1269 		dlm_free_msg(msg);
1270 		return NULL;
1271 	}
1272 
1273 	msg->retransmit = false;
1274 	msg->orig_msg = NULL;
1275 	msg->ppc = *ppc;
1276 	msg->len = len;
1277 	msg->entry = e;
1278 
1279 	return msg;
1280 }
1281 
1282 /* avoid false positive for nodes_srcu, unlock happens in
1283  * dlm_lowcomms_commit_msg which is a must call if success
1284  */
1285 #ifndef __CHECKER__
1286 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1287 				     char **ppc, void (*cb)(void *data),
1288 				     void *data)
1289 {
1290 	struct connection *con;
1291 	struct dlm_msg *msg;
1292 	int idx;
1293 
1294 	if (len > DLM_MAX_SOCKET_BUFSIZE ||
1295 	    len < sizeof(struct dlm_header)) {
1296 		BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1297 		log_print("failed to allocate a buffer of size %d", len);
1298 		WARN_ON_ONCE(1);
1299 		return NULL;
1300 	}
1301 
1302 	idx = srcu_read_lock(&connections_srcu);
1303 	con = nodeid2con(nodeid, 0);
1304 	if (WARN_ON_ONCE(!con)) {
1305 		srcu_read_unlock(&connections_srcu, idx);
1306 		return NULL;
1307 	}
1308 
1309 	msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1310 	if (!msg) {
1311 		srcu_read_unlock(&connections_srcu, idx);
1312 		return NULL;
1313 	}
1314 
1315 	/* for dlm_lowcomms_commit_msg() */
1316 	kref_get(&msg->ref);
1317 	/* we assume if successful commit must called */
1318 	msg->idx = idx;
1319 	return msg;
1320 }
1321 #endif
1322 
1323 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1324 {
1325 	struct writequeue_entry *e = msg->entry;
1326 	struct connection *con = e->con;
1327 	int users;
1328 
1329 	spin_lock_bh(&con->writequeue_lock);
1330 	kref_get(&msg->ref);
1331 	list_add(&msg->list, &e->msgs);
1332 
1333 	users = --e->users;
1334 	if (users)
1335 		goto out;
1336 
1337 	e->len = DLM_WQ_LENGTH_BYTES(e);
1338 
1339 	lowcomms_queue_swork(con);
1340 
1341 out:
1342 	spin_unlock_bh(&con->writequeue_lock);
1343 	return;
1344 }
1345 
1346 /* avoid false positive for nodes_srcu, lock was happen in
1347  * dlm_lowcomms_new_msg
1348  */
1349 #ifndef __CHECKER__
1350 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1351 {
1352 	_dlm_lowcomms_commit_msg(msg);
1353 	srcu_read_unlock(&connections_srcu, msg->idx);
1354 	/* because dlm_lowcomms_new_msg() */
1355 	kref_put(&msg->ref, dlm_msg_release);
1356 }
1357 #endif
1358 
1359 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1360 {
1361 	kref_put(&msg->ref, dlm_msg_release);
1362 }
1363 
1364 /* does not held connections_srcu, usage lowcomms_error_report only */
1365 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1366 {
1367 	struct dlm_msg *msg_resend;
1368 	char *ppc;
1369 
1370 	if (msg->retransmit)
1371 		return 1;
1372 
1373 	msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1374 					      GFP_ATOMIC, &ppc, NULL, NULL);
1375 	if (!msg_resend)
1376 		return -ENOMEM;
1377 
1378 	msg->retransmit = true;
1379 	kref_get(&msg->ref);
1380 	msg_resend->orig_msg = msg;
1381 
1382 	memcpy(ppc, msg->ppc, msg->len);
1383 	_dlm_lowcomms_commit_msg(msg_resend);
1384 	dlm_lowcomms_put_msg(msg_resend);
1385 
1386 	return 0;
1387 }
1388 
1389 /* Send a message */
1390 static int send_to_sock(struct connection *con)
1391 {
1392 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1393 	struct writequeue_entry *e;
1394 	int len, offset, ret;
1395 
1396 	spin_lock_bh(&con->writequeue_lock);
1397 	e = con_next_wq(con);
1398 	if (!e) {
1399 		clear_bit(CF_SEND_PENDING, &con->flags);
1400 		spin_unlock_bh(&con->writequeue_lock);
1401 		return DLM_IO_END;
1402 	}
1403 
1404 	len = e->len;
1405 	offset = e->offset;
1406 	WARN_ON_ONCE(len == 0 && e->users == 0);
1407 	spin_unlock_bh(&con->writequeue_lock);
1408 
1409 	ret = kernel_sendpage(con->sock, e->page, offset, len,
1410 			      msg_flags);
1411 	trace_dlm_send(con->nodeid, ret);
1412 	if (ret == -EAGAIN || ret == 0) {
1413 		lock_sock(con->sock->sk);
1414 		spin_lock_bh(&con->writequeue_lock);
1415 		if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1416 		    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1417 			/* Notify TCP that we're limited by the
1418 			 * application window size.
