xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 4800cd83)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/user.h>
56 #include <net/ipv6.h>
57 
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62 
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65 
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68 
69 struct cbuf {
70 	unsigned int base;
71 	unsigned int len;
72 	unsigned int mask;
73 };
74 
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77 	cb->len += n;
78 }
79 
80 static int cbuf_data(struct cbuf *cb)
81 {
82 	return ((cb->base + cb->len) & cb->mask);
83 }
84 
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87 	cb->base = cb->len = 0;
88 	cb->mask = size-1;
89 }
90 
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93 	cb->len  -= n;
94 	cb->base += n;
95 	cb->base &= cb->mask;
96 }
97 
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100 	return cb->len == 0;
101 }
102 
103 struct connection {
104 	struct socket *sock;	/* NULL if not connected */
105 	uint32_t nodeid;	/* So we know who we are in the list */
106 	struct mutex sock_mutex;
107 	unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_CONNECT_PENDING 3
111 #define CF_INIT_PENDING 4
112 #define CF_IS_OTHERCON 5
113 #define CF_CLOSE 6
114 #define CF_APP_LIMITED 7
115 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
116 	spinlock_t writequeue_lock;
117 	int (*rx_action) (struct connection *);	/* What to do when active */
118 	void (*connect_action) (struct connection *);	/* What to do to connect */
119 	struct page *rx_page;
120 	struct cbuf cb;
121 	int retries;
122 #define MAX_CONNECT_RETRIES 3
123 	int sctp_assoc;
124 	struct hlist_node list;
125 	struct connection *othercon;
126 	struct work_struct rwork; /* Receive workqueue */
127 	struct work_struct swork; /* Send workqueue */
128 };
129 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
130 
131 /* An entry waiting to be sent */
132 struct writequeue_entry {
133 	struct list_head list;
134 	struct page *page;
135 	int offset;
136 	int len;
137 	int end;
138 	int users;
139 	struct connection *con;
140 };
141 
142 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
143 static int dlm_local_count;
144 
145 /* Work queues */
146 static struct workqueue_struct *recv_workqueue;
147 static struct workqueue_struct *send_workqueue;
148 
149 static struct hlist_head connection_hash[CONN_HASH_SIZE];
150 static DEFINE_MUTEX(connections_lock);
151 static struct kmem_cache *con_cache;
152 
153 static void process_recv_sockets(struct work_struct *work);
154 static void process_send_sockets(struct work_struct *work);
155 
156 
157 /* This is deliberately very simple because most clusters have simple
158    sequential nodeids, so we should be able to go straight to a connection
159    struct in the array */
160 static inline int nodeid_hash(int nodeid)
161 {
162 	return nodeid & (CONN_HASH_SIZE-1);
163 }
164 
165 static struct connection *__find_con(int nodeid)
166 {
167 	int r;
168 	struct hlist_node *h;
169 	struct connection *con;
170 
171 	r = nodeid_hash(nodeid);
172 
173 	hlist_for_each_entry(con, h, &connection_hash[r], list) {
174 		if (con->nodeid == nodeid)
175 			return con;
176 	}
177 	return NULL;
178 }
179 
180 /*
181  * If 'allocation' is zero then we don't attempt to create a new
182  * connection structure for this node.
183  */
184 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
185 {
186 	struct connection *con = NULL;
187 	int r;
188 
189 	con = __find_con(nodeid);
190 	if (con || !alloc)
191 		return con;
192 
193 	con = kmem_cache_zalloc(con_cache, alloc);
194 	if (!con)
195 		return NULL;
196 
197 	r = nodeid_hash(nodeid);
198 	hlist_add_head(&con->list, &connection_hash[r]);
199 
200 	con->nodeid = nodeid;
201 	mutex_init(&con->sock_mutex);
202 	INIT_LIST_HEAD(&con->writequeue);
203 	spin_lock_init(&con->writequeue_lock);
204 	INIT_WORK(&con->swork, process_send_sockets);
205 	INIT_WORK(&con->rwork, process_recv_sockets);
206 
207 	/* Setup action pointers for child sockets */
208 	if (con->nodeid) {
209 		struct connection *zerocon = __find_con(0);
210 
211 		con->connect_action = zerocon->connect_action;
212 		if (!con->rx_action)
213 			con->rx_action = zerocon->rx_action;
214 	}
215 
216 	return con;
217 }
218 
219 /* Loop round all connections */
220 static void foreach_conn(void (*conn_func)(struct connection *c))
221 {
222 	int i;
223 	struct hlist_node *h, *n;
224 	struct connection *con;
225 
226 	for (i = 0; i < CONN_HASH_SIZE; i++) {
227 		hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
228 			conn_func(con);
229 		}
230 	}
231 }
232 
233 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
234 {
235 	struct connection *con;
236 
237 	mutex_lock(&connections_lock);
238 	con = __nodeid2con(nodeid, allocation);
239 	mutex_unlock(&connections_lock);
240 
241 	return con;
242 }
243 
244 /* This is a bit drastic, but only called when things go wrong */
245 static struct connection *assoc2con(int assoc_id)
246 {
247 	int i;
248 	struct hlist_node *h;
249 	struct connection *con;
250 
251 	mutex_lock(&connections_lock);
252 
253 	for (i = 0 ; i < CONN_HASH_SIZE; i++) {
254 		hlist_for_each_entry(con, h, &connection_hash[i], list) {
255 			if (con->sctp_assoc == assoc_id) {
256 				mutex_unlock(&connections_lock);
257 				return con;
258 			}
259 		}
260 	}
261 	mutex_unlock(&connections_lock);
262 	return NULL;
263 }
264 
265 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
