xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 40c6b83e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11 
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44 
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55 
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60 
61 #define NEEDED_RMEM (4*1024*1024)
62 #define CONN_HASH_SIZE 32
63 
64 /* Number of messages to send before rescheduling */
65 #define MAX_SEND_MSG_COUNT 25
66 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
67 
68 struct connection {
69 	struct socket *sock;	/* NULL if not connected */
70 	uint32_t nodeid;	/* So we know who we are in the list */
71 	struct mutex sock_mutex;
72 	unsigned long flags;
73 #define CF_READ_PENDING 1
74 #define CF_WRITE_PENDING 2
75 #define CF_INIT_PENDING 4
76 #define CF_IS_OTHERCON 5
77 #define CF_CLOSE 6
78 #define CF_APP_LIMITED 7
79 #define CF_CLOSING 8
80 #define CF_SHUTDOWN 9
81 #define CF_CONNECTED 10
82 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
83 	spinlock_t writequeue_lock;
84 	void (*connect_action) (struct connection *);	/* What to do to connect */
85 	void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
86 	int retries;
87 #define MAX_CONNECT_RETRIES 3
88 	struct hlist_node list;
89 	struct connection *othercon;
90 	struct work_struct rwork; /* Receive workqueue */
91 	struct work_struct swork; /* Send workqueue */
92 	wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
93 	unsigned char *rx_buf;
94 	int rx_buflen;
95 	int rx_leftover;
96 	struct rcu_head rcu;
97 };
98 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
99 
100 struct listen_connection {
101 	struct socket *sock;
102 	struct work_struct rwork;
103 };
104 
105 /* An entry waiting to be sent */
106 struct writequeue_entry {
107 	struct list_head list;
108 	struct page *page;
109 	int offset;
110 	int len;
111 	int end;
112 	int users;
113 	struct connection *con;
114 };
115 
116 struct dlm_node_addr {
117 	struct list_head list;
118 	int nodeid;
119 	int addr_count;
120 	int curr_addr_index;
121 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
122 };
123 
124 static struct listen_sock_callbacks {
125 	void (*sk_error_report)(struct sock *);
126 	void (*sk_data_ready)(struct sock *);
127 	void (*sk_state_change)(struct sock *);
128 	void (*sk_write_space)(struct sock *);
129 } listen_sock;
130 
131 static LIST_HEAD(dlm_node_addrs);
132 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
133 
134 static struct listen_connection listen_con;
135 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
136 static int dlm_local_count;
137 static int dlm_allow_conn;
138 
139 /* Work queues */
140 static struct workqueue_struct *recv_workqueue;
141 static struct workqueue_struct *send_workqueue;
142 
143 static struct hlist_head connection_hash[CONN_HASH_SIZE];
144 static DEFINE_SPINLOCK(connections_lock);
145 DEFINE_STATIC_SRCU(connections_srcu);
146 
147 static void process_recv_sockets(struct work_struct *work);
148 static void process_send_sockets(struct work_struct *work);
149 
150 static void sctp_connect_to_sock(struct connection *con);
151 static void tcp_connect_to_sock(struct connection *con);
152 static void dlm_tcp_shutdown(struct connection *con);
153 
154 /* This is deliberately very simple because most clusters have simple
155    sequential nodeids, so we should be able to go straight to a connection
156    struct in the array */
157 static inline int nodeid_hash(int nodeid)
158 {
159 	return nodeid & (CONN_HASH_SIZE-1);
160 }
161 
162 static struct connection *__find_con(int nodeid)
163 {
164 	int r, idx;
165 	struct connection *con;
166 
167 	r = nodeid_hash(nodeid);
168 
169 	idx = srcu_read_lock(&connections_srcu);
170 	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
171 		if (con->nodeid == nodeid) {
172 			srcu_read_unlock(&connections_srcu, idx);
173 			return con;
174 		}
175 	}
176 	srcu_read_unlock(&connections_srcu, idx);
177 
178 	return NULL;
179 }
180 
181 static int dlm_con_init(struct connection *con, int nodeid)
182 {
183 	con->rx_buflen = dlm_config.ci_buffer_size;
184 	con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS);
185 	if (!con->rx_buf)
186 		return -ENOMEM;
187 
188 	con->nodeid = nodeid;
189 	mutex_init(&con->sock_mutex);
190 	INIT_LIST_HEAD(&con->writequeue);
191 	spin_lock_init(&con->writequeue_lock);
192 	INIT_WORK(&con->swork, process_send_sockets);
193 	INIT_WORK(&con->rwork, process_recv_sockets);
194 	init_waitqueue_head(&con->shutdown_wait);
195 
196 	if (dlm_config.ci_protocol == 0) {
197 		con->connect_action = tcp_connect_to_sock;
198 		con->shutdown_action = dlm_tcp_shutdown;
199 	} else {
200 		con->connect_action = sctp_connect_to_sock;
201 	}
202 
203 	return 0;
204 }
205 
206 /*
207  * If 'allocation' is zero then we don't attempt to create a new
208  * connection structure for this node.
209  */
210 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
211 {
212 	struct connection *con, *tmp;
213 	int r, ret;
214 
215 	con = __find_con(nodeid);
216 	if (con || !alloc)
217 		return con;
218 
219 	con = kzalloc(sizeof(*con), alloc);
220 	if (!con)
221 		return NULL;
222 
223 	ret = dlm_con_init(con, nodeid);
224 	if (ret) {
225 		kfree(con);
226 		return NULL;
227 	}
228 
229 	r = nodeid_hash(nodeid);
230 
231 	spin_lock(&connections_lock);
232 	/* Because multiple workqueues/threads calls this function it can
233 	 * race on multiple cpu's. Instead of locking hot path __find_con()
234 	 * we just check in rare cases of recently added nodes again
235 	 * under protection of connections_lock. If this is the case we
236 	 * abort our connection creation and return the existing connection.
