xref: /openbmc/linux/fs/dlm/lowcomms.c (revision 3735b4b9)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
57 
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
62 
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
65 
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
68 
69 struct cbuf {
70 	unsigned int base;
71 	unsigned int len;
72 	unsigned int mask;
73 };
74 
75 static void cbuf_add(struct cbuf *cb, int n)
76 {
77 	cb->len += n;
78 }
79 
80 static int cbuf_data(struct cbuf *cb)
81 {
82 	return ((cb->base + cb->len) & cb->mask);
83 }
84 
85 static void cbuf_init(struct cbuf *cb, int size)
86 {
87 	cb->base = cb->len = 0;
88 	cb->mask = size-1;
89 }
90 
91 static void cbuf_eat(struct cbuf *cb, int n)
92 {
93 	cb->len  -= n;
94 	cb->base += n;
95 	cb->base &= cb->mask;
96 }
97 
98 static bool cbuf_empty(struct cbuf *cb)
99 {
100 	return cb->len == 0;
101 }
102 
103 struct connection {
104 	struct socket *sock;	/* NULL if not connected */
105 	uint32_t nodeid;	/* So we know who we are in the list */
106 	struct mutex sock_mutex;
107 	unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_CONNECT_PENDING 3
111 #define CF_INIT_PENDING 4
112 #define CF_IS_OTHERCON 5
113 #define CF_CLOSE 6
114 #define CF_APP_LIMITED 7
115 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
116 	spinlock_t writequeue_lock;
117 	int (*rx_action) (struct connection *);	/* What to do when active */
118 	void (*connect_action) (struct connection *);	/* What to do to connect */
119 	struct page *rx_page;
120 	struct cbuf cb;
121 	int retries;
122 #define MAX_CONNECT_RETRIES 3
123 	struct hlist_node list;
124 	struct connection *othercon;
125 	struct work_struct rwork; /* Receive workqueue */
126 	struct work_struct swork; /* Send workqueue */
127 	void (*orig_error_report)(struct sock *);
128 	void (*orig_data_ready)(struct sock *);
129 	void (*orig_state_change)(struct sock *);
130 	void (*orig_write_space)(struct sock *);
131 };
132 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
133 
134 /* An entry waiting to be sent */
135 struct writequeue_entry {
136 	struct list_head list;
137 	struct page *page;
138 	int offset;
139 	int len;
140 	int end;
141 	int users;
142 	struct connection *con;
143 };
144 
145 struct dlm_node_addr {
146 	struct list_head list;
147 	int nodeid;
148 	int addr_count;
149 	int curr_addr_index;
150 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
151 };
152 
153 static LIST_HEAD(dlm_node_addrs);
154 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
155 
156 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
157 static int dlm_local_count;
158 static int dlm_allow_conn;
159 
160 /* Work queues */
161 static struct workqueue_struct *recv_workqueue;
162 static struct workqueue_struct *send_workqueue;
163 
164 static struct hlist_head connection_hash[CONN_HASH_SIZE];
165 static DEFINE_MUTEX(connections_lock);
166 static struct kmem_cache *con_cache;
167 
168 static void process_recv_sockets(struct work_struct *work);
169 static void process_send_sockets(struct work_struct *work);
170 
171 
172 /* This is deliberately very simple because most clusters have simple
173    sequential nodeids, so we should be able to go straight to a connection
174    struct in the array */
175 static inline int nodeid_hash(int nodeid)
176 {
177 	return nodeid & (CONN_HASH_SIZE-1);
178 }
179 
180 static struct connection *__find_con(int nodeid)
181 {
182 	int r;
183 	struct connection *con;
184 
185 	r = nodeid_hash(nodeid);
186 
187 	hlist_for_each_entry(con, &connection_hash[r], list) {
188 		if (con->nodeid == nodeid)
189 			return con;
190 	}
191 	return NULL;
192 }
193 
194 /*
195  * If 'allocation' is zero then we don't attempt to create a new
196  * connection structure for this node.
197  */
198 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
199 {
200 	struct connection *con = NULL;
201 	int r;
202 
203 	con = __find_con(nodeid);
204 	if (con || !alloc)
205 		return con;
206 
207 	con = kmem_cache_zalloc(con_cache, alloc);
208 	if (!con)
209 		return NULL;
210 
211 	r = nodeid_hash(nodeid);
212 	hlist_add_head(&con->list, &connection_hash[r]);
213 
214 	con->nodeid = nodeid;
215 	mutex_init(&con->sock_mutex);
216 	INIT_LIST_HEAD(&con->writequeue);
217 	spin_lock_init(&con->writequeue_lock);
218 	INIT_WORK(&con->swork, process_send_sockets);
219 	INIT_WORK(&con->rwork, process_recv_sockets);
220 
221 	/* Setup action pointers for child sockets */
222 	if (con->nodeid) {
223 		struct connection *zerocon = __find_con(0);
224 
225 		con->connect_action = zerocon->connect_action;
226 		if (!con->rx_action)
227 			con->rx_action = zerocon->rx_action;
228 	}
229 
230 	return con;
231 }
232 
233 /* Loop round all connections */
234 static void foreach_conn(void (*conn_func)(struct connection *c))
235 {
236 	int i;
237 	struct hlist_node *n;
238 	struct connection *con;
239 
240 	for (i = 0; i < CONN_HASH_SIZE; i++) {
241 		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
242 			conn_func(con);
243 	}
244 }
245 
246 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
247 {
248 	struct connection *con;
249 
250 	mutex_lock(&connections_lock);
251 	con = __nodeid2con(nodeid, allocation);
252 	mutex_unlock(&connections_lock);
253 
254 	return con;
255 }
256 
257 static struct dlm_node_addr *find_node_addr(int nodeid)
258 {
259 	struct dlm_node_addr *na;
260 
261 	list_for_each_entry(na, &dlm_node_addrs, list) {
262 		if (na->nodeid == nodeid)
263 			return na;
264 	}
265 	return NULL;
266 }
267 
268 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
269 {
270 	switch (x->ss_family) {
