1 /****************************************************************************** 2 ******************************************************************************* 3 ** 4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 5 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. 6 ** 7 ** This copyrighted material is made available to anyone wishing to use, 8 ** modify, copy, or redistribute it subject to the terms and conditions 9 ** of the GNU General Public License v.2. 10 ** 11 ******************************************************************************* 12 ******************************************************************************/ 13 14 /* 15 * lowcomms.c 16 * 17 * This is the "low-level" comms layer. 18 * 19 * It is responsible for sending/receiving messages 20 * from other nodes in the cluster. 21 * 22 * Cluster nodes are referred to by their nodeids. nodeids are 23 * simply 32 bit numbers to the locking module - if they need to 24 * be expanded for the cluster infrastructure then that is its 25 * responsibility. It is this layer's 26 * responsibility to resolve these into IP address or 27 * whatever it needs for inter-node communication. 28 * 29 * The comms level is two kernel threads that deal mainly with 30 * the receiving of messages from other nodes and passing them 31 * up to the mid-level comms layer (which understands the 32 * message format) for execution by the locking core, and 33 * a send thread which does all the setting up of connections 34 * to remote nodes and the sending of data. Threads are not allowed 35 * to send their own data because it may cause them to wait in times 36 * of high load. Also, this way, the sending thread can collect together 37 * messages bound for one node and send them in one block. 38 * 39 * lowcomms will choose to use either TCP or SCTP as its transport layer 40 * depending on the configuration variable 'protocol'. This should be set 41 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a 42 * cluster-wide mechanism as it must be the same on all nodes of the cluster 43 * for the DLM to function. 44 * 45 */ 46 47 #include <asm/ioctls.h> 48 #include <net/sock.h> 49 #include <net/tcp.h> 50 #include <linux/pagemap.h> 51 #include <linux/file.h> 52 #include <linux/mutex.h> 53 #include <linux/sctp.h> 54 #include <linux/slab.h> 55 #include <linux/sctp.h> 56 #include <net/sctp/sctp.h> 57 #include <net/ipv6.h> 58 59 #include "dlm_internal.h" 60 #include "lowcomms.h" 61 #include "midcomms.h" 62 #include "config.h" 63 64 #define NEEDED_RMEM (4*1024*1024) 65 #define CONN_HASH_SIZE 32 66 67 /* Number of messages to send before rescheduling */ 68 #define MAX_SEND_MSG_COUNT 25 69 70 struct cbuf { 71 unsigned int base; 72 unsigned int len; 73 unsigned int mask; 74 }; 75 76 static void cbuf_add(struct cbuf *cb, int n) 77 { 78 cb->len += n; 79 } 80 81 static int cbuf_data(struct cbuf *cb) 82 { 83 return ((cb->base + cb->len) & cb->mask); 84 } 85 86 static void cbuf_init(struct cbuf *cb, int size) 87 { 88 cb->base = cb->len = 0; 89 cb->mask = size-1; 90 } 91 92 static void cbuf_eat(struct cbuf *cb, int n) 93 { 94 cb->len -= n; 95 cb->base += n; 96 cb->base &= cb->mask; 97 } 98 99 static bool cbuf_empty(struct cbuf *cb) 100 { 101 return cb->len == 0; 102 } 103 104 struct connection { 105 struct socket *sock; /* NULL if not connected */ 106 uint32_t nodeid; /* So we know who we are in the list */ 107 struct mutex sock_mutex; 108 unsigned long flags; 109 #define CF_READ_PENDING 1 110 #define CF_WRITE_PENDING 2 111 #define CF_CONNECT_PENDING 3 112 #define CF_INIT_PENDING 4 113 #define CF_IS_OTHERCON 5 114 #define CF_CLOSE 6 115 #define CF_APP_LIMITED 7 116 struct list_head writequeue; /* List of outgoing writequeue_entries */ 117 spinlock_t writequeue_lock; 118 int (*rx_action) (struct connection *); /* What to do when active */ 119 void (*connect_action) (struct connection *); /* What to do to connect */ 120 struct page *rx_page; 121 struct cbuf cb; 122 int retries; 123 #define MAX_CONNECT_RETRIES 3 124 int sctp_assoc; 125 struct hlist_node list; 126 struct connection *othercon; 127 struct work_struct rwork; /* Receive workqueue */ 128 struct work_struct swork; /* Send workqueue */ 129 }; 130 #define sock2con(x) ((struct connection *)(x)->sk_user_data) 131 132 /* An entry waiting to be sent */ 133 struct writequeue_entry { 134 struct list_head list; 135 struct page *page; 136 int offset; 137 int len; 138 int end; 139 int users; 140 struct connection *con; 141 }; 142 143 struct dlm_node_addr { 144 struct list_head list; 145 int nodeid; 146 int addr_count; 147 struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT]; 148 }; 149 150 static LIST_HEAD(dlm_node_addrs); 151 static DEFINE_SPINLOCK(dlm_node_addrs_spin); 152 153 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT]; 154 static int dlm_local_count; 155 static int dlm_allow_conn; 156 157 /* Work queues */ 158 static struct workqueue_struct *recv_workqueue; 159 static struct workqueue_struct *send_workqueue; 160 161 static struct hlist_head connection_hash[CONN_HASH_SIZE]; 162 static DEFINE_MUTEX(connections_lock); 163 static struct kmem_cache *con_cache; 164 165 static void process_recv_sockets(struct work_struct *work); 166 static void process_send_sockets(struct work_struct *work); 167 168 169 /* This is deliberately very simple because most clusters have simple 170 sequential nodeids, so we should be able to go straight to a connection 171 struct in the array */ 172 static inline int nodeid_hash(int nodeid) 173 { 174 return nodeid & (CONN_HASH_SIZE-1); 175 } 176 177 static struct connection *__find_con(int nodeid) 178 { 179 int r; 180 struct connection *con; 181 182 r = nodeid_hash(nodeid); 183 184 hlist_for_each_entry(con, &connection_hash[r], list) { 185 if (con->nodeid == nodeid) 186 return con; 187 } 188 return NULL; 189 } 190 191 /* 192 * If 'allocation' is zero then we don't attempt to create a new 193 * connection