237 	 */
238 	tmp = __find_con(nodeid);
239 	if (tmp) {
240 		spin_unlock(&connections_lock);
241 		kfree(con->rx_buf);
242 		kfree(con);
243 		return tmp;
244 	}
245 
246 	hlist_add_head_rcu(&con->list, &connection_hash[r]);
247 	spin_unlock(&connections_lock);
248 
249 	return con;
250 }
251 
252 /* Loop round all connections */
253 static void foreach_conn(void (*conn_func)(struct connection *c))
254 {
255 	int i, idx;
256 	struct connection *con;
257 
258 	idx = srcu_read_lock(&connections_srcu);
259 	for (i = 0; i < CONN_HASH_SIZE; i++) {
260 		hlist_for_each_entry_rcu(con, &connection_hash[i], list)
261 			conn_func(con);
262 	}
263 	srcu_read_unlock(&connections_srcu, idx);
264 }
265 
266 static struct dlm_node_addr *find_node_addr(int nodeid)
267 {
268 	struct dlm_node_addr *na;
269 
270 	list_for_each_entry(na, &dlm_node_addrs, list) {
271 		if (na->nodeid == nodeid)
272 			return na;
273 	}
274 	return NULL;
275 }
276 
277 static int addr_compare(const struct sockaddr_storage *x,
278 			const struct sockaddr_storage *y)
279 {
280 	switch (x->ss_family) {
281 	case AF_INET: {
282 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
283 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
284 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
285 			return 0;
286 		if (sinx->sin_port != siny->sin_port)
287 			return 0;
288 		break;
289 	}
290 	case AF_INET6: {
291 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
292 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
293 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
294 			return 0;
295 		if (sinx->sin6_port != siny->sin6_port)
296 			return 0;
297 		break;
298 	}
299 	default:
300 		return 0;
301 	}
302 	return 1;
303 }
304 
305 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
306 			  struct sockaddr *sa_out, bool try_new_addr)
307 {
308 	struct sockaddr_storage sas;
309 	struct dlm_node_addr *na;
310 
311 	if (!dlm_local_count)
312 		return -1;
313 
314 	spin_lock(&dlm_node_addrs_spin);
315 	na = find_node_addr(nodeid);
316 	if (na && na->addr_count) {
317 		memcpy(&sas, na->addr[na->curr_addr_index],
318 		       sizeof(struct sockaddr_storage));
319 
320 		if (try_new_addr) {
321 			na->curr_addr_index++;
322 			if (na->curr_addr_index == na->addr_count)
323 				na->curr_addr_index = 0;
324 		}
325 	}
326 	spin_unlock(&dlm_node_addrs_spin);
327 
328 	if (!na)
329 		return -EEXIST;
330 
331 	if (!na->addr_count)
332 		return -ENOENT;
333 
334 	if (sas_out)
335 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
336 
337 	if (!sa_out)
338 		return 0;
339 
340 	if (dlm_local_addr[0]->ss_family == AF_INET) {
341 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
342 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
343 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
344 	} else {
345 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
346 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
347 		ret6->sin6_addr = in6->sin6_addr;
348 	}
349 
350 	return 0;
351 }
352 
353 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
354 {
355 	struct dlm_node_addr *na;
356 	int rv = -EEXIST;
357 	int addr_i;
358 
359 	spin_lock(&dlm_node_addrs_spin);
360 	list_for_each_entry(na, &dlm_node_addrs, list) {
361 		if (!na->addr_count)
362 			continue;
363 
364 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
365 			if (addr_compare(na->addr[addr_i], addr)) {
366 				*nodeid = na->nodeid;
367 				rv = 0;
368 				goto unlock;
369 			}
370 		}
371 	}
372 unlock:
373 	spin_unlock(&dlm_node_addrs_spin);
374 	return rv;
375 }
376 
377 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
378 {
379 	struct sockaddr_storage *new_addr;
380 	struct dlm_node_addr *new_node, *na;
381 
382 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
383 	if (!new_node)
384 		return -ENOMEM;
385 
386 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
387 	if (!new_addr) {
388 		kfree(new_node);
389 		return -ENOMEM;
390 	}
391 
392 	memcpy(new_addr, addr, len);
393 
394 	spin_lock(&dlm_node_addrs_spin);
395 	na = find_node_addr(nodeid);
396 	if (!na) {
397 		new_node->nodeid = nodeid;
398 		new_node->addr[0] = new_addr;
399 		new_node->addr_count = 1;
400 		list_add(&new_node->list, &dlm_node_addrs);
401 		spin_unlock(&dlm_node_addrs_spin);
402 		return 0;
403 	}
404 
405 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
406 		spin_unlock(&dlm_node_addrs_spin);
407 		kfree(new_addr);
408 		kfree(new_node);
409 		return -ENOSPC;
410 	}
411 
412 	na->addr[na->addr_count++] = new_addr;
413 	spin_unlock(&dlm_node_addrs_spin);
414 	kfree(new_node);
415 	return 0;
416 }
417 
418 /* Data available on socket or listen socket received a connect */
419 static void lowcomms_data_ready(struct sock *sk)
420 {
421 	struct connection *con;
422 
423 	read_lock_bh(&sk->sk_callback_lock);
424 	con = sock2con(sk);
425 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
426 		queue_work(recv_workqueue, &con->rwork);
427 	read_unlock_bh(&sk->sk_callback_lock);
428 }
429 
430 static void lowcomms_listen_data_ready(struct sock *sk)
431 {
432 	queue_work(recv_workqueue, &listen_con.rwork);
433 }
434 
435 static void lowcomms_write_space(struct sock *sk)
436 {
437 	struct connection *con;
438 
439 	read_lock_bh(&sk->sk_callback_lock);
440 	con = sock2con(sk);
441 	if (!con)
442 		goto out;
443 
444 	if (!test_and_set_bit(CF_CONNECTED, &con->flags)) {
445 		log_print("successful connected to node %d", con->nodeid);
446 		queue_work(send_workqueue, &con->swork);
447 		goto out;
448 	}
449 
450 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
451 
452 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
453 		con->sock->sk->sk_write_pending--;
454 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
455 	}
456 
457 	queue_work(send_workqueue, &con->swork);
458 out:
459 	read_unlock_bh(&sk->sk_callback_lock);
460 }
461 
462 static inline void lowcomms_connect_sock(struct connection *con)
463 {
464 	if (test_bit(CF_CLOSE, &con->flags))
465 		return;
466 	queue_work(send_workqueue, &con->swork);
467 	cond_resched();
468 }
469 
470 static void lowcomms_state_change(struct sock *sk)
471 {
472 	/* SCTP layer is not calling sk_data_ready when the connection
473 	 * is done, so we catch the signal through here. Also, it
474 	 * doesn't switch socket state when entering shutdown, so we
475 	 * skip the write in that case.