271 	case AF_INET: {
272 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
273 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
274 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
275 			return 0;
276 		if (sinx->sin_port != siny->sin_port)
277 			return 0;
278 		break;
279 	}
280 	case AF_INET6: {
281 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
282 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
283 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
284 			return 0;
285 		if (sinx->sin6_port != siny->sin6_port)
286 			return 0;
287 		break;
288 	}
289 	default:
290 		return 0;
291 	}
292 	return 1;
293 }
294 
295 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
296 			  struct sockaddr *sa_out, bool try_new_addr)
297 {
298 	struct sockaddr_storage sas;
299 	struct dlm_node_addr *na;
300 
301 	if (!dlm_local_count)
302 		return -1;
303 
304 	spin_lock(&dlm_node_addrs_spin);
305 	na = find_node_addr(nodeid);
306 	if (na && na->addr_count) {
307 		memcpy(&sas, na->addr[na->curr_addr_index],
308 		       sizeof(struct sockaddr_storage));
309 
310 		if (try_new_addr) {
311 			na->curr_addr_index++;
312 			if (na->curr_addr_index == na->addr_count)
313 				na->curr_addr_index = 0;
314 		}
315 	}
316 	spin_unlock(&dlm_node_addrs_spin);
317 
318 	if (!na)
319 		return -EEXIST;
320 
321 	if (!na->addr_count)
322 		return -ENOENT;
323 
324 	if (sas_out)
325 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
326 
327 	if (!sa_out)
328 		return 0;
329 
330 	if (dlm_local_addr[0]->ss_family == AF_INET) {
331 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
332 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
333 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
334 	} else {
335 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
336 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
337 		ret6->sin6_addr = in6->sin6_addr;
338 	}
339 
340 	return 0;
341 }
342 
343 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
344 {
345 	struct dlm_node_addr *na;
346 	int rv = -EEXIST;
347 	int addr_i;
348 
349 	spin_lock(&dlm_node_addrs_spin);
350 	list_for_each_entry(na, &dlm_node_addrs, list) {
351 		if (!na->addr_count)
352 			continue;
353 
354 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
355 			if (addr_compare(na->addr[addr_i], addr)) {
356 				*nodeid = na->nodeid;
357 				rv = 0;
358 				goto unlock;
359 			}
360 		}
361 	}
362 unlock:
363 	spin_unlock(&dlm_node_addrs_spin);
364 	return rv;
365 }
366 
367 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
368 {
369 	struct sockaddr_storage *new_addr;
370 	struct dlm_node_addr *new_node, *na;
371 
372 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
373 	if (!new_node)
374 		return -ENOMEM;
375 
376 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
377 	if (!new_addr) {
378 		kfree(new_node);
379 		return -ENOMEM;
380 	}
381 
382 	memcpy(new_addr, addr, len);
383 
384 	spin_lock(&dlm_node_addrs_spin);
385 	na = find_node_addr(nodeid);
386 	if (!na) {
387 		new_node->nodeid = nodeid;
388 		new_node->addr[0] = new_addr;
389 		new_node->addr_count = 1;
390 		list_add(&new_node->list, &dlm_node_addrs);
391 		spin_unlock(&dlm_node_addrs_spin);
392 		return 0;
393 	}
394 
395 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
396 		spin_unlock(&dlm_node_addrs_spin);
397 		kfree(new_addr);
398 		kfree(new_node);
399 		return -ENOSPC;
400 	}
401 
402 	na->addr[na->addr_count++] = new_addr;
403 	spin_unlock(&dlm_node_addrs_spin);
404 	kfree(new_node);
405 	return 0;
406 }
407 
408 /* Data available on socket or listen socket received a connect */
409 static void lowcomms_data_ready(struct sock *sk)
410 {
411 	struct connection *con = sock2con(sk);
412 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
413 		queue_work(recv_workqueue, &con->rwork);
414 }
415 
416 static void lowcomms_write_space(struct sock *sk)
417 {
418 	struct connection *con = sock2con(sk);
419 
420 	if (!con)
421 		return;
422 
423 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
424 
425 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
426 		con->sock->sk->sk_write_pending--;
427 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
428 	}
429 
430 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
431 		queue_work(send_workqueue, &con->swork);
432 }
433 
434 static inline void lowcomms_connect_sock(struct connection *con)
435 {
436 	if (test_bit(CF_CLOSE, &con->flags))
437 		return;
438 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
439 		queue_work(send_workqueue, &con->swork);
440 }
441 
442 static void lowcomms_state_change(struct sock *sk)
443 {
444 	/* SCTP layer is not calling sk_data_ready when the connection
445 	 * is done, so we catch the signal through here. Also, it
446 	 * doesn't switch socket state when entering shutdown, so we
447 	 * skip the write in that case.
448 	 */
449 	if (sk->sk_shutdown) {
450 		if (sk->sk_shutdown == RCV_SHUTDOWN)
451 			lowcomms_data_ready(sk);
452 	} else if (sk->sk_state == TCP_ESTABLISHED) {
453 		lowcomms_write_space(sk);
454 	}
455 }
456 
457 int dlm_lowcomms_connect_node(int nodeid)
458 {
459 	struct connection *con;
460 
461 	if (nodeid == dlm_our_nodeid())
462 		return 0;
463 
464 	con = nodeid2con(nodeid, GFP_NOFS);
465 	if (!con)
466 		return -ENOMEM;
467 	lowcomms_connect_sock(con);
468 	return 0;
469 }
470 
471 static void lowcomms_error_report(struct sock *sk)
472 {
473 	struct connection *con;
474 	struct sockaddr_storage saddr;
475 	int buflen;
476 	void (*orig_report)(struct sock *) = NULL;
477 
478 	read_lock_bh(&sk->sk_callback_lock);
