xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 39bd4177)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2007 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is it's
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use wither TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It shouldbe configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/idr.h>
52 #include <linux/file.h>
53 #include <linux/sctp.h>
54 #include <net/sctp/user.h>
55 
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60 
61 #define NEEDED_RMEM (4*1024*1024)
62 
63 struct cbuf {
64 	unsigned int base;
65 	unsigned int len;
66 	unsigned int mask;
67 };
68 
69 static void cbuf_add(struct cbuf *cb, int n)
70 {
71 	cb->len += n;
72 }
73 
74 static int cbuf_data(struct cbuf *cb)
75 {
76 	return ((cb->base + cb->len) & cb->mask);
77 }
78 
79 static void cbuf_init(struct cbuf *cb, int size)
80 {
81 	cb->base = cb->len = 0;
82 	cb->mask = size-1;
83 }
84 
85 static void cbuf_eat(struct cbuf *cb, int n)
86 {
87 	cb->len  -= n;
88 	cb->base += n;
89 	cb->base &= cb->mask;
90 }
91 
92 static bool cbuf_empty(struct cbuf *cb)
93 {
94 	return cb->len == 0;
95 }
96 
97 struct connection {
98 	struct socket *sock;	/* NULL if not connected */
99 	uint32_t nodeid;	/* So we know who we are in the list */
100 	struct mutex sock_mutex;
101 	unsigned long flags;
102 #define CF_READ_PENDING 1
103 #define CF_WRITE_PENDING 2
104 #define CF_CONNECT_PENDING 3
105 #define CF_INIT_PENDING 4
106 #define CF_IS_OTHERCON 5
107 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
108 	spinlock_t writequeue_lock;
109 	int (*rx_action) (struct connection *);	/* What to do when active */
110 	void (*connect_action) (struct connection *);	/* What to do to connect */
111 	struct page *rx_page;
112 	struct cbuf cb;
113 	int retries;
114 #define MAX_CONNECT_RETRIES 3
115 	int sctp_assoc;
116 	struct connection *othercon;
117 	struct work_struct rwork; /* Receive workqueue */
118 	struct work_struct swork; /* Send workqueue */
119 };
120 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
121 
122 /* An entry waiting to be sent */
123 struct writequeue_entry {
124 	struct list_head list;
125 	struct page *page;
126 	int offset;
127 	int len;
128 	int end;
129 	int users;
130 	struct connection *con;
131 };
132 
133 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
134 static int dlm_local_count;
135 
136 /* Work queues */
137 static struct workqueue_struct *recv_workqueue;
138 static struct workqueue_struct *send_workqueue;
139 
140 static DEFINE_IDR(connections_idr);
141 static DECLARE_MUTEX(connections_lock);
142 static int max_nodeid;
143 static struct kmem_cache *con_cache;
144 
145 static void process_recv_sockets(struct work_struct *work);
146 static void process_send_sockets(struct work_struct *work);
147 
148 /*
149  * If 'allocation' is zero then we don't attempt to create a new
150  * connection structure for this node.
151  */
152 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
153 {
154 	struct connection *con = NULL;
155 	int r;
156 	int n;
157 
158 	con = idr_find(&connections_idr, nodeid);
159 	if (con || !alloc)
160 		return con;
161 
162 	r = idr_pre_get(&connections_idr, alloc);
163 	if (!r)
164 		return NULL;
165 
166 	con = kmem_cache_zalloc(con_cache, alloc);
167 	if (!con)
168 		return NULL;
169 
170 	r = idr_get_new_above(&connections_idr, con, nodeid, &n);
171 	if (r) {
172 		kmem_cache_free(con_cache, con);
173 		return NULL;
174 	}
175 
176 	if (n != nodeid) {
177 		idr_remove(&connections_idr, n);
178 		kmem_cache_free(con_cache, con);
179 		return NULL;
180 	}
181 
182 	con->nodeid = nodeid;
183 	mutex_init(&con->sock_mutex);
184 	INIT_LIST_HEAD(&con->writequeue);
185 	spin_lock_init(&con->writequeue_lock);
186 	INIT_WORK(&con->swork, process_send_sockets);
187 	INIT_WORK(&con->rwork, process_recv_sockets);
188 
189 	/* Setup action pointers for child sockets */
190 	if (con->nodeid) {
191 		struct connection *zerocon = idr_find(&connections_idr, 0);
192 
193 		con->connect_action = zerocon->connect_action;
194 		if (!con->rx_action)
195 			con->rx_action = zerocon->rx_action;
196 	}
197 
198 	if (nodeid > max_nodeid)
199 		max_nodeid = nodeid;
200 
201 	return con;
202 }
203 
204 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
205 {
206 	struct connection *con;
207 
208 	down(&connections_lock);
209 	con = __nodeid2con(nodeid, allocation);
210 	up(&connections_lock);
211 
212 	return con;
213 }
214 
215 /* This is a bit drastic, but only called when things go wrong */
216 static struct connection *assoc2con(int assoc_id)
217 {
218 	int i;
219 	struct connection *con;
220 
221 	down(&connections_lock);
222 	for (i=0; i<=max_nodeid; i++) {
223 		con = __nodeid2con(i, 0);
224 		if (con && con->sctp_assoc == assoc_id) {
225 			up(&connections_lock);
226 			return con;
227 		}
228 	}
229 	up(&connections_lock);
230 	return NULL;
231 }
232 
233 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
234 {
235 	struct sockaddr_storage addr;
236 	int error;
237 
238 	if (!dlm_local_count)
239 		return -1;
240 
241 	error = dlm_nodeid_to_addr(nodeid, &addr);
242 	if (error)
243 		return error;
244 
245 	if (dlm_local_addr[0]->ss_family == AF_INET) {
246 		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
247 		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