476 	 */
477 	if (sk->sk_shutdown) {
478 		if (sk->sk_shutdown == RCV_SHUTDOWN)
479 			lowcomms_data_ready(sk);
480 	} else if (sk->sk_state == TCP_ESTABLISHED) {
481 		lowcomms_write_space(sk);
482 	}
483 }
484 
485 int dlm_lowcomms_connect_node(int nodeid)
486 {
487 	struct connection *con;
488 
489 	if (nodeid == dlm_our_nodeid())
490 		return 0;
491 
492 	con = nodeid2con(nodeid, GFP_NOFS);
493 	if (!con)
494 		return -ENOMEM;
495 	lowcomms_connect_sock(con);
496 	return 0;
497 }
498 
499 static void lowcomms_error_report(struct sock *sk)
500 {
501 	struct connection *con;
502 	struct sockaddr_storage saddr;
503 	void (*orig_report)(struct sock *) = NULL;
504 
505 	read_lock_bh(&sk->sk_callback_lock);
506 	con = sock2con(sk);
507 	if (con == NULL)
508 		goto out;
509 
510 	orig_report = listen_sock.sk_error_report;
511 	if (con->sock == NULL ||
512 	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
513 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
514 				   "sending to node %d, port %d, "
515 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
516 				   con->nodeid, dlm_config.ci_tcp_port,
517 				   sk->sk_err, sk->sk_err_soft);
518 	} else if (saddr.ss_family == AF_INET) {
519 		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
520 
521 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
522 				   "sending to node %d at %pI4, port %d, "
523 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
524 				   con->nodeid, &sin4->sin_addr.s_addr,
525 				   dlm_config.ci_tcp_port, sk->sk_err,
526 				   sk->sk_err_soft);
527 	} else {
528 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
529 
530 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
531 				   "sending to node %d at %u.%u.%u.%u, "
532 				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
533 				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
534 				   sin6->sin6_addr.s6_addr32[1],
535 				   sin6->sin6_addr.s6_addr32[2],
536 				   sin6->sin6_addr.s6_addr32[3],
537 				   dlm_config.ci_tcp_port, sk->sk_err,
538 				   sk->sk_err_soft);
539 	}
540 out:
541 	read_unlock_bh(&sk->sk_callback_lock);
542 	if (orig_report)
543 		orig_report(sk);
544 }
545 
546 /* Note: sk_callback_lock must be locked before calling this function. */
547 static void save_listen_callbacks(struct socket *sock)
548 {
549 	struct sock *sk = sock->sk;
550 
551 	listen_sock.sk_data_ready = sk->sk_data_ready;
552 	listen_sock.sk_state_change = sk->sk_state_change;
553 	listen_sock.sk_write_space = sk->sk_write_space;
554 	listen_sock.sk_error_report = sk->sk_error_report;
555 }
556 
557 static void restore_callbacks(struct socket *sock)
558 {
559 	struct sock *sk = sock->sk;
560 
561 	write_lock_bh(&sk->sk_callback_lock);
562 	sk->sk_user_data = NULL;
563 	sk->sk_data_ready = listen_sock.sk_data_ready;
564 	sk->sk_state_change = listen_sock.sk_state_change;
565 	sk->sk_write_space = listen_sock.sk_write_space;
566 	sk->sk_error_report = listen_sock.sk_error_report;
567 	write_unlock_bh(&sk->sk_callback_lock);
568 }
569 
570 static void add_listen_sock(struct socket *sock, struct listen_connection *con)
571 {
572 	struct sock *sk = sock->sk;
573 
574 	write_lock_bh(&sk->sk_callback_lock);
575 	save_listen_callbacks(sock);
576 	con->sock = sock;
577 
578 	sk->sk_user_data = con;
579 	sk->sk_allocation = GFP_NOFS;
580 	/* Install a data_ready callback */
581 	sk->sk_data_ready = lowcomms_listen_data_ready;
582 	write_unlock_bh(&sk->sk_callback_lock);
583 }
584 
585 /* Make a socket active */
586 static void add_sock(struct socket *sock, struct connection *con)
587 {
588 	struct sock *sk = sock->sk;
589 
590 	write_lock_bh(&sk->sk_callback_lock);
591 	con->sock = sock;
592 
593 	sk->sk_user_data = con;
594 	/* Install a data_ready callback */
595 	sk->sk_data_ready = lowcomms_data_ready;
596 	sk->sk_write_space = lowcomms_write_space;
597 	sk->sk_state_change = lowcomms_state_change;
598 	sk->sk_allocation = GFP_NOFS;
599 	sk->sk_error_report = lowcomms_error_report;
600 	write_unlock_bh(&sk->sk_callback_lock);
601 }
602 
603 /* Add the port number to an IPv6 or 4 sockaddr and return the address
604    length */
605 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
606 			  int *addr_len)
607 {
608 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
609 	if (saddr->ss_family == AF_INET) {
610 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
611 		in4_addr->sin_port = cpu_to_be16(port);
612 		*addr_len = sizeof(struct sockaddr_in);
613 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
614 	} else {
615 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
616 		in6_addr->sin6_port = cpu_to_be16(port);
617 		*addr_len = sizeof(struct sockaddr_in6);
618 	}
619 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
620 }
621 
622 static void dlm_close_sock(struct socket **sock)
623 {
624 	if (*sock) {
625 		restore_callbacks(*sock);
626 		sock_release(*sock);
627 		*sock = NULL;
628 	}
629 }
630 
631 /* Close a remote connection and tidy up */
632 static void close_connection(struct connection *con, bool and_other,
633 			     bool tx, bool rx)
634 {
635 	bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
636 
637 	if (tx && !closing && cancel_work_sync(&con->swork)) {
638 		log_print("canceled swork for node %d", con->nodeid);
639 		clear_bit(CF_WRITE_PENDING, &con->flags);
640 	}
641 	if (rx && !closing && cancel_work_sync(&con->rwork)) {
642 		log_print("canceled rwork for node %d", con->nodeid);
643 		clear_bit(CF_READ_PENDING, &con->flags);
644 	}
645 
646 	mutex_lock(&con->sock_mutex);
647 	dlm_close_sock(&con->sock);
648 
649 	if (con->othercon && and_other) {
650 		/* Will only re-enter once. */
651 		close_connection(con->othercon, false, true, true);
652 	}
653 
654 	con->rx_leftover = 0;
655 	con->retries = 0;
656 	clear_bit(CF_CONNECTED, &con->flags);
657 	mutex_unlock(&con->sock_mutex);