structure for this node. 194 */ 195 static struct connection *__nodeid2con(int nodeid, gfp_t alloc) 196 { 197 struct connection *con = NULL; 198 int r; 199 200 con = __find_con(nodeid); 201 if (con || !alloc) 202 return con; 203 204 con = kmem_cache_zalloc(con_cache, alloc); 205 if (!con) 206 return NULL; 207 208 r = nodeid_hash(nodeid); 209 hlist_add_head(&con->list, &connection_hash[r]); 210 211 con->nodeid = nodeid; 212 mutex_init(&con->sock_mutex); 213 INIT_LIST_HEAD(&con->writequeue); 214 spin_lock_init(&con->writequeue_lock); 215 INIT_WORK(&con->swork, process_send_sockets); 216 INIT_WORK(&con->rwork, process_recv_sockets); 217 218 /* Setup action pointers for child sockets */ 219 if (con->nodeid) { 220 struct connection *zerocon = __find_con(0); 221 222 con->connect_action = zerocon->connect_action; 223 if (!con->rx_action) 224 con->rx_action = zerocon->rx_action; 225 } 226 227 return con; 228 } 229 230 /* Loop round all connections */ 231 static void foreach_conn(void (*conn_func)(struct connection *c)) 232 { 233 int i; 234 struct hlist_node *n; 235 struct connection *con; 236 237 for (i = 0; i < CONN_HASH_SIZE; i++) { 238 hlist_for_each_entry_safe(con, n, &connection_hash[i], list) 239 conn_func(con); 240 } 241 } 242 243 static struct connection *nodeid2con(int nodeid, gfp_t allocation) 244 { 245 struct connection *con; 246 247 mutex_lock(&connections_lock); 248 con = __nodeid2con(nodeid, allocation); 249 mutex_unlock(&connections_lock); 250 251 return con; 252 } 253 254 /* This is a bit drastic, but only called when things go wrong */ 255 static struct connection *assoc2con(int assoc_id) 256 { 257 int i; 258 struct connection *con; 259 260 mutex_lock(&connections_lock); 261 262 for (i = 0 ; i < CONN_HASH_SIZE; i++) { 263 hlist_for_each_entry(con, &connection_hash[i], list) { 264 if (con->sctp_assoc == assoc_id) { 265 mutex_unlock(&connections_lock); 266 return con; 267 } 268 } 269 } 270 mutex_unlock(&connections_lock); 271 return NULL; 272 } 273 274 static struct dlm_node_addr *find_node_addr(int nodeid) 275 { 276 struct dlm_node_addr *na; 277 278 list_for_each_entry(na, &dlm_node_addrs, list) { 279 if (na->nodeid == nodeid) 280 return na; 281 } 282 return NULL; 283 } 284 285 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y) 286 { 287 switch (x->ss_family) { 288 case AF_INET: { 289 struct sockaddr_in *sinx = (struct sockaddr_in *)x; 290 struct sockaddr_in *siny = (struct sockaddr_in *)y; 291 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr) 292 return 0; 293 if (sinx->sin_port != siny->sin_port) 294 return 0; 295 break; 296 } 297 case AF_INET6: { 298 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x; 299 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y; 300 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr)) 301 return 0; 302 if (sinx->sin6_port != siny->sin6_port) 303 return 0; 304 break; 305 } 306 default: 307 return 0; 308 } 309 return 1; 310 } 311 312 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out, 313 struct sockaddr *sa_out) 314 { 315 struct sockaddr_storage sas; 316 struct dlm_node_addr *na; 317 318 if (!dlm_local_count) 319 return -1; 320 321 spin_lock(&dlm_node_addrs_spin); 322 na = find_node_addr(nodeid); 323 if (na && na->addr_count) 324 memcpy(&sas, na->addr[0], sizeof(struct sockaddr_storage)); 325 spin_unlock(&dlm_node_addrs_spin); 326 327 if (!na) 328 return -EEXIST; 329 330 if (!na->addr_count) 331 return -ENOENT; 332 333 if (sas_out) 334 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage)); 335 336 if (!sa_out) 337 return 0; 338 339 if (dlm_local_addr[0]->ss_family == AF_INET) { 340 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas; 341 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out; 342 ret4->sin_addr.s_addr = in4->sin_addr.s_addr; 343 } else { 344 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas; 345 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out; 346 ret6->sin6_addr = in6->sin6_addr; 347 } 348 349 return 0; 350 } 351 352 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid) 353 { 354 struct dlm_node_addr *na; 355 int rv = -EEXIST; 356 357 spin_lock(&dlm_node_addrs_spin); 358 list_for_each_entry(na, &dlm_node_addrs, list) { 359 if (!na->addr_count) 360 continue; 361 362 if (!addr_compare(na->addr[0], addr)) 363 continue; 364 365 *nodeid = na->nodeid; 366 rv = 0; 367 break; 368 } 369 spin_unlock(&dlm_node_addrs_spin); 370 return rv; 371 } 372 373 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len) 374 { 375 struct sockaddr_storage *new_addr; 376 struct dlm_node_addr *new_node, *na; 377 378 new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS); 379 if (!new_node) 380 return -ENOMEM; 381 382 new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS); 383 if (!new_addr) { 384 kfree(new_node); 385 return -ENOMEM; 386 } 387 388 memcpy(new_addr, addr, len); 389 390 spin_lock(&dlm_node_addrs_spin); 391 na = find_node_addr(nodeid); 392 if (!na) { 393 new_node->nodeid = nodeid; 394 new_node->addr[0] = new_addr; 395 new_node->addr_count = 1; 396 list_add(&new_node->list, &dlm_node_addrs); 397 spin_unlock(&dlm_node_addrs_spin); 398 return 0; 399 } 400 401 if (na->addr_count >= DLM_MAX_ADDR_COUNT) { 402 spin_unlock(&dlm_node_addrs_spin); 403 kfree(new_addr); 404 kfree(new_node); 405 return -ENOSPC; 406 } 407 408 na->addr[na->addr_count++] = new_addr; 409 spin_unlock(&dlm_node_addrs_spin); 410 kfree(new_node); 411 return 0; 412 } 413 414 /* Data available on socket or listen socket received a connect */ 415 static void lowcomms_data_ready(struct sock *sk, int count_unused) 416 { 417 struct connection *con = sock2con(sk); 418 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags)) 419 queue_work(recv_workqueue, &con->rwork); 420 } 421 422 static void lowcomms_write_space(struct sock *sk) 423 { 424 struct connection *con = sock2con(sk); 425 426 if (!con) 427 return; 428 429 clear_bit(SOCK_NOSPACE, &con->sock->flags); 