248 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
249 	} else {
250 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
251 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
252 		memcpy(&ret6->sin6_addr, &in6->sin6_addr,
253 		       sizeof(in6->sin6_addr));
254 	}
255 
256 	return 0;
257 }
258 
259 /* Data available on socket or listen socket received a connect */
260 static void lowcomms_data_ready(struct sock *sk, int count_unused)
261 {
262 	struct connection *con = sock2con(sk);
263 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
264 		queue_work(recv_workqueue, &con->rwork);
265 }
266 
267 static void lowcomms_write_space(struct sock *sk)
268 {
269 	struct connection *con = sock2con(sk);
270 
271 	if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
272 		queue_work(send_workqueue, &con->swork);
273 }
274 
275 static inline void lowcomms_connect_sock(struct connection *con)
276 {
277 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
278 		queue_work(send_workqueue, &con->swork);
279 }
280 
281 static void lowcomms_state_change(struct sock *sk)
282 {
283 	if (sk->sk_state == TCP_ESTABLISHED)
284 		lowcomms_write_space(sk);
285 }
286 
287 /* Make a socket active */
288 static int add_sock(struct socket *sock, struct connection *con)
289 {
290 	con->sock = sock;
291 
292 	/* Install a data_ready callback */
293 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
294 	con->sock->sk->sk_write_space = lowcomms_write_space;
295 	con->sock->sk->sk_state_change = lowcomms_state_change;
296 	con->sock->sk->sk_user_data = con;
297 	return 0;
298 }
299 
300 /* Add the port number to an IPv6 or 4 sockaddr and return the address
301    length */
302 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
303 			  int *addr_len)
304 {
305 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
306 	if (saddr->ss_family == AF_INET) {
307 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
308 		in4_addr->sin_port = cpu_to_be16(port);
309 		*addr_len = sizeof(struct sockaddr_in);
310 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
311 	} else {
312 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
313 		in6_addr->sin6_port = cpu_to_be16(port);
314 		*addr_len = sizeof(struct sockaddr_in6);
315 	}
316 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
317 }
318 
319 /* Close a remote connection and tidy up */
320 static void close_connection(struct connection *con, bool and_other)
321 {
322 	mutex_lock(&con->sock_mutex);
323 
324 	if (con->sock) {
325 		sock_release(con->sock);
326 		con->sock = NULL;
327 	}
328 	if (con->othercon && and_other) {
329 		/* Will only re-enter once. */
330 		close_connection(con->othercon, false);
331 	}
332 	if (con->rx_page) {
333 		__free_page(con->rx_page);
334 		con->rx_page = NULL;
335 	}
336 
337 	con->retries = 0;
338 	mutex_unlock(&con->sock_mutex);
339 }
340 
341 /* We only send shutdown messages to nodes that are not part of the cluster */
342 static void sctp_send_shutdown(sctp_assoc_t associd)
343 {
344 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
345 	struct msghdr outmessage;
346 	struct cmsghdr *cmsg;
347 	struct sctp_sndrcvinfo *sinfo;
348 	int ret;
349 	struct connection *con;
350 
351 	con = nodeid2con(0,0);
352 	BUG_ON(con == NULL);
353 
354 	outmessage.msg_name = NULL;
355 	outmessage.msg_namelen = 0;
356 	outmessage.msg_control = outcmsg;
357 	outmessage.msg_controllen = sizeof(outcmsg);
358 	outmessage.msg_flags = MSG_EOR;
359 
360 	cmsg = CMSG_FIRSTHDR(&outmessage);
361 	cmsg->cmsg_level = IPPROTO_SCTP;
362 	cmsg->cmsg_type = SCTP_SNDRCV;
363 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
364 	outmessage.msg_controllen = cmsg->cmsg_len;
365 	sinfo = CMSG_DATA(cmsg);
366 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
367 
368 	sinfo->sinfo_flags |= MSG_EOF;
369 	sinfo->sinfo_assoc_id = associd;
370 
371 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
372 
373 	if (ret != 0)
374 		log_print("send EOF to node failed: %d", ret);
375 }
376 
377 /* INIT failed but we don't know which node...
378    restart INIT on all pending nodes */
379 static void sctp_init_failed(void)
380 {
381 	int i;
382 	struct connection *con;
383 
384 	down(&connections_lock);
385 	for (i=1; i<=max_nodeid; i++) {
386 		con = __nodeid2con(i, 0);
387 		if (!con)
388 			continue;
389 		con->sctp_assoc = 0;
390 		if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
391 			if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
392 				queue_work(send_workqueue, &con->swork);
393 			}
394 		}
395 	}
396 	up(&connections_lock);
397 }
398 
399 /* Something happened to an association */
400 static void process_sctp_notification(struct connection *con,
401 				      struct msghdr *msg, char *buf)
402 {
403 	union sctp_notification *sn = (union sctp_notification *)buf;
404 
405 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
406 		switch (sn->sn_assoc_change.sac_state) {
407 
408 		case SCTP_COMM_UP:
409 		case SCTP_RESTART:
410 		{
411 			/* Check that the new node is in the lockspace */
412 			struct sctp_prim prim;
413 			int nodeid;
414 			int prim_len, ret;
415 			int addr_len;
416 			struct connection *new_con;
417 			struct file *file;
418 			sctp_peeloff_arg_t parg;
419 			int parglen = sizeof(parg);
420 
421 			/*
422 			 * We get this before any data for an association.