658 	clear_bit(CF_CLOSING, &con->flags);
659 }
660 
661 static void shutdown_connection(struct connection *con)
662 {
663 	int ret;
664 
665 	if (cancel_work_sync(&con->swork)) {
666 		log_print("canceled swork for node %d", con->nodeid);
667 		clear_bit(CF_WRITE_PENDING, &con->flags);
668 	}
669 
670 	mutex_lock(&con->sock_mutex);
671 	/* nothing to shutdown */
672 	if (!con->sock) {
673 		mutex_unlock(&con->sock_mutex);
674 		return;
675 	}
676 
677 	set_bit(CF_SHUTDOWN, &con->flags);
678 	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
679 	mutex_unlock(&con->sock_mutex);
680 	if (ret) {
681 		log_print("Connection %p failed to shutdown: %d will force close",
682 			  con, ret);
683 		goto force_close;
684 	} else {
685 		ret = wait_event_timeout(con->shutdown_wait,
686 					 !test_bit(CF_SHUTDOWN, &con->flags),
687 					 DLM_SHUTDOWN_WAIT_TIMEOUT);
688 		if (ret == 0) {
689 			log_print("Connection %p shutdown timed out, will force close",
690 				  con);
691 			goto force_close;
692 		}
693 	}
694 
695 	return;
696 
697 force_close:
698 	clear_bit(CF_SHUTDOWN, &con->flags);
699 	close_connection(con, false, true, true);
700 }
701 
702 static void dlm_tcp_shutdown(struct connection *con)
703 {
704 	if (con->othercon)
705 		shutdown_connection(con->othercon);
706 	shutdown_connection(con);
707 }
708 
709 static int con_realloc_receive_buf(struct connection *con, int newlen)
710 {
711 	unsigned char *newbuf;
712 
713 	newbuf = kmalloc(newlen, GFP_NOFS);
714 	if (!newbuf)
715 		return -ENOMEM;
716 
717 	/* copy any leftover from last receive */
718 	if (con->rx_leftover)
719 		memmove(newbuf, con->rx_buf, con->rx_leftover);
720 
721 	/* swap to new buffer space */
722 	kfree(con->rx_buf);
723 	con->rx_buflen = newlen;
724 	con->rx_buf = newbuf;
725 
726 	return 0;
727 }
728 
729 /* Data received from remote end */
730 static int receive_from_sock(struct connection *con)
731 {
732 	int call_again_soon = 0;
733 	struct msghdr msg;
734 	struct kvec iov;
735 	int ret, buflen;
736 
737 	mutex_lock(&con->sock_mutex);
738 
739 	if (con->sock == NULL) {
740 		ret = -EAGAIN;
741 		goto out_close;
742 	}
743 
744 	/* realloc if we get new buffer size to read out */
745 	buflen = dlm_config.ci_buffer_size;
746 	if (con->rx_buflen != buflen && con->rx_leftover <= buflen) {
747 		ret = con_realloc_receive_buf(con, buflen);
748 		if (ret < 0)
749 			goto out_resched;
750 	}
751 
752 	/* calculate new buffer parameter regarding last receive and
753 	 * possible leftover bytes
754 	 */
755 	iov.iov_base = con->rx_buf + con->rx_leftover;
756 	iov.iov_len = con->rx_buflen - con->rx_leftover;
757 
758 	memset(&msg, 0, sizeof(msg));
759 	msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
760 	ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
761 			     msg.msg_flags);
762 	if (ret <= 0)
763 		goto out_close;
764 	else if (ret == iov.iov_len)
765 		call_again_soon = 1;
766 
767 	/* new buflen according readed bytes and leftover from last receive */
768 	buflen = ret + con->rx_leftover;
769 	ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen);
770 	if (ret < 0)
771 		goto out_close;
772 
773 	/* calculate leftover bytes from process and put it into begin of
774 	 * the receive buffer, so next receive we have the full message
775 	 * at the start address of the receive buffer.
776 	 */
777 	con->rx_leftover = buflen - ret;
778 	if (con->rx_leftover) {
779 		memmove(con->rx_buf, con->rx_buf + ret,
780 			con->rx_leftover);
781 		call_again_soon = true;
782 	}
783 
784 	if (call_again_soon)
785 		goto out_resched;
786 
787 	mutex_unlock(&con->sock_mutex);
788 	return 0;
789 
790 out_resched:
791 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
792 		queue_work(recv_workqueue, &con->rwork);
793 	mutex_unlock(&con->sock_mutex);
794 	return -EAGAIN;
795 
796 out_close:
797 	mutex_unlock(&con->sock_mutex);
798 	if (ret != -EAGAIN) {
799 		/* Reconnect when there is something to send */
800 		close_connection(con, false, true, false);
801 		if (ret == 0) {
802 			log_print("connection %p got EOF from %d",
803 				  con, con->nodeid);
804 			/* handling for tcp shutdown */
805 			clear_bit(CF_SHUTDOWN, &con->flags);
806 			wake_up(&con->shutdown_wait);
807 			/* signal to breaking receive worker */
808 			ret = -1;
809 		}
810 	}
811 	return ret;
812 }
813 
814 /* Listening socket is busy, accept a connection */
815 static int accept_from_sock(struct listen_connection *con)
816 {
817 	int result;
818 	struct sockaddr_storage peeraddr;
819 	struct socket *newsock;
820 	int len;
821 	int nodeid;
822 	struct connection *newcon;
823 	struct connection *addcon;
824 	unsigned int mark;
825 
826 	if (!dlm_allow_conn) {
827 		return -1;
828 	}
829 
830 	if (!con->sock)
831 		return -ENOTCONN;
832 
833 	result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
834 	if (result < 0)
835 		goto accept_err;
836 
837 	/* Get the connected socket's peer */
838 	memset(&peeraddr, 0, sizeof(peeraddr));
839 	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
840 	if (len < 0) {
841 		result = -ECONNABORTED;
842 		goto accept_err;
843 	}
844 
845 	/* Get the new node's NODEID */
846 	make_sockaddr(&peeraddr, 0, &len);
847 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
848 		unsigned char *b=(unsigned char *)&peeraddr;
849 		log_print("connect from non cluster node");
850 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
851 				     b, sizeof(struct sockaddr_storage));
852 		sock_release(newsock);
853 		return -1;
854 	}
855 
856 	dlm_comm_mark(nodeid, &mark);
857 	sock_set_mark(newsock->sk, mark);
858 
859 	log_print("got connection from %d", nodeid);
860 
861 	/*  Check to see if we already have a connection to this node. This
862 	 *  could happen if the two nodes initiate a connection at roughly
863 	 *  the same time and the connections cross on the wire.