266 {
267 	struct sockaddr_storage addr;
268 	int error;
269 
270 	if (!dlm_local_count)
271 		return -1;
272 
273 	error = dlm_nodeid_to_addr(nodeid, &addr);
274 	if (error)
275 		return error;
276 
277 	if (dlm_local_addr[0]->ss_family == AF_INET) {
278 		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
279 		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
280 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
281 	} else {
282 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
283 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
284 		ipv6_addr_copy(&ret6->sin6_addr, &in6->sin6_addr);
285 	}
286 
287 	return 0;
288 }
289 
290 /* Data available on socket or listen socket received a connect */
291 static void lowcomms_data_ready(struct sock *sk, int count_unused)
292 {
293 	struct connection *con = sock2con(sk);
294 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
295 		queue_work(recv_workqueue, &con->rwork);
296 }
297 
298 static void lowcomms_write_space(struct sock *sk)
299 {
300 	struct connection *con = sock2con(sk);
301 
302 	if (!con)
303 		return;
304 
305 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
306 
307 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
308 		con->sock->sk->sk_write_pending--;
309 		clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
310 	}
311 
312 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
313 		queue_work(send_workqueue, &con->swork);
314 }
315 
316 static inline void lowcomms_connect_sock(struct connection *con)
317 {
318 	if (test_bit(CF_CLOSE, &con->flags))
319 		return;
320 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
321 		queue_work(send_workqueue, &con->swork);
322 }
323 
324 static void lowcomms_state_change(struct sock *sk)
325 {
326 	if (sk->sk_state == TCP_ESTABLISHED)
327 		lowcomms_write_space(sk);
328 }
329 
330 int dlm_lowcomms_connect_node(int nodeid)
331 {
332 	struct connection *con;
333 
334 	/* with sctp there's no connecting without sending */
335 	if (dlm_config.ci_protocol != 0)
336 		return 0;
337 
338 	if (nodeid == dlm_our_nodeid())
339 		return 0;
340 
341 	con = nodeid2con(nodeid, GFP_NOFS);
342 	if (!con)
343 		return -ENOMEM;
344 	lowcomms_connect_sock(con);
345 	return 0;
346 }
347 
348 /* Make a socket active */
349 static int add_sock(struct socket *sock, struct connection *con)
350 {
351 	con->sock = sock;
352 
353 	/* Install a data_ready callback */
354 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
355 	con->sock->sk->sk_write_space = lowcomms_write_space;
356 	con->sock->sk->sk_state_change = lowcomms_state_change;
357 	con->sock->sk->sk_user_data = con;
358 	con->sock->sk->sk_allocation = GFP_NOFS;
359 	return 0;
360 }
361 
362 /* Add the port number to an IPv6 or 4 sockaddr and return the address
363    length */
364 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
365 			  int *addr_len)
366 {
367 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
368 	if (saddr->ss_family == AF_INET) {
369 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
370 		in4_addr->sin_port = cpu_to_be16(port);
371 		*addr_len = sizeof(struct sockaddr_in);
372 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
373 	} else {
374 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
375 		in6_addr->sin6_port = cpu_to_be16(port);
376 		*addr_len = sizeof(struct sockaddr_in6);
377 	}
378 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
379 }
380 
381 /* Close a remote connection and tidy up */
382 static void close_connection(struct connection *con, bool and_other)
383 {
384 	mutex_lock(&con->sock_mutex);
385 
386 	if (con->sock) {
387 		sock_release(con->sock);
388 		con->sock = NULL;
389 	}
390 	if (con->othercon && and_other) {
391 		/* Will only re-enter once. */
392 		close_connection(con->othercon, false);
393 	}
394 	if (con->rx_page) {
395 		__free_page(con->rx_page);
396 		con->rx_page = NULL;
397 	}
398 
399 	con->retries = 0;
400 	mutex_unlock(&con->sock_mutex);
401 }
402 
403 /* We only send shutdown messages to nodes that are not part of the cluster */
404 static void sctp_send_shutdown(sctp_assoc_t associd)
405 {
406 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
407 	struct msghdr outmessage;
408 	struct cmsghdr *cmsg;
409 	struct sctp_sndrcvinfo *sinfo;
410 	int ret;
411 	struct connection *con;
412 
413 	con = nodeid2con(0,0);
414 	BUG_ON(con == NULL);
415 
416 	outmessage.msg_name = NULL;
417 	outmessage.msg_namelen = 0;
418 	outmessage.msg_control = outcmsg;
419 	outmessage.msg_controllen = sizeof(outcmsg);
420 	outmessage.msg_flags = MSG_EOR;
421 
422 	cmsg = CMSG_FIRSTHDR(&outmessage);
423 	cmsg->cmsg_level = IPPROTO_SCTP;
424 	cmsg->cmsg_type = SCTP_SNDRCV;
425 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
426 	outmessage.msg_controllen = cmsg->cmsg_len;
427 	sinfo = CMSG_DATA(cmsg);
428 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
429 
430 	sinfo->sinfo_flags |= MSG_EOF;
431 	sinfo->sinfo_assoc_id = associd;
432 
433 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
434 
435 	if (ret != 0)
436 		log_print("send EOF to node failed: %d", ret);
437 }
438 
439 static void sctp_init_failed_foreach(struct connection *con)
440 {
441 	con->sctp_assoc = 0;
442 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
443 		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
444 			queue_work(send_workqueue, &con->swork);
445 	}
446 }
447 
448 /* INIT failed but we don't know which node...