1419 			 */
1420 			set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1421 			con->sock->sk->sk_write_pending++;
1422 
1423 			clear_bit(CF_SEND_PENDING, &con->flags);
1424 			spin_unlock_bh(&con->writequeue_lock);
1425 			release_sock(con->sock->sk);
1426 
1427 			/* wait for write_space() event */
1428 			return DLM_IO_END;
1429 		}
1430 		spin_unlock_bh(&con->writequeue_lock);
1431 		release_sock(con->sock->sk);
1432 
1433 		return DLM_IO_RESCHED;
1434 	} else if (ret < 0) {
1435 		return ret;
1436 	}
1437 
1438 	spin_lock_bh(&con->writequeue_lock);
1439 	writequeue_entry_complete(e, ret);
1440 	spin_unlock_bh(&con->writequeue_lock);
1441 
1442 	return DLM_IO_SUCCESS;
1443 }
1444 
1445 static void clean_one_writequeue(struct connection *con)
1446 {
1447 	struct writequeue_entry *e, *safe;
1448 
1449 	spin_lock_bh(&con->writequeue_lock);
1450 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1451 		free_entry(e);
1452 	}
1453 	spin_unlock_bh(&con->writequeue_lock);
1454 }
1455 
1456 static void connection_release(struct rcu_head *rcu)
1457 {
1458 	struct connection *con = container_of(rcu, struct connection, rcu);
1459 
1460 	WARN_ON_ONCE(!list_empty(&con->writequeue));
1461 	WARN_ON_ONCE(con->sock);
1462 	kfree(con);
1463 }
1464 
1465 /* Called from recovery when it knows that a node has
1466    left the cluster */
1467 int dlm_lowcomms_close(int nodeid)
1468 {
1469 	struct connection *con;
1470 	int idx;
1471 
1472 	log_print("closing connection to node %d", nodeid);
1473 
1474 	idx = srcu_read_lock(&connections_srcu);
1475 	con = nodeid2con(nodeid, 0);
1476 	if (WARN_ON_ONCE(!con)) {
1477 		srcu_read_unlock(&connections_srcu, idx);
1478 		return -ENOENT;
1479 	}
1480 
1481 	stop_connection_io(con);
1482 	log_print("io handling for node: %d stopped", nodeid);
1483 	close_connection(con, true);
1484 
1485 	spin_lock(&connections_lock);
1486 	hlist_del_rcu(&con->list);
1487 	spin_unlock(&connections_lock);
1488 
1489 	clean_one_writequeue(con);
1490 	call_srcu(&connections_srcu, &con->rcu, connection_release);
1491 	if (con->othercon) {
1492 		clean_one_writequeue(con->othercon);
1493 		if (con->othercon)
1494 			call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1495 	}
1496 	srcu_read_unlock(&connections_srcu, idx);
1497 
1498 	/* for debugging we print when we are done to compare with other
1499 	 * messages in between. This function need to be correctly synchronized
1500 	 * with io handling
1501 	 */
1502 	log_print("closing connection to node %d done", nodeid);
1503 
1504 	return 0;
1505 }
1506 
1507 /* Receive worker function */
1508 static void process_recv_sockets(struct work_struct *work)
1509 {
1510 	struct connection *con = container_of(work, struct connection, rwork);
1511 	int ret, buflen;
1512 
1513 	down_read(&con->sock_lock);
1514 	if (!con->sock) {
1515 		up_read(&con->sock_lock);
1516 		return;
1517 	}
1518 
1519 	buflen = READ_ONCE(dlm_config.ci_buffer_size);
1520 	do {
1521 		ret = receive_from_sock(con, buflen);
1522 	} while (ret == DLM_IO_SUCCESS);
1523 	up_read(&con->sock_lock);
1524 
1525 	switch (ret) {
1526 	case DLM_IO_END:
1527 		/* CF_RECV_PENDING cleared */
1528 		break;
1529 	case DLM_IO_EOF:
1530 		close_connection(con, false);
1531 		wake_up(&con->shutdown_wait);
1532 		/* CF_RECV_PENDING cleared */
1533 		break;
1534 	case DLM_IO_RESCHED:
1535 		cond_resched();
1536 		queue_work(io_workqueue, &con->rwork);
1537 		/* CF_RECV_PENDING not cleared */