479 	con = sock2con(sk);
480 	if (con == NULL)
481 		goto out;
482 
483 	orig_report = con->orig_error_report;
484 	if (con->sock == NULL ||
485 	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr, &buflen)) {
486 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
487 				   "sending to node %d, port %d, "
488 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
489 				   con->nodeid, dlm_config.ci_tcp_port,
490 				   sk->sk_err, sk->sk_err_soft);
491 	} else if (saddr.ss_family == AF_INET) {
492 		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
493 
494 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
495 				   "sending to node %d at %pI4, port %d, "
496 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
497 				   con->nodeid, &sin4->sin_addr.s_addr,
498 				   dlm_config.ci_tcp_port, sk->sk_err,
499 				   sk->sk_err_soft);
500 	} else {
501 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
502 
503 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
504 				   "sending to node %d at %u.%u.%u.%u, "
505 				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
506 				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
507 				   sin6->sin6_addr.s6_addr32[1],
508 				   sin6->sin6_addr.s6_addr32[2],
509 				   sin6->sin6_addr.s6_addr32[3],
510 				   dlm_config.ci_tcp_port, sk->sk_err,
511 				   sk->sk_err_soft);
512 	}
513 out:
514 	read_unlock_bh(&sk->sk_callback_lock);
515 	if (orig_report)
516 		orig_report(sk);
517 }
518 
519 /* Note: sk_callback_lock must be locked before calling this function. */
520 static void save_callbacks(struct connection *con, struct sock *sk)
521 {
522 	lock_sock(sk);
523 	con->orig_data_ready = sk->sk_data_ready;
524 	con->orig_state_change = sk->sk_state_change;
525 	con->orig_write_space = sk->sk_write_space;
526 	con->orig_error_report = sk->sk_error_report;
527 	release_sock(sk);
528 }
529 
530 static void restore_callbacks(struct connection *con, struct sock *sk)
531 {
532 	write_lock_bh(&sk->sk_callback_lock);
533 	lock_sock(sk);
534 	sk->sk_user_data = NULL;
535 	sk->sk_data_ready = con->orig_data_ready;
536 	sk->sk_state_change = con->orig_state_change;
537 	sk->sk_write_space = con->orig_write_space;
538 	sk->sk_error_report = con->orig_error_report;
539 	release_sock(sk);
540 	write_unlock_bh(&sk->sk_callback_lock);
541 }
542 
543 /* Make a socket active */
544 static void add_sock(struct socket *sock, struct connection *con, bool save_cb)
545 {
546 	struct sock *sk = sock->sk;
547 
548 	write_lock_bh(&sk->sk_callback_lock);
549 	con->sock = sock;
550 
551 	sk->sk_user_data = con;
552 	if (save_cb)
553 		save_callbacks(con, sk);
554 	/* Install a data_ready callback */
555 	sk->sk_data_ready = lowcomms_data_ready;
556 	sk->sk_write_space = lowcomms_write_space;
557 	sk->sk_state_change = lowcomms_state_change;
558 	sk->sk_allocation = GFP_NOFS;
559 	sk->sk_error_report = lowcomms_error_report;
560 	write_unlock_bh(&sk->sk_callback_lock);
561 }
562 
563 /* Add the port number to an IPv6 or 4 sockaddr and return the address
564    length */
565 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
566 			  int *addr_len)
567 {
568 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
569 	if (saddr->ss_family == AF_INET) {
570 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
571 		in4_addr->sin_port = cpu_to_be16(port);
572 		*addr_len = sizeof(struct sockaddr_in);
573 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
574 	} else {
575 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
576 		in6_addr->sin6_port = cpu_to_be16(port);
577 		*addr_len = sizeof(struct sockaddr_in6);
578 	}
579 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
580 }
581 
582 /* Close a remote connection and tidy up */
583 static void close_connection(struct connection *con, bool and_other,
584 			     bool tx, bool rx)
585 {
586 	clear_bit(CF_CONNECT_PENDING, &con->flags);
587 	clear_bit(CF_WRITE_PENDING, &con->flags);
588 	if (tx && cancel_work_sync(&con->swork))
589 		log_print("canceled swork for node %d", con->nodeid);
590 	if (rx && cancel_work_sync(&con->rwork))
591 		log_print("canceled rwork for node %d", con->nodeid);
592 
593 	mutex_lock(&con->sock_mutex);
594 	if (con->sock) {
595 		if (!test_bit(CF_IS_OTHERCON, &con->flags))
596 			restore_callbacks(con, con->sock->sk);
597 		sock_release(con->sock);
598 		con->sock = NULL;
599 	}
600 	if (con->othercon && and_other) {
601 		/* Will only re-enter once. */
602 		close_connection(con->othercon, false, true, true);
603 	}
604 	if (con->rx_page) {
605 		__free_page(con->rx_page);
606 		con->rx_page = NULL;
607 	}
608 
609 	con->retries = 0;
610 	mutex_unlock(&con->sock_mutex);
611 }
612 
613 /* Data received from remote end */
614 static int receive_from_sock(struct connection *con)
615 {
616 	int ret = 0;
617 	struct msghdr msg = {};
618 	struct kvec iov[2];
619 	unsigned len;
620 	int r;
621 	int call_again_soon = 0;
622 	int nvec;
623 
624 	mutex_lock(&con->sock_mutex);
625 
626 	if (con->sock == NULL) {
627 		ret = -EAGAIN;
628 		goto out_close;
629 	}
630 	if (con->nodeid == 0) {
631 		ret = -EINVAL;
632 		goto out_close;
633 	}
634 
635 	if (con->rx_page == NULL) {
636 		/*
637 		 * This doesn't need to be atomic, but I think it should
638 		 * improve performance if it is.
639 		 */
640 		con->rx_page = alloc_page(GFP_ATOMIC);
641 		if (con->rx_page == NULL)
642 			goto out_resched;
643 		cbuf_init(&con->cb, PAGE_SIZE);
644 	}
645 
646 	/*
647 	 * iov[0] is the bit of the circular buffer between the current end
648 	 * point (cb.base + cb.len) and the end of the buffer.