423 			 * We verify that the node is in the cluster and
424 			 * then peel off a socket for it.
425 			 */
426 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
427 				log_print("COMM_UP for invalid assoc ID %d",
428 					 (int)sn->sn_assoc_change.sac_assoc_id);
429 				sctp_init_failed();
430 				return;
431 			}
432 			memset(&prim, 0, sizeof(struct sctp_prim));
433 			prim_len = sizeof(struct sctp_prim);
434 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
435 
436 			ret = kernel_getsockopt(con->sock,
437 						IPPROTO_SCTP,
438 						SCTP_PRIMARY_ADDR,
439 						(char*)&prim,
440 						&prim_len);
441 			if (ret < 0) {
442 				log_print("getsockopt/sctp_primary_addr on "
443 					  "new assoc %d failed : %d",
444 					  (int)sn->sn_assoc_change.sac_assoc_id,
445 					  ret);
446 
447 				/* Retry INIT later */
448 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
449 				if (new_con)
450 					clear_bit(CF_CONNECT_PENDING, &con->flags);
451 				return;
452 			}
453 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
454 			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
455 				int i;
456 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
457 				log_print("reject connect from unknown addr");
458 				for (i=0; i<sizeof(struct sockaddr_storage);i++)
459 					printk("%02x ", b[i]);
460 				printk("\n");
461 				sctp_send_shutdown(prim.ssp_assoc_id);
462 				return;
463 			}
464 
465 			new_con = nodeid2con(nodeid, GFP_KERNEL);
466 			if (!new_con)
467 				return;
468 
469 			/* Peel off a new sock */
470 			parg.associd = sn->sn_assoc_change.sac_assoc_id;
471 			ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
472 						SCTP_SOCKOPT_PEELOFF,
473 						(void *)&parg, &parglen);
474 			if (ret) {
475 				log_print("Can't peel off a socket for "
476 					  "connection %d to node %d: err=%d\n",
477 					  parg.associd, nodeid, ret);
478 			}
479 			file = fget(parg.sd);
480 			new_con->sock = SOCKET_I(file->f_dentry->d_inode);
481 			add_sock(new_con->sock, new_con);
482 			fput(file);
483 			put_unused_fd(parg.sd);
484 
485 			log_print("got new/restarted association %d nodeid %d",
486 				 (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
487 
488 			/* Send any pending writes */
489 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
490 			clear_bit(CF_INIT_PENDING, &con->flags);
491 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
492 				queue_work(send_workqueue, &new_con->swork);
493 			}
494 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
495 				queue_work(recv_workqueue, &new_con->rwork);
496 		}
497 		break;
498 
499 		case SCTP_COMM_LOST:
500 		case SCTP_SHUTDOWN_COMP:
501 		{
502 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
503 			if (con) {
504 				con->sctp_assoc = 0;
505 			}
506 		}
507 		break;
508 
509 		/* We don't know which INIT failed, so clear the PENDING flags
510 		 * on them all.  if assoc_id is zero then it will then try
511 		 * again */
512 
513 		case SCTP_CANT_STR_ASSOC:
514 		{
515 			log_print("Can't start SCTP association - retrying");
516 			sctp_init_failed();
517 		}
518 		break;
519 
520 		default:
521 			log_print("unexpected SCTP assoc change id=%d state=%d",
522 				  (int)sn->sn_assoc_change.sac_assoc_id,
523 				  sn->sn_assoc_change.sac_state);
524 		}
525 	}
526 }
527 
528 /* Data received from remote end */
529 static int receive_from_sock(struct connection *con)
530 {
531 	int ret = 0;
532 	struct msghdr msg = {};
533 	struct kvec iov[2];
534 	unsigned len;
535 	int r;
536 	int call_again_soon = 0;
537 	int nvec;
538 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
539 
540 	mutex_lock(&con->sock_mutex);
541 
542 	if (con->sock == NULL) {
543 		ret = -EAGAIN;
544 		goto out_close;
545 	}
546 
547 	if (con->rx_page == NULL) {
548 		/*
549 		 * This doesn't need to be atomic, but I think it should
550 		 * improve performance if it is.
551 		 */
552 		con->rx_page = alloc_page(GFP_ATOMIC);
553 		if (con->rx_page == NULL)
554 			goto out_resched;
555 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
556 	}
557 
558 	/* Only SCTP needs these really */
559 	memset(&incmsg, 0, sizeof(incmsg));
560 	msg.msg_control = incmsg;
561 	msg.msg_controllen = sizeof(incmsg);
562 
563 	/*
564 	 * iov[0] is the bit of the circular buffer between the current end
565 	 * point (cb.base + cb.len) and the end of the buffer.