430 431 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) { 432 con->sock->sk->sk_write_pending--; 433 clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags); 434 } 435 436 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) 437 queue_work(send_workqueue, &con->swork); 438 } 439 440 static inline void lowcomms_connect_sock(struct connection *con) 441 { 442 if (test_bit(CF_CLOSE, &con->flags)) 443 return; 444 if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags)) 445 queue_work(send_workqueue, &con->swork); 446 } 447 448 static void lowcomms_state_change(struct sock *sk) 449 { 450 if (sk->sk_state == TCP_ESTABLISHED) 451 lowcomms_write_space(sk); 452 } 453 454 int dlm_lowcomms_connect_node(int nodeid) 455 { 456 struct connection *con; 457 458 /* with sctp there's no connecting without sending */ 459 if (dlm_config.ci_protocol != 0) 460 return 0; 461 462 if (nodeid == dlm_our_nodeid()) 463 return 0; 464 465 con = nodeid2con(nodeid, GFP_NOFS); 466 if (!con) 467 return -ENOMEM; 468 lowcomms_connect_sock(con); 469 return 0; 470 } 471 472 /* Make a socket active */ 473 static void add_sock(struct socket *sock, struct connection *con) 474 { 475 con->sock = sock; 476 477 /* Install a data_ready callback */ 478 con->sock->sk->sk_data_ready = lowcomms_data_ready; 479 con->sock->sk->sk_write_space = lowcomms_write_space; 480 con->sock->sk->sk_state_change = lowcomms_state_change; 481 con->sock->sk->sk_user_data = con; 482 con->sock->sk->sk_allocation = GFP_NOFS; 483 } 484 485 /* Add the port number to an IPv6 or 4 sockaddr and return the address 486 length */ 487 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port, 488 int *addr_len) 489 { 490 saddr->ss_family = dlm_local_addr[0]->ss_family; 491 if (saddr->ss_family == AF_INET) { 492 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; 493 in4_addr->sin_port = cpu_to_be16(port); 494 *addr_len = sizeof(struct sockaddr_in); 495 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); 496 } else { 497 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; 498 in6_addr->sin6_port = cpu_to_be16(port); 499 *addr_len = sizeof(struct sockaddr_in6); 500 } 501 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); 502 } 503 504 /* Close a remote connection and tidy up */ 505 static void close_connection(struct connection *con, bool and_other) 506 { 507 mutex_lock(&con->sock_mutex); 508 509 if (con->sock) { 510 sock_release(con->sock); 511 con->sock = NULL; 512 } 513 if (con->othercon && and_other) { 514 /* Will only re-enter once. */ 515 close_connection(con->othercon, false); 516 } 517 if (con->rx_page) { 518 __free_page(con->rx_page); 519 con->rx_page = NULL; 520 } 521 522 con->retries = 0; 523 mutex_unlock(&con->sock_mutex); 524 } 525 526 /* We only send shutdown messages to nodes that are not part of the cluster */ 527 static void sctp_send_shutdown(sctp_assoc_t associd) 528 { 529 static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))]; 530 struct msghdr outmessage; 531 struct cmsghdr *cmsg; 532 struct sctp_sndrcvinfo *sinfo; 533 int ret; 534 struct connection *con; 535 536 con = nodeid2con(0,0); 537 BUG_ON(con == NULL); 538 539 outmessage.msg_name = NULL; 540 outmessage.msg_namelen = 0; 541 outmessage.msg_control = outcmsg; 542 outmessage.msg_controllen = sizeof(outcmsg); 543 outmessage.msg_flags = MSG_EOR; 544 545 cmsg = CMSG_FIRSTHDR(&outmessage); 546 cmsg->cmsg_level = IPPROTO_SCTP; 547 cmsg->cmsg_type = SCTP_SNDRCV; 548 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo)); 549 outmessage.msg_controllen = cmsg->cmsg_len; 550 sinfo = CMSG_DATA(cmsg); 551 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo)); 552 553 sinfo->sinfo_flags |= MSG_EOF; 554 sinfo->sinfo_assoc_id = associd; 555 556 ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0); 557 558 if (ret != 0) 559 log_print("send EOF to node failed: %d", ret); 560 } 561 562 static void sctp_init_failed_foreach(struct connection *con) 563 { 564 con->sctp_assoc = 0; 565 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) { 566 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) 567 queue_work(send_workqueue, &con->swork); 568 } 569 } 570 571 /* INIT failed but we don't know which node... 572 restart INIT on all pending nodes */ 573 static void sctp_init_failed(void) 574 { 575 mutex_lock(&connections_lock); 576 577 foreach_conn(sctp_init_failed_foreach); 578 579 mutex_unlock(&connections_lock); 580 } 581 582 /* Something happened to an association */ 583 static void process_sctp_notification(struct connection *con, 584 struct msghdr *msg, char *buf) 585 { 586 union sctp_notification *sn = (union sctp_notification *)buf; 587 588 if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) { 589 switch (sn->sn_assoc_change.sac_state) { 590 591 case SCTP_COMM_UP: 592 case SCTP_RESTART: 593 { 594 /* Check that the new node is in the lockspace */ 595 struct sctp_prim prim; 596 int nodeid; 597 int prim_len, ret; 598 int addr_len; 599 struct connection *new_con; 600 601 /* 602 * We get this before any data for an association. 