649 	 */
650 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
651 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
652 	iov[1].iov_len = 0;
653 	nvec = 1;
654 
655 	/*
656 	 * iov[1] is the bit of the circular buffer between the start of the
657 	 * buffer and the start of the currently used section (cb.base)
658 	 */
659 	if (cbuf_data(&con->cb) >= con->cb.base) {
660 		iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
661 		iov[1].iov_len = con->cb.base;
662 		iov[1].iov_base = page_address(con->rx_page);
663 		nvec = 2;
664 	}
665 	len = iov[0].iov_len + iov[1].iov_len;
666 
667 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
668 			       MSG_DONTWAIT | MSG_NOSIGNAL);
669 	if (ret <= 0)
670 		goto out_close;
671 	else if (ret == len)
672 		call_again_soon = 1;
673 
674 	cbuf_add(&con->cb, ret);
675 	ret = dlm_process_incoming_buffer(con->nodeid,
676 					  page_address(con->rx_page),
677 					  con->cb.base, con->cb.len,
678 					  PAGE_SIZE);
679 	if (ret == -EBADMSG) {
680 		log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
681 			  page_address(con->rx_page), con->cb.base,
682 			  con->cb.len, r);
683 	}
684 	if (ret < 0)
685 		goto out_close;
686 	cbuf_eat(&con->cb, ret);
687 
688 	if (cbuf_empty(&con->cb) && !call_again_soon) {
689 		__free_page(con->rx_page);
690 		con->rx_page = NULL;
691 	}
692 
693 	if (call_again_soon)
694 		goto out_resched;
695 	mutex_unlock(&con->sock_mutex);
696 	return 0;
697 
698 out_resched:
699 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
700 		queue_work(recv_workqueue, &con->rwork);
701 	mutex_unlock(&con->sock_mutex);
702 	return -EAGAIN;
703 
704 out_close:
705 	mutex_unlock(&con->sock_mutex);
706 	if (ret != -EAGAIN) {
707 		close_connection(con, false, true, false);
708 		/* Reconnect when there is something to send */
709 	}
710 	/* Don't return success if we really got EOF */
711 	if (ret == 0)
712 		ret = -EAGAIN;
713 
714 	return ret;
715 }
716 
717 /* Listening socket is busy, accept a connection */
718 static int tcp_accept_from_sock(struct connection *con)
719 {
720 	int result;
721 	struct sockaddr_storage peeraddr;
722 	struct socket *newsock;
723 	int len;
724 	int nodeid;
725 	struct connection *newcon;
726 	struct connection *addcon;
727 
728 	mutex_lock(&connections_lock);
729 	if (!dlm_allow_conn) {
730 		mutex_unlock(&connections_lock);
731 		return -1;
732 	}
733 	mutex_unlock(&connections_lock);
734 
735 	memset(&peeraddr, 0, sizeof(peeraddr));
736 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
737 				  SOCK_STREAM, IPPROTO_TCP, &newsock);
738 	if (result < 0)
739 		return -ENOMEM;
740 
741 	mutex_lock_nested(&con->sock_mutex, 0);
742 
743 	result = -ENOTCONN;
744 	if (con->sock == NULL)
745 		goto accept_err;
746 
747 	newsock->type = con->sock->type;
748 	newsock->ops = con->sock->ops;
749 
750 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
751 	if (result < 0)
752 		goto accept_err;
753 
754 	/* Get the connected socket's peer */
755 	memset(&peeraddr, 0, sizeof(peeraddr));
756 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
757 				  &len, 2)) {
758 		result = -ECONNABORTED;
759 		goto accept_err;
760 	}
761 
762 	/* Get the new node's NODEID */
763 	make_sockaddr(&peeraddr, 0, &len);
764 	if (addr_to_nodeid(&peeraddr, &nodeid)) {
765 		unsigned char *b=(unsigned char *)&peeraddr;
766 		log_print("connect from non cluster node");
767 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
768 				     b, sizeof(struct sockaddr_storage));
769 		sock_release(newsock);
770 		mutex_unlock(&con->sock_mutex);
771 		return -1;
772 	}
773 
774 	log_print("got connection from %d", nodeid);
775 
776 	/*  Check to see if we already have a connection to this node. This
777 	 *  could happen if the two nodes initiate a connection at roughly
778 	 *  the same time and the connections cross on the wire.
779 	 *  In this case we store the incoming one in "othercon"
780 	 */
781 	newcon = nodeid2con(nodeid, GFP_NOFS);
782 	if (!newcon) {
783 		result = -ENOMEM;
784 		goto accept_err;
785 	}
786 	mutex_lock_nested(&newcon->sock_mutex, 1);
787 	if (newcon->sock) {
788 		struct connection *othercon = newcon->othercon;
789 
790 		if (!othercon) {
791 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
792 			if (!othercon) {
793 				log_print("failed to allocate incoming socket");
794 				mutex_unlock(&newcon->sock_mutex);
795 				result = -ENOMEM;
796 				goto accept_err;
797 			}
798 			othercon->nodeid = nodeid;
799 			othercon->rx_action = receive_from_sock;
800 			mutex_init(&othercon->sock_mutex);
801 			INIT_WORK(&othercon->swork, process_send_sockets);
802 			INIT_WORK(&othercon->rwork, process_recv_sockets);
803 			set_bit(CF_IS_OTHERCON, &othercon->flags);
804 		}
805 		if (!othercon->sock) {
806 			newcon->othercon = othercon;
807 			othercon->sock = newsock;
808 			newsock->sk->sk_user_data = othercon;
809 			add_sock(newsock, othercon, false);
810 			addcon = othercon;
811 		}
812 		else {
813 			printk("Extra connection from node %d attempted\n", nodeid);
814 			result = -EAGAIN;
815 			mutex_unlock(&newcon->sock_mutex);
816 			goto accept_err;
817 		}
818 	}
819 	else {
820 		newsock->sk->sk_user_data = newcon;
821 		newcon->rx_action = receive_from_sock;
822 		/* accept copies the sk after we've saved the callbacks, so we
823 		   don't want to save them a second time or comm errors will
824 		   result in calling sk_error_report recursively. */
825 		add_sock(newsock, newcon, false);
826 		addcon = newcon;
827 	}
828 
829 	mutex_unlock(&newcon->sock_mutex);
830 
831 	/*
832 	 * Add it to the active queue in case we got data
833 	 * between processing the accept adding the socket
834 	 * to the read_sockets list
835 	 */
836 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
837 		queue_work(recv_workqueue, &addcon->rwork);
838 	mutex_unlock(&con->sock_mutex);
839 
840 	return 0;
841 
842 accept_err:
843 	mutex_unlock(&con->sock_mutex);
844 	sock_release(newsock);
845 
846 	if (result != -EAGAIN)
847 		log_print("error accepting connection from node: %d", result);
848 	return result;
849 }
850 
851 static int sctp_accept_from_sock(struct connection *con)
852 {
853 	/* Check that the new node is in the lockspace */
854 	struct sctp_prim prim;
855 	int nodeid;
856 	int prim_len, ret;
857 	int addr_len;
858 	struct connection *newcon;
859 	struct connection *addcon;
860 	struct socket *newsock;
861 
862 	mutex_lock(&connections_lock);
863 	if (!dlm_allow_conn) {
864 		mutex_unlock(&connections_lock);
865 		return -1;
866 	}