864 	 *  In this case we store the incoming one in "othercon"
865 	 */
866 	newcon = nodeid2con(nodeid, GFP_NOFS);
867 	if (!newcon) {
868 		result = -ENOMEM;
869 		goto accept_err;
870 	}
871 
872 	mutex_lock(&newcon->sock_mutex);
873 	if (newcon->sock) {
874 		struct connection *othercon = newcon->othercon;
875 
876 		if (!othercon) {
877 			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
878 			if (!othercon) {
879 				log_print("failed to allocate incoming socket");
880 				mutex_unlock(&newcon->sock_mutex);
881 				result = -ENOMEM;
882 				goto accept_err;
883 			}
884 
885 			result = dlm_con_init(othercon, nodeid);
886 			if (result < 0) {
887 				kfree(othercon);
888 				goto accept_err;
889 			}
890 
891 			newcon->othercon = othercon;
892 		} else {
893 			/* close other sock con if we have something new */
894 			close_connection(othercon, false, true, false);
895 		}
896 
897 		mutex_lock_nested(&othercon->sock_mutex, 1);
898 		add_sock(newsock, othercon);
899 		addcon = othercon;
900 		mutex_unlock(&othercon->sock_mutex);
901 	}
902 	else {
903 		/* accept copies the sk after we've saved the callbacks, so we
904 		   don't want to save them a second time or comm errors will
905 		   result in calling sk_error_report recursively. */
906 		add_sock(newsock, newcon);
907 		addcon = newcon;
908 	}
909 
910 	mutex_unlock(&newcon->sock_mutex);
911 
912 	/*
913 	 * Add it to the active queue in case we got data
914 	 * between processing the accept adding the socket
915 	 * to the read_sockets list
916 	 */
917 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
918 		queue_work(recv_workqueue, &addcon->rwork);
919 
920 	return 0;
921 
922 accept_err:
923 	if (newsock)
924 		sock_release(newsock);
925 
926 	if (result != -EAGAIN)
927 		log_print("error accepting connection from node: %d", result);
928 	return result;
929 }
930 
931 static void free_entry(struct writequeue_entry *e)
932 {
933 	__free_page(e->page);
934 	kfree(e);
935 }
936 
937 /*
938  * writequeue_entry_complete - try to delete and free write queue entry
939  * @e: write queue entry to try to delete
940  * @completed: bytes completed
941  *
942  * writequeue_lock must be held.
943  */
944 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
945 {
946 	e->offset += completed;
947 	e->len -= completed;
948 
949 	if (e->len == 0 && e->users == 0) {
950 		list_del(&e->list);
951 		free_entry(e);
952 	}
953 }
954 
955 /*
956  * sctp_bind_addrs - bind a SCTP socket to all our addresses
957  */
958 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
959 {
960 	struct sockaddr_storage localaddr;
961 	struct sockaddr *addr = (struct sockaddr *)&localaddr;
962 	int i, addr_len, result = 0;
963 
964 	for (i = 0; i < dlm_local_count; i++) {
965 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
966 		make_sockaddr(&localaddr, port, &addr_len);
967 
968 		if (!i)
969 			result = kernel_bind(sock, addr, addr_len);
970 		else
971 			result = sock_bind_add(sock->sk, addr, addr_len);
972 
973 		if (result < 0) {
974 			log_print("Can't bind to %d addr number %d, %d.\n",
975 				  port, i + 1, result);
976 			break;
977 		}
978 	}
979 	return result;
980 }
981 
982 /* Initiate an SCTP association.
983    This is a special case of send_to_sock() in that we don't yet have a
984    peeled-off socket for this association, so we use the listening socket
985    and add the primary IP address of the remote node.
986  */
987 static void sctp_connect_to_sock(struct connection *con)
988 {
989 	struct sockaddr_storage daddr;
990 	int result;
991 	int addr_len;
992 	struct socket *sock;
993 	unsigned int mark;
994 
995 	dlm_comm_mark(con->nodeid, &mark);
996 
997 	mutex_lock(&con->sock_mutex);
998 
999 	/* Some odd races can cause double-connects, ignore them */
1000 	if (con->retries++ > MAX_CONNECT_RETRIES)
1001 		goto out;
1002 
1003 	if (con->sock) {
1004 		log_print("node %d already connected.", con->nodeid);
1005 		goto out;
1006 	}
1007 
1008 	memset(&daddr, 0, sizeof(daddr));
1009 	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
1010 	if (result < 0) {
1011 		log_print("no address for nodeid %d", con->nodeid);
1012 		goto out;
1013 	}
1014 
1015 	/* Create a socket to communicate with */
1016 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1017 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1018 	if (result < 0)
1019 		goto socket_err;
1020 
1021 	sock_set_mark(sock->sk, mark);
1022 
1023 	add_sock(sock, con);
1024 
1025 	/* Bind to all addresses. */
1026 	if (sctp_bind_addrs(con->sock, 0))
1027 		goto bind_err;
1028 
1029 	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1030 
1031 	log_print("connecting to %d", con->nodeid);
1032 
1033 	/* Turn off Nagle's algorithm */
1034 	sctp_sock_set_nodelay(sock->sk);
1035 
1036 	/*
1037 	 * Make sock->ops->connect() function return in specified time,
1038 	 * since O_NONBLOCK argument in connect() function does not work here,
1039 	 * then, we should restore the default value of this attribute.
1040 	 */
1041 	sock_set_sndtimeo(sock->sk, 5);
1042 	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1043 				   0);
1044 	sock_set_sndtimeo(sock->sk, 0);
1045 
1046 	if (result == -EINPROGRESS)
1047 		result = 0;
1048 	if (result == 0) {
1049 		if (!test_and_set_bit(CF_CONNECTED, &con->flags))
1050 			log_print("successful connected to node %d", con->nodeid);
1051 		goto out;
1052 	}
1053 
1054 bind_err:
1055 	con->sock = NULL;
1056 	sock_release(sock);
1057 
1058 socket_err:
1059 	/*
1060 	 * Some errors are fatal and this list might need adjusting. For other
1061 	 * errors we try again until the max number of retries is reached.