449    restart INIT on all pending nodes */
450 static void sctp_init_failed(void)
451 {
452 	mutex_lock(&connections_lock);
453 
454 	foreach_conn(sctp_init_failed_foreach);
455 
456 	mutex_unlock(&connections_lock);
457 }
458 
459 /* Something happened to an association */
460 static void process_sctp_notification(struct connection *con,
461 				      struct msghdr *msg, char *buf)
462 {
463 	union sctp_notification *sn = (union sctp_notification *)buf;
464 
465 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
466 		switch (sn->sn_assoc_change.sac_state) {
467 
468 		case SCTP_COMM_UP:
469 		case SCTP_RESTART:
470 		{
471 			/* Check that the new node is in the lockspace */
472 			struct sctp_prim prim;
473 			int nodeid;
474 			int prim_len, ret;
475 			int addr_len;
476 			struct connection *new_con;
477 			sctp_peeloff_arg_t parg;
478 			int parglen = sizeof(parg);
479 			int err;
480 
481 			/*
482 			 * We get this before any data for an association.
483 			 * We verify that the node is in the cluster and
484 			 * then peel off a socket for it.
485 			 */
486 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
487 				log_print("COMM_UP for invalid assoc ID %d",
488 					 (int)sn->sn_assoc_change.sac_assoc_id);
489 				sctp_init_failed();
490 				return;
491 			}
492 			memset(&prim, 0, sizeof(struct sctp_prim));
493 			prim_len = sizeof(struct sctp_prim);
494 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
495 
496 			ret = kernel_getsockopt(con->sock,
497 						IPPROTO_SCTP,
498 						SCTP_PRIMARY_ADDR,
499 						(char*)&prim,
500 						&prim_len);
501 			if (ret < 0) {
502 				log_print("getsockopt/sctp_primary_addr on "
503 					  "new assoc %d failed : %d",
504 					  (int)sn->sn_assoc_change.sac_assoc_id,
505 					  ret);
506 
507 				/* Retry INIT later */
508 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
509 				if (new_con)
510 					clear_bit(CF_CONNECT_PENDING, &con->flags);
511 				return;
512 			}
513 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
514 			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
515 				int i;
516 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
517 				log_print("reject connect from unknown addr");
518 				for (i=0; i<sizeof(struct sockaddr_storage);i++)
519 					printk("%02x ", b[i]);
520 				printk("\n");
521 				sctp_send_shutdown(prim.ssp_assoc_id);
522 				return;
523 			}
524 
525 			new_con = nodeid2con(nodeid, GFP_NOFS);
526 			if (!new_con)
527 				return;
528 
529 			/* Peel off a new sock */
530 			parg.associd = sn->sn_assoc_change.sac_assoc_id;
531 			ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
532 						SCTP_SOCKOPT_PEELOFF,
533 						(void *)&parg, &parglen);
534 			if (ret < 0) {
535 				log_print("Can't peel off a socket for "
536 					  "connection %d to node %d: err=%d",
537 					  parg.associd, nodeid, ret);
538 				return;
539 			}
540 			new_con->sock = sockfd_lookup(parg.sd, &err);
541 			if (!new_con->sock) {
542 				log_print("sockfd_lookup error %d", err);
543 				return;
544 			}
545 			add_sock(new_con->sock, new_con);
546 			sockfd_put(new_con->sock);
547 
548 			log_print("connecting to %d sctp association %d",
549 				 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
550 
551 			/* Send any pending writes */
552 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
553 			clear_bit(CF_INIT_PENDING, &con->flags);
554 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
555 				queue_work(send_workqueue, &new_con->swork);
556 			}
557 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
558 				queue_work(recv_workqueue, &new_con->rwork);
559 		}
560 		break;
561 
562 		case SCTP_COMM_LOST:
563 		case SCTP_SHUTDOWN_COMP:
564 		{
565 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
566 			if (con) {
567 				con->sctp_assoc = 0;
568 			}
569 		}
570 		break;
571 
572 		/* We don't know which INIT failed, so clear the PENDING flags
573 		 * on them all.  if assoc_id is zero then it will then try
574 		 * again */
575 
576 		case SCTP_CANT_STR_ASSOC:
577 		{
578 			log_print("Can't start SCTP association - retrying");
579 			sctp_init_failed();
580 		}
581 		break;
582 
583 		default:
584 			log_print("unexpected SCTP assoc change id=%d state=%d",
585 				  (int)sn->sn_assoc_change.sac_assoc_id,
586 				  sn->sn_assoc_change.sac_state);
587 		}
588 	}
589 }
590 
591 /* Data received from remote end */
592 static int receive_from_sock(struct connection *con)
593 {
594 	int ret = 0;
595 	struct msghdr msg = {};
596 	struct kvec iov[2];
597 	unsigned len;
598 	int r;
599 	int call_again_soon = 0;
600 	int nvec;
601 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
602 
603 	mutex_lock(&con->sock_mutex);
604 
605 	if (con->sock == NULL) {
606 		ret = -EAGAIN;
607 		goto out_close;
608 	}
609 
610 	if (con->rx_page == NULL) {
611 		/*
612 		 * This doesn't need to be atomic, but I think it should
613 		 * improve performance if it is.
614 		 */
615 		con->rx_page = alloc_page(GFP_ATOMIC);
616 		if (con->rx_page == NULL)
617 			goto out_resched;
618 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
619 	}
620 
621 	/* Only SCTP needs these really */
622 	memset(&incmsg, 0, sizeof(incmsg));
623 	msg.msg_control = incmsg;
624 	msg.msg_controllen = sizeof(incmsg);
625 
626 	/*
627 	 * iov[0] is the bit of the circular buffer between the current end
628 	 * point (cb.base + cb.len) and the end of the buffer.