1538 		break;
1539 	default:
1540 		if (ret < 0) {
1541 			if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1542 				close_connection(con, false);
1543 			} else {
1544 				spin_lock_bh(&con->writequeue_lock);
1545 				lowcomms_queue_swork(con);
1546 				spin_unlock_bh(&con->writequeue_lock);
1547 			}
1548 
1549 			/* CF_RECV_PENDING cleared for othercon
1550 			 * we trigger send queue if not already done
1551 			 * and process_send_sockets will handle it
1552 			 */
1553 			break;
1554 		}
1555 
1556 		WARN_ON_ONCE(1);
1557 		break;
1558 	}
1559 }
1560 
1561 static void process_listen_recv_socket(struct work_struct *work)
1562 {
1563 	int ret;
1564 
1565 	if (WARN_ON_ONCE(!listen_con.sock))
1566 		return;
1567 
1568 	do {
1569 		ret = accept_from_sock();
1570 	} while (ret == DLM_IO_SUCCESS);
1571 
1572 	if (ret < 0)
1573 		log_print("critical error accepting connection: %d", ret);
1574 }
1575 
1576 static int dlm_connect(struct connection *con)
1577 {
1578 	struct sockaddr_storage addr;
1579 	int result, addr_len;
1580 	struct socket *sock;
1581 	unsigned int mark;
1582 
1583 	memset(&addr, 0, sizeof(addr));
1584 	result = nodeid_to_addr(con->nodeid, &addr, NULL,
1585 				dlm_proto_ops->try_new_addr, &mark);
1586 	if (result < 0) {
1587 		log_print("no address for nodeid %d", con->nodeid);
1588 		return result;
1589 	}
1590 
1591 	/* Create a socket to communicate with */
1592 	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1593 				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1594 	if (result < 0)
1595 		return result;
1596 
1597 	sock_set_mark(sock->sk, mark);
1598 	dlm_proto_ops->sockopts(sock);
1599 
1600 	result = dlm_proto_ops->bind(sock);
1601 	if (result < 0) {
1602 		sock_release(sock);
1603 		return result;
1604 	}
1605 
1606 	add_sock(sock, con);
1607 
1608 	log_print_ratelimited("connecting to %d", con->nodeid);
1609 	make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1610 	result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1611 					addr_len);
1612 	switch (result) {
1613 	case -EINPROGRESS:
1614 		/* not an error */
1615 		fallthrough;
1616 	case 0:
1617 		break;
1618 	default:
1619 		if (result < 0)
1620 			dlm_close_sock(&con->sock);
1621 
1622 		break;
1623 	}
1624 
1625 	return result;
1626 }
1627 
1628 /* Send worker function */
1629 static void process_send_sockets(struct work_struct *work)
1630 {
1631 	struct connection *con = container_of(work, struct connection, swork);
1632 	int ret;
1633 
1634 	WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1635 
1636 	down_read(&con->sock_lock);
1637 	if (!con->sock) {
1638 		up_read(&con->sock_lock);
1639 		down_write(&con->sock_lock);
1640 		if (!con->sock) {
1641 			ret = dlm_connect(con);
1642 			switch (ret) {
1643 			case 0:
1644 				break;
1645 			case -EINPROGRESS:
1646 				/* avoid spamming resched on connection
1647 				 * we might can switch to a state_change
1648 				 * event based mechanism if established
1649 				 */
1650 				msleep(100);
1651 				break;
1652 			default:
1653 				/* CF_SEND_PENDING not cleared */
1654 				up_write(&con->sock_lock);
1655 				log_print("connect to node %d try %d error %d",
1656 					  con->nodeid, con->retries++, ret);
1657 				msleep(1000);
1658 				/* For now we try forever to reconnect. In
1659 				 * future we should send a event to cluster
1660 				 * manager to fence itself after certain amount
1661 				 * of retries.