603 * We verify that the node is in the cluster and 604 * then peel off a socket for it. 605 */ 606 if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) { 607 log_print("COMM_UP for invalid assoc ID %d", 608 (int)sn->sn_assoc_change.sac_assoc_id); 609 sctp_init_failed(); 610 return; 611 } 612 memset(&prim, 0, sizeof(struct sctp_prim)); 613 prim_len = sizeof(struct sctp_prim); 614 prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id; 615 616 ret = kernel_getsockopt(con->sock, 617 IPPROTO_SCTP, 618 SCTP_PRIMARY_ADDR, 619 (char*)&prim, 620 &prim_len); 621 if (ret < 0) { 622 log_print("getsockopt/sctp_primary_addr on " 623 "new assoc %d failed : %d", 624 (int)sn->sn_assoc_change.sac_assoc_id, 625 ret); 626 627 /* Retry INIT later */ 628 new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id); 629 if (new_con) 630 clear_bit(CF_CONNECT_PENDING, &con->flags); 631 return; 632 } 633 make_sockaddr(&prim.ssp_addr, 0, &addr_len); 634 if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) { 635 unsigned char *b=(unsigned char *)&prim.ssp_addr; 636 log_print("reject connect from unknown addr"); 637 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 638 b, sizeof(struct sockaddr_storage)); 639 sctp_send_shutdown(prim.ssp_assoc_id); 640 return; 641 } 642 643 new_con = nodeid2con(nodeid, GFP_NOFS); 644 if (!new_con) 645 return; 646 647 /* Peel off a new sock */ 648 sctp_lock_sock(con->sock->sk); 649 ret = sctp_do_peeloff(con->sock->sk, 650 sn->sn_assoc_change.sac_assoc_id, 651 &new_con->sock); 652 sctp_release_sock(con->sock->sk); 653 if (ret < 0) { 654 log_print("Can't peel off a socket for " 655 "connection %d to node %d: err=%d", 656 (int)sn->sn_assoc_change.sac_assoc_id, 657 nodeid, ret); 658 return; 659 } 660 add_sock(new_con->sock, new_con); 661 662 log_print("connecting to %d sctp association %d", 663 nodeid, (int)sn->sn_assoc_change.sac_assoc_id); 664 665 /* Send any pending writes */ 666 clear_bit(CF_CONNECT_PENDING, &new_con->flags); 667 clear_bit(CF_INIT_PENDING, &con->flags); 668 if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) { 669 queue_work(send_workqueue, &new_con->swork); 670 } 671 if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags)) 672 queue_work(recv_workqueue, &new_con->rwork); 673 } 674 break; 675 676 case SCTP_COMM_LOST: 677 case SCTP_SHUTDOWN_COMP: 678 { 679 con = assoc2con(sn->sn_assoc_change.sac_assoc_id); 680 if (con) { 681 con->sctp_assoc = 0; 682 } 683 } 684 break; 685 686 /* We don't know which INIT failed, so clear the PENDING flags 687 * on them all. if assoc_id is zero then it will then try 688 * again */ 689 690 case SCTP_CANT_STR_ASSOC: 691 { 692 log_print("Can't start SCTP association - retrying"); 693 sctp_init_failed(); 694 } 695 break; 696 697 default: 698 log_print("unexpected SCTP assoc change id=%d state=%d", 699 (int)sn->sn_assoc_change.sac_assoc_id, 700 sn->sn_assoc_change.sac_state); 701 } 702 } 703 } 704 705 /* Data received from remote end */ 706 static int receive_from_sock(struct connection *con) 707 { 708 int ret = 0; 709 struct msghdr msg = {}; 710 struct kvec iov[2]; 711 unsigned len; 712 int r; 713 int call_again_soon = 0; 714 int nvec; 715 char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))]; 716 717 mutex_lock(&con->sock_mutex); 718 719 if (con->sock == NULL) { 720 ret = -EAGAIN; 721 goto out_close; 722 } 723 724 if (con->rx_page == NULL) { 725 /* 726 * This doesn't need to be atomic, but I think it should 727 * improve performance if it is. 728 */ 729 con->rx_page = alloc_page(GFP_ATOMIC); 730 if (con->rx_page == NULL) 731 goto out_resched; 732 cbuf_init(&con->cb, PAGE_CACHE_SIZE); 733 } 734 735 /* Only SCTP needs these really */ 736 memset(&incmsg, 0, sizeof(incmsg)); 737 msg.msg_control = incmsg; 738 msg.msg_controllen = sizeof(incmsg); 739 740 /* 741 * iov[0] is the bit of the circular buffer between the current end 742 * point (cb.base + cb.len) and the end of the buffer. 743 */ 744 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb); 745 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb); 746 iov[1].iov_len = 0; 747 nvec = 1; 748 749 /* 750 * iov[1] is the bit of the circular buffer between the start of the 751 * buffer and the start of the currently used section (cb.base) 752 */ 753 if (cbuf_data(&con->cb) >= con->cb.base) { 754 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb); 755 iov[1].iov_len = con->cb.base; 756 iov[1].iov_base = page_address(con->rx_page); 757 nvec = 2; 758 } 759 len = iov[0].iov_len + iov[1].iov_len; 760 761 r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len, 762 MSG_DONTWAIT | MSG_NOSIGNAL); 763 if (ret <= 0) 764 goto out_close; 765 766 /* Process SCTP notifications */ 767 if (msg.msg_flags & MSG_NOTIFICATION) { 768 msg.msg_control = incmsg; 769 msg.msg_controllen = sizeof(incmsg); 770 771 process_sctp_notification(con, &msg, 772 page_address(con->rx_page) + con->cb.base); 773 mutex_unlock(&con->sock_mutex); 774 return 0; 775 } 776 BUG_ON(con->nodeid == 0); 777 778 if (ret == len) 779 call_again_soon = 1; 780 cbuf_add(&con->cb, ret); 781 ret = dlm_process_incoming_buffer(con->nodeid, 782 page_address(con->rx_page), 783 con->cb.base, con->cb.len, 784 PAGE_CACHE_SIZE); 785 if (ret == -EBADMSG) { 786 log_print("lowcomms: addr=%p, base=%u, len=%u, " 787 "iov_len=%u, iov_base[0]=%p, read=%d", 788 page_address(con->rx_page), con->cb.base, con->cb.len, 789 len, iov[0].iov_base, r); 790 } 791 if (ret < 0) 792 goto out_close; 793 cbuf_eat(&con->cb, ret); 794 795 if (cbuf_empty(&con->cb) && !call_again_soon) { 796 __free_page(con->rx_page); 797 con->rx_page = NULL; 798 } 799 800 if (call_again_soon) 801 goto out_resched; 802 mutex_unlock(&con->sock_mutex); 803 return 0; 804 805 out_resched: 806 if (!test_and_set_bit(CF_READ_PENDING, &con->flags)) 807 queue_work(recv_workqueue, &con->rwork); 808 mutex_unlock(&con->sock_mutex); 809 return -EAGAIN; 810 811 out_close: 812 mutex_unlock(&con->sock_mutex); 813 if (ret != -EAGAIN) { 814 close_connection(con, false); 815 /* Reconnect when there is something to send */ 816 } 817 /* Don't return success if we really got EOF */ 818 if (ret == 0) 819 ret = -EAGAIN; 820 821 return ret; 822 } 823 824 /* Listening socket is busy, accept a connection */ 825 static int tcp_accept_from_sock(struct connection *con) 826 { 827 int result; 828 struct sockaddr_storage peeraddr; 829 struct socket *newsock; 830 int len; 831 int nodeid; 832 struct connection *newcon; 833 struct connection *addcon; 834 835 mutex_lock(&connections_lock); 836 if (!dlm_allow_conn) { 837 mutex_unlock(&connections_lock); 838 return -1; 839 } 840 mutex_unlock(&connections_lock); 841 842 memset(&peeraddr, 0, sizeof(peeraddr)); 843 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM, 844 IPPROTO_TCP, &newsock); 845 if (result < 0) 846 return -ENOMEM; 847 848 mutex_lock_nested(&con->sock_mutex, 0); 849 850 result = -ENOTCONN; 851 if (con->sock == NULL) 852 goto accept_err; 853 854 newsock->type = con->sock->type; 855 newsock->ops = con->sock->ops; 856 857 result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK); 858 if (result < 0) 859 goto accept_err; 860 861 /* Get the connected socket's peer */ 862 memset(&peeraddr, 0, sizeof(peeraddr)); 863 if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 864 &len, 2)) { 865 result = -ECONNABORTED; 866 goto accept_err; 867 } 868 869 /* Get the new node's NODEID */ 870 make_sockaddr(&peeraddr, 0, &len); 871 if (addr_to_nodeid(&peeraddr, &nodeid)) { 872 unsigned char *b=(unsigned char *)&peeraddr; 873 log_print("connect from non cluster node"); 874 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 875 b, sizeof(struct sockaddr_storage)); 876 sock_release(newsock); 877 mutex_unlock(&con->sock_mutex); 878 return -1; 879 } 880 881 log_print("got connection from %d", nodeid); 882 883 /* Check to see if we already have a connection to this node. This 884 * could happen if the two nodes initiate a connection at roughly 885 * the same time and the connections cross on the wire. 886 * In this case we store the incoming one in "othercon" 887 */ 888 newcon = nodeid2con(nodeid, GFP_NOFS); 889 if (!newcon) { 890 result = -ENOMEM; 891 goto accept_err; 892 } 893 mutex_lock_nested(&newcon->sock_mutex, 1); 894 if (newcon->sock) { 895 struct connection *othercon = newcon->othercon; 896 897 if (!othercon) { 898 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS); 899 if (!othercon) { 900 log_print("failed to allocate incoming socket"); 901 mutex_unlock(&newcon->sock_mutex); 902 result = -ENOMEM; 903 goto accept_err; 904 } 905 othercon->nodeid = nodeid; 906 othercon->rx_action = receive_from_sock; 907 mutex_init(&othercon->sock_mutex); 908 INIT_WORK(&othercon->swork, process_send_sockets); 909 INIT_WORK(&othercon->rwork, process_recv_sockets); 910 set_bit(CF_IS_OTHERCON, &othercon->flags); 911 } 912 if (!othercon->sock) { 913 newcon->othercon = othercon; 914 othercon->sock = newsock; 915 newsock->sk->sk_user_data = othercon; 916 add_sock(newsock, othercon); 917 addcon = othercon; 918 } 919 else { 920 printk("Extra connection from node %d attempted\n", nodeid); 921 result = -EAGAIN; 922 mutex_unlock(&newcon->sock_mutex); 923 goto accept_err; 924 } 925 } 926 else { 927 newsock->sk->sk_user_data = newcon; 928 newcon->rx_action = receive_from_sock; 929 add_sock(newsock, newcon); 930 addcon = newcon; 931 } 932 933 mutex_unlock(&newcon->sock_mutex); 934 935 /* 936 * Add it to the active queue in case we got data 937 * between processing the accept adding the socket 938 * to the read_sockets list 939 */ 940 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags)) 941 queue_work(recv_workqueue, &addcon->rwork); 942 mutex_unlock(&con->sock_mutex); 943 944 return 0; 945 946 accept_err: 947 mutex_unlock(&con->sock_mutex); 948 sock_release(newsock); 949 950 if (result != -EAGAIN) 951 log_print("error accepting connection from node: %d", result); 952 return result; 953 } 954 955 static void free_entry(struct writequeue_entry *e) 956 { 957 __free_page(e->page); 958 kfree(e); 959 } 960 961 /* Initiate an SCTP association. 962 This is a special case of send_to_sock() in that we don't yet have a 963 peeled-off socket for this association, so we use the listening socket 964 and add the primary IP address of the remote node. 965 */ 966 static void sctp_init_assoc(struct connection *con) 967 { 968 struct sockaddr_storage rem_addr; 969 char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))]; 970 struct msghdr outmessage; 971 struct cmsghdr *cmsg; 972 struct sctp_sndrcvinfo *sinfo; 973 struct connection *base_con; 974 struct writequeue_entry *e; 975 int len, offset; 976 int ret; 977 int addrlen; 978 struct kvec iov[1]; 979 980 if (test_and_set_bit(CF_INIT_PENDING, &con->flags)) 981 return; 982 983 if (con->retries++ > MAX_CONNECT_RETRIES) 984 return; 985 986 if (nodeid_to_addr(con->nodeid, NULL, (struct sockaddr *)&rem_addr)) { 987 log_print("no address for nodeid %d", con->nodeid); 988 return; 989 } 990 base_con = nodeid2con(0, 0); 991 BUG_ON(base_con == NULL); 992 993 make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen); 994 995 outmessage.msg_name = &rem_addr; 996 outmessage.msg_namelen = addrlen; 997 outmessage.msg_control = outcmsg; 998 outmessage.msg_controllen = sizeof(outcmsg); 999 outmessage.msg_flags = MSG_EOR; 1000 1001 spin_lock(&con->writequeue_lock); 1002 1003 if (list_empty(&con->writequeue)) { 1004 spin_unlock(&con->writequeue_lock); 1005 log_print("writequeue empty for nodeid %d", con->nodeid); 1006 return; 1007 } 1008 1009 e = list_first_entry(&con->writequeue, struct writequeue_entry, list); 1010 len = e->len; 1011 offset = e->offset; 1012 spin_unlock(&con->writequeue_lock); 1013 1014 /* Send the first block off the write queue */ 1015 iov[0].iov_base = page_address(e->page)+offset; 1016 iov[0].iov_len = len; 1017 1018 cmsg = CMSG_FIRSTHDR(&outmessage); 1019 cmsg->cmsg_level = IPPROTO_SCTP; 1020 cmsg->cmsg_type = SCTP_SNDRCV; 1021 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo)); 1022 sinfo = CMSG_DATA(cmsg); 1023 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo)); 1024 sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid()); 1025 outmessage.msg_controllen = cmsg->cmsg_len; 1026 1027 ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len); 1028 if (ret < 0) { 1029 log_print("Send first packet to node %d failed: %d", 1030 con->nodeid, ret); 1031 1032 /* Try again later */ 1033 clear_bit(CF_CONNECT_PENDING, &con->flags); 1034 clear_bit(CF_INIT_PENDING, &con->flags); 1035 } 1036 else { 1037 spin_lock(&con->writequeue_lock); 1038 e->offset += ret; 1039 e->len -= ret; 1040 1041 if (e->len == 0 && e->users == 0) { 1042 list_del(&e->list); 1043 free_entry(e); 1044 } 1045 spin_unlock(&con->writequeue_lock); 