629 	 */
630 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
631 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
632 	iov[1].iov_len = 0;
633 	nvec = 1;
634 
635 	/*
636 	 * iov[1] is the bit of the circular buffer between the start of the
637 	 * buffer and the start of the currently used section (cb.base)
638 	 */
639 	if (cbuf_data(&con->cb) >= con->cb.base) {
640 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
641 		iov[1].iov_len = con->cb.base;
642 		iov[1].iov_base = page_address(con->rx_page);
643 		nvec = 2;
644 	}
645 	len = iov[0].iov_len + iov[1].iov_len;
646 
647 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
648 			       MSG_DONTWAIT | MSG_NOSIGNAL);
649 	if (ret <= 0)
650 		goto out_close;
651 
652 	/* Process SCTP notifications */
653 	if (msg.msg_flags & MSG_NOTIFICATION) {
654 		msg.msg_control = incmsg;
655 		msg.msg_controllen = sizeof(incmsg);
656 
657 		process_sctp_notification(con, &msg,
658 				page_address(con->rx_page) + con->cb.base);
659 		mutex_unlock(&con->sock_mutex);
660 		return 0;
661 	}
662 	BUG_ON(con->nodeid == 0);
663 
664 	if (ret == len)
665 		call_again_soon = 1;
666 	cbuf_add(&con->cb, ret);
667 	ret = dlm_process_incoming_buffer(con->nodeid,
668 					  page_address(con->rx_page),
669 					  con->cb.base, con->cb.len,
670 					  PAGE_CACHE_SIZE);
671 	if (ret == -EBADMSG) {
672 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
673 			  "iov_len=%u, iov_base[0]=%p, read=%d",
674 			  page_address(con->rx_page), con->cb.base, con->cb.len,
675 			  len, iov[0].iov_base, r);
676 	}
677 	if (ret < 0)
678 		goto out_close;
679 	cbuf_eat(&con->cb, ret);
680 
681 	if (cbuf_empty(&con->cb) && !call_again_soon) {
682 		__free_page(con->rx_page);
683 		con->rx_page = NULL;
684 	}
685 
686 	if (call_again_soon)
687 		goto out_resched;
688 	mutex_unlock(&con->sock_mutex);
689 	return 0;
690 
691 out_resched:
692 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
693 		queue_work(recv_workqueue, &con->rwork);
694 	mutex_unlock(&con->sock_mutex);
695 	return -EAGAIN;
696 
697 out_close:
698 	mutex_unlock(&con->sock_mutex);
699 	if (ret != -EAGAIN) {
700 		close_connection(con, false);
701 		/* Reconnect when there is something to send */
702 	}
703 	/* Don't return success if we really got EOF */
704 	if (ret == 0)
705 		ret = -EAGAIN;
706 
707 	return ret;
708 }
709 
710 /* Listening socket is busy, accept a connection */
711 static int tcp_accept_from_sock(struct connection *con)
712 {
713 	int result;
714 	struct sockaddr_storage peeraddr;
715 	struct socket *newsock;
716 	int len;
717 	int nodeid;
718 	struct connection *newcon;
719 	struct connection *addcon;
720 
721 	memset(&peeraddr, 0, sizeof(peeraddr));
722 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
723 				  IPPROTO_TCP, &newsock);
724 	if (result < 0)
725 		return -ENOMEM;
726 
727 	mutex_lock_nested(&con->sock_mutex, 0);
728 
729 	result = -ENOTCONN;
730 	if (con->sock == NULL)
731 		goto accept_err;
732 
733 	newsock->type = con->sock->type;
734 	newsock->ops = con->sock->ops;
735 
736 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
737 	if (result < 0)
738 		goto accept_err;
739 
740 	/* Get the connected socket's peer */
741 	memset(&peeraddr, 0, sizeof(peeraddr));
742 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
743 				  &len, 2)) {
744 		result = -ECONNABORTED;
745 		goto accept_err;
746 	}
747 
748 	/* Get the new node's NODEID */
749 	make_sockaddr(&peeraddr, 0, &len);
750 	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
751 		log_print("connect from non cluster node");
752 		sock_release(newsock);
753 		mutex_unlock(&con->sock_mutex);
754 		return -1;
755 	}
756 
757 	log_print("got connection from %d", nodeid);
758 
759 	/*  Check to see if we already have a connection to this node. This
760 	 *  could happen if the two nodes initiate a connection at roughly
761 	 *  the same time and the connections cross on the wire.
762 	 *  In this case we store the incoming one in "othercon"
763 	 */
764 	newcon = nodeid2con(nodeid, GFP_NOFS);
765 	if (!newcon) {
766 		result = -ENOMEM;
767 		goto accept_err;
768 	}
769 	mutex_lock_nested(&newcon->sock_mutex, 1);
770 	if (newcon->sock) {
771 		struct connection *othercon = newcon->othercon;
772 
773 		if (!othercon) {
774 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
775 			if (!othercon) {
776 				log_print("failed to allocate incoming socket");
777 				mutex_unlock(&newcon->sock_mutex);
778 				result = -ENOMEM;
779 				goto accept_err;
780 			}
781 			othercon->nodeid = nodeid;
782 			othercon->rx_action = receive_from_sock;
783 			mutex_init(&othercon->sock_mutex);
784 			INIT_WORK(&othercon->swork, process_send_sockets);
785 			INIT_WORK(&othercon->rwork, process_recv_sockets);
786 			set_bit(CF_IS_OTHERCON, &othercon->flags);
787 		}
788 		if (!othercon->sock) {
789 			newcon->othercon = othercon;
790 			othercon->sock = newsock;
791 			newsock->sk->sk_user_data = othercon;
792 			add_sock(newsock, othercon);
793 			addcon = othercon;
794 		}
795 		else {
796 			printk("Extra connection from node %d attempted\n", nodeid);
797 			result = -EAGAIN;
798 			mutex_unlock(&newcon->sock_mutex);
799 			goto accept_err;
800 		}
801 	}
802 	else {
803 		newsock->sk->sk_user_data = newcon;
804 		newcon->rx_action = receive_from_sock;
805 		add_sock(newsock, newcon);
806 		addcon = newcon;
807 	}
808 
809 	mutex_unlock(&newcon->sock_mutex);
810 
811 	/*
812 	 * Add it to the active queue in case we got data
813 	 * beween processing the accept adding the socket
814 	 * to the read_sockets list
815 	 */
816 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
817 		queue_work(recv_workqueue, &addcon->rwork);
818 	mutex_unlock(&con->sock_mutex);
819 
820 	return 0;
821 
822 accept_err:
823 	mutex_unlock(&con->sock_mutex);
824 	sock_release(newsock);
825 
826 	if (result != -EAGAIN)
827 		log_print("error accepting connection from node: %d", result);
828 	return result;
829 }
830 
831 static void free_entry(struct writequeue_entry *e)
832 {
833 	__free_page(e->page);
834 	kfree(e);
835 }
836 
837 /* Initiate an SCTP association.