566 	 */
567 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
568 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
569 	iov[1].iov_len = 0;
570 	nvec = 1;
571 
572 	/*
573 	 * iov[1] is the bit of the circular buffer between the start of the
574 	 * buffer and the start of the currently used section (cb.base)
575 	 */
576 	if (cbuf_data(&con->cb) >= con->cb.base) {
577 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
578 		iov[1].iov_len = con->cb.base;
579 		iov[1].iov_base = page_address(con->rx_page);
580 		nvec = 2;
581 	}
582 	len = iov[0].iov_len + iov[1].iov_len;
583 
584 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
585 			       MSG_DONTWAIT | MSG_NOSIGNAL);
586 	if (ret <= 0)
587 		goto out_close;
588 
589 	/* Process SCTP notifications */
590 	if (msg.msg_flags & MSG_NOTIFICATION) {
591 		msg.msg_control = incmsg;
592 		msg.msg_controllen = sizeof(incmsg);
593 
594 		process_sctp_notification(con, &msg,
595 				page_address(con->rx_page) + con->cb.base);
596 		mutex_unlock(&con->sock_mutex);
597 		return 0;
598 	}
599 	BUG_ON(con->nodeid == 0);
600 
601 	if (ret == len)
602 		call_again_soon = 1;
603 	cbuf_add(&con->cb, ret);
604 	ret = dlm_process_incoming_buffer(con->nodeid,
605 					  page_address(con->rx_page),
606 					  con->cb.base, con->cb.len,
607 					  PAGE_CACHE_SIZE);
608 	if (ret == -EBADMSG) {
609 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
610 			  "iov_len=%u, iov_base[0]=%p, read=%d",
611 			  page_address(con->rx_page), con->cb.base, con->cb.len,
612 			  len, iov[0].iov_base, r);
613 	}
614 	if (ret < 0)
615 		goto out_close;
616 	cbuf_eat(&con->cb, ret);
617 
618 	if (cbuf_empty(&con->cb) && !call_again_soon) {
619 		__free_page(con->rx_page);
620 		con->rx_page = NULL;
621 	}
622 
623 	if (call_again_soon)
624 		goto out_resched;
625 	mutex_unlock(&con->sock_mutex);
626 	return 0;
627 
628 out_resched:
629 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
630 		queue_work(recv_workqueue, &con->rwork);
631 	mutex_unlock(&con->sock_mutex);
632 	return -EAGAIN;
633 
634 out_close:
635 	mutex_unlock(&con->sock_mutex);
636 	if (ret != -EAGAIN) {
637 		close_connection(con, false);
638 		/* Reconnect when there is something to send */
639 	}
640 	/* Don't return success if we really got EOF */
641 	if (ret == 0)
642 		ret = -EAGAIN;
643 
644 	return ret;
645 }
646 
647 /* Listening socket is busy, accept a connection */
648 static int tcp_accept_from_sock(struct connection *con)
649 {
650 	int result;
651 	struct sockaddr_storage peeraddr;
652 	struct socket *newsock;
653 	int len;
654 	int nodeid;
655 	struct connection *newcon;
656 	struct connection *addcon;
657 
658 	memset(&peeraddr, 0, sizeof(peeraddr));
659 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
660 				  IPPROTO_TCP, &newsock);
661 	if (result < 0)
662 		return -ENOMEM;
663 
664 	mutex_lock_nested(&con->sock_mutex, 0);
665 
666 	result = -ENOTCONN;
667 	if (con->sock == NULL)
668 		goto accept_err;
669 
670 	newsock->type = con->sock->type;
671 	newsock->ops = con->sock->ops;
672 
673 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
674 	if (result < 0)
675 		goto accept_err;
676 
677 	/* Get the connected socket's peer */
678 	memset(&peeraddr, 0, sizeof(peeraddr));
679 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
680 				  &len, 2)) {
681 		result = -ECONNABORTED;
682 		goto accept_err;
683 	}
684 
685 	/* Get the new node's NODEID */
686 	make_sockaddr(&peeraddr, 0, &len);
687 	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
688 		log_print("connect from non cluster node");
689 		sock_release(newsock);
690 		mutex_unlock(&con->sock_mutex);
691 		return -1;
692 	}
693 
694 	log_print("got connection from %d", nodeid);
695 
696 	/*  Check to see if we already have a connection to this node. This
697 	 *  could happen if the two nodes initiate a connection at roughly
698 	 *  the same time and the connections cross on the wire.
699 	 *  In this case we store the incoming one in "othercon"
700 	 */
701 	newcon = nodeid2con(nodeid, GFP_KERNEL);
702 	if (!newcon) {
703 		result = -ENOMEM;
704 		goto accept_err;
705 	}
706 	mutex_lock_nested(&newcon->sock_mutex, 1);
707 	if (newcon->sock) {
708 		struct connection *othercon = newcon->othercon;
709 
710 		if (!othercon) {
711 			othercon = kmem_cache_zalloc(con_cache, GFP_KERNEL);
712 			if (!othercon) {
713 				log_print("failed to allocate incoming socket");
714 				mutex_unlock(&newcon->sock_mutex);
715 				result = -ENOMEM;
716 				goto accept_err;
717 			}
718 			othercon->nodeid = nodeid;
719 			othercon->rx_action = receive_from_sock;
720 			mutex_init(&othercon->sock_mutex);
721 			INIT_WORK(&othercon->swork, process_send_sockets);
722 			INIT_WORK(&othercon->rwork, process_recv_sockets);
723 			set_bit(CF_IS_OTHERCON, &othercon->flags);
724 		}
725 		if (!othercon->sock) {
726 			newcon->othercon = othercon;
727 			othercon->sock = newsock;
728 			newsock->sk->sk_user_data = othercon;
729 			add_sock(newsock, othercon);
730 			addcon = othercon;
731 		}
732 		else {
733 			printk("Extra connection from node %d attempted\n", nodeid);
734 			result = -EAGAIN;
735 			mutex_unlock(&newcon->sock_mutex);
736 			goto accept_err;
737 		}
738 	}
739 	else {
740 		newsock->sk->sk_user_data = newcon;
741 		newcon->rx_action = receive_from_sock;
742 		add_sock(newsock, newcon);
743 		addcon = newcon;
744 	}
745 
746 	mutex_unlock(&newcon->sock_mutex);
747 
748 	/*
749 	 * Add it to the active queue in case we got data
750 	 * beween processing the accept adding the socket
751 	 * to the read_sockets list
752 	 */
753 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
754 		queue_work(recv_workqueue, &addcon->rwork);
755 	mutex_unlock(&con->sock_mutex);
756 
757 	return 0;
758 
759 accept_err:
760 	mutex_unlock(&con->sock_mutex);
761 	sock_release(newsock);
762 
763 	if (result != -EAGAIN)
764 		log_print("error accepting connection from node: %d", result);
765 	return result;
766 }
767 
768 static void free_entry(struct writequeue_entry *e)
769 {
770 	__free_page(e->page);
771 	kfree(e);
772 }
773 
774 /* Initiate an SCTP association.