867 	mutex_unlock(&connections_lock);
868 
869 	mutex_lock_nested(&con->sock_mutex, 0);
870 
871 	ret = kernel_accept(con->sock, &newsock, O_NONBLOCK);
872 	if (ret < 0)
873 		goto accept_err;
874 
875 	memset(&prim, 0, sizeof(struct sctp_prim));
876 	prim_len = sizeof(struct sctp_prim);
877 
878 	ret = kernel_getsockopt(newsock, IPPROTO_SCTP, SCTP_PRIMARY_ADDR,
879 				(char *)&prim, &prim_len);
880 	if (ret < 0) {
881 		log_print("getsockopt/sctp_primary_addr failed: %d", ret);
882 		goto accept_err;
883 	}
884 
885 	make_sockaddr(&prim.ssp_addr, 0, &addr_len);
886 	if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
887 		unsigned char *b = (unsigned char *)&prim.ssp_addr;
888 
889 		log_print("reject connect from unknown addr");
890 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
891 				     b, sizeof(struct sockaddr_storage));
892 		goto accept_err;
893 	}
894 
895 	newcon = nodeid2con(nodeid, GFP_NOFS);
896 	if (!newcon) {
897 		ret = -ENOMEM;
898 		goto accept_err;
899 	}
900 
901 	mutex_lock_nested(&newcon->sock_mutex, 1);
902 
903 	if (newcon->sock) {
904 		struct connection *othercon = newcon->othercon;
905 
906 		if (!othercon) {
907 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
908 			if (!othercon) {
909 				log_print("failed to allocate incoming socket");
910 				mutex_unlock(&newcon->sock_mutex);
911 				ret = -ENOMEM;
912 				goto accept_err;
913 			}
914 			othercon->nodeid = nodeid;
915 			othercon->rx_action = receive_from_sock;
916 			mutex_init(&othercon->sock_mutex);
917 			INIT_WORK(&othercon->swork, process_send_sockets);
918 			INIT_WORK(&othercon->rwork, process_recv_sockets);
919 			set_bit(CF_IS_OTHERCON, &othercon->flags);
920 		}
921 		if (!othercon->sock) {
922 			newcon->othercon = othercon;
923 			othercon->sock = newsock;
924 			newsock->sk->sk_user_data = othercon;
925 			add_sock(newsock, othercon, false);
926 			addcon = othercon;
927 		} else {
928 			printk("Extra connection from node %d attempted\n", nodeid);
929 			ret = -EAGAIN;
930 			mutex_unlock(&newcon->sock_mutex);
931 			goto accept_err;
932 		}
933 	} else {
934 		newsock->sk->sk_user_data = newcon;
935 		newcon->rx_action = receive_from_sock;
936 		add_sock(newsock, newcon, false);
937 		addcon = newcon;
938 	}
939 
940 	log_print("connected to %d", nodeid);
941 
942 	mutex_unlock(&newcon->sock_mutex);
943 
944 	/*
945 	 * Add it to the active queue in case we got data
946 	 * between processing the accept adding the socket
947 	 * to the read_sockets list
948 	 */
949 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
950 		queue_work(recv_workqueue, &addcon->rwork);
951 	mutex_unlock(&con->sock_mutex);
952 
953 	return 0;
954 
955 accept_err:
956 	mutex_unlock(&con->sock_mutex);
957 	if (newsock)
958 		sock_release(newsock);
959 	if (ret != -EAGAIN)
960 		log_print("error accepting connection from node: %d", ret);
961 
962 	return ret;
963 }
964 
965 static void free_entry(struct writequeue_entry *e)
966 {
967 	__free_page(e->page);
968 	kfree(e);
969 }
970 
971 /*
972  * writequeue_entry_complete - try to delete and free write queue entry
973  * @e: write queue entry to try to delete
974  * @completed: bytes completed
975  *
976  * writequeue_lock must be held.
977  */
978 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
979 {
980 	e->offset += completed;
981 	e->len -= completed;
982 
983 	if (e->len == 0 && e->users == 0) {
984 		list_del(&e->list);
985 		free_entry(e);
986 	}
987 }
988 
989 /*
990  * sctp_bind_addrs - bind a SCTP socket to all our addresses
991  */
992 static int sctp_bind_addrs(struct connection *con, uint16_t port)
993 {
994 	struct sockaddr_storage localaddr;
995 	int i, addr_len, result = 0;
996 
997 	for (i = 0; i < dlm_local_count; i++) {
998 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
999 		make_sockaddr(&localaddr, port, &addr_len);
1000 
1001 		if (!i)
1002 			result = kernel_bind(con->sock,
1003 					     (struct sockaddr *)&localaddr,
1004 					     addr_len);
1005 		else
1006 			result = kernel_setsockopt(con->sock, SOL_SCTP,
1007 						   SCTP_SOCKOPT_BINDX_ADD,
1008 						   (char *)&localaddr, addr_len);
1009 
1010 		if (result < 0) {
1011 			log_print("Can't bind to %d addr number %d, %d.\n",
1012 				  port, i + 1, result);
1013 			break;
1014 		}
1015 	}
1016 	return result;
1017 }
1018 
1019 /* Initiate an SCTP association.
1020    This is a special case of send_to_sock() in that we don't yet have a
1021    peeled-off socket for this association, so we use the listening socket
1022    and add the primary IP address of the remote node.
1023  */
1024 static void sctp_connect_to_sock(struct connection *con)
1025 {
1026 	struct sockaddr_storage daddr;
1027 	int one = 1;
1028 	int result;
1029 	int addr_len;
1030 	struct socket *sock;
1031 
1032 	if (con->nodeid == 0) {
1033 		log_print("attempt to connect sock 0 foiled");
1034 		return;
1035 	}
1036 
1037 	mutex_lock(&con->sock_mutex);
1038 
1039 	/* Some odd races can cause double-connects, ignore them */
1040 	if (con->retries++ > MAX_CONNECT_RETRIES)
1041 		goto out;
1042 
1043 	if (con->sock) {
1044 		log_print("node %d already connected.", con->nodeid);
1045 		goto out;
1046 	}
1047 
1048 	memset(&daddr, 0, sizeof(daddr));
1049 	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
1050 	if (result < 0) {
1051 		log_print("no address for nodeid %d", con->nodeid);
1052 		goto out;
1053 	}
1054 
1055 	/* Create a socket to communicate with */
1056 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1057 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1058 	if (result < 0)
1059 		goto socket_err;
1060 
1061 	sock->sk->sk_user_data = con;
1062 	con->rx_action = receive_from_sock;
1063 	con->connect_action = sctp_connect_to_sock;
1064 	add_sock(sock, con, true);
1065 
1066 	/* Bind to all addresses. */
1067 	if (sctp_bind_addrs(con, 0))
1068 		goto bind_err;
1069 
1070 	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1071 
1072 	log_print("connecting to %d", con->nodeid);
1073 
1074 	/* Turn off Nagle's algorithm */
1075 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1076 			  sizeof(one));
1077 
1078 	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1079 				   O_NONBLOCK);
1080 	if (result == -EINPROGRESS)
1081 		result = 0;
1082 	if (result == 0)
1083 		goto out;
1084 
1085 
1086 bind_err:
1087 	con->sock = NULL;
1088 	sock_release(sock);
1089 
1090 socket_err:
1091 	/*
1092 	 * Some errors are fatal and this list might need adjusting. For other
1093 	 * errors we try again until the max number of retries is reached.