838    This is a special case of send_to_sock() in that we don't yet have a
839    peeled-off socket for this association, so we use the listening socket
840    and add the primary IP address of the remote node.
841  */
842 static void sctp_init_assoc(struct connection *con)
843 {
844 	struct sockaddr_storage rem_addr;
845 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
846 	struct msghdr outmessage;
847 	struct cmsghdr *cmsg;
848 	struct sctp_sndrcvinfo *sinfo;
849 	struct connection *base_con;
850 	struct writequeue_entry *e;
851 	int len, offset;
852 	int ret;
853 	int addrlen;
854 	struct kvec iov[1];
855 
856 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
857 		return;
858 
859 	if (con->retries++ > MAX_CONNECT_RETRIES)
860 		return;
861 
862 	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
863 		log_print("no address for nodeid %d", con->nodeid);
864 		return;
865 	}
866 	base_con = nodeid2con(0, 0);
867 	BUG_ON(base_con == NULL);
868 
869 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
870 
871 	outmessage.msg_name = &rem_addr;
872 	outmessage.msg_namelen = addrlen;
873 	outmessage.msg_control = outcmsg;
874 	outmessage.msg_controllen = sizeof(outcmsg);
875 	outmessage.msg_flags = MSG_EOR;
876 
877 	spin_lock(&con->writequeue_lock);
878 
879 	if (list_empty(&con->writequeue)) {
880 		spin_unlock(&con->writequeue_lock);
881 		log_print("writequeue empty for nodeid %d", con->nodeid);
882 		return;
883 	}
884 
885 	e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
886 	len = e->len;
887 	offset = e->offset;
888 	spin_unlock(&con->writequeue_lock);
889 
890 	/* Send the first block off the write queue */
891 	iov[0].iov_base = page_address(e->page)+offset;
892 	iov[0].iov_len = len;
893 
894 	cmsg = CMSG_FIRSTHDR(&outmessage);
895 	cmsg->cmsg_level = IPPROTO_SCTP;
896 	cmsg->cmsg_type = SCTP_SNDRCV;
897 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
898 	sinfo = CMSG_DATA(cmsg);
899 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
900 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
901 	outmessage.msg_controllen = cmsg->cmsg_len;
902 
903 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
904 	if (ret < 0) {
905 		log_print("Send first packet to node %d failed: %d",
906 			  con->nodeid, ret);
907 
908 		/* Try again later */
909 		clear_bit(CF_CONNECT_PENDING, &con->flags);
910 		clear_bit(CF_INIT_PENDING, &con->flags);
911 	}
912 	else {
913 		spin_lock(&con->writequeue_lock);
914 		e->offset += ret;
915 		e->len -= ret;
916 
917 		if (e->len == 0 && e->users == 0) {
918 			list_del(&e->list);
919 			free_entry(e);
920 		}
921 		spin_unlock(&con->writequeue_lock);
922 	}
923 }
924 
925 /* Connect a new socket to its peer */
926 static void tcp_connect_to_sock(struct connection *con)
927 {
928 	int result = -EHOSTUNREACH;
929 	struct sockaddr_storage saddr, src_addr;
930 	int addr_len;
931 	struct socket *sock = NULL;
932 	int one = 1;
933 
934 	if (con->nodeid == 0) {
935 		log_print("attempt to connect sock 0 foiled");
936 		return;
937 	}
938 
939 	mutex_lock(&con->sock_mutex);
940 	if (con->retries++ > MAX_CONNECT_RETRIES)
941 		goto out;
942 
943 	/* Some odd races can cause double-connects, ignore them */
944 	if (con->sock) {
945 		result = 0;
946 		goto out;
947 	}
948 
949 	/* Create a socket to communicate with */
950 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
951 				  IPPROTO_TCP, &sock);
952 	if (result < 0)
953 		goto out_err;
954 
955 	memset(&saddr, 0, sizeof(saddr));
956 	if (dlm_nodeid_to_addr(con->nodeid, &saddr))
957 		goto out_err;
958 
959 	sock->sk->sk_user_data = con;
960 	con->rx_action = receive_from_sock;
961 	con->connect_action = tcp_connect_to_sock;
962 	add_sock(sock, con);
963 
964 	/* Bind to our cluster-known address connecting to avoid
965 	   routing problems */
966 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
967 	make_sockaddr(&src_addr, 0, &addr_len);
968 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
969 				 addr_len);
970 	if (result < 0) {
971 		log_print("could not bind for connect: %d", result);
972 		/* This *may* not indicate a critical error */
973 	}
974 
975 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
976 
977 	log_print("connecting to %d", con->nodeid);
978 
979 	/* Turn off Nagle's algorithm */
980 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
981 			  sizeof(one));
982 
983 	result =
984 		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
985 				   O_NONBLOCK);
986 	if (result == -EINPROGRESS)
987 		result = 0;
988 	if (result == 0)
989 		goto out;
990 
991 out_err:
992 	if (con->sock) {
993 		sock_release(con->sock);
994 		con->sock = NULL;
995 	} else if (sock) {
996 		sock_release(sock);
997 	}
998 	/*
999 	 * Some errors are fatal and this list might need adjusting. For other
1000 	 * errors we try again until the max number of retries is reached.