775    This is a special case of send_to_sock() in that we don't yet have a
776    peeled-off socket for this association, so we use the listening socket
777    and add the primary IP address of the remote node.
778  */
779 static void sctp_init_assoc(struct connection *con)
780 {
781 	struct sockaddr_storage rem_addr;
782 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
783 	struct msghdr outmessage;
784 	struct cmsghdr *cmsg;
785 	struct sctp_sndrcvinfo *sinfo;
786 	struct connection *base_con;
787 	struct writequeue_entry *e;
788 	int len, offset;
789 	int ret;
790 	int addrlen;
791 	struct kvec iov[1];
792 
793 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
794 		return;
795 
796 	if (con->retries++ > MAX_CONNECT_RETRIES)
797 		return;
798 
799 	log_print("Initiating association with node %d", con->nodeid);
800 
801 	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
802 		log_print("no address for nodeid %d", con->nodeid);
803 		return;
804 	}
805 	base_con = nodeid2con(0, 0);
806 	BUG_ON(base_con == NULL);
807 
808 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
809 
810 	outmessage.msg_name = &rem_addr;
811 	outmessage.msg_namelen = addrlen;
812 	outmessage.msg_control = outcmsg;
813 	outmessage.msg_controllen = sizeof(outcmsg);
814 	outmessage.msg_flags = MSG_EOR;
815 
816 	spin_lock(&con->writequeue_lock);
817 	e = list_entry(con->writequeue.next, struct writequeue_entry,
818 		       list);
819 
820 	BUG_ON((struct list_head *) e == &con->writequeue);
821 
822 	len = e->len;
823 	offset = e->offset;
824 	spin_unlock(&con->writequeue_lock);
825 	kmap(e->page);
826 
827 	/* Send the first block off the write queue */
828 	iov[0].iov_base = page_address(e->page)+offset;
829 	iov[0].iov_len = len;
830 
831 	cmsg = CMSG_FIRSTHDR(&outmessage);
832 	cmsg->cmsg_level = IPPROTO_SCTP;
833 	cmsg->cmsg_type = SCTP_SNDRCV;
834 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
835 	sinfo = CMSG_DATA(cmsg);
836 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
837 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
838 	outmessage.msg_controllen = cmsg->cmsg_len;
839 
840 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
841 	if (ret < 0) {
842 		log_print("Send first packet to node %d failed: %d",
843 			  con->nodeid, ret);
844 
845 		/* Try again later */
846 		clear_bit(CF_CONNECT_PENDING, &con->flags);
847 		clear_bit(CF_INIT_PENDING, &con->flags);
848 	}
849 	else {
850 		spin_lock(&con->writequeue_lock);
851 		e->offset += ret;
852 		e->len -= ret;
853 
854 		if (e->len == 0 && e->users == 0) {
855 			list_del(&e->list);
856 			kunmap(e->page);
857 			free_entry(e);
858 		}
859 		spin_unlock(&con->writequeue_lock);
860 	}
861 }
862 
863 /* Connect a new socket to its peer */
864 static void tcp_connect_to_sock(struct connection *con)
865 {
866 	int result = -EHOSTUNREACH;
867 	struct sockaddr_storage saddr, src_addr;
868 	int addr_len;
869 	struct socket *sock;
870 
871 	if (con->nodeid == 0) {
872 		log_print("attempt to connect sock 0 foiled");
873 		return;
874 	}
875 
876 	mutex_lock(&con->sock_mutex);
877 	if (con->retries++ > MAX_CONNECT_RETRIES)
878 		goto out;
879 
880 	/* Some odd races can cause double-connects, ignore them */
881 	if (con->sock) {
882 		result = 0;
883 		goto out;
884 	}
885 
886 	/* Create a socket to communicate with */
887 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
888 				  IPPROTO_TCP, &sock);
889 	if (result < 0)
890 		goto out_err;
891 
892 	memset(&saddr, 0, sizeof(saddr));
893 	if (dlm_nodeid_to_addr(con->nodeid, &saddr))
894 		goto out_err;
895 
896 	sock->sk->sk_user_data = con;
897 	con->rx_action = receive_from_sock;
898 	con->connect_action = tcp_connect_to_sock;
899 	add_sock(sock, con);
900 
901 	/* Bind to our cluster-known address connecting to avoid
902 	   routing problems */
903 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
904 	make_sockaddr(&src_addr, 0, &addr_len);
905 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
906 				 addr_len);
907 	if (result < 0) {
908 		log_print("could not bind for connect: %d", result);
909 		/* This *may* not indicate a critical error */
910 	}
911 
912 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
913 
914 	log_print("connecting to %d", con->nodeid);
915 	result =
916 		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
917 				   O_NONBLOCK);
918 	if (result == -EINPROGRESS)
919 		result = 0;
920 	if (result == 0)
921 		goto out;
922 
923 out_err:
924 	if (con->sock) {
925 		sock_release(con->sock);
926 		con->sock = NULL;
927 	}
928 	/*
929 	 * Some errors are fatal and this list might need adjusting. For other
930 	 * errors we try again until the max number of retries is reached.