1094 	 */
1095 	if (result != -EHOSTUNREACH &&
1096 	    result != -ENETUNREACH &&
1097 	    result != -ENETDOWN &&
1098 	    result != -EINVAL &&
1099 	    result != -EPROTONOSUPPORT) {
1100 		log_print("connect %d try %d error %d", con->nodeid,
1101 			  con->retries, result);
1102 		mutex_unlock(&con->sock_mutex);
1103 		msleep(1000);
1104 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1105 		lowcomms_connect_sock(con);
1106 		return;
1107 	}
1108 
1109 out:
1110 	mutex_unlock(&con->sock_mutex);
1111 	set_bit(CF_WRITE_PENDING, &con->flags);
1112 }
1113 
1114 /* Connect a new socket to its peer */
1115 static void tcp_connect_to_sock(struct connection *con)
1116 {
1117 	struct sockaddr_storage saddr, src_addr;
1118 	int addr_len;
1119 	struct socket *sock = NULL;
1120 	int one = 1;
1121 	int result;
1122 
1123 	if (con->nodeid == 0) {
1124 		log_print("attempt to connect sock 0 foiled");
1125 		return;
1126 	}
1127 
1128 	mutex_lock(&con->sock_mutex);
1129 	if (con->retries++ > MAX_CONNECT_RETRIES)
1130 		goto out;
1131 
1132 	/* Some odd races can cause double-connects, ignore them */
1133 	if (con->sock)
1134 		goto out;
1135 
1136 	/* Create a socket to communicate with */
1137 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1138 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1139 	if (result < 0)
1140 		goto out_err;
1141 
1142 	memset(&saddr, 0, sizeof(saddr));
1143 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1144 	if (result < 0) {
1145 		log_print("no address for nodeid %d", con->nodeid);
1146 		goto out_err;
1147 	}
1148 
1149 	sock->sk->sk_user_data = con;
1150 	con->rx_action = receive_from_sock;
1151 	con->connect_action = tcp_connect_to_sock;
1152 	add_sock(sock, con, true);
1153 
1154 	/* Bind to our cluster-known address connecting to avoid
1155 	   routing problems */
1156 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1157 	make_sockaddr(&src_addr, 0, &addr_len);
1158 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1159 				 addr_len);
1160 	if (result < 0) {
1161 		log_print("could not bind for connect: %d", result);
1162 		/* This *may* not indicate a critical error */
1163 	}
1164 
1165 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1166 
1167 	log_print("connecting to %d", con->nodeid);
1168 
1169 	/* Turn off Nagle's algorithm */
1170 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1171 			  sizeof(one));
1172 
1173 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1174 				   O_NONBLOCK);
1175 	if (result == -EINPROGRESS)
1176 		result = 0;
1177 	if (result == 0)
1178 		goto out;
1179 
1180 out_err:
1181 	if (con->sock) {
1182 		sock_release(con->sock);
1183 		con->sock = NULL;
1184 	} else if (sock) {
1185 		sock_release(sock);
1186 	}
1187 	/*
1188 	 * Some errors are fatal and this list might need adjusting. For other
1189 	 * errors we try again until the max number of retries is reached.
1190 	 */
1191 	if (result != -EHOSTUNREACH &&
1192 	    result != -ENETUNREACH &&
1193 	    result != -ENETDOWN &&
1194 	    result != -EINVAL &&
1195 	    result != -EPROTONOSUPPORT) {
1196 		log_print("connect %d try %d error %d", con->nodeid,
1197 			  con->retries, result);
1198 		mutex_unlock(&con->sock_mutex);
1199 		msleep(1000);
1200 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1201 		lowcomms_connect_sock(con);
1202 		return;
1203 	}
1204 out:
1205 	mutex_unlock(&con->sock_mutex);
1206 	set_bit(CF_WRITE_PENDING, &con->flags);
1207 	return;
1208 }
1209 
1210 static struct socket *tcp_create_listen_sock(struct connection *con,
1211 					     struct sockaddr_storage *saddr)
1212 {
1213 	struct socket *sock = NULL;
1214 	int result = 0;
1215 	int one = 1;
1216 	int addr_len;
1217 
1218 	if (dlm_local_addr[0]->ss_family == AF_INET)
1219 		addr_len = sizeof(struct sockaddr_in);
1220 	else
1221 		addr_len = sizeof(struct sockaddr_in6);
1222 
1223 	/* Create a socket to communicate with */
1224 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1225 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1226 	if (result < 0) {
1227 		log_print("Can't create listening comms socket");
1228 		goto create_out;
1229 	}
1230 
1231 	/* Turn off Nagle's algorithm */
1232 	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1233 			  sizeof(one));
1234 
1235 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1236 				   (char *)&one, sizeof(one));
1237 
1238 	if (result < 0) {
1239 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1240 	}
1241 	sock->sk->sk_user_data = con;
1242 
1243 	con->rx_action = tcp_accept_from_sock;
1244 	con->connect_action = tcp_connect_to_sock;
1245 
1246 	/* Bind to our port */
1247 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1248 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1249 	if (result < 0) {
1250 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1251 		sock_release(sock);
1252 		sock = NULL;
1253 		con->sock = NULL;
1254 		goto create_out;
1255 	}
1256 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1257 				 (char *)&one, sizeof(one));
1258 	if (result < 0) {
1259 		log_print("Set keepalive failed: %d", result);
1260 	}
1261 
1262 	result = sock->ops->listen(sock, 5);
1263 	if (result < 0) {
1264 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1265 		sock_release(sock);
1266 		sock = NULL;
1267 		goto create_out;
1268 	}
1269 
1270 create_out:
1271 	return sock;
1272 }
1273 
1274 /* Get local addresses */
1275 static void init_local(void)
1276 {
1277 	struct sockaddr_storage sas, *addr;
1278 	int i;
1279 
1280 	dlm_local_count = 0;
1281 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1282 		if (dlm_our_addr(&sas, i))
1283 			break;
1284 
1285 		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1286 		if (!addr)
1287 			break;