1662 				 */
1663 				queue_work(io_workqueue, &con->swork);
1664 				return;
1665 			}
1666 		}
1667 		downgrade_write(&con->sock_lock);
1668 	}
1669 
1670 	do {
1671 		ret = send_to_sock(con);
1672 	} while (ret == DLM_IO_SUCCESS);
1673 	up_read(&con->sock_lock);
1674 
1675 	switch (ret) {
1676 	case DLM_IO_END:
1677 		/* CF_SEND_PENDING cleared */
1678 		break;
1679 	case DLM_IO_RESCHED:
1680 		/* CF_SEND_PENDING not cleared */
1681 		cond_resched();
1682 		queue_work(io_workqueue, &con->swork);
1683 		break;
1684 	default:
1685 		if (ret < 0) {
1686 			close_connection(con, false);
1687 
1688 			/* CF_SEND_PENDING cleared */
1689 			spin_lock_bh(&con->writequeue_lock);
1690 			lowcomms_queue_swork(con);
1691 			spin_unlock_bh(&con->writequeue_lock);
1692 			break;
1693 		}
1694 
1695 		WARN_ON_ONCE(1);
1696 		break;
1697 	}
1698 }
1699 
1700 static void work_stop(void)
1701 {
1702 	if (io_workqueue) {
1703 		destroy_workqueue(io_workqueue);
1704 		io_workqueue = NULL;
1705 	}
1706 
1707 	if (process_workqueue) {
1708 		destroy_workqueue(process_workqueue);
1709 		process_workqueue = NULL;
1710 	}
1711 }
1712 
1713 static int work_start(void)
1714 {
1715 	io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM,
1716 				       0);
1717 	if (!io_workqueue) {
1718 		log_print("can't start dlm_io");
1719 		return -ENOMEM;
1720 	}
1721 
1722 	/* ordered dlm message process queue,
1723 	 * should be converted to a tasklet
1724 	 */
1725 	process_workqueue = alloc_ordered_workqueue("dlm_process",
1726 						    WQ_HIGHPRI | WQ_MEM_RECLAIM);
1727 	if (!process_workqueue) {
1728 		log_print("can't start dlm_process");
1729 		destroy_workqueue(io_workqueue);
1730 		io_workqueue = NULL;
1731 		return -ENOMEM;
1732 	}
1733 
1734 	return 0;
1735 }
1736 
1737 void dlm_lowcomms_shutdown(void)
1738 {
1739 	struct connection *con;
1740 	int i, idx;
1741 
1742 	/* stop lowcomms_listen_data_ready calls */
1743 	lock_sock(listen_con.sock->sk);
1744 	listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1745 	release_sock(listen_con.sock->sk);
1746 
1747 	cancel_work_sync(&listen_con.rwork);
1748 	dlm_close_sock(&listen_con.sock);
1749 
1750 	idx = srcu_read_lock(&connections_srcu);
1751 	for (i = 0; i < CONN_HASH_SIZE; i++) {
1752 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1753 			shutdown_connection(con, true);
1754 			stop_connection_io(con);
1755 			flush_workqueue(process_workqueue);
1756 			close_connection(con, true);
1757 
1758 			clean_one_writequeue(con);
1759 			if (con->othercon)
1760 				clean_one_writequeue(con->othercon);
1761 			allow_connection_io(con);
1762 		}
1763 	}
1764 	srcu_read_unlock(&connections_srcu, idx);
1765 }
1766 
1767 void dlm_lowcomms_stop(void)
1768 {
1769 	work_stop();
1770 	dlm_proto_ops = NULL;
1771 }
1772 
1773 static int dlm_listen_for_all(void)
1774 {
1775 	struct socket *sock;
1776 	int result;
1777 
1778 	log_print("Using %s for communications",
1779 		  dlm_proto_ops->name);
1780 
1781 	result = dlm_proto_ops->listen_validate();
1782 	if (result < 0)
1783 		return result;
1784 
1785 	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1786 				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1787 	if (result < 0) {
1788 		log_print("Can't create comms socket: %d", result);
1789 		return result;
1790 	}
1791 
1792 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1793 	dlm_proto_ops->listen_sockopts(sock);