1046 } 1047 } 1048 1049 /* Connect a new socket to its peer */ 1050 static void tcp_connect_to_sock(struct connection *con) 1051 { 1052 struct sockaddr_storage saddr, src_addr; 1053 int addr_len; 1054 struct socket *sock = NULL; 1055 int one = 1; 1056 int result; 1057 1058 if (con->nodeid == 0) { 1059 log_print("attempt to connect sock 0 foiled"); 1060 return; 1061 } 1062 1063 mutex_lock(&con->sock_mutex); 1064 if (con->retries++ > MAX_CONNECT_RETRIES) 1065 goto out; 1066 1067 /* Some odd races can cause double-connects, ignore them */ 1068 if (con->sock) 1069 goto out; 1070 1071 /* Create a socket to communicate with */ 1072 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM, 1073 IPPROTO_TCP, &sock); 1074 if (result < 0) 1075 goto out_err; 1076 1077 memset(&saddr, 0, sizeof(saddr)); 1078 result = nodeid_to_addr(con->nodeid, &saddr, NULL); 1079 if (result < 0) { 1080 log_print("no address for nodeid %d", con->nodeid); 1081 goto out_err; 1082 } 1083 1084 sock->sk->sk_user_data = con; 1085 con->rx_action = receive_from_sock; 1086 con->connect_action = tcp_connect_to_sock; 1087 add_sock(sock, con); 1088 1089 /* Bind to our cluster-known address connecting to avoid 1090 routing problems */ 1091 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr)); 1092 make_sockaddr(&src_addr, 0, &addr_len); 1093 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr, 1094 addr_len); 1095 if (result < 0) { 1096 log_print("could not bind for connect: %d", result); 1097 /* This *may* not indicate a critical error */ 1098 } 1099 1100 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len); 1101 1102 log_print("connecting to %d", con->nodeid); 1103 1104 /* Turn off Nagle's algorithm */ 1105 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one, 1106 sizeof(one)); 1107 1108 result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len, 1109 O_NONBLOCK); 1110 if (result == -EINPROGRESS) 1111 result = 0; 1112 if (result == 0) 1113 goto out; 1114 1115 out_err: 1116 if (con->sock) { 1117 sock_release(con->sock); 1118 con->sock = NULL; 1119 } else if (sock) { 1120 sock_release(sock); 1121 } 1122 /* 1123 * Some errors are fatal and this list might need adjusting. For other 1124 * errors we try again until the max number of retries is reached. 1125 */ 1126 if (result != -EHOSTUNREACH && 1127 result != -ENETUNREACH && 1128 result != -ENETDOWN && 1129 result != -EINVAL && 1130 result != -EPROTONOSUPPORT) { 1131 log_print("connect %d try %d error %d", con->nodeid, 1132 con->retries, result); 1133 mutex_unlock(&con->sock_mutex); 1134 msleep(1000); 1135 lowcomms_connect_sock(con); 1136 return; 1137 } 1138 out: 1139 mutex_unlock(&con->sock_mutex); 1140 return; 1141 } 1142 1143 static struct socket *tcp_create_listen_sock(struct connection *con, 1144 struct sockaddr_storage *saddr) 1145 { 1146 struct socket *sock = NULL; 1147 int result = 0; 1148 int one = 1; 1149 int addr_len; 1150 1151 if (dlm_local_addr[0]->ss_family == AF_INET) 1152 addr_len = sizeof(struct sockaddr_in); 1153 else 1154 addr_len = sizeof(struct sockaddr_in6); 1155 1156 /* Create a socket to communicate with */ 1157 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM, 1158 IPPROTO_TCP, &sock); 1159 if (result < 0) { 1160 log_print("Can't create listening comms socket"); 1161 goto create_out; 1162 } 1163 1164 /* Turn off Nagle's algorithm */ 1165 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one, 1166 sizeof(one)); 1167 1168 result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, 1169 (char *)&one, sizeof(one)); 1170 1171 if (result < 0) { 1172 log_print("Failed to set SO_REUSEADDR on socket: %d", result); 1173 } 1174 con->rx_action = tcp_accept_from_sock; 1175 con->connect_action = tcp_connect_to_sock; 1176 1177 /* Bind to our port */ 1178 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len); 1179 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len); 1180 if (result < 0) { 1181 log_print("Can't bind to port %d", dlm_config.ci_tcp_port); 1182 sock_release(sock); 1183 sock = NULL; 1184 con->sock = NULL; 1185 goto create_out; 1186 } 1187 result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, 1188 (char *)&one, sizeof(one)); 1189 if (result < 0) { 1190 log_print("Set keepalive failed: %d", result); 1191 } 1192 1193 result = sock->ops->listen(sock, 5); 1194 if (result < 0) { 1195 log_print("Can't listen on port %d", dlm_config.ci_tcp_port); 1196 sock_release(sock); 1197 sock = NULL; 1198 goto create_out; 1199 } 1200 1201 create_out: 1202 return sock; 1203 } 1204 1205 /* Get local addresses */ 1206 static void init_local(void) 1207 { 1208 struct sockaddr_storage sas, *addr; 1209 int i; 1210 1211 dlm_local_count = 0; 1212 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) { 1213 if (dlm_our_addr(&sas, i)) 1214 break; 1215 1216 addr = kmalloc(sizeof(*addr), GFP_NOFS); 1217 if (!addr) 1218 break; 1219 memcpy(addr, &sas, sizeof(*addr)); 1220 dlm_local_addr[dlm_local_count++] = addr; 1221 } 1222 } 1223 1224 /* Bind to an IP address. SCTP allows multiple address so it can do 1225 multi-homing */ 1226 static int add_sctp_bind_addr(struct connection *sctp_con, 1227 struct sockaddr_storage *addr, 1228 int addr_len, int num) 1229 { 1230 int result = 0; 1231 1232 if (num == 1) 1233 result = kernel_bind(sctp_con->sock, 1234 (struct sockaddr *) addr, 1235 addr_len); 1236 else 1237 result = kernel_setsockopt(sctp_con->sock, SOL_SCTP, 1238 SCTP_SOCKOPT_BINDX_ADD, 1239 (char *)addr, addr_len); 1240 1241 if (result < 0) 1242 log_print("Can't bind to port %d addr number %d", 1243 dlm_config.ci_tcp_port, num); 1244 1245 return result; 1246 } 1247 1248 /* Initialise SCTP socket and bind to all interfaces */ 1249 static int sctp_listen_for_all(void) 1250 { 1251 struct socket *sock = NULL; 1252 struct sockaddr_storage localaddr; 1253 struct sctp_event_subscribe subscribe; 1254 int result = -EINVAL, num = 1, i, addr_len; 1255 struct connection *con = nodeid2con(0, GFP_NOFS); 1256 int bufsize = NEEDED_RMEM; 1257 1258 if (!con) 1259 return -ENOMEM; 1260 1261 log_print("Using SCTP for communications"); 1262 1263 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET, 1264 IPPROTO_SCTP, &sock); 1265 if (result < 0) { 1266 log_print("Can't create comms socket, check SCTP is loaded"); 1267 goto out; 1268 } 1269 1270 /* Listen for events */ 1271 memset(&subscribe, 0, sizeof(subscribe)); 1272 subscribe.sctp_data_io_event = 1; 1273 subscribe.sctp_association_event = 1; 1274 subscribe.sctp_send_failure_event = 1; 1275 subscribe.sctp_shutdown_event = 1; 1276 subscribe.sctp_partial_delivery_event = 1; 1277 1278 result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE, 1279 (char *)&bufsize, sizeof(bufsize)); 1280 if (result) 1281 log_print("Error increasing buffer space on socket %d", result); 1282 1283 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS, 1284 (char *)&subscribe, sizeof(subscribe)); 1285 if (result < 0) { 1286 log_print("Failed to set SCTP_EVENTS on socket: result=%d", 1287 result); 1288 goto create_delsock; 1289 } 1290 1291 /* Init con struct */ 1292 sock->sk->sk_user_data = con; 1293 con->sock = sock; 1294 con->sock->sk->sk_data_ready = lowcomms_data_ready; 1295 con->rx_action = receive_from_sock; 1296 con->connect_action = sctp_init_assoc; 1297 1298 /* Bind to all interfaces. */ 1299 for (i = 0; i < dlm_local_count; i++) { 1300 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr)); 1301 make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len); 1302 1303 result = add_sctp_bind_addr(con, &localaddr, addr_len, num); 1304 if (result) 1305 goto create_delsock; 1306 ++num; 1307 } 1308 1309 result = sock->ops->listen(sock, 5); 1310 if (result < 0) { 1311 log_print("Can't set socket listening"); 1312 goto create_delsock; 1313 } 1314 1315 return 0; 1316 1317 create_delsock: 1318 sock_release(sock); 1319 con->sock = NULL; 1320 out: 1321 return result; 1322 } 1323 1324 static int tcp_listen_for_all(void) 1325 { 1326 struct socket *sock = NULL; 1327 struct connection *con = nodeid2con(0, GFP_NOFS); 1328 int result = -EINVAL; 1329 1330 if (!con) 1331 return -ENOMEM; 1332 1333 /* We don't support multi-homed hosts */ 1334 if (dlm_local_addr[1] != NULL) { 1335 log_print("TCP protocol can't handle multi-homed hosts, " 1336 "try SCTP"); 1337 return -EINVAL; 1338 } 1339 1340 log_print("Using TCP for communications"); 1341 1342 sock = tcp_create_listen_sock(con, dlm_local_addr[0]); 1343 if (sock) { 1344 add_sock(sock, con); 1345 result = 0; 1346 } 1347 else { 1348 result = -EADDRINUSE; 1349 } 1350 1351 return result; 1352 } 1353 1354 1355 1356 static struct writequeue_entry *new_writequeue_entry(struct connection *con, 1357 gfp_t allocation) 1358 { 1359 struct writequeue_entry *entry; 1360 1361 entry = kmalloc(sizeof(struct writequeue_entry), allocation); 1362 if (!entry) 1363 return NULL; 1364 1365 entry->page = alloc_page(allocation); 1366 if (!entry->page) { 1367 kfree(entry); 1368 return NULL; 1369 } 1370 1371 entry->offset = 0; 1372 entry->len = 0; 1373 entry->end = 0; 1374 entry->users = 0; 1375 entry->con = con; 1376 1377 return entry; 1378 } 1379 1380 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc) 1381 { 1382 struct connection *con; 1383 struct writequeue_entry *e; 1384 int offset = 0; 1385 1386 con = nodeid2con(nodeid, allocation); 1387 if (!con) 1388 return NULL; 1389 1390 spin_lock(&con->writequeue_lock); 1391 e = list_entry(con->writequeue.prev, struct writequeue_entry, list); 1392 if ((&e->list == &con->writequeue) || 1393 (PAGE_CACHE_SIZE - e->end < len)) { 1394 e = NULL; 1395 } else { 1396 offset = e->end; 1397 e->end += len; 1398 e->users++; 1399 } 1400 spin_unlock(&con->writequeue_lock); 1401 1402 if (e) { 1403 got_one: 1404 *ppc = page_address(e->page) + offset; 1405 return e; 1406 } 1407 1408 e = new_writequeue_entry(con, allocation); 1409 if (e) { 1410 spin_lock(&con->writequeue_lock); 1411 offset = e->end; 1412 e->end += len; 1413 e->users++; 1414 list_add_tail(&e->list, &con->writequeue); 1415 spin_unlock(&con->writequeue_lock); 1416 goto got_one; 1417 } 1418 return NULL; 1419 } 1420 1421 void dlm_lowcomms_commit_buffer(void *mh) 1422 { 1423 struct writequeue_entry *e = (struct writequeue_entry *)mh; 1424 struct connection *con = e->con; 1425 int users; 1426 1427 spin_lock(&con->writequeue_lock); 1428 users = --e->users; 1429 if (users) 1430 goto out; 1431 e->len = e->end - e->offset; 1432 spin_unlock(&con->writequeue_lock); 1433 1434 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) { 1435 queue_work(send_workqueue, &con->swork); 1436 } 1437 return; 1438 1439 out: 1440 spin_unlock(&con->writequeue_lock); 1441 return; 1442 } 1443 1444 /* Send a message */ 1445 static void send_to_sock(struct connection *con) 1446 { 1447 int ret = 0; 1448 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 1449 struct writequeue_entry *e; 1450 int len, offset; 1451 int count = 0; 1452 1453 mutex_lock(&con->sock_mutex); 1454 if (con->sock == NULL) 1455 goto out_connect; 1456 1457 spin_lock(&con->writequeue_lock); 1458 for (;;) { 1459 e = list_entry(con->writequeue.next, struct writequeue_entry, 1460 list); 1461 if ((struct list_head *) e == &con->writequeue) 1462 break; 1463 1464 len = e->len; 1465 offset = e->offset; 1466 BUG_ON(len == 0 && e->users == 0); 1467 spin_unlock(&con->writequeue_lock); 1468 1469 ret = 0; 1470 if (len) { 1471 ret = kernel_sendpage(con->sock, e->page, offset, len, 1472 msg_flags); 1473 if (ret == -EAGAIN || ret == 0) { 1474 if (ret == -EAGAIN && 1475 test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) && 1476 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) { 1477 /* Notify TCP that we're limited by the 1478 * application window size. 1479 */ 1480 set_bit(SOCK_NOSPACE, &con->sock->flags); 1481 con->sock->sk->sk_write_pending++; 1482 } 1483 cond_resched(); 1484 goto out; 1485 } else if (ret < 0) 1486 goto