1288 		dlm_local_addr[dlm_local_count++] = addr;
1289 	}
1290 }
1291 
1292 /* Initialise SCTP socket and bind to all interfaces */
1293 static int sctp_listen_for_all(void)
1294 {
1295 	struct socket *sock = NULL;
1296 	int result = -EINVAL;
1297 	struct connection *con = nodeid2con(0, GFP_NOFS);
1298 	int bufsize = NEEDED_RMEM;
1299 	int one = 1;
1300 
1301 	if (!con)
1302 		return -ENOMEM;
1303 
1304 	log_print("Using SCTP for communications");
1305 
1306 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1307 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1308 	if (result < 0) {
1309 		log_print("Can't create comms socket, check SCTP is loaded");
1310 		goto out;
1311 	}
1312 
1313 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1314 				 (char *)&bufsize, sizeof(bufsize));
1315 	if (result)
1316 		log_print("Error increasing buffer space on socket %d", result);
1317 
1318 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1319 				   sizeof(one));
1320 	if (result < 0)
1321 		log_print("Could not set SCTP NODELAY error %d\n", result);
1322 
1323 	write_lock_bh(&sock->sk->sk_callback_lock);
1324 	/* Init con struct */
1325 	sock->sk->sk_user_data = con;
1326 	con->sock = sock;
1327 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1328 	con->rx_action = sctp_accept_from_sock;
1329 	con->connect_action = sctp_connect_to_sock;
1330 
1331 	write_unlock_bh(&sock->sk->sk_callback_lock);
1332 
1333 	/* Bind to all addresses. */
1334 	if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1335 		goto create_delsock;
1336 
1337 	result = sock->ops->listen(sock, 5);
1338 	if (result < 0) {
1339 		log_print("Can't set socket listening");
1340 		goto create_delsock;
1341 	}
1342 
1343 	return 0;
1344 
1345 create_delsock:
1346 	sock_release(sock);
1347 	con->sock = NULL;
1348 out:
1349 	return result;
1350 }
1351 
1352 static int tcp_listen_for_all(void)
1353 {
1354 	struct socket *sock = NULL;
1355 	struct connection *con = nodeid2con(0, GFP_NOFS);
1356 	int result = -EINVAL;
1357 
1358 	if (!con)
1359 		return -ENOMEM;
1360 
1361 	/* We don't support multi-homed hosts */
1362 	if (dlm_local_addr[1] != NULL) {
1363 		log_print("TCP protocol can't handle multi-homed hosts, "
1364 			  "try SCTP");
1365 		return -EINVAL;
1366 	}
1367 
1368 	log_print("Using TCP for communications");
1369 
1370 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1371 	if (sock) {
1372 		add_sock(sock, con, true);
1373 		result = 0;
1374 	}
1375 	else {
1376 		result = -EADDRINUSE;
1377 	}
1378 
1379 	return result;
1380 }
1381 
1382 
1383 
1384 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1385 						     gfp_t allocation)
1386 {
1387 	struct writequeue_entry *entry;
1388 
1389 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1390 	if (!entry)
1391 		return NULL;
1392 
1393 	entry->page = alloc_page(allocation);
1394 	if (!entry->page) {
1395 		kfree(entry);
1396 		return NULL;
1397 	}
1398 
1399 	entry->offset = 0;
1400 	entry->len = 0;
1401 	entry->end = 0;
1402 	entry->users = 0;
1403 	entry->con = con;
1404 
1405 	return entry;
1406 }
1407 
1408 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1409 {
1410 	struct connection *con;
1411 	struct writequeue_entry *e;
1412 	int offset = 0;
1413 
1414 	con = nodeid2con(nodeid, allocation);
1415 	if (!con)
1416 		return NULL;
1417 
1418 	spin_lock(&con->writequeue_lock);
1419 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1420 	if ((&e->list == &con->writequeue) ||
1421 	    (PAGE_SIZE - e->end < len)) {
1422 		e = NULL;
1423 	} else {
1424 		offset = e->end;
1425 		e->end += len;
1426 		e->users++;
1427 	}
1428 	spin_unlock(&con->writequeue_lock);
1429 
1430 	if (e) {
1431 	got_one:
1432 		*ppc = page_address(e->page) + offset;
1433 		return e;
1434 	}
1435 
1436 	e = new_writequeue_entry(con, allocation);
1437 	if (e) {
1438 		spin_lock(&con->writequeue_lock);
1439 		offset = e->end;
1440 		e->end += len;
1441 		e->users++;
1442 		list_add_tail(&e->list, &con->writequeue);
1443 		spin_unlock(&con->writequeue_lock);
1444 		goto got_one;
1445 	}
1446 	return NULL;
1447 }
1448 
1449 void dlm_lowcomms_commit_buffer(void *mh)
1450 {
1451 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1452 	struct connection *con = e->con;
1453 	int users;
1454 
1455 	spin_lock(&con->writequeue_lock);
1456 	users = --e->users;
1457 	if (users)
1458 		goto out;
1459 	e->len = e->end - e->offset;
1460 	spin_unlock(&con->writequeue_lock);
1461 
1462 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1463 		queue_work(send_workqueue, &con->swork);
1464 	}
1465 	return;
1466 
1467 out:
1468 	spin_unlock(&con->writequeue_lock);
1469 	return;
1470 }
1471 
1472 /* Send a message */
1473 static void send_to_sock(struct connection *con)
1474 {
1475 	int ret = 0;
1476 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1477 	struct writequeue_entry *e;
1478 	int len, offset;
1479 	int count = 0;
1480 
1481 	mutex_lock(&con->sock_mutex);
1482 	if (con->sock == NULL)
1483 		goto out_connect;
1484 
1485 	spin_lock(&con->writequeue_lock);
1486 	for (;;) {
1487 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1488 			       list);
1489 		if ((struct list_head *) e == &con->writequeue)
1490 			break;
1491 
1492 		len = e->len;
1493 		offset = e->offset;
1494 		BUG_ON(len == 0 && e->users == 0);
1495 		spin_unlock(&con->writequeue_lock);
1496 
1497 		ret = 0;
1498 		if (len) {
1499 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1500 					      msg_flags);
1501 			if (ret == -EAGAIN || ret == 0) {
1502 				if (ret == -EAGAIN &&
1503 				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1504 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1505 					/* Notify TCP that we're limited by the
1506 					 * application window size.