1062 	 */
1063 	if (result != -EHOSTUNREACH &&
1064 	    result != -ENETUNREACH &&
1065 	    result != -ENETDOWN &&
1066 	    result != -EINVAL &&
1067 	    result != -EPROTONOSUPPORT) {
1068 		log_print("connect %d try %d error %d", con->nodeid,
1069 			  con->retries, result);
1070 		mutex_unlock(&con->sock_mutex);
1071 		msleep(1000);
1072 		lowcomms_connect_sock(con);
1073 		return;
1074 	}
1075 
1076 out:
1077 	mutex_unlock(&con->sock_mutex);
1078 }
1079 
1080 /* Connect a new socket to its peer */
1081 static void tcp_connect_to_sock(struct connection *con)
1082 {
1083 	struct sockaddr_storage saddr, src_addr;
1084 	int addr_len;
1085 	struct socket *sock = NULL;
1086 	unsigned int mark;
1087 	int result;
1088 
1089 	dlm_comm_mark(con->nodeid, &mark);
1090 
1091 	mutex_lock(&con->sock_mutex);
1092 	if (con->retries++ > MAX_CONNECT_RETRIES)
1093 		goto out;
1094 
1095 	/* Some odd races can cause double-connects, ignore them */
1096 	if (con->sock)
1097 		goto out;
1098 
1099 	/* Create a socket to communicate with */
1100 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1101 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1102 	if (result < 0)
1103 		goto out_err;
1104 
1105 	sock_set_mark(sock->sk, mark);
1106 
1107 	memset(&saddr, 0, sizeof(saddr));
1108 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1109 	if (result < 0) {
1110 		log_print("no address for nodeid %d", con->nodeid);
1111 		goto out_err;
1112 	}
1113 
1114 	add_sock(sock, con);
1115 
1116 	/* Bind to our cluster-known address connecting to avoid
1117 	   routing problems */
1118 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1119 	make_sockaddr(&src_addr, 0, &addr_len);
1120 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1121 				 addr_len);
1122 	if (result < 0) {
1123 		log_print("could not bind for connect: %d", result);
1124 		/* This *may* not indicate a critical error */
1125 	}
1126 
1127 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1128 
1129 	log_print("connecting to %d", con->nodeid);
1130 
1131 	/* Turn off Nagle's algorithm */
1132 	tcp_sock_set_nodelay(sock->sk);
1133 
1134 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1135 				   O_NONBLOCK);
1136 	if (result == -EINPROGRESS)
1137 		result = 0;
1138 	if (result == 0)
1139 		goto out;
1140 
1141 out_err:
1142 	if (con->sock) {
1143 		sock_release(con->sock);
1144 		con->sock = NULL;
1145 	} else if (sock) {
1146 		sock_release(sock);
1147 	}
1148 	/*
1149 	 * Some errors are fatal and this list might need adjusting. For other
1150 	 * errors we try again until the max number of retries is reached.
1151 	 */
1152 	if (result != -EHOSTUNREACH &&
1153 	    result != -ENETUNREACH &&
1154 	    result != -ENETDOWN &&
1155 	    result != -EINVAL &&
1156 	    result != -EPROTONOSUPPORT) {
1157 		log_print("connect %d try %d error %d", con->nodeid,
1158 			  con->retries, result);
1159 		mutex_unlock(&con->sock_mutex);
1160 		msleep(1000);
1161 		lowcomms_connect_sock(con);
1162 		return;
1163 	}
1164 out:
1165 	mutex_unlock(&con->sock_mutex);
1166 	return;
1167 }
1168 
1169 /* On error caller must run dlm_close_sock() for the
1170  * listen connection socket.
1171  */
1172 static int tcp_create_listen_sock(struct listen_connection *con,
1173 				  struct sockaddr_storage *saddr)
1174 {
1175 	struct socket *sock = NULL;
1176 	int result = 0;
1177 	int addr_len;
1178 
1179 	if (dlm_local_addr[0]->ss_family == AF_INET)
1180 		addr_len = sizeof(struct sockaddr_in);
1181 	else
1182 		addr_len = sizeof(struct sockaddr_in6);
1183 
1184 	/* Create a socket to communicate with */
1185 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1186 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1187 	if (result < 0) {
1188 		log_print("Can't create listening comms socket");
1189 		goto create_out;
1190 	}
1191 
1192 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1193 
1194 	/* Turn off Nagle's algorithm */
1195 	tcp_sock_set_nodelay(sock->sk);
1196 
1197 	sock_set_reuseaddr(sock->sk);
1198 
1199 	add_listen_sock(sock, con);
1200 
1201 	/* Bind to our port */
1202 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1203 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1204 	if (result < 0) {
1205 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1206 		goto create_out;
1207 	}
1208 	sock_set_keepalive(sock->sk);
1209 
1210 	result = sock->ops->listen(sock, 5);
1211 	if (result < 0) {
1212 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1213 		goto create_out;
1214 	}
1215 
1216 	return 0;
1217 
1218 create_out:
1219 	return result;
1220 }
1221 
1222 /* Get local addresses */
1223 static void init_local(void)
1224 {
1225 	struct sockaddr_storage sas, *addr;
1226 	int i;
1227 
1228 	dlm_local_count = 0;
1229 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1230 		if (dlm_our_addr(&sas, i))
1231 			break;
1232 
1233 		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1234 		if (!addr)
1235 			break;
1236 		dlm_local_addr[dlm_local_count++] = addr;
1237 	}
1238 }
1239 
1240 static void deinit_local(void)
1241 {
1242 	int i;
1243 
1244 	for (i = 0; i < dlm_local_count; i++)
1245 		kfree(dlm_local_addr[i]);
1246 }
1247 
1248 /* Initialise SCTP socket and bind to all interfaces
1249  * On error caller must run dlm_close_sock() for the
1250  * listen connection socket.