1794 
1795 	result = dlm_proto_ops->listen_bind(sock);
1796 	if (result < 0)
1797 		goto out;
1798 
1799 	lock_sock(sock->sk);
1800 	listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1801 	listen_sock.sk_write_space = sock->sk->sk_write_space;
1802 	listen_sock.sk_error_report = sock->sk->sk_error_report;
1803 	listen_sock.sk_state_change = sock->sk->sk_state_change;
1804 
1805 	listen_con.sock = sock;
1806 
1807 	sock->sk->sk_allocation = GFP_NOFS;
1808 	sock->sk->sk_use_task_frag = false;
1809 	sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1810 	release_sock(sock->sk);
1811 
1812 	result = sock->ops->listen(sock, 5);
1813 	if (result < 0) {
1814 		dlm_close_sock(&listen_con.sock);
1815 		return result;
1816 	}
1817 
1818 	return 0;
1819 
1820 out:
1821 	sock_release(sock);
1822 	return result;
1823 }
1824 
1825 static int dlm_tcp_bind(struct socket *sock)
1826 {
1827 	struct sockaddr_storage src_addr;
1828 	int result, addr_len;
1829 
1830 	/* Bind to our cluster-known address connecting to avoid
1831 	 * routing problems.
1832 	 */
1833 	memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1834 	make_sockaddr(&src_addr, 0, &addr_len);
1835 
1836 	result = sock->ops->bind(sock, (struct sockaddr *)&src_addr,
1837 				 addr_len);
1838 	if (result < 0) {
1839 		/* This *may* not indicate a critical error */
1840 		log_print("could not bind for connect: %d", result);
1841 	}
1842 
1843 	return 0;
1844 }
1845 
1846 static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1847 			   struct sockaddr *addr, int addr_len)
1848 {
1849 	return sock->ops->connect(sock, addr, addr_len, O_NONBLOCK);
1850 }
1851 
1852 static int dlm_tcp_listen_validate(void)
1853 {
1854 	/* We don't support multi-homed hosts */
1855 	if (dlm_local_count > 1) {
1856 		log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1857 		return -EINVAL;
1858 	}
1859 
1860 	return 0;
1861 }
1862 
1863 static void dlm_tcp_sockopts(struct socket *sock)
1864 {
1865 	/* Turn off Nagle's algorithm */
1866 	tcp_sock_set_nodelay(sock->sk);
1867 }
1868 
1869 static void dlm_tcp_listen_sockopts(struct socket *sock)
1870 {
1871 	dlm_tcp_sockopts(sock);
1872 	sock_set_reuseaddr(sock->sk);
1873 }
1874 
1875 static int dlm_tcp_listen_bind(struct socket *sock)
1876 {
1877 	int addr_len;
1878 
1879 	/* Bind to our port */
1880 	make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1881 	return sock->ops->bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1882 			       addr_len);
1883 }
1884 
1885 static const struct dlm_proto_ops dlm_tcp_ops = {
1886 	.name = "TCP",
1887 	.proto = IPPROTO_TCP,
1888 	.connect = dlm_tcp_connect,
1889 	.sockopts = dlm_tcp_sockopts,
1890 	.bind = dlm_tcp_bind,
1891 	.listen_validate = dlm_tcp_listen_validate,
1892 	.listen_sockopts = dlm_tcp_listen_sockopts,
1893 	.listen_bind = dlm_tcp_listen_bind,
1894 };
1895 
1896 static int dlm_sctp_bind(struct socket *sock)
1897 {
1898 	return sctp_bind_addrs(sock, 0);
1899 }
1900 
1901 static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1902 			    struct sockaddr *addr, int addr_len)
1903 {
1904 	int ret;
1905 
1906 	/*
1907 	 * Make sock->ops->connect() function return in specified time,
1908 	 * since O_NONBLOCK argument in connect() function does not work here,
1909 	 * then, we should restore the default value of this attribute.