931 	 */
932 	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
933 	    result != -ENETDOWN && result != EINVAL
934 	    && result != -EPROTONOSUPPORT) {
935 		lowcomms_connect_sock(con);
936 		result = 0;
937 	}
938 out:
939 	mutex_unlock(&con->sock_mutex);
940 	return;
941 }
942 
943 static struct socket *tcp_create_listen_sock(struct connection *con,
944 					     struct sockaddr_storage *saddr)
945 {
946 	struct socket *sock = NULL;
947 	int result = 0;
948 	int one = 1;
949 	int addr_len;
950 
951 	if (dlm_local_addr[0]->ss_family == AF_INET)
952 		addr_len = sizeof(struct sockaddr_in);
953 	else
954 		addr_len = sizeof(struct sockaddr_in6);
955 
956 	/* Create a socket to communicate with */
957 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
958 				  IPPROTO_TCP, &sock);
959 	if (result < 0) {
960 		log_print("Can't create listening comms socket");
961 		goto create_out;
962 	}
963 
964 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
965 				   (char *)&one, sizeof(one));
966 
967 	if (result < 0) {
968 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
969 	}
970 	sock->sk->sk_user_data = con;
971 	con->rx_action = tcp_accept_from_sock;
972 	con->connect_action = tcp_connect_to_sock;
973 	con->sock = sock;
974 
975 	/* Bind to our port */
976 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
977 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
978 	if (result < 0) {
979 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
980 		sock_release(sock);
981 		sock = NULL;
982 		con->sock = NULL;
983 		goto create_out;
984 	}
985 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
986 				 (char *)&one, sizeof(one));
987 	if (result < 0) {
988 		log_print("Set keepalive failed: %d", result);
989 	}
990 
991 	result = sock->ops->listen(sock, 5);
992 	if (result < 0) {
993 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
994 		sock_release(sock);
995 		sock = NULL;
996 		goto create_out;
997 	}
998 
999 create_out:
1000 	return sock;
1001 }
1002 
1003 /* Get local addresses */
1004 static void init_local(void)
1005 {
1006 	struct sockaddr_storage sas, *addr;
1007 	int i;
1008 
1009 	dlm_local_count = 0;
1010 	for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1011 		if (dlm_our_addr(&sas, i))
1012 			break;
1013 
1014 		addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1015 		if (!addr)
1016 			break;
1017 		memcpy(addr, &sas, sizeof(*addr));
1018 		dlm_local_addr[dlm_local_count++] = addr;
1019 	}
1020 }
1021 
1022 /* Bind to an IP address. SCTP allows multiple address so it can do
1023    multi-homing */
1024 static int add_sctp_bind_addr(struct connection *sctp_con,
1025 			      struct sockaddr_storage *addr,
1026 			      int addr_len, int num)
1027 {
1028 	int result = 0;
1029 
1030 	if (num == 1)
1031 		result = kernel_bind(sctp_con->sock,
1032 				     (struct sockaddr *) addr,
1033 				     addr_len);
1034 	else
1035 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1036 					   SCTP_SOCKOPT_BINDX_ADD,
1037 					   (char *)addr, addr_len);
1038 
1039 	if (result < 0)
1040 		log_print("Can't bind to port %d addr number %d",
1041 			  dlm_config.ci_tcp_port, num);
1042 
1043 	return result;
1044 }
1045 
1046 /* Initialise SCTP socket and bind to all interfaces */
1047 static int sctp_listen_for_all(void)
1048 {
1049 	struct socket *sock = NULL;
1050 	struct sockaddr_storage localaddr;
1051 	struct sctp_event_subscribe subscribe;
1052 	int result = -EINVAL, num = 1, i, addr_len;
1053 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1054 	int bufsize = NEEDED_RMEM;
1055 
1056 	if (!con)
1057 		return -ENOMEM;
1058 
1059 	log_print("Using SCTP for communications");
1060 
1061 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1062 				  IPPROTO_SCTP, &sock);
1063 	if (result < 0) {
1064 		log_print("Can't create comms socket, check SCTP is loaded");
1065 		goto out;
1066 	}
1067 
1068 	/* Listen for events */
1069 	memset(&subscribe, 0, sizeof(subscribe));
1070 	subscribe.sctp_data_io_event = 1;
1071 	subscribe.sctp_association_event = 1;
1072 	subscribe.sctp_send_failure_event = 1;
1073 	subscribe.sctp_shutdown_event = 1;
1074 	subscribe.sctp_partial_delivery_event = 1;
1075 
1076 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1077 				 (char *)&bufsize, sizeof(bufsize));
1078 	if (result)
1079 		log_print("Error increasing buffer space on socket %d", result);
1080 
1081 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1082 				   (char *)&subscribe, sizeof(subscribe));
1083 	if (result < 0) {
1084 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1085 			  result);
1086 		goto create_delsock;
1087 	}
1088 
1089 	/* Init con struct */
1090 	sock->sk->sk_user_data = con;
1091 	con->sock = sock;
1092 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1093 	con->rx_action = receive_from_sock;
1094 	con->connect_action = sctp_init_assoc;
1095 