1001 	 */
1002 	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
1003 	    result != -ENETDOWN && result != -EINVAL
1004 	    && result != -EPROTONOSUPPORT) {
1005 		lowcomms_connect_sock(con);
1006 		result = 0;
1007 	}
1008 out:
1009 	mutex_unlock(&con->sock_mutex);
1010 	return;
1011 }
1012 
1013 static struct socket *tcp_create_listen_sock(struct connection *con,
1014 					     struct sockaddr_storage *saddr)
1015 {
1016 	struct socket *sock = NULL;
1017 	int result = 0;
1018 	int one = 1;
1019 	int addr_len;
1020 
1021 	if (dlm_local_addr[0]->ss_family == AF_INET)
1022 		addr_len = sizeof(struct sockaddr_in);
1023 	else
1024 		addr_len = sizeof(struct sockaddr_in6);
1025 
1026 	/* Create a socket to communicate with */
1027 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1028 				  IPPROTO_TCP, &sock);
1029 	if (result < 0) {
1030 		log_print("Can't create listening comms socket");
1031 		goto create_out;
1032 	}
1033 
1034 	/* Turn off Nagle's algorithm */
1035 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1036 			  sizeof(one));
1037 
1038 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1039 				   (char *)&one, sizeof(one));
1040 
1041 	if (result < 0) {
1042 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1043 	}
1044 	sock->sk->sk_user_data = con;
1045 	con->rx_action = tcp_accept_from_sock;
1046 	con->connect_action = tcp_connect_to_sock;
1047 	con->sock = sock;
1048 
1049 	/* Bind to our port */
1050 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1051 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1052 	if (result < 0) {
1053 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1054 		sock_release(sock);
1055 		sock = NULL;
1056 		con->sock = NULL;
1057 		goto create_out;
1058 	}
1059 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1060 				 (char *)&one, sizeof(one));
1061 	if (result < 0) {
1062 		log_print("Set keepalive failed: %d", result);
1063 	}
1064 
1065 	result = sock->ops->listen(sock, 5);
1066 	if (result < 0) {
1067 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1068 		sock_release(sock);
1069 		sock = NULL;
1070 		goto create_out;
1071 	}
1072 
1073 create_out:
1074 	return sock;
1075 }
1076 
1077 /* Get local addresses */
1078 static void init_local(void)
1079 {
1080 	struct sockaddr_storage sas, *addr;
1081 	int i;
1082 
1083 	dlm_local_count = 0;
1084 	for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1085 		if (dlm_our_addr(&sas, i))
1086 			break;
1087 
1088 		addr = kmalloc(sizeof(*addr), GFP_NOFS);
1089 		if (!addr)
1090 			break;
1091 		memcpy(addr, &sas, sizeof(*addr));
1092 		dlm_local_addr[dlm_local_count++] = addr;
1093 	}
1094 }
1095 
1096 /* Bind to an IP address. SCTP allows multiple address so it can do
1097    multi-homing */
1098 static int add_sctp_bind_addr(struct connection *sctp_con,
1099 			      struct sockaddr_storage *addr,
1100 			      int addr_len, int num)
1101 {
1102 	int result = 0;
1103 
1104 	if (num == 1)
1105 		result = kernel_bind(sctp_con->sock,
1106 				     (struct sockaddr *) addr,
1107 				     addr_len);
1108 	else
1109 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1110 					   SCTP_SOCKOPT_BINDX_ADD,
1111 					   (char *)addr, addr_len);
1112 
1113 	if (result < 0)
1114 		log_print("Can't bind to port %d addr number %d",
1115 			  dlm_config.ci_tcp_port, num);
1116 
1117 	return result;
1118 }
1119 
1120 /* Initialise SCTP socket and bind to all interfaces */
1121 static int sctp_listen_for_all(void)
1122 {
1123 	struct socket *sock = NULL;
1124 	struct sockaddr_storage localaddr;
1125 	struct sctp_event_subscribe subscribe;
1126 	int result = -EINVAL, num = 1, i, addr_len;
1127 	struct connection *con = nodeid2con(0, GFP_NOFS);
1128 	int bufsize = NEEDED_RMEM;
1129 
1130 	if (!con)
1131 		return -ENOMEM;
1132 
1133 	log_print("Using SCTP for communications");
1134 
1135 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1136 				  IPPROTO_SCTP, &sock);
1137 	if (result < 0) {
1138 		log_print("Can't create comms socket, check SCTP is loaded");
1139 		goto out;
1140 	}
1141 
1142 	/* Listen for events */
1143 	memset(&subscribe, 0, sizeof(subscribe));
1144 	subscribe.sctp_data_io_event = 1;
1145 	subscribe.sctp_association_event = 1;
1146 	subscribe.sctp_send_failure_event = 1;
1147 	subscribe.sctp_shutdown_event = 1;
1148 	subscribe.sctp_partial_delivery_event = 1;
1149 
1150 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1151 				 (char *)&bufsize, sizeof(bufsize));
1152 	if (result)
1153 		log_print("Error increasing buffer space on socket %d", result);
1154 
1155 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1156 				   (char *)&subscribe, sizeof(subscribe));
1157 	if (result < 0) {
1158 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1159 			  result);
1160 		goto create_delsock;
1161 	}
1162 