1910 	 */
1911 	sock_set_sndtimeo(sock->sk, 5);
1912 	ret = sock->ops->connect(sock, addr, addr_len, 0);
1913 	sock_set_sndtimeo(sock->sk, 0);
1914 	return ret;
1915 }
1916 
1917 static int dlm_sctp_listen_validate(void)
1918 {
1919 	if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1920 		log_print("SCTP is not enabled by this kernel");
1921 		return -EOPNOTSUPP;
1922 	}
1923 
1924 	request_module("sctp");
1925 	return 0;
1926 }
1927 
1928 static int dlm_sctp_bind_listen(struct socket *sock)
1929 {
1930 	return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1931 }
1932 
1933 static void dlm_sctp_sockopts(struct socket *sock)
1934 {
1935 	/* Turn off Nagle's algorithm */
1936 	sctp_sock_set_nodelay(sock->sk);
1937 	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1938 }
1939 
1940 static const struct dlm_proto_ops dlm_sctp_ops = {
1941 	.name = "SCTP",
1942 	.proto = IPPROTO_SCTP,
1943 	.try_new_addr = true,
1944 	.connect = dlm_sctp_connect,
1945 	.sockopts = dlm_sctp_sockopts,
1946 	.bind = dlm_sctp_bind,
1947 	.listen_validate = dlm_sctp_listen_validate,
1948 	.listen_sockopts = dlm_sctp_sockopts,
1949 	.listen_bind = dlm_sctp_bind_listen,
1950 };
1951 
1952 int dlm_lowcomms_start(void)
1953 {
1954 	int error;
1955 
1956 	init_local();
1957 	if (!dlm_local_count) {
1958 		error = -ENOTCONN;
1959 		log_print("no local IP address has been set");
1960 		goto fail;
1961 	}
1962 
1963 	error = work_start();
1964 	if (error)
1965 		goto fail;
1966 
1967 	/* Start listening */
1968 	switch (dlm_config.ci_protocol) {
1969 	case DLM_PROTO_TCP:
1970 		dlm_proto_ops = &dlm_tcp_ops;
1971 		break;
1972 	case DLM_PROTO_SCTP:
1973 		dlm_proto_ops = &dlm_sctp_ops;
1974 		break;
1975 	default:
1976 		log_print("Invalid protocol identifier %d set",
1977 			  dlm_config.ci_protocol);
1978 		error = -EINVAL;
1979 		goto fail_proto_ops;
1980 	}
1981 
1982 	error = dlm_listen_for_all();
1983 	if (error)
1984 		goto fail_listen;
1985 
1986 	return 0;
1987 
1988 fail_listen:
1989 	dlm_proto_ops = NULL;
1990 fail_proto_ops:
1991 	work_stop();
1992 fail:
1993 	return error;
1994 }
1995 
1996 void dlm_lowcomms_init(void)
1997 {
1998 	int i;
1999 
2000 	for (i = 0; i < CONN_HASH_SIZE; i++)
2001 		INIT_HLIST_HEAD(&connection_hash[i]);
2002 
2003 	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
2004 }
2005 
2006 void dlm_lowcomms_exit(void)
2007 {
2008 	struct connection *con;
2009 	int i, idx;
2010 
2011 	idx = srcu_read_lock(&connections_srcu);
2012 	for (i = 0; i < CONN_HASH_SIZE; i++) {
2013 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
2014 			spin_lock(&connections_lock);
2015 			hlist_del_rcu(&con->list);
2016 			spin_unlock(&connections_lock);
2017 
2018 			if (con->othercon)
2019 				call_srcu(&connections_srcu, &con->othercon->rcu,
2020 					  connection_release);
2021 			call_srcu(&connections_srcu, &con->rcu, connection_release);
2022 		}
2023 	}
2024 	srcu_read_unlock(&connections_srcu, idx);
2025 }
2026