1251  */
1252 static int sctp_listen_for_all(struct listen_connection *con)
1253 {
1254 	struct socket *sock = NULL;
1255 	int result = -EINVAL;
1256 
1257 	log_print("Using SCTP for communications");
1258 
1259 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1260 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1261 	if (result < 0) {
1262 		log_print("Can't create comms socket, check SCTP is loaded");
1263 		goto out;
1264 	}
1265 
1266 	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1267 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1268 	sctp_sock_set_nodelay(sock->sk);
1269 
1270 	add_listen_sock(sock, con);
1271 
1272 	/* Bind to all addresses. */
1273 	result = sctp_bind_addrs(con->sock, dlm_config.ci_tcp_port);
1274 	if (result < 0)
1275 		goto out;
1276 
1277 	result = sock->ops->listen(sock, 5);
1278 	if (result < 0) {
1279 		log_print("Can't set socket listening");
1280 		goto out;
1281 	}
1282 
1283 	return 0;
1284 
1285 out:
1286 	return result;
1287 }
1288 
1289 static int tcp_listen_for_all(void)
1290 {
1291 	/* We don't support multi-homed hosts */
1292 	if (dlm_local_count > 1) {
1293 		log_print("TCP protocol can't handle multi-homed hosts, "
1294 			  "try SCTP");
1295 		return -EINVAL;
1296 	}
1297 
1298 	log_print("Using TCP for communications");
1299 
1300 	return tcp_create_listen_sock(&listen_con, dlm_local_addr[0]);
1301 }
1302 
1303 
1304 
1305 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1306 						     gfp_t allocation)
1307 {
1308 	struct writequeue_entry *entry;
1309 
1310 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1311 	if (!entry)
1312 		return NULL;
1313 
1314 	entry->page = alloc_page(allocation);
1315 	if (!entry->page) {
1316 		kfree(entry);
1317 		return NULL;
1318 	}
1319 
1320 	entry->offset = 0;
1321 	entry->len = 0;
1322 	entry->end = 0;
1323 	entry->users = 0;
1324 	entry->con = con;
1325 
1326 	return entry;
1327 }
1328 
1329 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1330 {
1331 	struct connection *con;
1332 	struct writequeue_entry *e;
1333 	int offset = 0;
1334 
1335 	if (len > LOWCOMMS_MAX_TX_BUFFER_LEN) {
1336 		BUILD_BUG_ON(PAGE_SIZE < LOWCOMMS_MAX_TX_BUFFER_LEN);
1337 		log_print("failed to allocate a buffer of size %d", len);
1338 		return NULL;
1339 	}
1340 
1341 	con = nodeid2con(nodeid, allocation);
1342 	if (!con)
1343 		return NULL;
1344 
1345 	spin_lock(&con->writequeue_lock);
1346 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1347 	if ((&e->list == &con->writequeue) ||
1348 	    (PAGE_SIZE - e->end < len)) {
1349 		e = NULL;
1350 	} else {
1351 		offset = e->end;
1352 		e->end += len;
1353 		e->users++;
1354 	}
1355 	spin_unlock(&con->writequeue_lock);
1356 
1357 	if (e) {
1358 	got_one:
1359 		*ppc = page_address(e->page) + offset;
1360 		return e;
1361 	}
1362 
1363 	e = new_writequeue_entry(con, allocation);
1364 	if (e) {
1365 		spin_lock(&con->writequeue_lock);
1366 		offset = e->end;
1367 		e->end += len;
1368 		e->users++;
1369 		list_add_tail(&e->list, &con->writequeue);
1370 		spin_unlock(&con->writequeue_lock);
1371 		goto got_one;
1372 	}
1373 	return NULL;
1374 }
1375 
1376 void dlm_lowcomms_commit_buffer(void *mh)
1377 {
1378 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1379 	struct connection *con = e->con;
1380 	int users;
1381 
1382 	spin_lock(&con->writequeue_lock);
1383 	users = --e->users;
1384 	if (users)
1385 		goto out;
1386 	e->len = e->end - e->offset;
1387 	spin_unlock(&con->writequeue_lock);
1388 
1389 	queue_work(send_workqueue, &con->swork);
1390 	return;
1391 
1392 out:
1393 	spin_unlock(&con->writequeue_lock);
1394 	return;
1395 }
1396 
1397 /* Send a message */
1398 static void send_to_sock(struct connection *con)
1399 {
1400 	int ret = 0;
1401 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1402 	struct writequeue_entry *e;
1403 	int len, offset;
1404 	int count = 0;
1405 
1406 	mutex_lock(&con->sock_mutex);
1407 	if (con->sock == NULL)
1408 		goto out_connect;
1409 
1410 	spin_lock(&con->writequeue_lock);
1411 	for (;;) {
1412 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1413 			       list);
1414 		if ((struct list_head *) e == &con->writequeue)
1415 			break;
1416 
1417 		len = e->len;
1418 		offset = e->offset;
1419 		BUG_ON(len == 0 && e->users == 0);
1420 		spin_unlock(&con->writequeue_lock);
1421 
1422 		ret = 0;
1423 		if (len) {
1424 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1425 					      msg_flags);
1426 			if (ret == -EAGAIN || ret == 0) {
1427 				if (ret == -EAGAIN &&
1428 				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1429 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1430 					/* Notify TCP that we're limited by the
1431 					 * application window size.
1432 					 */
1433 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1434 					con->sock->sk->sk_write_pending++;
1435 				}
1436 				cond_resched();
1437 				goto out;
1438 			} else if (ret < 0)
1439 				goto send_error;
1440 		}
1441 
1442 		/* Don't starve people filling buffers */
1443 		if (++count >= MAX_SEND_MSG_COUNT) {
1444 			cond_resched();
1445 			count = 0;
1446 		}
1447 
1448 		spin_lock(&con->writequeue_lock);
1449 		writequeue_entry_complete(e, ret);
1450 	}
1451 	spin_unlock(&con->writequeue_lock);
1452 out:
1453 	mutex_unlock(&con->sock_mutex);
1454 	return;
1455 
1456 send_error:
1457 	mutex_unlock(&con->sock_mutex);
1458 	close_connection(con, false, false, true);
1459 	/* Requeue the send work. When the work daemon runs again, it will try
1460 	   a new connection, then call this function again. */
1461 	queue_work(send_workqueue, &con->swork);
1462 	return;
1463 
1464 out_connect:
1465 	mutex_unlock(&con->sock_mutex);
1466 	queue_work(send_workqueue, &con->swork);
1467 	cond_resched();
1468 }
1469 
1470 static void clean_one_writequeue(struct connection *con)
1471 {
1472 	struct writequeue_entry *e, *safe;
1473 
1474 	spin_lock(&con->writequeue_lock);
1475 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1476 		list_del(&e->list);
1477 		free_entry(e);
1478 	}
1479 	spin_unlock(&con->writequeue_lock);
1480 }
1481 
1482 /* Called from recovery when it knows that a node has
1483    left the cluster */
1484 int dlm_lowcomms_close(int nodeid)
1485 {
1486 	struct connection *con;
1487 	struct dlm_node_addr *na;
1488 
1489 	log_print("closing connection to node %d", nodeid);