send_error; 1487 } 1488 1489 /* Don't starve people filling buffers */ 1490 if (++count >= MAX_SEND_MSG_COUNT) { 1491 cond_resched(); 1492 count = 0; 1493 } 1494 1495 spin_lock(&con->writequeue_lock); 1496 e->offset += ret; 1497 e->len -= ret; 1498 1499 if (e->len == 0 && e->users == 0) { 1500 list_del(&e->list); 1501 free_entry(e); 1502 } 1503 } 1504 spin_unlock(&con->writequeue_lock); 1505 out: 1506 mutex_unlock(&con->sock_mutex); 1507 return; 1508 1509 send_error: 1510 mutex_unlock(&con->sock_mutex); 1511 close_connection(con, false); 1512 lowcomms_connect_sock(con); 1513 return; 1514 1515 out_connect: 1516 mutex_unlock(&con->sock_mutex); 1517 if (!test_bit(CF_INIT_PENDING, &con->flags)) 1518 lowcomms_connect_sock(con); 1519 } 1520 1521 static void clean_one_writequeue(struct connection *con) 1522 { 1523 struct writequeue_entry *e, *safe; 1524 1525 spin_lock(&con->writequeue_lock); 1526 list_for_each_entry_safe(e, safe, &con->writequeue, list) { 1527 list_del(&e->list); 1528 free_entry(e); 1529 } 1530 spin_unlock(&con->writequeue_lock); 1531 } 1532 1533 /* Called from recovery when it knows that a node has 1534 left the cluster */ 1535 int dlm_lowcomms_close(int nodeid) 1536 { 1537 struct connection *con; 1538 struct dlm_node_addr *na; 1539 1540 log_print("closing connection to node %d", nodeid); 1541 con = nodeid2con(nodeid, 0); 1542 if (con) { 1543 clear_bit(CF_CONNECT_PENDING, &con->flags); 1544 clear_bit(CF_WRITE_PENDING, &con->flags); 1545 set_bit(CF_CLOSE, &con->flags); 1546 if (cancel_work_sync(&con->swork)) 1547 log_print("canceled swork for node %d", nodeid); 1548 if (cancel_work_sync(&con->rwork)) 1549 log_print("canceled rwork for node %d", nodeid); 1550 clean_one_writequeue(con); 1551 close_connection(con, true); 1552 } 1553 1554 spin_lock(&dlm_node_addrs_spin); 1555 na = find_node_addr(nodeid); 1556 if (na) { 1557 list_del(&na->list); 1558 while (na->addr_count--) 1559 kfree(na->addr[na->addr_count]); 1560 kfree(na); 1561 } 1562 spin_unlock(&dlm_node_addrs_spin); 1563 1564 return 0; 1565 } 1566 1567 /* Receive workqueue function */ 1568 static void process_recv_sockets(struct work_struct *work) 1569 { 1570 struct connection *con = container_of(work, struct connection, rwork); 1571 int err; 1572 1573 clear_bit(CF_READ_PENDING, &con->flags); 1574 do { 1575 err = con->rx_action(con); 1576 } while (!err); 1577 } 1578 1579 /* Send workqueue function */ 1580 static void process_send_sockets(struct work_struct *work) 1581 { 1582 struct connection *con = container_of(work, struct connection, swork); 1583 1584 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) { 1585 con->connect_action(con); 1586 set_bit(CF_WRITE_PENDING, &con->flags); 1587 } 1588 if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags)) 1589 send_to_sock(con); 1590 } 1591 1592 1593 /* Discard all entries on the write queues */ 1594 static void clean_writequeues(void) 1595 { 1596 foreach_conn(clean_one_writequeue); 1597 } 1598 1599 static void work_stop(void) 1600 { 1601 destroy_workqueue(recv_workqueue); 1602 destroy_workqueue(send_workqueue); 1603 } 1604 1605 static int work_start(void) 1606 { 1607 recv_workqueue = alloc_workqueue("dlm_recv", 1608 WQ_UNBOUND | WQ_MEM_RECLAIM, 1); 1609 if (!recv_workqueue) { 1610 log_print("can't start dlm_recv"); 1611 return -ENOMEM; 1612 } 1613 1614 send_workqueue = alloc_workqueue("dlm_send", 1615 WQ_UNBOUND | WQ_MEM_RECLAIM, 1); 1616 if (!send_workqueue) { 1617 log_print("can't start dlm_send"); 1618 destroy_workqueue(recv_workqueue); 1619 return -ENOMEM; 1620 } 1621 1622 return 0; 1623 } 1624 1625 static void stop_conn(struct connection *con) 1626 { 1627 con->flags |= 0x0F; 1628 if (con->sock && con->sock->sk) 1629 con->sock->sk->sk_user_data = NULL; 1630 } 1631 1632 static void free_conn(struct connection *con) 1633 { 1634 close_connection(con, true); 1635 if (con->othercon) 1636 kmem_cache_free(con_cache, con->othercon); 1637 hlist_del(&con->list); 1638 kmem_cache_free(con_cache, con); 1639 } 1640 1641 void dlm_lowcomms_stop(void) 1642 { 1643 /* Set all the flags to prevent any 1644 socket activity. 1645 */ 1646 mutex_lock(&connections_lock); 1647 dlm_allow_conn = 0; 1648 foreach_conn(stop_conn); 1649 mutex_unlock(&connections_lock); 1650 1651 work_stop(); 1652 1653 mutex_lock(&connections_lock); 1654 clean_writequeues(); 1655 1656 foreach_conn(free_conn); 1657 1658 mutex_unlock(&connections_lock); 1659 kmem_cache_destroy(con_cache); 1660 } 1661 1662 int dlm_lowcomms_start(void) 1663 { 1664 int error = -EINVAL; 1665 struct connection *con; 1666 int i; 1667 1668 for (i = 0; i < CONN_HASH_SIZE; i++) 1669 INIT_HLIST_HEAD(&connection_hash[i]); 1670 1671 init_local(); 1672 if (!dlm_local_count) { 1673 error = -ENOTCONN; 1674 log_print("no local IP address has been set"); 1675 goto fail; 1676 } 1677 1678 error = -ENOMEM; 1679 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection), 1680 __alignof__(struct connection), 0, 1681 NULL); 1682 if (!con_cache) 1683 goto fail; 1684 1685 error = work_start(); 1686 if (error) 1687 goto fail_destroy; 1688 1689 dlm_allow_conn = 1; 1690 1691 /* Start listening */ 1692 if (dlm_config.ci_protocol == 0) 1693 error = tcp_listen_for_all(); 1694 else 1695 error = sctp_listen_for_all(); 1696 if (error) 1697 goto fail_unlisten; 1698 1699 return 0; 1700 1701 fail_unlisten: 1702 dlm_allow_conn = 0; 1703 con = nodeid2con(0,0); 1704 if (con) { 1705 close_connection(con, false); 1706 kmem_cache_free(con_cache, con); 1707 } 1708 fail_destroy: 1709 kmem_cache_destroy(con_cache); 1710 fail: 1711 return error; 1712 } 1713 1714 void dlm_lowcomms_exit(void) 1715 { 1716 struct dlm_node_addr *na, *safe; 1717 1718 spin_lock(&dlm_node_addrs_spin); 1719 list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) { 1720 list_del(&na->list); 1721 while (na->addr_count--) 1722 kfree(na->addr[na->addr_count]); 1723 kfree(na); 1724 } 1725 spin_unlock(&dlm_node_addrs_spin); 1726 } 1727