1507 					 */
1508 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1509 					con->sock->sk->sk_write_pending++;
1510 				}
1511 				cond_resched();
1512 				goto out;
1513 			} else if (ret < 0)
1514 				goto send_error;
1515 		}
1516 
1517 		/* Don't starve people filling buffers */
1518 		if (++count >= MAX_SEND_MSG_COUNT) {
1519 			cond_resched();
1520 			count = 0;
1521 		}
1522 
1523 		spin_lock(&con->writequeue_lock);
1524 		writequeue_entry_complete(e, ret);
1525 	}
1526 	spin_unlock(&con->writequeue_lock);
1527 out:
1528 	mutex_unlock(&con->sock_mutex);
1529 	return;
1530 
1531 send_error:
1532 	mutex_unlock(&con->sock_mutex);
1533 	close_connection(con, false, false, true);
1534 	lowcomms_connect_sock(con);
1535 	return;
1536 
1537 out_connect:
1538 	mutex_unlock(&con->sock_mutex);
1539 	lowcomms_connect_sock(con);
1540 }
1541 
1542 static void clean_one_writequeue(struct connection *con)
1543 {
1544 	struct writequeue_entry *e, *safe;
1545 
1546 	spin_lock(&con->writequeue_lock);
1547 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1548 		list_del(&e->list);
1549 		free_entry(e);
1550 	}
1551 	spin_unlock(&con->writequeue_lock);
1552 }
1553 
1554 /* Called from recovery when it knows that a node has
1555    left the cluster */
1556 int dlm_lowcomms_close(int nodeid)
1557 {
1558 	struct connection *con;
1559 	struct dlm_node_addr *na;
1560 
1561 	log_print("closing connection to node %d", nodeid);
1562 	con = nodeid2con(nodeid, 0);
1563 	if (con) {
1564 		set_bit(CF_CLOSE, &con->flags);
1565 		close_connection(con, true, true, true);
1566 		clean_one_writequeue(con);
1567 	}
1568 
1569 	spin_lock(&dlm_node_addrs_spin);
1570 	na = find_node_addr(nodeid);
1571 	if (na) {
1572 		list_del(&na->list);
1573 		while (na->addr_count--)
1574 			kfree(na->addr[na->addr_count]);
1575 		kfree(na);
1576 	}
1577 	spin_unlock(&dlm_node_addrs_spin);
1578 
1579 	return 0;
1580 }
1581 
1582 /* Receive workqueue function */
1583 static void process_recv_sockets(struct work_struct *work)
1584 {
1585 	struct connection *con = container_of(work, struct connection, rwork);
1586 	int err;
1587 
1588 	clear_bit(CF_READ_PENDING, &con->flags);
1589 	do {
1590 		err = con->rx_action(con);
1591 	} while (!err);
1592 }
1593 
1594 /* Send workqueue function */
1595 static void process_send_sockets(struct work_struct *work)
1596 {
1597 	struct connection *con = container_of(work, struct connection, swork);
1598 
1599 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags))
1600 		con->connect_action(con);
1601 	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1602 		send_to_sock(con);
1603 }
1604 
1605 
1606 /* Discard all entries on the write queues */
1607 static void clean_writequeues(void)
1608 {
1609 	foreach_conn(clean_one_writequeue);
1610 }
1611 
1612 static void work_stop(void)
1613 {
1614 	destroy_workqueue(recv_workqueue);
1615 	destroy_workqueue(send_workqueue);
1616 }
1617 
1618 static int work_start(void)
1619 {
1620 	recv_workqueue = alloc_workqueue("dlm_recv",
1621 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1622 	if (!recv_workqueue) {
1623 		log_print("can't start dlm_recv");
1624 		return -ENOMEM;
1625 	}
1626 
1627 	send_workqueue = alloc_workqueue("dlm_send",
1628 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1629 	if (!send_workqueue) {
1630 		log_print("can't start dlm_send");
1631 		destroy_workqueue(recv_workqueue);
1632 		return -ENOMEM;
1633 	}
1634 
1635 	return 0;
1636 }
1637 
1638 static void stop_conn(struct connection *con)
1639 {
1640 	con->flags |= 0x0F;
1641 	if (con->sock && con->sock->sk)
1642 		con->sock->sk->sk_user_data = NULL;
1643 }
1644 
1645 static void free_conn(struct connection *con)
1646 {
1647 	close_connection(con, true, true, true);
1648 	if (con->othercon)
1649 		kmem_cache_free(con_cache, con->othercon);
1650 	hlist_del(&con->list);
1651 	kmem_cache_free(con_cache, con);
1652 }
1653 
1654 void dlm_lowcomms_stop(void)
1655 {
1656 	/* Set all the flags to prevent any
1657 	   socket activity.
1658 	*/
1659 	mutex_lock(&connections_lock);
1660 	dlm_allow_conn = 0;
1661 	foreach_conn(stop_conn);
1662 	clean_writequeues();
1663 	foreach_conn(free_conn);
1664 	mutex_unlock(&connections_lock);
1665 
1666 	work_stop();
1667 
1668 	kmem_cache_destroy(con_cache);
1669 }
1670 
1671 int dlm_lowcomms_start(void)
1672 {
1673 	int error = -EINVAL;
1674 	struct connection *con;
1675 	int i;
1676 
1677 	for (i = 0; i < CONN_HASH_SIZE; i++)
1678 		INIT_HLIST_HEAD(&connection_hash[i]);
1679 
1680 	init_local();
1681 	if (!dlm_local_count) {
1682 		error = -ENOTCONN;
1683 		log_print("no local IP address has been set");
1684 		goto fail;
1685 	}
1686 
1687 	error = -ENOMEM;
1688 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1689 				      __alignof__(struct connection), 0,
1690 				      NULL);
1691 	if (!con_cache)
1692 		goto fail;
1693 
1694 	error = work_start();
1695 	if (error)
1696 		goto fail_destroy;
1697 
1698 	dlm_allow_conn = 1;
1699 
1700 	/* Start listening */
1701 	if (dlm_config.ci_protocol == 0)
1702 		error = tcp_listen_for_all();
1703 	else
1704 		error = sctp_listen_for_all();
1705 	if (error)
1706 		goto fail_unlisten;
1707 
1708 	return 0;
1709 
1710 fail_unlisten:
1711 	dlm_allow_conn = 0;
1712 	con = nodeid2con(0,0);
1713 	if (con) {
1714 		close_connection(con, false, true, true);
1715 		kmem_cache_free(con_cache, con);
1716 	}
1717 fail_destroy:
1718 	kmem_cache_destroy(con_cache);
1719 fail:
1720 	return error;
1721 }
1722 
1723 void dlm_lowcomms_exit(void)
1724 {
1725 	struct dlm_node_addr *na, *safe;
1726 
1727 	spin_lock(&dlm_node_addrs_spin);
1728 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1729 		list_del(&na->list);
1730 		while (na->addr_count--)
1731 			kfree(na->addr[na->addr_count]);
1732 		kfree(na);
1733 	}
1734 	spin_unlock(&dlm_node_addrs_spin);
1735 }
1736