1490 	con = nodeid2con(nodeid, 0);
1491 	if (con) {
1492 		set_bit(CF_CLOSE, &con->flags);
1493 		close_connection(con, true, true, true);
1494 		clean_one_writequeue(con);
1495 		if (con->othercon)
1496 			clean_one_writequeue(con->othercon);
1497 	}
1498 
1499 	spin_lock(&dlm_node_addrs_spin);
1500 	na = find_node_addr(nodeid);
1501 	if (na) {
1502 		list_del(&na->list);
1503 		while (na->addr_count--)
1504 			kfree(na->addr[na->addr_count]);
1505 		kfree(na);
1506 	}
1507 	spin_unlock(&dlm_node_addrs_spin);
1508 
1509 	return 0;
1510 }
1511 
1512 /* Receive workqueue function */
1513 static void process_recv_sockets(struct work_struct *work)
1514 {
1515 	struct connection *con = container_of(work, struct connection, rwork);
1516 	int err;
1517 
1518 	clear_bit(CF_READ_PENDING, &con->flags);
1519 	do {
1520 		err = receive_from_sock(con);
1521 	} while (!err);
1522 }
1523 
1524 static void process_listen_recv_socket(struct work_struct *work)
1525 {
1526 	accept_from_sock(&listen_con);
1527 }
1528 
1529 /* Send workqueue function */
1530 static void process_send_sockets(struct work_struct *work)
1531 {
1532 	struct connection *con = container_of(work, struct connection, swork);
1533 
1534 	clear_bit(CF_WRITE_PENDING, &con->flags);
1535 	if (con->sock == NULL) /* not mutex protected so check it inside too */
1536 		con->connect_action(con);
1537 	if (!list_empty(&con->writequeue))
1538 		send_to_sock(con);
1539 }
1540 
1541 static void work_stop(void)
1542 {
1543 	if (recv_workqueue)
1544 		destroy_workqueue(recv_workqueue);
1545 	if (send_workqueue)
1546 		destroy_workqueue(send_workqueue);
1547 }
1548 
1549 static int work_start(void)
1550 {
1551 	recv_workqueue = alloc_workqueue("dlm_recv",
1552 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1553 	if (!recv_workqueue) {
1554 		log_print("can't start dlm_recv");
1555 		return -ENOMEM;
1556 	}
1557 
1558 	send_workqueue = alloc_workqueue("dlm_send",
1559 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1560 	if (!send_workqueue) {
1561 		log_print("can't start dlm_send");
1562 		destroy_workqueue(recv_workqueue);
1563 		return -ENOMEM;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 static void _stop_conn(struct connection *con, bool and_other)
1570 {
1571 	mutex_lock(&con->sock_mutex);
1572 	set_bit(CF_CLOSE, &con->flags);
1573 	set_bit(CF_READ_PENDING, &con->flags);
1574 	set_bit(CF_WRITE_PENDING, &con->flags);
1575 	if (con->sock && con->sock->sk) {
1576 		write_lock_bh(&con->sock->sk->sk_callback_lock);
1577 		con->sock->sk->sk_user_data = NULL;
1578 		write_unlock_bh(&con->sock->sk->sk_callback_lock);
1579 	}
1580 	if (con->othercon && and_other)
1581 		_stop_conn(con->othercon, false);
1582 	mutex_unlock(&con->sock_mutex);
1583 }
1584 
1585 static void stop_conn(struct connection *con)
1586 {
1587 	_stop_conn(con, true);
1588 }
1589 
1590 static void shutdown_conn(struct connection *con)
1591 {
1592 	if (con->shutdown_action)
1593 		con->shutdown_action(con);
1594 }
1595 
1596 static void connection_release(struct rcu_head *rcu)
1597 {
1598 	struct connection *con = container_of(rcu, struct connection, rcu);
1599 
1600 	kfree(con->rx_buf);
1601 	kfree(con);
1602 }
1603 
1604 static void free_conn(struct connection *con)
1605 {
1606 	close_connection(con, true, true, true);
1607 	spin_lock(&connections_lock);
1608 	hlist_del_rcu(&con->list);
1609 	spin_unlock(&connections_lock);
1610 	if (con->othercon) {
1611 		clean_one_writequeue(con->othercon);
1612 		call_srcu(&connections_srcu, &con->othercon->rcu,
1613 			  connection_release);
1614 	}
1615 	clean_one_writequeue(con);
1616 	call_srcu(&connections_srcu, &con->rcu, connection_release);
1617 }
1618 
1619 static void work_flush(void)
1620 {
1621 	int ok, idx;
1622 	int i;
1623 	struct connection *con;
1624 
1625 	do {
1626 		ok = 1;
1627 		foreach_conn(stop_conn);
1628 		if (recv_workqueue)
1629 			flush_workqueue(recv_workqueue);
1630 		if (send_workqueue)
1631 			flush_workqueue(send_workqueue);
1632 		idx = srcu_read_lock(&connections_srcu);
1633 		for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1634 			hlist_for_each_entry_rcu(con, &connection_hash[i],
1635 						 list) {
1636 				ok &= test_bit(CF_READ_PENDING, &con->flags);
1637 				ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1638 				if (con->othercon) {
1639 					ok &= test_bit(CF_READ_PENDING,
1640 						       &con->othercon->flags);
1641 					ok &= test_bit(CF_WRITE_PENDING,
1642 						       &con->othercon->flags);
1643 				}
1644 			}
1645 		}
1646 		srcu_read_unlock(&connections_srcu, idx);
1647 	} while (!ok);
1648 }
1649 
1650 void dlm_lowcomms_stop(void)
1651 {
1652 	/* Set all the flags to prevent any
1653 	   socket activity.
1654 	*/
1655 	dlm_allow_conn = 0;
1656 
1657 	if (recv_workqueue)
1658 		flush_workqueue(recv_workqueue);
1659 	if (send_workqueue)
1660 		flush_workqueue(send_workqueue);
1661 
1662 	dlm_close_sock(&listen_con.sock);
1663 
1664 	foreach_conn(shutdown_conn);
1665 	work_flush();
1666 	foreach_conn(free_conn);
1667 	work_stop();
1668 	deinit_local();
1669 }
1670 
1671 int dlm_lowcomms_start(void)
1672 {
1673 	int error = -EINVAL;
1674 	int i;
1675 
1676 	for (i = 0; i < CONN_HASH_SIZE; i++)
1677 		INIT_HLIST_HEAD(&connection_hash[i]);
1678 
1679 	init_local();
1680 	if (!dlm_local_count) {
1681 		error = -ENOTCONN;
1682 		log_print("no local IP address has been set");
1683 		goto fail;
1684 	}
1685 
1686 	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1687 
1688 	error = work_start();
1689 	if (error)
1690 		goto fail;
1691 
1692 	dlm_allow_conn = 1;
1693 
1694 	/* Start listening */
1695 	if (dlm_config.ci_protocol == 0)
1696 		error = tcp_listen_for_all();
1697 	else
1698 		error = sctp_listen_for_all(&listen_con);
1699 	if (error)
1700 		goto fail_unlisten;
1701 
1702 	return 0;
1703 
1704 fail_unlisten:
1705 	dlm_allow_conn = 0;
1706 	dlm_close_sock(&listen_con.sock);
1707 fail:
1708 	return error;
1709 }
1710 
1711 void dlm_lowcomms_exit(void)
1712 {
1713 	struct dlm_node_addr *na, *safe;
1714 
1715 	spin_lock(&dlm_node_addrs_spin);
1716 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1717 		list_del(&na->list);
1718 		while (na->addr_count--)
1719 			kfree(na->addr[na->addr_count]);
1720 		kfree(na);
1721 	}
1722 	spin_unlock(&dlm_node_addrs_spin);
1723 }
1724