1096 	/* Bind to all interfaces. */
1097 	for (i = 0; i < dlm_local_count; i++) {
1098 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1099 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1100 
1101 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1102 		if (result)
1103 			goto create_delsock;
1104 		++num;
1105 	}
1106 
1107 	result = sock->ops->listen(sock, 5);
1108 	if (result < 0) {
1109 		log_print("Can't set socket listening");
1110 		goto create_delsock;
1111 	}
1112 
1113 	return 0;
1114 
1115 create_delsock:
1116 	sock_release(sock);
1117 	con->sock = NULL;
1118 out:
1119 	return result;
1120 }
1121 
1122 static int tcp_listen_for_all(void)
1123 {
1124 	struct socket *sock = NULL;
1125 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1126 	int result = -EINVAL;
1127 
1128 	if (!con)
1129 		return -ENOMEM;
1130 
1131 	/* We don't support multi-homed hosts */
1132 	if (dlm_local_addr[1] != NULL) {
1133 		log_print("TCP protocol can't handle multi-homed hosts, "
1134 			  "try SCTP");
1135 		return -EINVAL;
1136 	}
1137 
1138 	log_print("Using TCP for communications");
1139 
1140 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1141 	if (sock) {
1142 		add_sock(sock, con);
1143 		result = 0;
1144 	}
1145 	else {
1146 		result = -EADDRINUSE;
1147 	}
1148 
1149 	return result;
1150 }
1151 
1152 
1153 
1154 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1155 						     gfp_t allocation)
1156 {
1157 	struct writequeue_entry *entry;
1158 
1159 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1160 	if (!entry)
1161 		return NULL;
1162 
1163 	entry->page = alloc_page(allocation);
1164 	if (!entry->page) {
1165 		kfree(entry);
1166 		return NULL;
1167 	}
1168 
1169 	entry->offset = 0;
1170 	entry->len = 0;
1171 	entry->end = 0;
1172 	entry->users = 0;
1173 	entry->con = con;
1174 
1175 	return entry;
1176 }
1177 
1178 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1179 {
1180 	struct connection *con;
1181 	struct writequeue_entry *e;
1182 	int offset = 0;
1183 	int users = 0;
1184 
1185 	con = nodeid2con(nodeid, allocation);
1186 	if (!con)
1187 		return NULL;
1188 
1189 	spin_lock(&con->writequeue_lock);
1190 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1191 	if ((&e->list == &con->writequeue) ||
1192 	    (PAGE_CACHE_SIZE - e->end < len)) {
1193 		e = NULL;
1194 	} else {
1195 		offset = e->end;
1196 		e->end += len;
1197 		users = e->users++;
1198 	}
1199 	spin_unlock(&con->writequeue_lock);
1200 
1201 	if (e) {
1202 	got_one:
1203 		if (users == 0)
1204 			kmap(e->page);
1205 		*ppc = page_address(e->page) + offset;
1206 		return e;
1207 	}
1208 
1209 	e = new_writequeue_entry(con, allocation);
1210 	if (e) {
1211 		spin_lock(&con->writequeue_lock);
1212 		offset = e->end;
1213 		e->end += len;
1214 		users = e->users++;
1215 		list_add_tail(&e->list, &con->writequeue);
1216 		spin_unlock(&con->writequeue_lock);
1217 		goto got_one;
1218 	}
1219 	return NULL;
1220 }
1221 
1222 void dlm_lowcomms_commit_buffer(void *mh)
1223 {
1224 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1225 	struct connection *con = e->con;
1226 	int users;
1227 
1228 	spin_lock(&con->writequeue_lock);
1229 	users = --e->users;
1230 	if (users)
1231 		goto out;
1232 	e->len = e->end - e->offset;
1233 	kunmap(e->page);
1234 	spin_unlock(&con->writequeue_lock);
1235 
1236 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1237 		queue_work(send_workqueue, &con->swork);
1238 	}
1239 	return;
1240 
1241 out:
1242 	spin_unlock(&con->writequeue_lock);
1243 	return;
1244 }
1245 
1246 /* Send a message */
1247 static void send_to_sock(struct connection *con)
1248 {
1249 	int ret = 0;
1250 	ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
1251 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1252 	struct writequeue_entry *e;
1253 	int len, offset;
1254 
1255 	mutex_lock(&con->sock_mutex);
1256 	if (con->sock == NULL)
1257 		goto out_connect;
1258 
1259 	sendpage = con->sock->ops->sendpage;
1260 
1261 	spin_lock(&con->writequeue_lock);
1262 	for (;;) {
1263 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1264 			       list);
1265 		if ((struct list_head *) e == &con->writequeue)
1266 			break;
1267 
1268 		len = e->len;
1269 		offset = e->offset;
1270 		BUG_ON(len == 0 && e->users == 0);
1271 		spin_unlock(&con->writequeue_lock);
1272 		kmap(e->page);
1273 
1274 		ret = 0;
1275 		if (len) {
1276 			ret = sendpage(con->sock, e->page, offset, len,
1277 				       msg_flags);
1278 			if (ret == -EAGAIN || ret == 0) {
1279 				cond_resched();
1280 				goto out;
1281 			}
1282 			if (ret <= 0)
1283 				goto send_error;
1284 		}
1285 			/* Don't starve people filling buffers */
1286 			cond_resched();
1287 
1288 		spin_lock(&con->writequeue_lock);
1289 		e->offset += ret;
1290 		e->len -= ret;
1291 
1292 		if (e->len == 0 && e->users == 0) {
1293 			list_del(&e->list);
1294 			kunmap(e->page);
1295 			free_entry(e);