1163 	/* Init con struct */
1164 	sock->sk->sk_user_data = con;
1165 	con->sock = sock;
1166 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1167 	con->rx_action = receive_from_sock;
1168 	con->connect_action = sctp_init_assoc;
1169 
1170 	/* Bind to all interfaces. */
1171 	for (i = 0; i < dlm_local_count; i++) {
1172 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1173 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1174 
1175 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1176 		if (result)
1177 			goto create_delsock;
1178 		++num;
1179 	}
1180 
1181 	result = sock->ops->listen(sock, 5);
1182 	if (result < 0) {
1183 		log_print("Can't set socket listening");
1184 		goto create_delsock;
1185 	}
1186 
1187 	return 0;
1188 
1189 create_delsock:
1190 	sock_release(sock);
1191 	con->sock = NULL;
1192 out:
1193 	return result;
1194 }
1195 
1196 static int tcp_listen_for_all(void)
1197 {
1198 	struct socket *sock = NULL;
1199 	struct connection *con = nodeid2con(0, GFP_NOFS);
1200 	int result = -EINVAL;
1201 
1202 	if (!con)
1203 		return -ENOMEM;
1204 
1205 	/* We don't support multi-homed hosts */
1206 	if (dlm_local_addr[1] != NULL) {
1207 		log_print("TCP protocol can't handle multi-homed hosts, "
1208 			  "try SCTP");
1209 		return -EINVAL;
1210 	}
1211 
1212 	log_print("Using TCP for communications");
1213 
1214 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1215 	if (sock) {
1216 		add_sock(sock, con);
1217 		result = 0;
1218 	}
1219 	else {
1220 		result = -EADDRINUSE;
1221 	}
1222 
1223 	return result;
1224 }
1225 
1226 
1227 
1228 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1229 						     gfp_t allocation)
1230 {
1231 	struct writequeue_entry *entry;
1232 
1233 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1234 	if (!entry)
1235 		return NULL;
1236 
1237 	entry->page = alloc_page(allocation);
1238 	if (!entry->page) {
1239 		kfree(entry);
1240 		return NULL;
1241 	}
1242 
1243 	entry->offset = 0;
1244 	entry->len = 0;
1245 	entry->end = 0;
1246 	entry->users = 0;
1247 	entry->con = con;
1248 
1249 	return entry;
1250 }
1251 
1252 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1253 {
1254 	struct connection *con;
1255 	struct writequeue_entry *e;
1256 	int offset = 0;
1257 	int users = 0;
1258 
1259 	con = nodeid2con(nodeid, allocation);
1260 	if (!con)
1261 		return NULL;
1262 
1263 	spin_lock(&con->writequeue_lock);
1264 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1265 	if ((&e->list == &con->writequeue) ||
1266 	    (PAGE_CACHE_SIZE - e->end < len)) {
1267 		e = NULL;
1268 	} else {
1269 		offset = e->end;
1270 		e->end += len;
1271 		users = e->users++;
1272 	}
1273 	spin_unlock(&con->writequeue_lock);
1274 
1275 	if (e) {
1276 	got_one:
1277 		*ppc = page_address(e->page) + offset;
1278 		return e;
1279 	}
1280 
1281 	e = new_writequeue_entry(con, allocation);
1282 	if (e) {
1283 		spin_lock(&con->writequeue_lock);
1284 		offset = e->end;
1285 		e->end += len;
1286 		users = e->users++;
1287 		list_add_tail(&e->list, &con->writequeue);
1288 		spin_unlock(&con->writequeue_lock);
1289 		goto got_one;
1290 	}
1291 	return NULL;
1292 }
1293 
1294 void dlm_lowcomms_commit_buffer(void *mh)
1295 {
1296 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1297 	struct connection *con = e->con;
1298 	int users;
1299 
1300 	spin_lock(&con->writequeue_lock);
1301 	users = --e->users;
1302 	if (users)
1303 		goto out;
1304 	e->len = e->end - e->offset;
1305 	spin_unlock(&con->writequeue_lock);
1306 
1307 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1308 		queue_work(send_workqueue, &con->swork);
1309 	}
1310 	return;
1311 
1312 out:
1313 	spin_unlock(&con->writequeue_lock);
1314 	return;
1315 }
1316 
1317 /* Send a message */
1318 static void send_to_sock(struct connection *con)
1319 {
1320 	int ret = 0;
1321 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1322 	struct writequeue_entry *e;
1323 	int len, offset;
1324 	int count = 0;
1325 
1326 	mutex_lock(&con->sock_mutex);
1327 	if (con->sock == NULL)
1328 		goto out_connect;
1329 
1330 	spin_lock(&con->writequeue_lock);
1331 	for (;;) {
1332 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1333 			       list);
1334 		if ((struct list_head *) e == &con->writequeue)
1335 			break;
1336 
1337 		len = e->len;
1338 		offset = e->offset;
1339 		BUG_ON(len == 0 && e->users == 0);
1340 		spin_unlock(&con->writequeue_lock);
1341 
1342 		ret = 0;
1343 		if (len) {
1344 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1345 					      msg_flags);
1346 			if (ret == -EAGAIN || ret == 0) {
1347 				if (ret == -EAGAIN &&
1348 				    test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1349 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1350 					/* Notify TCP that we're limited by the
1351 					 * application window size.