1296 			continue;
1297 		}
1298 	}
1299 	spin_unlock(&con->writequeue_lock);
1300 out:
1301 	mutex_unlock(&con->sock_mutex);
1302 	return;
1303 
1304 send_error:
1305 	mutex_unlock(&con->sock_mutex);
1306 	close_connection(con, false);
1307 	lowcomms_connect_sock(con);
1308 	return;
1309 
1310 out_connect:
1311 	mutex_unlock(&con->sock_mutex);
1312 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1313 		lowcomms_connect_sock(con);
1314 	return;
1315 }
1316 
1317 static void clean_one_writequeue(struct connection *con)
1318 {
1319 	struct list_head *list;
1320 	struct list_head *temp;
1321 
1322 	spin_lock(&con->writequeue_lock);
1323 	list_for_each_safe(list, temp, &con->writequeue) {
1324 		struct writequeue_entry *e =
1325 			list_entry(list, struct writequeue_entry, list);
1326 		list_del(&e->list);
1327 		free_entry(e);
1328 	}
1329 	spin_unlock(&con->writequeue_lock);
1330 }
1331 
1332 /* Called from recovery when it knows that a node has
1333    left the cluster */
1334 int dlm_lowcomms_close(int nodeid)
1335 {
1336 	struct connection *con;
1337 
1338 	log_print("closing connection to node %d", nodeid);
1339 	con = nodeid2con(nodeid, 0);
1340 	if (con) {
1341 		clean_one_writequeue(con);
1342 		close_connection(con, true);
1343 	}
1344 	return 0;
1345 }
1346 
1347 /* Receive workqueue function */
1348 static void process_recv_sockets(struct work_struct *work)
1349 {
1350 	struct connection *con = container_of(work, struct connection, rwork);
1351 	int err;
1352 
1353 	clear_bit(CF_READ_PENDING, &con->flags);
1354 	do {
1355 		err = con->rx_action(con);
1356 	} while (!err);
1357 }
1358 
1359 /* Send workqueue function */
1360 static void process_send_sockets(struct work_struct *work)
1361 {
1362 	struct connection *con = container_of(work, struct connection, swork);
1363 
1364 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1365 		con->connect_action(con);
1366 	}
1367 	clear_bit(CF_WRITE_PENDING, &con->flags);
1368 	send_to_sock(con);
1369 }
1370 
1371 
1372 /* Discard all entries on the write queues */
1373 static void clean_writequeues(void)
1374 {
1375 	int nodeid;
1376 
1377 	for (nodeid = 1; nodeid <= max_nodeid; nodeid++) {
1378 		struct connection *con = __nodeid2con(nodeid, 0);
1379 
1380 		if (con)
1381 			clean_one_writequeue(con);
1382 	}
1383 }
1384 
1385 static void work_stop(void)
1386 {
1387 	destroy_workqueue(recv_workqueue);
1388 	destroy_workqueue(send_workqueue);
1389 }
1390 
1391 static int work_start(void)
1392 {
1393 	int error;
1394 	recv_workqueue = create_workqueue("dlm_recv");
1395 	error = IS_ERR(recv_workqueue);
1396 	if (error) {
1397 		log_print("can't start dlm_recv %d", error);
1398 		return error;
1399 	}
1400 
1401 	send_workqueue = create_singlethread_workqueue("dlm_send");
1402 	error = IS_ERR(send_workqueue);
1403 	if (error) {
1404 		log_print("can't start dlm_send %d", error);
1405 		destroy_workqueue(recv_workqueue);
1406 		return error;
1407 	}
1408 
1409 	return 0;
1410 }
1411 
1412 void dlm_lowcomms_stop(void)
1413 {
1414 	int i;
1415 	struct connection *con;
1416 
1417 	/* Set all the flags to prevent any
1418 	   socket activity.
1419 	*/
1420 	down(&connections_lock);
1421 	for (i = 0; i <= max_nodeid; i++) {
1422 		con = __nodeid2con(i, 0);
1423 		if (con) {
1424 			con->flags |= 0x0F;
1425 			if (con->sock)
1426 				con->sock->sk->sk_user_data = NULL;
1427 		}
1428 	}
1429 	up(&connections_lock);
1430 
1431 	work_stop();
1432 
1433 	down(&connections_lock);
1434 	clean_writequeues();
1435 
1436 	for (i = 0; i <= max_nodeid; i++) {
1437 		con = __nodeid2con(i, 0);
1438 		if (con) {
1439 			close_connection(con, true);
1440 			if (con->othercon)
1441 				kmem_cache_free(con_cache, con->othercon);
1442 			kmem_cache_free(con_cache, con);
1443 		}
1444 	}
1445 	max_nodeid = 0;
1446 	up(&connections_lock);
1447 	kmem_cache_destroy(con_cache);
1448 	idr_init(&connections_idr);
1449 }
1450 
1451 int dlm_lowcomms_start(void)
1452 {
1453 	int error = -EINVAL;
1454 	struct connection *con;
1455 
1456 	init_local();
1457 	if (!dlm_local_count) {
1458 		error = -ENOTCONN;
1459 		log_print("no local IP address has been set");
1460 		goto out;
1461 	}
1462 
1463 	error = -ENOMEM;
1464 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1465 				      __alignof__(struct connection), 0,
1466 				      NULL);
1467 	if (!con_cache)
1468 		goto out;
1469 
1470 	/* Start listening */
1471 	if (dlm_config.ci_protocol == 0)
1472 		error = tcp_listen_for_all();
1473 	else
1474 		error = sctp_listen_for_all();
1475 	if (error)
1476 		goto fail_unlisten;
1477 
1478 	error = work_start();
1479 	if (error)
1480 		goto fail_unlisten;
1481 
1482 	return 0;
1483 
1484 fail_unlisten:
1485 	con = nodeid2con(0,0);
1486 	if (con) {
1487 		close_connection(con, false);
1488 		kmem_cache_free(con_cache, con);
1489 	}
1490 	kmem_cache_destroy(con_cache);
1491 
1492 out:
1493 	return error;
1494 }
1495