1352 					 */
1353 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1354 					con->sock->sk->sk_write_pending++;
1355 				}
1356 				cond_resched();
1357 				goto out;
1358 			}
1359 			if (ret <= 0)
1360 				goto send_error;
1361 		}
1362 
1363 		/* Don't starve people filling buffers */
1364 		if (++count >= MAX_SEND_MSG_COUNT) {
1365 			cond_resched();
1366 			count = 0;
1367 		}
1368 
1369 		spin_lock(&con->writequeue_lock);
1370 		e->offset += ret;
1371 		e->len -= ret;
1372 
1373 		if (e->len == 0 && e->users == 0) {
1374 			list_del(&e->list);
1375 			free_entry(e);
1376 			continue;
1377 		}
1378 	}
1379 	spin_unlock(&con->writequeue_lock);
1380 out:
1381 	mutex_unlock(&con->sock_mutex);
1382 	return;
1383 
1384 send_error:
1385 	mutex_unlock(&con->sock_mutex);
1386 	close_connection(con, false);
1387 	lowcomms_connect_sock(con);
1388 	return;
1389 
1390 out_connect:
1391 	mutex_unlock(&con->sock_mutex);
1392 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1393 		lowcomms_connect_sock(con);
1394 	return;
1395 }
1396 
1397 static void clean_one_writequeue(struct connection *con)
1398 {
1399 	struct writequeue_entry *e, *safe;
1400 
1401 	spin_lock(&con->writequeue_lock);
1402 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1403 		list_del(&e->list);
1404 		free_entry(e);
1405 	}
1406 	spin_unlock(&con->writequeue_lock);
1407 }
1408 
1409 /* Called from recovery when it knows that a node has
1410    left the cluster */
1411 int dlm_lowcomms_close(int nodeid)
1412 {
1413 	struct connection *con;
1414 
1415 	log_print("closing connection to node %d", nodeid);
1416 	con = nodeid2con(nodeid, 0);
1417 	if (con) {
1418 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1419 		clear_bit(CF_WRITE_PENDING, &con->flags);
1420 		set_bit(CF_CLOSE, &con->flags);
1421 		if (cancel_work_sync(&con->swork))
1422 			log_print("canceled swork for node %d", nodeid);
1423 		if (cancel_work_sync(&con->rwork))
1424 			log_print("canceled rwork for node %d", nodeid);
1425 		clean_one_writequeue(con);
1426 		close_connection(con, true);
1427 	}
1428 	return 0;
1429 }
1430 
1431 /* Receive workqueue function */
1432 static void process_recv_sockets(struct work_struct *work)
1433 {
1434 	struct connection *con = container_of(work, struct connection, rwork);
1435 	int err;
1436 
1437 	clear_bit(CF_READ_PENDING, &con->flags);
1438 	do {
1439 		err = con->rx_action(con);
1440 	} while (!err);
1441 }
1442 
1443 /* Send workqueue function */
1444 static void process_send_sockets(struct work_struct *work)
1445 {
1446 	struct connection *con = container_of(work, struct connection, swork);
1447 
1448 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1449 		con->connect_action(con);
1450 		set_bit(CF_WRITE_PENDING, &con->flags);
1451 	}
1452 	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1453 		send_to_sock(con);
1454 }
1455 
1456 
1457 /* Discard all entries on the write queues */
1458 static void clean_writequeues(void)
1459 {
1460 	foreach_conn(clean_one_writequeue);
1461 }
1462 
1463 static void work_stop(void)
1464 {
1465 	destroy_workqueue(recv_workqueue);
1466 	destroy_workqueue(send_workqueue);
1467 }
1468 
1469 static int work_start(void)
1470 {
1471 	recv_workqueue = create_singlethread_workqueue("dlm_recv");
1472 	if (!recv_workqueue) {
1473 		log_print("can't start dlm_recv");
1474 		return -ENOMEM;
1475 	}
1476 
1477 	send_workqueue = create_singlethread_workqueue("dlm_send");
1478 	if (!send_workqueue) {
1479 		log_print("can't start dlm_send");
1480 		destroy_workqueue(recv_workqueue);
1481 		return -ENOMEM;
1482 	}
1483 
1484 	return 0;
1485 }
1486 
1487 static void stop_conn(struct connection *con)
1488 {
1489 	con->flags |= 0x0F;
1490 	if (con->sock && con->sock->sk)
1491 		con->sock->sk->sk_user_data = NULL;
1492 }
1493 
1494 static void free_conn(struct connection *con)
1495 {
1496 	close_connection(con, true);
1497 	if (con->othercon)
1498 		kmem_cache_free(con_cache, con->othercon);
1499 	hlist_del(&con->list);
1500 	kmem_cache_free(con_cache, con);
1501 }
1502 
1503 void dlm_lowcomms_stop(void)
1504 {
1505 	/* Set all the flags to prevent any
1506 	   socket activity.
1507 	*/
1508 	mutex_lock(&connections_lock);
1509 	foreach_conn(stop_conn);
1510 	mutex_unlock(&connections_lock);
1511 
1512 	work_stop();
1513 
1514 	mutex_lock(&connections_lock);
1515 	clean_writequeues();
1516 
1517 	foreach_conn(free_conn);
1518 
1519 	mutex_unlock(&connections_lock);
1520 	kmem_cache_destroy(con_cache);
1521 }
1522 
1523 int dlm_lowcomms_start(void)
1524 {
1525 	int error = -EINVAL;
1526 	struct connection *con;
1527 	int i;
1528 
1529 	for (i = 0; i < CONN_HASH_SIZE; i++)
1530 		INIT_HLIST_HEAD(&connection_hash[i]);
1531 
1532 	init_local();
1533 	if (!dlm_local_count) {
1534 		error = -ENOTCONN;
1535 		log_print("no local IP address has been set");
1536 		goto out;
1537 	}
1538 
1539 	error = -ENOMEM;
1540 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1541 				      __alignof__(struct connection), 0,
1542 				      NULL);
1543 	if (!con_cache)
1544 		goto out;
1545 
1546 	/* Start listening */
1547 	if (dlm_config.ci_protocol == 0)
1548 		error = tcp_listen_for_all();
1549 	else
1550 		error = sctp_listen_for_all();
1551 	if (error)
1552 		goto fail_unlisten;
1553 
1554 	error = work_start();
1555 	if (error)
1556 		goto fail_unlisten;
1557 
1558 	return 0;
1559 
1560 fail_unlisten:
1561 	con = nodeid2con(0,0);
1562 	if (con) {
1563 		close_connection(con, false);
1564 		kmem_cache_free(con_cache, con);
1565 	}
1566 	kmem_cache_destroy(con_cache);
1567 
1568 out:
1569 	return error;
1570 }
1571